Contrôle Continu - Algèbre 2 - DU1

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Contrôle Continu - Algèbre 2 - DU1"

Transcription

1 Université Paris Dauphine 2012 MI2E CC n 1 Contrôle Continu - Algèbre 2 - DU1 Question de cours : Donner une définition de la propriété de somme directe pour deux sous-espaces vectoriels (d un R espace vectoriel E). Cours : Soit F 1 et F 2 deux sous-espaces vectoriels de E. On dit que F 1 et F 2 sont en somme directe si F 1 F 2 = {0}. Remarquer que cette définition est valable en dimension quelconque. On pourra également consulter le cours pour d autres définitions équivalentes. Exercice 1 Parmi les ensembles suivants, lesquels sont des espaces vectoriels : (répondre par oui ou par non, attention à la notation : -1 pour une mauvaise réponse). 1. l ensemble des fonctions de R dans R telles que f(0) = f(1), 2. l ensemble des fonctions de R dans R telles que f(0) = 1. Correction 1 1. Le premier ensemble (noté A) est un sous-espace vectoriel de l espace vectoriel des fonctions de R dans R. Pour le justifier (même si ce n était pas demandé) on voit que la fonction nulle appartient à A et si f 1, f 2 A et λ R alors f i (0) = f i (1) pour i {1, 2}. Donc λf 1 (0) = λf 1 (1) et donc, λf 1 (0) + f 2 (0) = λf 1 (1) + f 2 (1). On a donc vérifié que A est un sous-espace vectoriel de l espace vectoriel des fonctions de R dans R et est donc un espace vectoriel. 2. La fonction constante égale à 1 appartient à cet espace. Supposons que cet ensemble soit un espace vectoriel alors il est stable par addition. Donc la fonction constante égale à 2 appartient à cet espace, ce qui n est pas le cas. On obtient une contradiction donc ce n est pas un espace vectoriel. Exercice 2 Soit E := {(x, y, z) R 3 x + y 0} et F := {(x, y, z) R 3 x + y 0 et z = 0} 1. Vérifiez si E et F sont des sous-espaces vectoriels de R Est-ce que l ensemble E F est un espace vectoriel? Démontrez votre assertion. Correction 2 1. L ensemble E est n est pas un sous-espace vectoriel de R 3 car il n est pas stable par la loi externe : (1, 0, 0) E mais 1 (1, 0, 0) = ( 1, 0, 0) / E. L ensemble F n est pas un sous espace vectoriel de R 3 : ( 1, 0, 0) E mais (1, 0, 0) / E. 2. Remarquons tout d abord que E F = {(x, y, z) R 3 x + y = 0 et z = 0}. On vérifie ensuite facilement que 0 E F ainsi que la stabilité par les lois interne et externe.

2 Exercice 3 Soient F et G les sous-espaces vectoriels de R 4 définis par F := { (a, b, c, d) R 4 ; b 2c + d = 0 } et G := { (a, b, c, d) R 4 ; a = d et b = 2c }. 1. Donner une base de F, de G et de F G. 2. En déduire que F + G = R 4. Correction 3 1. Pour tout (a, b, c, d) dans R 4, donc (a, b, c, d) F b 2c + d = 0 d = b + 2c F = {(a, b, c, b + 2c) (a, b, c) R 3 } = {(a, 0, 0, 0) + (0, b, 0, b) + (0, 0, c, 2c) (a, b, c) R 3 } = {a(1, 0, 0, 0) + b(0, 1, 0, 1) + c(0, 0, 1, 2) (a, b, c) R 3 } = vect ((1, 0, 0, 0), (0, 1, 0, 1), (0, 0, 1, 2)). De plus, pour tout (a, b, c) dans R 3, a(1, 0, 0, 0)+b(0, 1, 0, 1)+c(0, 0, 1, 2) = 0 (a, b, c, b+2c) = (0, 0, 0, 0) a = b = c = 0. Ainsi, ((1, 0, 0, 0), (0, 1, 0, 1), (0, 0, 1, 2)) est une famille libre et génératrice de F, et donc une base de F. De même, et pour tout (a, c) dans R 2, G = {((a, 2c, c, a) (a, c) R 2 } = {a(1, 0, 0, 1) + c(0, 2, 1, 0), (a, c) R 2 } = vect((1, 0, 0, 1), (0, 2, 1, 0)) a(1, 0, 0, 1) + c(0, 2, 1, 0) = 0 (a, 2c, c, a) = (0, 0, 0, 0) a = c = 0, donc ((1, 0, 0, 1), (0, 2, 1, 0)) est une base de G. Finalement, pour tout (a, b, c, d) dans R 4, b 2c + d = 0 (a, b, c, d) F G a = d b = 2c donc { a = d = 0 b = 2c F G = {(0, 2c, c, 0) c R} = vect((0, 2, 1, 0)) et ((0, 2, 1, 0)) est donc une base de F G. 2. De la question précédente on déduit que dim(f ) = 3, dim(g) = 2 et dim(f G) = 1, donc dim(f + G) = dim(f ) + dim(g) dim(f G) = = 4 = dim(r 4 ), donc F + G = R 4.,

3 Exercice 4 Soit F l ensemble des fonctions continues sur [ 1, 1] qui sont affines sur [ 1, 0] et sur [0, 1]. 1. Démontrez que F est un espace vectoriel. 2. Donner une base de F et sa dimension. Correction 4 Rappelons tout d abord que pour m < M, une fonction f de [m, M] dans R, est dite affine s il existe a, b R tel que x [m, M], f(x) = ax + b. En particulier, f est une fonction continue. 1. Pour montrer que F est un R-espace vectoriel, nous allons montrer qu il s agit d un sousespace vectoriel de C 0 ([ 1, 1]), l ensemble des fonctions continues sur [ 1, 1] à valeurs réelles. Commençons par caractériser les élements de F. Soit f une fonction affine sur [ 1, 0] et [0, 1]. Il existe a, b R et a +, b + R tels que { a x + b si x [ 1, 0] x [ 1, 1], f(x) = a + x + b + sinon. Remarquons ensuite que lim x 0 f(x) = b et lim x 0 + f(x) = b +. On en déduit que f est continue et donc appartient à F si et seulement si b = b +. D où F = { f C 0 ([ 1, 1]) : a, b, c R, x [ 1, 1], f(x) = ax1 [ 1,0] (x) + bx1 [0,1] (x) + c }, (1) où 1 A est la fonction indicatrice de l ensemble A. L application nulle (0 : x 0) est un élément de F en prenant a = b = c = 0 dans la caractérisation (1). Soit f 1, f 2 F et λ R. Il existe a 1, b 1, c 1 et a 2, b 2, c 2 R tels que pour tout x [ 1, 1] et Ainsi, pour tout x [ 1, 1], f 1 (x) = a 1 x1 [ 1,0] (x) + b 1 x1 [0,1] (x) + c 1 f 2 (x) = a 2 x1 [ 1,0] (x) + b 2 x1 [0,1] (x) + c 2. (f 1 + λf 2 )(x) = (a 1 + λa 2 )x1 [ 1,0] (x) + (b 1 + λb 2 )x1 [0,1] (x) + c 1 + λc 2. Donc f 1 + λf 2 est un élément de F. Ainsi, F est un sous-espace vectoriel de C 0 ([ 1, 1]), et donc un R-espace vectoriel. 2. Montrons que e 1 = Id 1 [ 1,0] e 2 = Id 1 [0,1] avec Id : x x. e 3 = (x 1) forment une base de F. Soit f F. D après (1), il existe a, b, c tel que x [ 1, 1], f(x) = ax1 [ 1,0] (x) + bx1 [0,1] (x) + c.

4 d où f = ae 1 + be 2 + ce 3 On en déduit que F = {e 1, e 2, e 3 } est une famille génératrice de F. Montrons que F est libre. Soit λ 1, λ 2, λ 3 R tel que λ 1 e 1 + λ 2 e 2 + λ 3 e 3 = 0. En prenant successivement les valeurs 0, 1 et 1 dans l équation précédente, on obtient (λ 1, λ 2, λ 3 ) = (0, 0, 0), la famille est donc libre. La famille F étant libre et génératrice de F, c est une base de F. Par ailleurs, dim(f ) = card(f) = 3. Exercice 5 Soit F, G, H trois sous-espaces vectoriels de E un R espace vectoriel. Montrer que, si F + G = E, F H = {0} et G H alors G = H. Correction 5 Comme G H, il suffit de montrer que H G. Soit x H. Comme F +G = E il existe (f, g) F G tel que x = f + g. Grâce à l hypothèse G H, on sait que g appartient aussi à H. Par stabilité de H par la loi interne, on en déduit que f = x g appartient à H. Donc f F H ce qui implique f = 0. On en déduit que x = g et donc x G. Exercice 6 Soit E = R N l espace des suite réelles et E conv l ensemble des suites (éléments de E) convergentes, E const l ensemble des suites (éléments de E) constantes et E 0 l ensemble des suites convergentes (éléments de E conv ) dont la limite est Montrer que E est de dimension infinie. 2. Montrer que E conv et E const sont des sous-espaces vectoriels de E. 3. Montrer que E conv = E const E 0. Soit p N et F p E l ensemble des suites périodiques de période p, c est à dire qu elles vérifient x n+p = x n pour tout n N. 1. Montrer que E 0 et F p sont en somme directe. 2. Montrer que F p est de dimension finie, en donner sa dimension et exhiber une base. 3. Montrer que p N F p est un sous-espace vectoriel de E. Correction 6 1. Pour montrer que E est de dimension infinie, il suffit d exhiber une famille libre aussi grande qu on le souhaite (de taille n N). On aura alors dim E n pour un n choisi arbitrairement et donc dim E = +. Soit n N. On définit la famille E n = (e 1,..., e n ) de n vecteurs de E, où chaque e i est une suite définie par e i = (e i k) k N, e i k = 1 si k = i et e i k = 0 sinon. Montrons qu elle est libre. Supposons qu il existe λ 1,..., λ n R n tels que n λ i e i = 0 E où 0 E est la suite nulle, élément neutre de E. Clairement si le k ieme terme de la suite est nul, alors λ k = 0. La famille est donc libre et nous obtenons le résultat souhaité. 2. Montrons que E conv et E const sont des sous-espaces de E.

5 On observe tout d abord que 0 E E const. Considérons ensuite (u k ) et (v k ) appartenant à E const, et λ R, (w k ) = (u k + λv k ) E const. Ceci est trivial car puisque pour tout k N, u k = u 1 et v k = v 1, on a alors w k = u k + λv k = u 1 + λv 1 = w 1. L ensemble E const est donc un s.e.v. de E. On procède de même pour E conv en commençant par remarquer que 0 E E conv. On considère ensuite (u k ) et (v k ) deux suites de E conv, de limite respective u et v. et λ R. La suite (w k ) = (u k +λv k ) E conv et donc convergente et sa limite est u +λv. Donc (w k ) E conv. 3. On montre d abord que la somme E const + E 0 est directe. Pour cela on remarque que toute suite de E const E 0 est constante et converge vers 0, et que par conséquent c est la suite nulle. On a donc bien E const E 0 = {0 E } et la somme est directe. Ensuite on peut montrer également que toute suite convergente (u k ) qui converge vers u R permet de construire deux suites (u k u ) et (u ) qui sont respectivement une suite convergente vers 0 et une suite constante valant tout le temps u. Par définition de la somme de deux espaces, on a alors E conv E const E 0. L inclusion réciproque est facile à obtenir car comme toute suite constante est convergente, on a (E const E 0 ) E conv et comme E conv est un espace vectoriel, Vect(E const E 0 ) E conv. 4. Soit une suite (u k ) dans E 0 F p. Puisqu elle converge vers 0, pour tout ε > 0, il existe un n ε tel que que pour tout n n ε, u n ε. Raisonnons par l absurde : si la suite (u k ) n est pas nulle, il existe n 0 tel que u n0 0. Comme la suite est aussi p-périodique, on a u n0 +kp = u n0 0 pour tout k N. Il suffit de prendre ε = u n0 /2 dans la définition de la convergence ci-dessus pour obtenir une contradiction. En effet quelque soit n N, on peut toujous prendre k suffisamment grand pour que n 0 + kp n et pourtant u n0 +kp / [ε, ε]. L intersection entre E 0 et F p est donc l ensemble {0 E }, et la somme de deux espaces est donc directe. 5. On va démontrer que F p est de dimension finie p en exhibant une base de F p. Prenons la famille E p définie dans la réponse à la première question. On la modifie légèrement pour que celle-ci soit dans F p. On définit (f 1,..., f p ) par f i = (f i n) n N, f i n = 1 si n = i + kp pour k N et f i n = 0 sinon. On démontre de la même manière que dans le question 1 que c est une famille libre. Montrons qu elle est aussi génératrice. Soit une suite (u n ) dans F p. On définit par (u 1,..., u p ) ses p premiers termes. On voit clairement que pour les p premiers termes, on peut écrire pour 1 n p u n = u i e i n car tous les e i n sont nuls sauf e n n qui vaut 1. Pour finir, chaque rang n N de la suite peut s écrire n = n 0 + kp pour un n 0 entre 1 et p et k dans N. Dès lors, u n = u n0 +kp = u n0 = u n0 e n 0 n 0 = On a donc bien prouvé que u = u i e i n 0 = n u i e i. u i e i n 0 +kp = u i e i n

6 La famille (f 1,..., f p ) est donc génératrice de F p. C est une base de F p et, comme elle est de cardinal p, on en déduit que l espace F p est de dimension p. 6. Montrons que p N F p est un s.e.v. de E. Comme 0 E F 1, on a trivialement que 0 E p N F p. Enfin soit (u n ) et (v n ) deux suites dans p N F p et λ R. Il existe p u, p v (N ) 2 tels que (u n ) F pu et (v n ) F pv. Soit p w le PPCM de p u et p v : p w = kp u = k p v pour certains naturels k et k. Montrons que (w n ) = (u n + λv n ) F pw. Il suffit d observer que pour tout n N, Ce qui conclut la preuve. w n+pw = u n+pw + λv n+pw = u n+kpu + λv n+k p v = u n + λv n = w n.

Espaces de dimension finie

Espaces de dimension finie [http://mp.cpgedupuydelome.fr] édité le 28 décembre 2016 Enoncés 1 Espaces de dimension finie Bases en dimension finie Dimension d un espace Exercice 1 [ 01634 ] [Correction] Soit E l ensemble des fonctions

Plus en détail

Espaces vectoriels de dimension finie

Espaces vectoriels de dimension finie Chapitre 18 Espaces vectoriels de dimension finie 1 Dimension finie 2 1.1 Existence de bases............... 2 1.2 Dimension d un K-espace vectoriel...... 3 1.3 Rang d une famille de vecteurs........ 5

Plus en détail

Exo7. Espaces vectoriels. 1 Définition, sous-espaces. 2 Systèmes de vecteurs

Exo7. Espaces vectoriels. 1 Définition, sous-espaces. 2 Systèmes de vecteurs Exo7 Espaces vectoriels 1 Définition, sous-espaces Exercice 1 Déterminer lesquels des ensembles E 1, E 2, E 3 et E 4 sont des sous-espaces vectoriels de R 3. Calculer leurs dimensions. E 1 = {(x,y,z) R

Plus en détail

Proposition : Tout sev F est stable par combinaison linéaire, c est-à-dire :

Proposition : Tout sev F est stable par combinaison linéaire, c est-à-dire : 61 Proposition : Tout sev F est stable par combinaison linéaire, c est-à-dire : n, ( x 1,..., x n ) F n, (λ 1,..., λ n ) n, n λ i x i F i=1 Par récurrence sur le nombre de termes dans la combinaison linéaire.

Plus en détail

1 Quelques propriétés du spectre d un opérateur borné

1 Quelques propriétés du spectre d un opérateur borné Université Paris 7, Master 1 de Mathématiques Année 008/009 Notes pour le cours de théorie spectrale 1 Quelques propriétés du spectre d un opérateur borné Nous supposons ici que E est un espace de Banach

Plus en détail

ESPACES VECTORIELS. Résumé de cours d algèbre linéaire L1 de B. Calmès, Université d Artois (version du 1 er février 2016)

ESPACES VECTORIELS. Résumé de cours d algèbre linéaire L1 de B. Calmès, Université d Artois (version du 1 er février 2016) ESPACES VECTORIELS Résumé de cours d algèbre linéaire L1 de B. Calmès, Université d Artois (version du 1 er février 2016) 1. Espaces et sous-espaces vectoriels Dans ce qui suit, K est un corps, que l on

Plus en détail

Chapitre 12 : Étude locale des fonctions : limites

Chapitre 12 : Étude locale des fonctions : limites Chapitre 12 : Étude locale des fonctions : limites Dans tout ce chapitre, I désigne un intervalle de R, x 0 R, f est une fonction définie sur son domaine de définition D f à valeurs réelles. C f désigne

Plus en détail

n a k x k = 0, k=0 n a k x k. k=0

n a k x k = 0, k=0 n a k x k. k=0 Université Claude Bernard Lyon I CAPES de Mathématiques : Oral Année 2006 2007 Fonctions polynômes On travaille sur un corps K infini, par exemple R ou C. Définition, structures (a) Définition On appelle

Plus en détail

1 Notions de logique mathématique.

1 Notions de logique mathématique. Université de Provence 2012 2013 Introduction à l Analyse Chapitre 3 - Logique et Suites. 1 Notions de logique mathématique. 1.1 Assertions, propositions logiques, tables de vérité. On rappelle la notion

Plus en détail

Corrigés d exercices pour les TD 1 et 2

Corrigés d exercices pour les TD 1 et 2 Corrigés d exercices pour les TD et 2 Soit E = C 0 ([0, ]; R) et A = {f E; f(x) 0 pour tout x [0, ]}.. Montrer que les applications qui à tout élément (f, g) E 2 associent respectivement d (f, g) = définissent

Plus en détail

AR - SUITES RECURRENTES LINEAIRES ET EQUATIONS DIFFERENTIELLES LINEAIRES

AR - SUITES RECURRENTES LINEAIRES ET EQUATIONS DIFFERENTIELLES LINEAIRES AR - SUITES RECURRENTES LINEAIRES ET EQUATIONS DIFFERENTIELLES LINEAIRES Suites de nombres complexes Notons l(c) l espace vectoriel sur C des suites de nombres complexes. Si (s n ) n 0 est un élément de

Plus en détail

4.1 L ensemble des réels est un corps ordonné

4.1 L ensemble des réels est un corps ordonné Table des matières 4 Propriétés de R 4. L ensemble des réels est un corps ordonné....................... 4.. Propriétés d ordre de R............................. 4..2 Valeur absolue..................................

Plus en détail

AS - DECOMPOSITION D UN NOMBRE REEL EN BASE a COURBE DE PEANO

AS - DECOMPOSITION D UN NOMBRE REEL EN BASE a COURBE DE PEANO AS - DECOMPOSITION D UN NOMBRE REEL EN BASE a COURBE DE PEANO Soit a un entier strictement plus grand que 1. Notons N a = {0,1,...,a 1}. Définition On dira qu un nombre réel positif x est de classe a,

Plus en détail

Chapitre 2. Langage et raisonnement en mathématiques. 2.1 Les règles du jeux

Chapitre 2. Langage et raisonnement en mathématiques. 2.1 Les règles du jeux Chapitre 2 Langage et raisonnement en mathématiques 2.1 Les règles du jeux En mathématique, il y a deux processus fondamentaux : 1. construire des objets mathématiques (nombres, fonctions, figures géométriques,...)

Plus en détail

Espaces vectoriels. Soit E un ensemble muni d une opération d addition notée + et d une opération de multiplication par

Espaces vectoriels. Soit E un ensemble muni d une opération d addition notée + et d une opération de multiplication par Algèbre : Chapitre 1 Espaces vectoriels Dans ce chapitre nous allons étudier des ensembles qui ont des propriétés particulières et que nous allons appeler espaces vectoriels. Tous les ensembles dont nous

Plus en détail

Etude de limites de suites définies par

Etude de limites de suites définies par Etude de limites de suites définies par récurrence u n+1 = f(u n ) I) Généralités 1) Définition Une suite définie par récurrence est une suite définie par son premier terme et par une relation de récurrence,

Plus en détail

TD de topologie et calcul différentiel Corrigé de la Feuille 3: Topologie des espaces métriques

TD de topologie et calcul différentiel Corrigé de la Feuille 3: Topologie des espaces métriques LM360 Mathématiques 2008 TD de topologie et calcul différentiel Corrigé de la Feuille 3: Topologie des espaces métriques Groupe de TD 5 Rappelons que la distance usuelle du plan R 2 est la distance euclidienne

Plus en détail

Feuille d exercices 6 : Familles libres, génératrices. Applications linéaires.

Feuille d exercices 6 : Familles libres, génératrices. Applications linéaires. Université Denis Diderot Paris 7 (4-5) TD Maths, Agro wwwprobajussieufr/ merle Mathieu Merle : merle@mathuniv-paris-diderotfr Feuille d exercices 6 : Familles libres, génératrices Applications linéaires

Plus en détail

Convergence des suites monotones et applications.

Convergence des suites monotones et applications. Université Paris Est Marne-la-Vallée L Sciences Physiques 20-202 Compléments en Analyse Convergence des suites monotones et applications.. Quelques définitions Ce chapitre est consacré à la convergence

Plus en détail

Espaces vectoriels de dimension finie

Espaces vectoriels de dimension finie Bibliothèque d exercices Énoncés L Feuille n 9 Espaces vectoriels de dimension finie Base Exercice Montrer que les vecteurs {,, 0 } forment une base de R. Calculer les coordonnées respectives des vecteurs

Plus en détail

2. Espaces de Hilbert

2. Espaces de Hilbert 2. Espaces de Hilbert 2.1. Produits scalaires Définition 2.1.1. Soient X et Y deux espaces vectoriels complexes ; une application f : X Y est dite antilinéaire si, pour tous x, y X et tout λ C on a f(x

Plus en détail

Vecteurs et applications linéaires

Vecteurs et applications linéaires Vecteurs et applications linéaires (1) (1) () Vecteurs et applications linéaires 1 / 41 1 Familles de vecteurs de R n 2 Sous-espace vectoriels dans R n 3 Base d un sous-espace vectoriel (1) () Vecteurs

Plus en détail

Espaces euclidiens, orthogonalité, longueur. Moindres carrés.

Espaces euclidiens, orthogonalité, longueur. Moindres carrés. Université de Nice SL2M 2009-10 Algèbre 2 Espaces euclidiens, orthogonalité, longueur. Moindres carrés. On travaille avec le corps des réels, noté R. Pour tout entier naturel n, on considère l ensemble

Plus en détail

MT23-Algèbre linéaire

MT23-Algèbre linéaire MT23-Algèbre linéaire Chapitre 1 : Espaces vectoriels ÉQUIPE DE MATHÉMATIQUES APPLIQUÉES UTC juillet 2014 suivant Chapitre 1 Espaces vectoriels 1.1 Espaces vectoriels, généralités..........................

Plus en détail

TD9. ENS Cachan M1 Hadamard Exercice 1 Opérateurs compacts et extraction de sous-suites

TD9. ENS Cachan M1 Hadamard Exercice 1 Opérateurs compacts et extraction de sous-suites Analyse fonctionnelle A. Leclaire ENS Cachan M1 Hadamard 2016-2017 TD9 Exercice 1 Opérateurs compacts et extraction de sous-suites Soient E,F deux espaces de Banach. On note B la boule unité fermée de

Plus en détail

Analyse numérique élémentaire

Analyse numérique élémentaire Analyse numérique élémentaire Chapitre 8 : Calcul numérique des valeurs propres et des vecteurs propres Équipe de Mathématiques Appliquées UTC Juin 2007 suivant Chapitre VIII Détermination des valeurs

Plus en détail

Université de Metz. Licence de Mathématiques - 2ème année 1er semestre CALCUL DIFFERENTIEL

Université de Metz. Licence de Mathématiques - 2ème année 1er semestre CALCUL DIFFERENTIEL Université de Metz Licence de Mathématiques - 2ème année 1er semestre CALCUL DIFFERENTIEL par Ralph Chill Laboratoire de Mathématiques et Applications de Metz Année 2010/11 1 Table des matières Chapitre

Plus en détail

Corrigé TD 2 Tribus et mesures

Corrigé TD 2 Tribus et mesures Corrigé TD 2 Tribus et mesures Exercice 0. Soit f : E R + {+ } une fonction. Pour tout n 1 et tout i {0, 1,..., n2 n 1} on note A n = {x E : f(x) n}, B n,i = {x E : i2 n f(x) < (i + 1)2 n }, et pour un

Plus en détail

(exercice : calculer u 2 puis u 5 )

(exercice : calculer u 2 puis u 5 ) Suites Prérequis : Division euclidienne Soient a et b deux entiers avec b 0. Il existe un unique couple (q, r) Z N tel que a = q b + r et 0 r < b. q s appelle le quotient de la division enclidienne de

Plus en détail

Logique, ensembles, raisonnements

Logique, ensembles, raisonnements Bibliothèque d exercices Énoncés L1 Feuille n Logique, ensembles, raisonnements 1 Logique Exercice 1 Soient les quatre assertions suivantes : (a) x R y R x + y > 0 ; (b) x R y R x + y > 0 ; (c) x R y R

Plus en détail

4.1 Définitions et notations 1 CHAPITRE 4. Matrices Définitions et notations

4.1 Définitions et notations 1 CHAPITRE 4. Matrices Définitions et notations 4 Définitions et notations CHAPITRE 4 Matrices 4 Définitions et notations On désigne par K un des deux ensembles R ou C et par n et p deux entiers strictement positifs 4 Matrices Définition On appelle

Plus en détail

Corrigés d exercices pour le TD 5

Corrigés d exercices pour le TD 5 Corrigés d exercices pour le TD 5 Compacts? Les ensembles suivants sont-ils compacts? Justifier la réponse. 1. Z, dans l espace métrique R muni de la distance discrète. 2. {0, 1}, dans l espace métrique

Plus en détail

ESPACES VECTORIELS CHAPITRE Espaces vectoriels. 1.1 Définition. Dans tout ce chapitre, K désignera R ou C. Définition 10.1

ESPACES VECTORIELS CHAPITRE Espaces vectoriels. 1.1 Définition. Dans tout ce chapitre, K désignera R ou C. Définition 10.1 CHAPITRE 10 ESPACES VECTORIELS Dans tout ce chapitre, K désignera R ou C. 1 Espaces vectoriels 1.1 Définition Définition 10.1 On appelle K-espace vectoriel un ensemble E muni d une addition + : E E E (x,

Plus en détail

Limite d une fonction en un point de R. Fonctions continues.

Limite d une fonction en un point de R. Fonctions continues. DOCUMENT 23 Limite d une fonction en un point de R. Fonctions continues. 1. Introduction et notations Considérons la fonction f : x sin x définie sur R. La valeur 0 n appartient pas à x l ensemble de définition

Plus en détail

Limites, continuité, dérivabilité

Limites, continuité, dérivabilité Limites, continuité, dérivabilité (3) () Analyse 1 / 47 Plan 1 Un peu de vocabulaire 2 Limites 3 Opérations sur les limites 4 Relations de comparaison locale, notations de Landau 5 Continuité 6 Fonctions

Plus en détail

Dimension des espaces vectoriels. () Dimension des espaces vectoriels 1 / 36

Dimension des espaces vectoriels. () Dimension des espaces vectoriels 1 / 36 Dimension des espaces vectoriels () Dimension des espaces vectoriels 1 / 36 1 Familles libres, génératrices et bases 2 Espaces vectoriels de dimension finie 3 Sous-espaces vectoriel de dimension finie

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Enoncés 1 Ouverts et fermés Exercice 1 [ 113 ] [correction] Montrer que tout fermé peut s écrire comme intersection d une suite décroissante d ouverts.

Plus en détail

Impossibilité de la duplication du cube, de la quadrature du disque et de la trisection de l angle.

Impossibilité de la duplication du cube, de la quadrature du disque et de la trisection de l angle. Impossibilité de la duplication du cube, de la quadrature du disque et de la trisection de l angle. L étude de ces trois célèbres problèmes de contructions géométriques à la règle et au compas nécessite

Plus en détail

valeurs dans un espace normé de dimension finie

valeurs dans un espace normé de dimension finie Séries numériques, ou séries à valeurs dans un espace normé de dimension finie Définitions. Dans ce chapitre K représente indifférement le corps des réels R, ou le corps des complexes C. Le symbole E représente

Plus en détail

Dimension des espaces vectoriels

Dimension des espaces vectoriels Dimension des espaces vectoriels PTSI B Lycée Eiffel 20 avril 2013 J ai simplement pensé à l idée d une projection, d une quatrième dimension invisible, autrement dit que tout objet de trois dimensions,

Plus en détail

Chapitre 4. Suites réelles

Chapitre 4. Suites réelles Département de mathématiques et informatique L1S1, module A ou B Chapitre 4 Suites réelles Emmanuel Royer emmanuel.royer@math.univ-bpclermont.fr Ce texte mis gratuitement à votre disposition a été rédigé

Plus en détail

Cours de remise à niveau Maths 2ème année. Espaces vectoriels

Cours de remise à niveau Maths 2ème année. Espaces vectoriels Cours de remise à niveau Maths 2ème année Espaces vectoriels C. Maugis-Rabusseau GMM Bureau 116 cathy.maugis@insa-toulouse.fr C. Maugis-Rabusseau (INSA) 1 / 33 Plan 1 Généralités 2 Sous-espace vectoriel

Plus en détail

Calcul de norme d application linéaire

Calcul de norme d application linéaire [http://mpcpgedupuydelomefr] édité le 1 juillet 214 Enoncés 1 Calcul de norme d application linéaire Exercice 1 [ 491 ] [correction] On note E = l ( l espace vectoriel normé des suites réelles bornées

Plus en détail

PROBLÈME 1 : Une équation matricielle PRÉLIMINAIRES PARTIE I

PROBLÈME 1 : Une équation matricielle PRÉLIMINAIRES PARTIE I TD - Chapitres 19 et 0 - ALGÈBRE LINÉAIRE PROBLÈME 1 : Une équation matricielle Extrait sujet «Petites Mines» 010 Le but de ce problème est d étudier différentes matrices qui commutent avec leur transposée,

Plus en détail

LEÇON N 21 : 21.1 Caractérisations vectorielles d une droite

LEÇON N 21 : 21.1 Caractérisations vectorielles d une droite LEÇON N 21 : Définition vectorielle d une droite du plan, d une droite ou d un plan de l espace. Représentations paramétriques. Génération des demi-droites, des segments. Parallélisme. Pré-requis : Propriétés

Plus en détail

Exo7. Espaces complets. Théorème de Baire. Espaces métriques complets, espaces de Banach. Enoncés : M. Quéffelec, V. Mayer Corrections : A.

Exo7. Espaces complets. Théorème de Baire. Espaces métriques complets, espaces de Banach. Enoncés : M. Quéffelec, V. Mayer Corrections : A. Enoncés : M. Quéffelec, V. Mayer Corrections : A. Bodin Exo7 Espaces complets Théorème de Baire Exercice 1 À l aide du théorème de Baire, montrer qu un fermé dénombrable non vide X de R a au moins un point

Plus en détail

pgcd, ppcm dans Z, théorème de Bézout. Applications

pgcd, ppcm dans Z, théorème de Bézout. Applications 7 pgcd, ppcm dans Z, théorème de Bézout. Applications Le théorème de division euclidienne et les sous-groupes de (Z, +) sont supposés connus. Pour tout entier relatif n, on note : nz = {n q q Z} l ensemble

Plus en détail

4 Base & dimension d un espace vectoriel

4 Base & dimension d un espace vectoriel 4 Base & dimension d un espace vectoriel Famille génératrice Une famille finie F = (e e... e n ) de vecteurs d un espace vectoriel E est dite génératrice si E = e e... e n, c est-à-dire si tout vecteur

Plus en détail

Le Béaba des Espaces Normés et Algèbres de Banach

Le Béaba des Espaces Normés et Algèbres de Banach Le Béaba des Espaces Normés et Algèbres de Banach Alain Prouté Université Denis Diderot-Paris 7 Dernière révision de ce texte : 21 novembre 2012 Ce texte a été écrit pour le niveau Licence 2. Table des

Plus en détail

DENOMBRABILITE. P. Pansu 14 mai 2005

DENOMBRABILITE. P. Pansu 14 mai 2005 DENOMBRABILITE P. Pansu 14 mai 2005 1 Motivation Il y a t il plus de réels dans ]1, + [ ou dans l intervalle ]0, 1[? Oui, bien sûr. Des droites passant par l origine dans le plan, il y en a-t-il autant

Plus en détail

Suites réelles. I Rappels de vocabulaire. II Suites remarquables. Définition 5

Suites réelles. I Rappels de vocabulaire. II Suites remarquables. Définition 5 I Rappels de vocabulaire Suites réelles Définition 1 Une suite réelle u est une application de I R où I est une partie de N. Au lieu de noter u(n), pour les suites on note u n l image de n par l application

Plus en détail

Applications linéaires

Applications linéaires Chapitre 4 Applications linéaires I) Généralités sur les applications linéaires 1) Définitions Définition 1 Soient E et F deux R-espaces vectoriels On appelle application linéaire de E dans F toute application

Plus en détail

Feuille 3 : Espaces vectoriels et sous espaces vectoriels

Feuille 3 : Espaces vectoriels et sous espaces vectoriels Feuille : Espaces vectoriels et sous espaces vectoriels Eercice. (Sous-espace vectoriels de R. Les sous-ensembles suivants de R sont ils des sous-espaces vectoriels? Faire des dessins!. {(, R + = }.. {(,

Plus en détail

1 Montrer qu un espace est (ou n est pas) un espace vectoriel

1 Montrer qu un espace est (ou n est pas) un espace vectoriel Séance Algèbre Linéaire : corrections. Remarque générale : les exercices qui suivent ne pourront sans doute pas tous être traités dans les 3 heures ; mais un certain nombre pourra être cherché à la maison.

Plus en détail

Calcul matriciel. 1.1 Définitions Matrices carrées particulières... 3

Calcul matriciel. 1.1 Définitions Matrices carrées particulières... 3 Chapitre 10 Calcul matriciel 1 Généralités 2 11 Définitions 2 12 Matrices carrées particulières 3 2 Opérations sur les matrices 4 21 L espace vectoriel M np (R 4 22 Produit de deux matrices 5 23 Transposée

Plus en détail

TD 3: Suites réelles

TD 3: Suites réelles Université Pierre et Marie Curie Année 2011/2012 LM115 TD 3: Suites réelles MIME Convergence des suites : Par définition, une suite (u n ) converge vers un réel l si : Pour tout ɛ réel strictement positif,

Plus en détail

2.2.1 Normes sur l espace des fonctions continues sur un intervalle [a,b]

2.2.1 Normes sur l espace des fonctions continues sur un intervalle [a,b] :On pose pour toute application bornée f définie d un ensemble X dans un espace vectoriel normé E : N (f ou f = sup f X Alors N est une norme dite norme de la convergence uniforme sur B(X, E des applications

Plus en détail

Chapitre 4. Applications

Chapitre 4. Applications Chapitre 4 Applications 1. Définitions et exemples Définition 4.1 Soient E et F deux ensembles. Une application f de E dans F est un procédé qui permet d associer à chaque élément x de E un unique élément

Plus en détail

Exercices Corrigés Applications linéaires. Exercice 1 On considère l application linéaire :

Exercices Corrigés Applications linéaires. Exercice 1 On considère l application linéaire : Exercices Corrigés Applications linéaires Exercice 1 On considère l application linéaire : f : R 4 R 2, x 1, x 2, x 3, x 4 x 1 + x 2 + x 3 + x 4, x 1 + 2x 2 + 3x 3 + 4x 4 1 Quelle est la matrice de f dans

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction exponentielle 1 Fonction exponentielle Définition et variation Théorème Définition Il existe une unique fonction définie et dérivable sur telle que et Cette fonction est appelée fonction exponentielle

Plus en détail

Corrigés d exercices pour le TD 4

Corrigés d exercices pour le TD 4 Corrigés d exercices pour le TD 4 Série harmonique. Montrer que la série harmonique n n ne vérifie pas le critère de Cauchy et en déduire qu elle diverge. On pose pour n N, 2. Montrer que pour tout p,

Plus en détail

CHAPITRE 2 SUITES NUMÉRIQUES

CHAPITRE 2 SUITES NUMÉRIQUES CHAPITRE 2 SUITES NUMÉRIQUES Définition 2.0. Une suite réelle est une application u : N R qui à tout n de N associe un élément u n de R, appelé terme général de la suite. On notera donc la suite (u n ),

Plus en détail

Opérations élémentaires et déterminants

Opérations élémentaires et déterminants 10 Opérations élémentaires et déterminants On note toujours K le corps de réels ou des complexes On se donne un entier n 1 et M n (K désigne l espace vectoriel des matrices carrées d ordre n à coefficients

Plus en détail

Espaces vectoriels. S2 Mathématiques Générales 1 11MM21

Espaces vectoriels. S2 Mathématiques Générales 1 11MM21 Espaces vectoriels S2 Mathématiques Générales 1 11MM21 Les notes qui suivent sont très largement inspirées du site : http://uel.unisciel.fr/mathematiques/espacevect1/espacevect1/co/espacevect1.html et

Plus en détail

I ESPACES METRIQUES. d : E E R +

I ESPACES METRIQUES. d : E E R + I ESPACES METRIQUES 1. Espaces métriques 1.1 Définitions Soit E un ensemble non vide. On appelle distance sur E toute application vérifiant les propriétés suivantes : d : E E R + a) x, y E, d(x, y) = 0

Plus en détail

Chapitre 2 : Suites numériques

Chapitre 2 : Suites numériques Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 013-014 Chapitre : Suites numériques Dans tout ce qui suit on considère des suites (u n ) n N à valeurs réelles, c est à dire des applications de N

Plus en détail

Complétude et dimension d un espace vectoriel normé. Introduction et rappels. Espaces métriques. Jean-Baptiste Campesato 10 février 2010

Complétude et dimension d un espace vectoriel normé. Introduction et rappels. Espaces métriques. Jean-Baptiste Campesato 10 février 2010 Complétude et dimension d un espace vectoriel normé Jean-Baptiste Campesato 10 février 2010 Le but de cet article est de présenter les liens entre la dimension d un espace vectoriel normé et de sa possible

Plus en détail

Une condition nécessaire de convergence Considérons une série de terme général. Supposons cette série convergente. Soit sa somme.

Une condition nécessaire de convergence Considérons une série de terme général. Supposons cette série convergente. Soit sa somme. Séries numériques I) Définitions - Notions essentielles.) Séries numériques Définition Soit une suite numérique. On appelle série de terme général la suite dont les termes successifs sont : ₀ ₀ ₁ ₀ ₁ ₂

Plus en détail

GEOMETRIE AFFINE Document de travail pour la préparation au CAPES Troisième partie : CONVEXITÉ

GEOMETRIE AFFINE Document de travail pour la préparation au CAPES Troisième partie : CONVEXITÉ GEOMETRIE AFFINE Document de travail pour la préparation au CAPES Troisième partie : CONVEXITÉ Marie-Claude DAVID, Frédéric HAGLUND, Daniel PERRIN Marie-Claude.David@math.u-psud.fr 8 décembre 2003 Page

Plus en détail

Une définition et des caractérisations des fonctions exponentielles à partir d une équation fonctionnelle

Une définition et des caractérisations des fonctions exponentielles à partir d une équation fonctionnelle DOCUMENT 36 Une définition et des caractérisations des fonctions exponentielles à partir d une équation fonctionnelle Une propriété importante des fonctions exponentielles est qu elles sont solutions de

Plus en détail

(Q) non vide et majorée, alors il existe dans R un plus petit majorant de A, appelé la borne CHAPITRE 1 R, BORNE SUPÉRIEURE ET CONSÉQUENCES

(Q) non vide et majorée, alors il existe dans R un plus petit majorant de A, appelé la borne CHAPITRE 1 R, BORNE SUPÉRIEURE ET CONSÉQUENCES CHAPITRE 1 R, BORNE SUPÉRIEURE ET CONSÉQUENCES 1.1. Propriétés de R On suppose connus N = {0, 1, 2, 3,...}, l anneau des entiers Z = {..., 2, 1, 0, 1, 2,...} et le corps des rationnels Q = { a a, b Z,

Plus en détail

MHT201. Quelques indications de TD 12 (suite)

MHT201. Quelques indications de TD 12 (suite) MHT01 Quelques indications de TD 1 (suite) Exo 1 (1) Notons e 1 = (1, 0, 0), e = (0, 1, 0), et e 3 = (0, 0, 1) Alors {e 1, e, e 3 } est la base canonique de R 3 D après la définition de f, on a f(e 1 )

Plus en détail

Les fonctions de plusieurs variables (suite)

Les fonctions de plusieurs variables (suite) Les fonctions de plusieurs variables (suite) Exemple d application de ce résultat Comme x x (x, y) (x, y ) et y y (x, y) (x, y ), les applications définies par (x, y) x, (x, y) y sont continues sur R 2

Plus en détail

Matrices. 6 On appelle matrice triangulaire inférieure toute matrice carrée d ordre n telle que, si

Matrices. 6 On appelle matrice triangulaire inférieure toute matrice carrée d ordre n telle que, si Agrégation interne UFR MATHÉMATIQUES Matrices On note K un corps commutatif. n et p représentent deux entiers naturels non nuls. 1. Notion de matrice 1.1. Définitions Définition 1 On appelle matrice d

Plus en détail

Chapitre 2. Introduction aux matrices

Chapitre 2. Introduction aux matrices L1 2012-2013 Université Paris 13 Algèbre linéaire Chapitre 2 Introduction aux matrices Référence: Liret-Martinais [2], chapitre 4 Nous avons déjà rencontré des tableaux de nombres, ou matrices Nous allons

Plus en détail

Département de mathématiques et informatique L1S1, module A ou B Maths. Chapitre 3. Suites numériques

Département de mathématiques et informatique L1S1, module A ou B Maths. Chapitre 3. Suites numériques Département de mathématiques et informatique L1S1, module A ou B Maths Chapitre 3 Suites numériques p. 2 Remarque importante. Ce cours n est pas indépendant du cours de Mathématiques pour tous. Ce document

Plus en détail

Espaces euclidiens, orthogonalité, longueur. Moindres carrés.

Espaces euclidiens, orthogonalité, longueur. Moindres carrés. Université Nice Sophia-Antipolis SL2SF 2012-13 Algèbre 2 Espaces euclidiens, orthogonalité, longueur. Moindres carrés. On travaille avec le corps des réels, noté R. Pour tout entier naturel n, on considère

Plus en détail

Contrôle continu - 5 décembre 2011

Contrôle continu - 5 décembre 2011 Université Paris Dauphine DEMIE e année Algèbre linéaire 3 Contrôle continu - décembre 011 Le sujet comporte 1 page. L épreuve dure 1 heure 30. Les documents, calculatrices et téléphones portables sont

Plus en détail

À propos des transvections

À propos des transvections À propos des transvections Antoine Ducros Préparation à l agrégation de mathématiques 1 Les transvections : aspect matriciel On fixe pour toute la suite du texte un corps commutatif k. (1.1) Définition.

Plus en détail

Espaces vectoriels de dimension finie

Espaces vectoriels de dimension finie Espaces vectoriels de dimension finie 1.1) Famille génératrice (rappel) Exemple 1 On considère par exemple l'espace vectoriel R² et les vecteurs 1,1, 1, et,3. Soit un élément quelconque de R²,,. Peut-on

Plus en détail

Chapitre 3 MÉTHODES ITÉRATIVES POUR LA RÉSOLUTION DES

Chapitre 3 MÉTHODES ITÉRATIVES POUR LA RÉSOLUTION DES Chapitre 3 MÉTHODES ITÉRATIVES POUR LA RÉSOLUTION DES SYSTÈMES LINÉAIRES Chapitre 3 MÉTHODES ITÉRATIVES POUR LA RÉSOLUTION DES SYSTÈMES LINÉAIRES 3. Introduction On va étudier les méthodes itératives pour

Plus en détail

Chapitre 6. Algèbre matricielle. 6.1 Opérations linéaires sur les matrices

Chapitre 6. Algèbre matricielle. 6.1 Opérations linéaires sur les matrices Chapitre 6 Algèbre matricielle En plus d être des tableaux de nombres susceptibles d être manipulés par des algorithmes pour la résolution des systèmes linéaires et des outils de calcul pour les applications

Plus en détail

Modules sur un anneau commutatif

Modules sur un anneau commutatif Université de Nice Master 1 Mathématiques 2006-07 GAE Modules sur un anneau commutatif 1. Généralités 1.1. On considère un anneau commutatif A. Un module M sur l anneau A (ou A-module) est un groupe abélien

Plus en détail

Espaces de Banach. 1 Normes sur un espace vectoriel. 2 Topologie des espaces vectoriels normés. 2.1 Rappels

Espaces de Banach. 1 Normes sur un espace vectoriel. 2 Topologie des espaces vectoriels normés. 2.1 Rappels 1 Normes sur un espace vectoriel Espaces de Banach Définition 1.1. (Norme) Soit V un R-espace vectoriel (abrégé R-ev dans la suite). Une norme est une application définie sur V à valeurs dans R +, notée

Plus en détail

Chapitre 3: Espaces topologiques

Chapitre 3: Espaces topologiques Chapitre 3: Espaces topologiques I. Définition et exemples. Dans le chapitre précédent, nous avons défini les ouverts puis nous avons également caractérisé les points adhérents, les points intérieurs,

Plus en détail

Cours de Mathématiques Calcul matriciel, systèmes linéaires. I Matrices à coefficients dans K... 3

Cours de Mathématiques Calcul matriciel, systèmes linéaires. I Matrices à coefficients dans K... 3 Table des matières I Matrices à coefficients dans K............................ 3 I.1 Généralités.................................. 3 I.2 Matrices particulières............................. 3 I.3 Matrices

Plus en détail

N K, n 0 < n 1 < n 2 <

N K, n 0 < n 1 < n 2 < Chapitre 1 Suites réelles et complexes Dans ce chapitre, K désigne le corps R des nombres réels, ou le corps C des nombres complexes. Pour x K, nous noterons x le module de x (égal à la valeur absolue

Plus en détail

Exercices corrigés. Exercice 6 Considérons les vecteurs de R 4 suivants : 1 e 1 = 1 1, e 2 = 1. , e 4 = 2, e 3 = 1 1

Exercices corrigés. Exercice 6 Considérons les vecteurs de R 4 suivants : 1 e 1 = 1 1, e 2 = 1. , e 4 = 2, e 3 = 1 1 Eercices corrigés Algèbre linéaire Enoncés Eercice On rappelle que (E, +, est un K-espace vectoriel si (I (E, + est un groupe commutatif ; (II-, y E, α K, α ( + y = α + α y ; (II- E, α, β K, (α + β = α

Plus en détail

si 0 p n. = p!(n p)! 0 si p > n.

si 0 p n. = p!(n p)! 0 si p > n. Université Claude Bernard Lyon I L1 - parcours PMI de Mathématiques : Algèbre I Année 2012 2013 Dénombrements Les résultats à retenir Théorème Soit E et F deux ensembles de cardinaux finis respectifs n

Plus en détail

Commutant d une matrice

Commutant d une matrice Énoncé On désigne par n un entier naturel supérieur ou égal à 2, et par M n (IK) l algèbre sur IK des matrices carrées d ordre n à coefficients dans IK, avec IK = IR ou lc. La matrice identité de M n (IK)

Plus en détail

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre 1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Les deux modes de représentation des sous-espaces vectoriels Il existe deux modes

Plus en détail

Bibliothèque d exercices L1 Feuille n 6. Arithmétique dans Z

Bibliothèque d exercices L1 Feuille n 6. Arithmétique dans Z Bibliothèque d exercices Énoncés L1 Feuille n 6 Arithmétique dans Z 1 Divisibilité, division euclidienne Exercice 1 Combien 15! admet-il de diviseurs? Exercice 2 Trouver le reste de la division par 13

Plus en détail

Chapitre 2: Le théorème de projection et ses applications

Chapitre 2: Le théorème de projection et ses applications Chapitre : Le théorème de projection et ses applications 1 décembre 007 1 Introduction En géométrie élémentaire, si P est un plan et x un point qui n appartient pas à P, il existe un unique point y P qui

Plus en détail

Corrigé de Banque PT 2015 Épreuve A

Corrigé de Banque PT 2015 Épreuve A Lycée Laetitia Bonaparte Spé PT Corrigé de Banque PT 2015 Épreuve A Problème d Algèbre linéaire Partie I 1(a Notons β (e 1, e 2, e 3, e 4 la base canonique de R 4 On a De même, [ f(e1 ] β [ f ] β [ ] e

Plus en détail

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques. m = y B y A f(b) f(a)

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques. m = y B y A f(b) f(a) 1 UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre VII : Dérivation Notations : On reprend dans ce chapitre les notations

Plus en détail

Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR.

Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR. I Notion de suite réelle ) Définition : Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR. Le réel U(n) est noté U n il est appelé terme général

Plus en détail

MPSI 2 : DL 4. 1 Première partie. 2 Deuxième partie. pour le 08 janvier 2003

MPSI 2 : DL 4. 1 Première partie. 2 Deuxième partie. pour le 08 janvier 2003 MPSI 2 : DL 4 pour le 08 janvier 2003 Soit E un espace vectoriel sur le corps K = R. On appelle projecteur un endomorphisme p de E qui vérifie p p = p. 1 Première partie. Soit un projecteur p de l espace

Plus en détail

LEÇON N 58 : Limite finie d une fonction à valeurs réelles en un point

LEÇON N 58 : Limite finie d une fonction à valeurs réelles en un point LEÇON N 58 : Limite finie d une fonction à valeurs réelles en un point a de R. Opérations algébriques sur les ites. Continuité d une fonction en un point. Exemples. Pré-requis : Limites d une suite réelle

Plus en détail

Corrigé Feuille 4. et sa matrice dans la base canonique, qui est orthonormée pour le produit scalaire canonique, est. P (x)q(x)dx,

Corrigé Feuille 4. et sa matrice dans la base canonique, qui est orthonormée pour le produit scalaire canonique, est. P (x)q(x)dx, Université Paris Panthéon-Sorbonne L MASS 0/03 Algèbre Corrigé Feuille 4 Exercice. a On remarque que dim F car F R 3 en effet,,, F. D autre part, soient e = 3,,, e =, 0,. On vérifie que {e, e } est une

Plus en détail

Exo7. Arithmétique dans Z. 1 Divisibilité, division euclidienne

Exo7. Arithmétique dans Z. 1 Divisibilité, division euclidienne Exo7 Arithmétique dans Z 1 Divisibilité, division euclidienne Exercice 1 Sachant que l on a 96842 = 256 375+842, déterminer, sans faire la division, le reste de la division du nombre 96842 par chacun des

Plus en détail