Série double de deux caractères quantitatifs
|
|
|
- Jean-Bernard Trudeau
- il y a 9 ans
- Total affichages :
Transcription
1 Série double de deux caractères quantitatifs Table des matières A Tableaux statistiques à deux dimensions 1 A1 Tableau de données ponctuelles (ou en lignes) 1 A2 Tableau à double entrée (ou de contingence) 1 A3 Conversion d un tableau en lignes en un tableau de contingence 2 A4 Effectifs marginaux 3 A5 Fréquences marginales 3 A6 Distributions marginales 4 A7 Distributions conditionnelles 4 A8 Fréquences conditionnelles 4 A9 Sous-représentation et sur-représentation 6 A Tableaux statistiques à deux dimensions Soient deux caractères et définis sur une même population d effectif total ( et peuvent être tous deux qualitatifs, tous deux qualitatifs, l un qualitatif et l autre quantitatif) Remarque 1 Si est qualitatif, x i est i-ème la modalité de ce caractère ; si est quantitatif, x i est la i-ème valeur du caractère ou le centre de la i-ème classe De même pour A1 Tableau de données ponctuelles (ou en lignes) Une série statistique double (, ) de deux caractères discrets liés par un tableau en lignes est la donnée d une suite de n couples (x k, y k ) (avec k [1n]) : Individus 1 2 n x 1 x 2 x n y 1 y 2 y n A2 Tableau à double entrée (ou de contingence) Une série statistique double (, ) liée par un tableau de contingence est définie par : Les p valeurs possibles x 1,, x r ou les p classes [a 0, a 1 [,, [a p 1, a p [ de Les q valeurs possibles y 1,, y q ou les q classes [b 0, b 1 [,, [b q 1, b q [ de
2 Les effectifs n ij correspondants aux observations pour lesquelles ( = x i et = y j ) ou ( [a i 1, a i [ et = y j ) ou ( = x i et [b i 1, b i [) ou ( [a i 1, a i [ et [b i 1, b i [) A l intersection de la i-ème ligne et de la j-ème colonne, on reporte l effectif n ij correspondant à l observation conjointe : y 1 y j y q n i [a 0, a 1 [ n 11 n 1q n 1 [a i 1, a i [ n ij n i [a p 1, a p [ n p1 n pq n p n j n 1 n j n q A3 Conversion d un tableau en lignes en un tableau de contingence Principe Soit un tableau en lignes défini par une suite de n couples (x k, y k ) (avec k [1n]) Soient x 1 < x 2 < < x r la suite ordonnée des différentes valeurs x k et y 1 < y 2 < < y s celle des y k Le tableau de contingence associé est défini par l ensemble des triplets ( x i, y j, n ij), (i, j) [1r] [1s] où n ij est le nombre de couples ( x i, j) y observés dans le tableau en lignes ie : n ij = card { k [1n] : (x k, y k ) = ( )} x i, y j Exemple 2 Le tableau en lignes Individus a pour tableau de contingence associé :
3 A4 Effectifs marginaux otation 3 On indique par un point une sommation effectuée suivant l indice i ou l indice j Définition 4 On appelle : i-ème effectif marginal de : total des effectifs de la ligne i : n i = n i1 + + n iq = j-ème effectif marginal de : total des effectifs de la colonne j : p n j = n 1j + + n pj = Effectif total : total des effectifs : p n = n i = n j = p n ij = n ij n ij p n ij = A5 Fréquences marginales Définition 5 On appelle : Fréquences les quotients : i-ème fréquence marginale de : f ij = n ij f i = n i = f ij
4 j-ème fréquence marginale de : Résultat 6 La somme des fréquences est égale à 1 : f j = n j = p f ij p p p f ij = f i = f ij = Preuve Résulte des propriétés de l opérateur somme f j = 1 A6 Distributions marginales De la distribution statistique du couple (, ), on peut déduire les distributions de seul et seul Définition 7 La distribution marginale de est la série statistique des p couples (x i, n i ) (ou ([a i 1, a i [, n i ) avec i = 1,, p La distribution marginale de est la série statistique des q couples (y j, n j ) (ou [b j 1, b j [, n j ) avec j = 1,, q Remarque 8 En général la connaissance des distributions marginales de et de ne suffit pas pour déterminer la distribution du couple (, ) Cela n est possible que si et sont indépendants (voir chapitre correspondant) Remarque 9 La moyenne et la variance de s expriment de la façon suivante : ȳ = 1 n j y j = f j y j ( V ( ) = σ 2 ( ) = 1 ) n j (y j ȳ) 2 = 1 n j yj 2 ȳ 2 On a des expressions analogues dans le cas de
5 A7 Distributions conditionnelles Définition 10 Pour i fixé, la distribution conditionnelle de lié par { = x i } (ou par { [a i 1, a i [}) est dans le cas discret la série (y j, n ij ), j = 1,, q, et dans le cas continu la série ([b i 1, b i [, n ij ), j = 1,, q Pour j fixé, la distribution conditionnelle de lié par { = y j } (ou par { [b i 1, b i [}) est dans le cas discret la série (x i, n ij ), i = 1,, p, et dans le cas continu la série ([a i 1, a i [, n ij ), i = 1,, p A8 Fréquences conditionnelles On suppose que pour tout i [1p] : n i 0 et tout j [1q] : n j 0 Les définitions ci-dessous sont données dans le cas où les deux séries sont discrètes ; on aurait des définitions analogues dans les autres cas On remarque que l effectif total de la distribution conditionnelle de lié par { = x i } est égale à : n ij = n i et que la j-ème fréquence de cette série est : d où les définitions ci-dessous données uniquement pour le caractère n ij n i Définition 11 On appelle : fréquences conditionnelles de liée par { = x i }, les réels : f j/i = n ij n i j [1q] moyenne conditionnelle de liée par { = x i } : ȳ i = 1 n ij y j = n i variance conditionnelle de liée par { = x i } : V i ( ) = 1 n ij (y j ȳ i ) 2 = n i f j/i y j f j/i (y j ȳ i ) 2
6 Proprité 12 Le produit des fréquences marginales par les fréquences conditionnelles est égal aux fréquences par rapport à l effectif total : Preuve Résulte des définitions : f ij = n ij = n ij n i n i f ij = f j/i f i = f i/j f j ( ) n ij n j = fj/i f i = n j ( = fi/j f j ) Proprité 13 La moyenne marginale est la moyenne des moyennes conditionnelles pondérées par les effectifs marginaux du caractère de liaison La relation pour est : ȳ = 1 r r n i ȳ i = f i ȳ i Preuve En tenant compte des définitions et relations ci-dessus, on a : r r ȳ = f j y j = f ij y j = f ij y j = r f j/i f i y j = r f i f j/i y j = r f i ȳ i Proprité 14 La variance marginale est égale à la moyenne des variances conditionnelles augmentée de la variance des moyennes conditionnelles La relation pour est : r V ( ) = f ij (y j ȳ) 2 = f i V i ( ) + =V i ( ) + V (ȳ i ) A9 Sous-représentation et sur-représentation f i (ȳ i ȳ) 2 Soit le tableau de contingence des effectifs et celui des fréquences de deux caractères et définis sur une population Ω donné ci-dessous dans le cas où ou sont qualitatifs ou quantitatifs discrets :
7 y 1 y j y q n i y 1 y j y q f i x 1 n 11 n 1q n 1 x 1 f 11 f 1q f 1 x i n ij n i x i f ij f i x p n p1 n pq n p n j n 1 n j n q x p f p1 f pq f p f j f 1 f j f q 1 Soient i [1r] et j [1s] La proportion des individus de la population présentant la valeur x i est égale à n i = f i Parmi l ensemble des individus présentant la valeur y j, la proportion de ceux qui présentent la valeur x i est égale à n ij n j = n ij n j = f ij f j Les individus présentant la valeur x i sont par conséquent sous-représentés (resp sur-représentés, également représentés) parmi les individus présentant la valeur y j ssi f ij f j < f i f ij < f i f j, (resp f ij > f i f j, f ij = f i f j ), donc par symétrie ssi les individus présentant la valeur y j sont sous-représentés (resp sur-représentés, également représentés) parmi les individus présentant la valeur x i Par conséquent, dire que pour tout i [1r], j [1s], les individus présentant la valeur x i sont également représentés parmi les individus présentant la valeur y j équivaut à l indépendance des caractères et Définition 15 On appelle : tableau de contingence théorique T celui obtenu à partir du tableau de contingence des fréquences F en remplaçant les fréquences f ij par les produits f i f j appelés fréquences théoriques tableau des écarts la différence entre le tableau théorique T et le tableau de contingence des fréquences, ie le tableau où à l intersection de la ligne i et de la colonne j, se trouve f ij f i f j Une valeur strictement positive (resp strictement négative) dans le tableau des écarts signifie une sur-représentation (resp sous-représentation) Remarque 16 La somme de r s réels figurant dans les cases du tableau des écarts est nulle, de même que la somme des réels figurant dans une ligne (resp colonne) quelconque Si la répartition est proportionnelle, le tableau des écarts ne comporte que des zéros (on parle de situation homogène ou équilibrée)
8 Exemple 17 Soit le tableau : y 1 y 2 y 3 y 4 n i x x x x n j Le tableau de contingence des fréquences et le tableau théorique T associés sont : y 1 y 2 y 3 y 4 f i y 1 y 2 y 3 y 4 f i x 1 0,12 0,09 0,04 0,14 0,39 x 2 0,03 0,04 0,01 0,02 0,1 x 3 0,05 0,05 0,03 0,02 0,15 x 4 0,1 0,11 0,02 0,13 0,36 f j 0,3 0,29 0,1 0,31 1 x 1 0,117 0,1131 0,039 0,1209 0,39 x 2 0,03 0,029 0,01 0,031 0,1 x 3 0,045 0,0435 0,015 0,0465 0,15 x 4 0,108 0,1044 0,036 0,1116 0,36 f j 0,3 0,29 0,1 0,31 1 Par différence, on obtient le tableau des écarts : y 1 y 2 y 3 y 4 x 1 0,003-0,0231 0,001 0,0191 x 2 0 0, ,011 x 3 0,005 0,0065 0,015-0,0265 x 4-0,008 0,0056-0,016 0,0184 On lit par exemple que les individus présentant la valeur x 2 sont également représentés parmi les individus présentant la valeur y 1 et parmi ceux présentant la valeur y 3
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
Relation entre deux variables : estimation de la corrélation linéaire
CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence
UNE REPRESENTATION GRAPHIQUE DE LA LIAISON STATISTIQUE ENTRE DEUX VARIABLES ORDONNEES. Éric TÉROUANNE 1
33 Math. Inf. Sci. hum., (33 e année, n 130, 1995, pp.33-42) UNE REPRESENTATION GRAPHIQUE DE LA LIAISON STATISTIQUE ENTRE DEUX VARIABLES ORDONNEES Éric TÉROUANNE 1 RÉSUMÉ Le stéréogramme de liaison est
VI. Tests non paramétriques sur un échantillon
VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes
PROBABILITES ET STATISTIQUE I&II
PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits
Chapitre 5 : Flot maximal dans un graphe
Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d
Programmation linéaire
Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire
Représentation d une distribution
5 Représentation d une distribution VARIABLE DISCRÈTE : FRÉQUENCES RELATIVES DES CLASSES Si dans un graphique représentant une distribution, on place en ordonnées le rapport des effectifs n i de chaque
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un
Statistiques Descriptives à une dimension
I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des
Annexe commune aux séries ES, L et S : boîtes et quantiles
Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
Développement décimal d un réel
4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce
Programmation linéaire et Optimisation. Didier Smets
Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des
Les indices à surplus constant
Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté
Equations cartésiennes d une droite
Equations cartésiennes d une droite I) Vecteur directeur d une droite : 1) Définition Soit (d) une droite du plan. Un vecteur directeur d une droite (d) est un vecteur non nul la même direction que la
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
Problème 1 : applications du plan affine
Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées
Baccalauréat technique de la musique et de la danse Métropole septembre 2008
Baccalauréat technique de la musique et de la danse Métropole septembre 008 EXERCICE 5 points Pour chacune des cinq questions à 5, trois affirmations sont proposées dont une seule est exacte. Pour chaque
Feuille d exercices 2 : Espaces probabilisés
Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un
Analyse en Composantes Principales
Analyse en Composantes Principales Anne B Dufour Octobre 2013 Anne B Dufour () Analyse en Composantes Principales Octobre 2013 1 / 36 Introduction Introduction Soit X un tableau contenant p variables mesurées
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
I. Cas de l équiprobabilité
I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus
Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3
8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant
Couples de variables aléatoires discrètes
Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude
Loi binomiale Lois normales
Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli
La classification automatique de données quantitatives
La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
Oscillations libres des systèmes à deux degrés de liberté
Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à
BACCALAUREAT GENERAL MATHÉMATIQUES
BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la
UNE FORMATION POUR APPRENDRE À PRÉSENTER DES DONNÉES CHIFFRÉES : POUR QUI ET POURQUOI? Bénédicte Garnier & Elisabeth Morand
UNE FORMATION POUR APPRENDRE À PRÉSENTER DES DONNÉES CHIFFRÉES : POUR QUI ET POURQUOI? Bénédicte Garnier & Elisabeth Morand Service méthodes statistiques Institut National d Etudes Démographiques (Ined)
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE
UE4 : Biostatistiques Chapitre 6 Test de comparaison de pourcentages χ² José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Nature des variables
Licence Economie-Gestion, 1ère Année Polycopié de Statistique Descriptive. Année universitaire : 2014-2015.
Licence Economie-Gestion, 1ère Année Polycopié de Statistique Descriptive. Année universitaire : 2014-2015. Thèmes des séances de TD Thème n.1: Tableaux statistiques et représentations graphiques. Thème
LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE
LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M [email protected] 1 1.Le réseau
Fonctions homographiques
Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie
Cryptographie et fonctions à sens unique
Cryptographie et fonctions à sens unique Pierre Rouchon Centre Automatique et Systèmes Mines ParisTech [email protected] Octobre 2012 P.Rouchon (Mines ParisTech) Cryptographie et fonctions
Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme
Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et
Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.
Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de
Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...
1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................
Le théorème des deux fonds et la gestion indicielle
Le théorème des deux fonds et la gestion indicielle Philippe Bernard Ingénierie Economique& Financière Université Paris-Dauphine mars 2013 Les premiers fonds indiciels futent lancés aux Etats-Unis par
Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe
Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe des n n groupes quantiques compacts qui ont la théorie
MATHÉMATIQUES DISCRÈTES (4) CRYPTOGRAPHIE CLASSIQUE
MATHÉMATIQUES DISCRÈTES (4) CRYPTOGRAPHIE CLASSIQUE Michel Rigo http://www.discmath.ulg.ac.be/ Année 2007 2008 CRYPTOGRAPHIE. N. F. Art d écrire en chiffres ou d une façon secrète quelconque. Ensemble
Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA
75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche
EXERCICE 4 (7 points ) (Commun à tous les candidats)
EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Statistiques - Cours. 1. Gén éralités. 2. Statistique descriptive univari ée. 3. Statistique descriptive bivariée. 4. Régression orthogonale dans R².
Statistiques - Cours Page 1 L I C E N C E S c i e n t i f i q u e Cours Henri IMMEDIATO S t a t i s t i q u e s 1 Gén éralités Statistique descriptive univari ée 1 Repr é s e n t a t i o n g r a p h i
Séries Statistiques Simples
1. Collecte et Représentation de l Information 1.1 Définitions 1.2 Tableaux statistiques 1.3 Graphiques 2. Séries statistiques simples 2.1 Moyenne arithmétique 2.2 Mode & Classe modale 2.3 Effectifs &
Exercices Corrigés Premières notions sur les espaces vectoriels
Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3
Cours d initiation à la programmation en C++ Johann Cuenin
Cours d initiation à la programmation en C++ Johann Cuenin 11 octobre 2014 2 Table des matières 1 Introduction 5 2 Bases de la programmation en C++ 7 3 Les types composés 9 3.1 Les tableaux.............................
O, i, ) ln x. (ln x)2
EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On
Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2
Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................
Coefficients binomiaux
Probabilités L2 Exercices Chapitre 2 Coefficients binomiaux 1 ( ) On appelle chemin une suite de segments de longueur 1, dirigés soit vers le haut, soit vers la droite 1 Dénombrer tous les chemins allant
Analyse des correspondances avec colonne de référence
ADE-4 Analyse des correspondances avec colonne de référence Résumé Quand une table de contingence contient une colonne de poids très élevé, cette colonne peut servir de point de référence. La distribution
Probabilités. C. Charignon. I Cours 3
Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3
Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples
45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et
Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS
Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence
ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.
L G L G Prof. Éric J.M.DELHEZ ANALYSE MATHÉMATIQUE ÉALUATION FORMATIE Novembre 211 Ce test vous est proposé pour vous permettre de faire le point sur votre compréhension du cours d Analyse Mathématique.
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
Chapitre 2. Matrices
Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce
TD1 Signaux, énergie et puissance, signaux aléatoires
TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver
Statistique : Résumé de cours et méthodes
Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère
Modèles à Événements Discrets. Réseaux de Petri Stochastiques
Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés
Cours Fonctions de deux variables
Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté
FIMA, 7 juillet 2005
F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation
Sondage de référence 2005 sur la satisfaction des clients du CRSH
Rapport Final Conseil de recherches en sciences humaines du Canada 1 Réseau C i r c u m I n c. Conseil en gestion et en recherche 74, rue du Val-Perché Gatineau (Québec) J8Z 2A6 (819)770-2423, (819)770-5196
Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé
Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue
DETERMINATION DE L INCERTITUDE DE MESURE POUR LES ANALYSES CHIMIQUES QUANTITATIVES
Agence fédérale pour la Sécurité de la Chaîne alimentaire Administration des Laboratoires Procédure DETERMINATION DE L INCERTITUDE DE MESURE POUR LES ANALYSES CHIMIQUES QUANTITATIVES Date de mise en application
UNIVERSITE DE TOULON UFR FACULTE DE DROIT REGLEMENT D EXAMEN ANNEE 2012/2017 LICENCE DROIT MENTION DROIT GENERAL
UNIVERSITE DE TOULON UFR FACULTE DE DROIT REGLEMENT D EXAMEN ANNEE 01/017 LICENCE DROIT MENTION DROIT GENERAL Les présentes règles s inscrivent dans le cadre réglementaire national défini par les tetes
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Protection individuelle
Protection individuelle Franchise annuelle Ce plan n'est plus offert 200 $ 900 $ depuis le 1er mars 2015 1 006 $ / / 18-24 87,88 $ 71,71 $ - 39,35 $ 37,08 $ 63,91 $ 25-29 91,38 $ 74,47 $ - 41,04 $ 38,86
CAC, DAX ou DJ : lequel choisir?
CAC, DAX ou DJ : lequel choisir? 1. Pourquoi cette question Tout trader «travaillant 1» sur les indices s est, à un moment ou un autre, posé cette question : «je sais que la tendance est bien haussière
Assurance en responsabilité civile automobile en Europe
Assurance en responsabilité civile automobile en Europe Etude comparative de la situation économique statistique Prof. Dr. Ulrich Meyer Université de Bamberg SOMMAIRE TABLE DES MATIÈRES 3 CHAPITRE 1 INTRODUCTION
Analyse de la variance Comparaison de plusieurs moyennes
Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction
Programmation linéaire
1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit
Optimisation Discrète
Prof F Eisenbrand EPFL - DISOPT Optimisation Discrète Adrian Bock Semestre de printemps 2011 Série 7 7 avril 2011 Exercice 1 i Considérer le programme linéaire max{c T x : Ax b} avec c R n, A R m n et
Prudence, Epargne et Risques de Soins de Santé Christophe Courbage
Prudence, Epargne et Rique de Soin de Santé Chritophe Courbage ASSOCIATION DE GENÈVE Introduction Le compte d épargne anté (MSA), une nouvelle forme d intrument pour couvrir le dépene de anté en ca de
INF6304 Interfaces Intelligentes
INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie
Projet de Traitement du Signal Segmentation d images SAR
Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,
ANALYSE SPECTRALE. monochromateur
ht ANALYSE SPECTRALE Une espèce chimique est susceptible d interagir avec un rayonnement électromagnétique. L étude de l intensité du rayonnement (absorbé ou réémis) en fonction des longueurs d ode s appelle
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases
SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout
Statistique Descriptive Élémentaire
Publications de l Institut de Mathématiques de Toulouse Statistique Descriptive Élémentaire (version de mai 2010) Alain Baccini Institut de Mathématiques de Toulouse UMR CNRS 5219 Université Paul Sabatier
Premiers exercices d Algèbre. Anne-Marie Simon
Premiers exercices d Algèbre Anne-Marie Simon première version: 17 août 2005 version corrigée et complétée le 12 octobre 2010 ii Table des matières 1 Quelques structures ensemblistes 1 1.0 Ensembles, relations,
Séquence 4. Statistiques. Sommaire. Pré-requis Médiane, quartiles, diagramme en boîte Moyenne, écart-type Synthèse Exercices d approfondissement
Séquence 4 Statistiques Sommaire Pré-requis Médiane, quartiles, diagramme en boîte Moyenne, écart-type Synthèse Exercices d approfondissement 1 Introduction «Etude méthodique des faits sociaux par des
PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES
Leçon 11 PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Dans cette leçon, nous retrouvons le problème d ordonnancement déjà vu mais en ajoutant la prise en compte de contraintes portant sur les ressources.
Probabilités et statistique. Benjamin JOURDAIN
Probabilités et statistique Benjamin JOURDAIN 11 septembre 2013 2 i ii À Anne Préface Ce livre est issu du polycopié du cours de probabilités et statistique de première année de l École des Ponts ParisTech
Exercice du cours Gestion Financière à Court Terme : «Analyse d un reverse convertible»
Exercice du cours Gestion Financière à Court Terme : «Analyse d un reverse convertible» Quand la trésorerie d une entreprise est positive, le trésorier cherche le meilleur placement pour placer les excédents.
L exclusion mutuelle distribuée
L exclusion mutuelle distribuée L algorithme de L Amport L algorithme est basé sur 2 concepts : L estampillage des messages La distribution d une file d attente sur l ensemble des sites du système distribué
Chapitre 1 : Évolution COURS
Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir
Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1
Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation
Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique»
Tests de comparaison de moyennes Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Test de Z ou de l écart réduit Le test de Z : comparer des paramètres en testant leurs différences
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12 ARTHUR CHARPENTIER 1 Une compagnie d assurance modélise le montant de la perte lors d un accident par la variable aléatoire continue X uniforme sur l intervalle
Structures algébriques
Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe
