Résultats classiques sur les endomorphismes nilpotents
|
|
|
- Clarisse Papineau
- il y a 9 ans
- Total affichages :
Transcription
1 Résultats classiues sur les endomorphismes nilpotents Soit K un corps commutatif, E un K ev de dimension finie n, u un endomorphisme nilpotent de E. 1. Démontrer ue u est trigonalisable. Le polynôme scindé X p (p est un entier naturel non nul) annule u. 2. Déterminer le polynôme caractéristiue de u. Le polynôme caractéristiue de u est scindé (car u est trigonalisable). La seule valeur propre possible pour u est 0 (seule racine de X p ). Il n y au unpolynômescindéunitairededegrén ui a comme seule racine 0 :c estx n. Il y a beaucoup de manières différentes d arriver à ce résultat. On peut par exemple prendre une base dans lauelle la matrice de u est triangulaire supérieure, il n y a ue des 0 sur la diagonale, le polynôme caractéristiue de u se calcule facilement En utilisant le théorème de Cayley-Hamilton, démontrer ue l indice de nilpotence de u est au plus égal à n. Le polynôme caractéristiue est X n ;lepolynômeminimalestdonc X p pour un certain p n (le théorème de Cayley-Hamilton dit ue le polynôme minimal divise le polynôme caractéristiue). On a alors u p =Θ(X p annule u) etu p 1 =Θ(X p 1 n annule pas u). Donc p est l indice de nilpotence de u. 13
2 4. Retrouver le résultat de la uestion précédente sans utiliser le théorème de Cayley-Hamilton, à l aide de l exercice classiue sur les «noyaux itérés». On a (voir exercice sur les noyaux itérés) : Ker(u 0 ) Ker(u 1 ) Ker(u p 1 ) Ker(u p )=E La suite finie dim Ker u k est donc une suite strictement croissante d entiers naturels, ce ui impliue facilement, pour tout k 0 k p entre 0 et p, dim Ker u k k (récurrence «finie»). Et, partant, n p. 5. Démontrer ue, sur C, unematriceestnilpotentesietseulement si 0 est son uniue valeur propre. Est-ce encore vrai sur R? Si une matrice est nilpotente, sa seule valeur propre est 0, ueluesoitle corps. Réciprouement, si la seule valeur propre est 0, comme on est sur C, le polynôme minimal est scindé, il est donc de la forme X p.donclamatrice est nilpotente. En revanche, sur R, lamatrice (construite à partir d un bloc 2 2 de matrice de rotation d angle π/2) a pour seule valeur propre 0, etpourtantn estpasnilpotente(maisbiensûr, elle a des valeurs propres complexes non nulles). 14
3 Sous-espaces caractéristiues et réduction de Dunford 1. Soit u un endomorphisme nilpotent d un espace de dimension finie non nulle n. On appelle p l indice de nilpotence de u, c est-à-dire le plus petit entier naturel pour leuel u p =Θ.Démontrer ue u est trigonalisable. Quel est le polynôme minimal de u, sonpolynômecaractéristiue?démontreruep n. u peut-il être diagonalisable? Le polynôme scindé X p est annulateur de u, doncu est trigonalisable. Son polynôme minimal est un diviseur de X p,doncilestdelaforme X k où k p. Mais, par définition de p, sik<pon a u k =Θ,donc le polynôme minimal de u est nécessairement X p. Et donc la seule racine possible pour le polynôme caractéristiue de u est 0 (c est la seule valeur propre possible pour u). Or ce polynôme caractéristiue est scindé (car u est trigonalisable), unitaire de degré n, c estdoncx n. Et, par le théorème de Cayley-Hamilton (le polynôme minimal divise le polynôme caractéristiue) on a p n. Si u est diagonalisable, comme il a une seule valeur propre (donc un seul sous-espace propre), c est une homothétie, de rapport cette valeur propre, ici 0. Doncu =Θ. 2. Soit u un endomorphisme d un espace E de dimension finie non nulle n. Onsupposeuelepolynômecaractéristiuede u est scindé. On note λ 1,...,λ ses racines, de multiplicités respectives m 1,...,m. 15
4 On note, pour chaue i entre 1 et : F i =Ker (λ i Id u) m i. F i est appelé sous-espace caractéristiue associé à la valeur propre λ i. (a) Démontrer ue F i est stable par u et contient le sousespace propre E i associé à la valeur propre λ i. F i est le noyau de P i (u), avecp i =(λ i X) m i. Comme P i (u) commute avec u (c est un polynôme de u), son noyau F i est stable par u (cours). Mais, si f est un endomorphisme, si k<k,ona ker(f k ) ker(f k ),doncenparticulierici ker λ i Id u ker (λ i Id u) m i ce ui traduit bien ue E i F i (b) Démontrer ue E est somme directe des F i (1 i ). L utilisation du théorème de Cayley-Hamilton et du théorème de décomposition des noyaux dans cette uestion est un grand classiue de la réduction. Le polynôme caractéristiue de u, supposé scindé,est χ u = (X λ i ) m i Si i = j, X λ i X λ j =1,donc(X λ i ) m i (X λ j ) m j =1; 16
5 le théorème de décomposition des noyaux dit alors : ker χ u (u) = ker (u λ i Id m i ] Mais, d après le théorème de Cayley-Hamilton, χ u (u) =Θ,donc ker χ u (u) = E, etonconclutbien: E = F i (c) Démontrer ue u est diagonalisable si et seulement si F i = E i pour tout i. On a vu dans le a. ue, pour tout i, dim(e i ) dim(f i ).Onajoute toutes ces inégalités, on obtient : dim(e i ) dim(f i )=dim(e) Mais on sait ue u est diagonalisable si et seulement si dim(e i )=dim(e), doncsietseulementsil inégalitéci-dessusest une égalité. Or en ajoutant des inégalités (de même sens bien sûr, sinon c est interdit!) dont une au moins est stricte, on obtient une inégalité stricte. Donc u est diagonalisable si et seulement si les inégalités dim(e i ) dim(f i ) sont toutes des égalités, donc si et seulement si (sachant ue chaue E i est inclus dans le F i correspondant) F i = E i pour tout i 17
6 3. On se place sous les hypothèses de la uestion précédente. On appelle u i l endomorphisme induit par u sur F i,etp i la projection sur F i parallèlement à F j. j=i (a) Démontrer ue u i s écrit comme somme d une homothétie h i et d un endomorphisme nilpotent n i de F i. Si x F i,pardéfinitiondecesous-espaceona (λ i Id u) m i (x) =0 E =0 Fi. Mais, sur F i, u coïncide avec u i,donc (λ i Id Fi u i ) m i (x) =0 Fi.NotantΘ i l endomorphisme nul de F i, on obtient (λ i Id Fi u i ) m i =Θ i.doncu i λ i Id est nilpotent. Notons-le n i,etnotonsh i l homothétie λ i Id.Onabien: u i = n i + h i (b) Construire, en utilisant ce ui précède, deux endomorphismes d et n, respectivementdiagonalisableetnilpotent, tels ue u = d + n et dn = nd Soit x un élément de E. OnpeutledécomposersurlesF i : x = p i (x). Donc u(x) = u p i (x) = u i pi (x) = h i pi (x) + n i pi (x) 18
7 ce ui incite à définir d = h i p i et n = n i p i On a, par ce ui précède, u = d + n. SurchaueF i, d coïncide avec h i ; on sait u alors d est diagonalisable. Sur chaue F i, n coïncide avec n i.orn m i i m =max(m i ), n m i =Θ i,donc,si =Θ i.doncn m est une application linéaire nulle sur chaue F i,orlasommedirectedesf i est E, doncn m =Θ. Et ainsi, n est nilpotent. Mais n d et d n coïncident sur chaue F i (car h i n i = n i h i ), donc sont égaux : nd=dn Remarue : Chaue n i est trigonalisable. Il existe donc une base de F i dans lauelle sa matrice est triangulaire supérieure «stricte». En réunissant de telles bases, on obtient une base de E dans lauelle la matrice de u est de la forme A 1 A 2 M = (diagonale par bocs), chaue A k étant un bloc m k m k triangulaire, de la forme λ k. 0.. ( ) A k = λ k 19 A
8 M est donc diagonale par blocs et triangulaire ; d est l endomorphisme dont la matrice dans cette base est la diagonale de M, n est l endomorphisme dont la matrice dans cette base est la matrice triangulaire supérieure stricte dont les coefficients hors diagonale sont ceux de M (les coefficients diagonaux étant nuls). On peut construire une base pour ue, dans M, lesseulscoefficients non nuls hors de la diagonale soient tous égaux à 1 et situés juste audessus ce celle-ci (c est-à-dire en ligne i et colonne i +1pour certains i dans [1,n 1]). C est la réduction de Jordan, plus techniue. 4. Toute matrice M s écrit donc comme somme D + N d une matrice diagonalisable et d une matrice nilpotente ui commutent. Quel est l intérêt pour le calcul des puissances de M? Comme D et N commutent, les puissances de leur somme peuvent être calculées en utilisant le binôme de Newton. De plus, si j n, ona N j =0.Donc,sik n 1, onpourraécrire n 1 k (D + N) k = N j D k j j j=0 5. On suppose u = d + n une autre décomposition vérifiant les conditions de 3.b. Vérifier ue les F i sont stables par d et n, en déduire ue d = d et n = n. 20
9 Si d commute avec n,ellecommuteavecn + d = u, etdoncellecommute, par récurrence, avec toutes les «puissances» (pour ) deu et, par combinaison linéaire, avec tous les polynômes de u. Doncd laisse stables tous les F i (ui sont des noyaux de polynômes de u). De même pour n. On peut alors noter d i et n i les endomorphismes induits par d et n sur F i. Soit µ une valeur propre de d i ;lesous-espacepropreassociéker(d i µid Fi ) est stable par n i,etl endomorphismeinduitparn i sur ce sous-espace ne peut être injectif (sinon, ce serait un automorphisme, or il a une puissance (pour ) nulle,c estdoncimpossible).ilexistedoncx i ker(d i µid Fi ) tel ue n i(x i )=0 E. Mais alors u i (x) =d i(x) +n i(x) =µx, or(x λ i ) m i est annulateur de u i,doncsaseulevaleurproprepossibleestλ i,doncµ = λ i. Finalement, d i,uiauneuniuevaleurpropreetestdiagonalisable,esth i, et donc n i = n i,l unicités ensuit. 21
Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015
Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k
NOTATIONS PRÉLIMINAIRES
Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel
Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.
Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).
Théorie et codage de l information
Théorie et codage de l information Les codes linéaires - Chapitre 6 - Principe Définition d un code linéaire Soient p un nombre premier et s est un entier positif. Il existe un unique corps de taille q
Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.
Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3
Groupe symétrique. Chapitre II. 1 Définitions et généralités
Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations
Introduction à l étude des Corps Finis
Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur
Résolution de systèmes linéaires par des méthodes directes
Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
Correction de l examen de la première session
de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi
Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions
Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires
[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015 Enoncés 1
[http://mpcpgedupuydelomefr] édité le 3 avril 215 Enoncés 1 Exercice 1 [ 265 ] [correction] On note V l ensemble des matrices à coefficients entiers du type a b c d d a b c c d a b b c d a et G l ensemble
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
Image d un intervalle par une fonction continue
DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante
Programmation linéaire
1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit
Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre
IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables
Problème 1 : applications du plan affine
Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Le produit semi-direct
Le produit semi-direct Préparation à l agrégation de mathématiques Université de Nice - Sophia Antipolis Antoine Ducros Octobre 2007 Ce texte est consacré, comme son titre l indique, au produit semi-direct.
CCP PSI - 2010 Mathématiques 1 : un corrigé
CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P
Capes 2002 - Première épreuve
Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : [email protected] Mots-clés : équation fonctionnelle, série
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
Chapitre 1 : Évolution COURS
Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir
Continuité en un point
DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au
Commun à tous les candidats
EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle
Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé
Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue
Exercices Corrigés Premières notions sur les espaces vectoriels
Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Les indices à surplus constant
Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté
Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E
Exo7 Espaces vectoriels Vidéo partie 1. Espace vectoriel (début Vidéo partie 2. Espace vectoriel (fin Vidéo partie 3. Sous-espace vectoriel (début Vidéo partie 4. Sous-espace vectoriel (milieu Vidéo partie
Intégration et probabilités TD1 Espaces mesurés Corrigé
Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
Corrigé Problème. Partie I. I-A : Le sens direct et le cas n= 2
33 Corrigé Corrigé Problème Théorème de Motzkin-Taussky Partie I I-A : Le sens direct et le cas n= 2 1-a Stabilité des sous-espaces propres Soit λ une valeur propre de v et E λ (v) le sous-espace propre
Taux d évolution moyen.
Chapitre 1 Indice Taux d'évolution moyen Terminale STMG Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Indice simple en base 100. Passer de l indice au taux d évolution, et réciproquement.
www.h-k.fr/publications/objectif-agregation
«Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se
Algorithmes pour la planification de mouvements en robotique non-holonome
Algorithmes pour la planification de mouvements en robotique non-holonome Frédéric Jean Unité de Mathématiques Appliquées ENSTA Le 02 février 2006 Outline 1 2 3 Modélisation Géométrique d un Robot Robot
Polynômes à plusieurs variables. Résultant
Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
Dualité dans les espaces de Lebesgue et mesures de Radon finies
Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention
Chapitre 2. Matrices
Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce
Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5.
DÉVELOPPEMENT 32 A 5 EST LE SEUL GROUPE SIMPLE D ORDRE 60 Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5. Démonstration. On considère un groupe G d ordre 60 = 2 2 3 5 et
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,
Non-linéarité Contexte Pour permettre aux algorithmes de cryptographie d être sûrs, les fonctions booléennes qu ils utilisent ne doivent pas être inversées facilement. Pour cela, elles doivent être très
Triangle de Pascal dans Z/pZ avec p premier
Triangle de Pascal dans Z/pZ avec p premier Vincent Lefèvre (Lycée P. de Fermat, Toulouse) 1990, 1991 1 Introduction Nous allons étudier des propriétés du triangle de Pascal dans Z/pZ, p étant un nombre
Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :
MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE
Partie 1 - Séquence 3 Original d une fonction
Partie - Séquence 3 Original d une fonction Lycée Victor Hugo - Besançon - STS 2 I. Généralités I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t)
Correction du Baccalauréat S Amérique du Nord mai 2007
Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n
Leçon 01 Exercices d'entraînement
Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =
Cours de Probabilités et de Statistique
Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles
Théorème du point fixe - Théorème de l inversion locale
Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion
Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument
Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour
Calcul différentiel sur R n Première partie
Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité
Chapitre 5 : Flot maximal dans un graphe
Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d
Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3
8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant
Une introduction aux codes correcteurs quantiques
Une introduction aux codes correcteurs quantiques Jean-Pierre Tillich INRIA Rocquencourt, équipe-projet SECRET 20 mars 2008 1/38 De quoi est-il question ici? Code quantique : il est possible de corriger
Carl-Louis-Ferdinand von Lindemann (1852-1939)
Par Boris Gourévitch "L'univers de Pi" http://go.to/pi314 [email protected] Alors ça, c'est fort... Tranches de vie Autour de Carl-Louis-Ferdinand von Lindemann (1852-1939) est transcendant!!! Carl Louis
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
Optimisation Discrète
Prof F Eisenbrand EPFL - DISOPT Optimisation Discrète Adrian Bock Semestre de printemps 2011 Série 7 7 avril 2011 Exercice 1 i Considérer le programme linéaire max{c T x : Ax b} avec c R n, A R m n et
Comment démontrer des formules sans effort? exposé de maîtrise
Comment démontrer des formules sans effort? exposé de maîtrise Marc Mezzarobba Sam Zoghaib Sujet proposé par François Loeser Résumé Nous exposons un ensemble de méthodes qui permettent d évaluer «en forme
Chaînes de Markov au lycée
Journées APMEP Metz Atelier P1-32 du dimanche 28 octobre 2012 Louis-Marie BONNEVAL Chaînes de Markov au lycée Andreï Markov (1856-1922) , série S Problème 1 Bonus et malus en assurance automobile Un contrat
Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.
Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et
Déterminants. Marc SAGE 9 août 2008. 2 Inverses et polynômes 3
Déterminants Marc SAGE 9 août 28 Table des matières Quid des formes n-linéaires alternées? 2 2 Inverses et polynômes 3 3 Formule de Miller pour calculer un déterminant (ou comment illustrer une idée géniale)
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
Une forme générale de la conjecture abc
Une forme générale de la conjecture abc Nicolas Billerey avec l aide de Manuel Pégourié-Gonnard 6 août 2009 Dans [Lan99a], M Langevin montre que la conjecture abc est équivalente à la conjecture suivante
Cours d analyse numérique SMI-S4
ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,
Pour l épreuve d algèbre, les calculatrices sont interdites.
Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.
INTRODUCTION. 1 k 2. k=1
Capes externe de mathématiques : session 7 Première composition INTRODUCTION L objet du problème est l étude de la suite (s n n définie par : n, s n = Dans une première partie, nous nous attacherons à
Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche
Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine
Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?
Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version
Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?
Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version
Structures algébriques
Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe
Algorithmique quantique : de l exponentiel au polynômial
Algorithmiue uantiue : de l onentiel au polynômial Novembre 008 Résumé L informatiue uantiue, même si elle n en est encore u à ses premiers pas, porte en elle des promesses ui lui ont valu un engouement
avec des nombres entiers
Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0
Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe
Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe des n n groupes quantiques compacts qui ont la théorie
Quelques tests de primalité
Quelques tests de primalité J.-M. Couveignes (merci à T. Ezome et R. Lercier) Institut de Mathématiques de Bordeaux & INRIA Bordeaux Sud-Ouest [email protected] École de printemps C2 Mars
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois
Exercices Alternatifs. Une fonction continue mais dérivable nulle part
Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version
Exercices Alternatifs. Une fonction continue mais dérivable nulle part
Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
ENQUÊTE NATIONALE SUR LA PLACE DES PARENTS À L HÔPITAL
65 Quels problèmes ou difficultés avez-vous rencontrés du fait de l hospitalisation de votre enfant? (plusieurs réponses possibles) Des inuiétudes concernant la santé de votre enfant Des problèmes de gestion
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
ALGORITHMIQUE II NOTION DE COMPLEXITE. SMI AlgoII
ALGORITHMIQUE II NOTION DE COMPLEXITE 1 2 Comment choisir entre différents algorithmes pour résoudre un même problème? Plusieurs critères de choix : Exactitude Simplicité Efficacité (but de ce chapitre)
LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )
SYNTHESE ( THEME ) FONCTIONS () : NOTIONS de FONCTIONS FONCTION LINEAIRE () : REPRESENTATIONS GRAPHIQUES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
108y= 1 où x et y sont des entiers
Polynésie Juin 202 Série S Exercice Partie A On considère l équation ( ) relatifs E :x y= où x et y sont des entiers Vérifier que le couple ( ;3 ) est solution de cette équation 2 Déterminer l ensemble
CHAPITRE 5. Stratégies Mixtes
CHAPITRE 5 Stratégies Mixtes Un des problèmes inhérents au concept d équilibre de Nash en stratégies pures est que pour certains jeux, de tels équilibres n existent pas. P.ex.le jeu de Pierre, Papier,
Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions
Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions HQ = He 1 He 2 He 3 He 4 HQ e 5 comme anneaux (avec centre Re 1 Re 2 Re 3 Re 4
1 Première section: La construction générale
AMALGAMATIONS DE CLASSES DE SOUS-GROUPES D UN GROUPE ABÉLIEN. SOUS-GROUPES ESSENTIEL-PURS. Călugăreanu Grigore comunicare prezentată la Conferinţa de grupuri abeliene şi module de la Padova, iunie 1994
LES MÉTHODES DE POINT INTÉRIEUR 1
Chapitre XIII LES MÉTHODES DE POINT INTÉRIEUR 1 XIII.1 Introduction Nous débutons par un rappel de la formulation standard d un problème d optimisation 2 linéaire et donnons un bref aperçu des différences
