Exer ci ces Cor r i gé s
|
|
|
- Judith Leroy
- il y a 9 ans
- Total affichages :
Transcription
1 Département de Mathématiques et Informatique Exer ci ces Cor r i gé s Abdelhamid El Mossadeq P rofesseur à l E H T P
2 A. El Mossadeq Juin 2006
3 TABLE DES MATIERES Structures Statistiques et Estimation 1 Les Procédures U suelles des Tests d Hypothèses : 1. Les Fréquences 45 Les Procédures U suelles des Tests d Hypothèses : 2. Les Tests du Khi-Deux 61 Les Procédures Usuelles des Tests d Hypothèses : 3. Moyennes et Variances 95
4
5 Structure Statistique et Estimation
6
7 A. El Mossadeq Structures Statistiques et Estimation Exercice 1 Déterminer et étudier les propriétés de l estimateur du maximum de vraisemlance d un r-échantillon pour : 1. le paramètre p d une loi de Bernouilli 2. le paramètre p d une loi géométrique 3. le paramètre p d une loi binomiale d ordre n 4. le paramètre α d une loi de Poisson 5. le paramètre λ d une loi exponentielle 6. les paramètres μ et σ 2 d une loi normale 7. le paramètre θ d une loi uniforme sur l intervalle [0,θ] Solution 1 1. Soit X une variable aléatoire de Bernouilli de paramètre p. Pour tout x {0, 1}, la probabilité élémentaire p (x) de x est : p (x) p x (1 p) 1 x de plus : E [X] p V [X] p (1 p) (a) Recherche du maximum de vraisemlance : Considérons un r-échantillon de cette structure. Sa fonction de vraisemblance est définie pour tout p [0, 1] et tout (x 1,..., x r ) {0, 1} r par : ry L (p; x 1,...,x r ) p (x i ) rp x i p (1 p) r P r x i d où : Ã rx! Ã! rx ln L (p; x 1,..., x r ) x i ln p + r x i ln (1 p) 3
8 Structures Statistiques et Estimation A. El Mossadeq Il en résulte que : d où : p ln L (p; x 1,..., x r ) rp x i p P r r 1 p p ln L (p; x 1,...,x r )0 p 1 r et comme : 2 p ln L (p; x 1,..., x 2 r ) < 0 donc l estimateur du maximum de vraisemblance d un r-échantillon d une structure de Bernouilli est : ˆp 1 rx X i r C est la fréquence empirique du r-échantillon. (b) Etude des propriétés de ˆp : Puisque : et : E [ˆp] E [X] p V [ˆp] V [X] r p (1 p) r On en déduit que ˆp est un estimateur sans biais et convergent du paramètre p d une loi de Bernouilli. rx x i x i 2. Soit X une variable aléatoire de géométrique de paramètre p. Pour tout x N, la probabilité élémentaire p (x) de x est : p (x) p (1 p) x 1 de plus : E [X] 1 p V [X] 1 p p 2 4
9 A. El Mossadeq Structures Statistiques et Estimation Considérons un r-échantillon de cette structure. Sa fonction de vraisemblance est définie pour tout p [0, 1] et tout (x 1,...,x r ) (N ) r par : ry L (p; x 1,..., x r ) p (x i ) d où : Il en résulte que : d où : p r (1 p) rp x i r à rx! ln L (p; x 1,..., x r )rln p + x i r ln (1 p) p ln L (p; x 1,...,x r ) r p rp x i r 1 p P r p r x i p (1 p) p ln L (p; x 1,..., x r )0 p rp r x i et comme : 2 p ln L (p; x 1,..., x 2 r ) < 0 donc l estimateur du maximum de vraisemblance d un r-échantillon d une structure géométrique est : ˆp rp r X i C est l inverse de la moyenne empirique du r-échantillon. 3. Soit X une variable aléatoire binomiale d ordre n et de paramètre p. pour tout x {0, 1,..., n}, la probabilité élémentaire p (x) de x est : p (x) C (n, x) p x (1 p) n x 5
10 Structures Statistiques et Estimation A. El Mossadeq de plus : E [X] np V [X] np (1 p) (a) Recherche du maximum de vraisemlance : Considérons un r-échantillon de cette structure. Sa fonction de vraisemblance est définie pour tout p [0, 1] et tout (x 1,..., x r ) {0, 1,..., n} r par : ry L (p; x 1,..., x r ) p (x i ) d où : ln L (p; x 1,..., x r )ln Il en résulte que : d où : " ry # C (n, x i ) p ry C (n, x i )+ rp x i (1 p) rn r P Ã rx x i ln p + rn p ln L (p; x 1,..., x r ) x i x i! rx x i ln (1 p) rp P rn r p 1 p rp x i rnp p (1 p) p ln L (p; x 1,...,x r )0 p 1 rn et comme : 2 p ln L (p; x 1,..., x 2 r ) < 0 donc l estimateur du maximum de vraisemblance d un r-échantillon d une structure de binomiale est : ˆp 1 rx X i rn rx x i x i 6
11 A. El Mossadeq Structures Statistiques et Estimation (b) Etude des propriétés de ˆp : Puisque : et : E [ˆp] 1 n E [X] p V [ˆp] V [X] rn 2 p (1 p) rn on en déduit que ˆp est un estimateur sans biais et convergent de p. 4. Soit X une variable aléatoire de Poisson de paramètre α. Pour tout x N, la probabilité élémentaire p (x) de x est : de plus : p (x) αx x! exp α E [X] α V [X] α (a) Recherche du maximum de vraisemlance : Considérons un r-échantillon de cette structure. Sa fonction de vraisemblance est définie pour tout α, α > 0, ettout (x 1,..., x r ) N r par : ry L (α; x 1,...,x r ) p (x i ) d où : rp ln L (α; x 1,..., x r ) ln (x 1!...x r!) + Il en résulte que : α ln L (α; x 1,..., x r ) x i α exp rα x 1!...x r! rp rx x i ln α rα x i α r 7
12 Structures Statistiques et Estimation A. El Mossadeq d où : α ln L (α; x 1,..., x r )0 p 1 r et comme : 2 α ln L (α; x 1,..., x 2 r ) < 0 donc l estimateur du maximum de vraisemblance d un r-échantillon d une structure de Poisson est : ˆα 1 rx X i r C est la moyenne empirique du r-échantillon. (b) Etude des propriétés de ˆα : Puisque : et : E [ˆα] E [X] α V [ˆα] V [X] r α r On en déduit que ˆα est un estimateur sans biais et convergent de α. rx x i 5. Soit X une variable aléatoire exponentielle de paramètre λ. Sa densité de probabilité f est définie par : 0 si x 0 f (x) λ exp λx si x > 0 de plus : E [X] 1 λ V [X] 1 λ 2 Considérons un r-échantillon de cette structure. 8
13 A. El Mossadeq Structures Statistiques et Estimation Sa fonction de vraisemblance est définie pour tout λ, λ>0, ettout(x 1,...,x r ) dans R r, tous strictement positifs, par : ry L (λ; x 1,..., x r ) f (x i ) d où : Il en résulte que : d où : λ r exp λ ln L (λ; x 1,..., x r )r ln λ λ λ ln L (λ; x 1,..., x r ) r λ rx rx rx λ ln L (λ; x 1,...,x r )0 λ x i x i rp r x i x i et comme : 2 λ 2 ln L (λ; x 1,..., x r ) < 0 donc l estimateur du maximum de vraisemblance d un r-échantillon d une structure exponentielle est : ˆλ rp r X i C est l inverse de la moyenne empirique du r-échantillon. 6. Soit X une variable aléatoire normale de paramètres μ et σ 2. Sa densité de probabilité f est définie pour tout x R par : f (x) 1 σ 2π exp 1 (x μ)2 2σ2 de plus : E [X] μ V [X] σ 2 9
14 Structures Statistiques et Estimation A. El Mossadeq (a) Recherche du maximum de vraisemlance : Considérons un r-échantillon de cette structure. Sa fonction de vraisemblance est définie pour tout μ R, toutσ>0et tout (x 1,..., x r ) R r par : ry L (μ, σ; x 1,..., x r ) f (x i ) d où : 1 σ 2π r exp 1 2σ 2 ln L (μ, σ; x 1,...,x r ) r ln 2π r ln σ 1 2σ 2 Il en résulte que : rx (x i μ) 2 rx (x i μ) 2 d où : μ L (μ, σ; x 1,..., x r ) 1 σ 2 rx (x i μ) σ L (μ, σ; x 1,..., x r ) r σ + 1 σ 3 rx (x i μ) 2 μ L (μ, σ; x 1,..., x r )0 σ L (μ, σ; x 1,...,x r )0 μ 1 r σ 2 1 r rx x i rx (x i μ) 2 Donc les estimateurs du maximum de vraisemblance d un r-échantillon d une structure normale est : ˆμ 1 rx X i r ˆσ 2 1 r rx (X i ˆμ) 2 10
15 A. El Mossadeq Structures Statistiques et Estimation (b) Etude des propriétés de ˆμ et ˆσ: On a : et : E [ˆμ] E [X] μ E ˆσ 2 r 1 V [X] r r 1 σ 2 r On en déduit que ˆμ est un estimateur sans biais et convergent de μ, mais ˆσ est un estimateur biaisé de σ. 7. Soit X une variable aléatoire uniforme sur l intervalle [0,θ]. Sa densité de probabilité f est définie pour tout x [0,θ] par : 1 si x [0,θ] f (x) θ 0 si x / [0,θ] de plus : E [X] θ 2 V [X] θ2 12 Considérons un r-échantillon de cette structure. Sa fonction de vraisemblance est définie pour tout θ, θ>0, ettout(x 1,...,x r ) [0,θ] r : ry L (θ; x 1,...,x r ) f (x i ) 1 θ r La fonction : θ L (θ; x 1,..., x r ) est strictement décroissante, donc elle atteint son maximum lorsque θ est minimum. Et comme : i {1,..., r} : θ x i 11
16 Structures Statistiques et Estimation A. El Mossadeq donc θ est minimum lorsque : θ max(x 1,..., x r ) Donc l estimateur du maximum de vraisemblance d un r-échantillon d une structure uniforme est : ˆθ max(x 1,..., X r ) Exercice 2 Soit X une variable aléatoire dont la densité de probabilité f est définie par : 1 f (x) θ exp x si x > 0 θ 0 si x 0 où θ est un paramètre réel strictement positif. 1. Déterminer l estimateur du maximum de vraisemlance ˆθ de θ d un r-échantillon de variable parente X. 2. ˆθ est-il un résumé exhaustif? 3. Calculer l espérance mathématique et la variance de ˆθ. Que peut-on conclure? 4. Calculer la quantité d information de Fisher. En déduire que ˆθ est efficace. Solution 2 Soit X une variable aléatoire exponentielle dont la densité de probabilité f est définie pour tout x, x>0, par: 1 f (x) θ exp x si x > 0 θ 0 si x 0 où θ est un paramètre réel strictement positif. On a : E [X] θ V [X] θ 2 12
17 A. El Mossadeq Structures Statistiques et Estimation 1. Considérons un r-échantillon de cette structure. Sa fonction de vraisemblance est définie pour tout θ, θ>0, ettout(x 1,...,x r ) R r, tous strictement positifs, par : ry L (θ; x 1,..., x r ) f (x i ) d où : Il en résulte que : d où : 1 θ r exp ln L (θ; x 1,..., x r ) r ln θ θ ln L (θ; x 1,...,x r ) r θ + θ ln L (θ; x 1,..., x r )0 θ 1 r rp x i rp θ x i θ rp x i θ 2 et comme : 2 θ 2 ln L (θ; x 1,..., x r ) < 0 donc l estimateur du maximum de vraisemblance d un r-échantillon d une structure exponentielle est : ˆθ 1 rx X i r C est la moyenne empirique du r-échantillon. 2. Pour tout θ, θ>0, ettout(x 1,...,x r ) R r, tous strictement positifs, on a : rp L (θ; x 1,..., x r ) x i rx x i 1 θ r exp θ 1 θ r exp rˆθ (x 1,..., x r ) θ 13
18 Structures Statistiques et Estimation A. El Mossadeq D aprèslethéorèmedefactorisation,ˆθ est un résumé exhaustif puisque : ³ L (θ; x 1,...,x r )g θ; ˆθ (x 1,..., x r ) h (x 1,..., x r ) où : et : 3. Comme : alors : ³ g θ; ˆθ (x 1,...,x r ) 1 θ r exp rˆθ (x 1,..., x r ) θ h (x 1,..., x r )1 i E hˆθ ˆθ 1 r rx X i E [X] θ et : hˆθi V V [X] r θ2 r On en déduit que ˆθ est un estimateur sans biais et convergent de θ. 4. Calculons la quantité d information de Fisher, I [X, θ], concernant θ. On a : 2 I [X, θ] E 2 ln f (θ, X) θ µ 2 E θ 2 ln θ X θ E 1 θ 2 + 2X θ 3 1 θ 2 Donc la quantité d information de Fisher, I [X 1,..., X r,θ], concernant θ fournie par le r-échantillon est : I [X 1,..., X r,θ] ri [X, θ] r θ 2 14
19 A. El Mossadeq Structures Statistiques et Estimation i Calculons l efficacité e hˆθ de.ˆθ. On a : donc, ˆθ est efficace. i e hˆθ 1 I [X 1,..., X r,θ] V 1 hˆθi Exercice 3 Soit X une variable aléatoire dont la densité de probabilité f est définie par : 0 si x 0 f (x) λ θ k xk 1 exp x si x > 0 θ où θ est un paramètre réel strictement positif, k un entier naturel non nul et λ une constante réel. 1. Déterminer la constante λ. 2. Déterminer l estimateur du maximum de vraisemlance ˆθ de θ d un r-échantillon de variable parente X. 3. ˆθ est-il un résumé exhaustif? 4. Calculer l espérance mathématique et la variance de ˆθ. Que peut-on conclure? 5. Calculer la quantité d information de Fisher. En déduire que ˆθ est efficace. Solution 3 La densité de probabilité de la variable aléatoire X est définie par : 0 si x 0 f (x) λ θ k xk 1 exp x θ si x > 0 Rappelons que pour tout k N : Z + 0 u k exp udu k! 15
20 Structures Statistiques et Estimation A. El Mossadeq 1. Ainsi : d où puisque : De plus : et : d où : Z + f (x) dx E [X] E X 2 Z + 0 Z + 0 λ (k 1)! λ Z + Z + Z + 0 kθ Z + Z (k 1)! f (x) dx 1 xf (x) dx λ θ k xk 1 exp x θ dx λu k 1 exp udu 1 (k 1)!θ k xk exp x θ dx x 2 f (x) dx k (k +1)θ 2 1 (k 1)!θ k xk+1 exp x θ dx V [X] E X 2 E [X] 2 kθ 2 2. Considérons un r-échantillon de cette structure. Sa fonction de vraisemblance est définie pour tout θ, θ>0,ettout(x 1,..., x r ) R r, tous strictement positifs, par : 16
21 A. El Mossadeq Structures Statistiques et Estimation d où : L (θ; x 1,..., x r ) ry f (x i ) 1 [(k 1)!] r θ (x 1...x rk r ) k 1 exp rp x i ln L (θ; x 1,...,x r ) r ln (k 1)! ln (x 1...x r ) k 1 rk ln θ Il en résulte que : d où : θ ln L (θ; x 1,..., x r ) rk θ + θ ln L (θ; x 1,..., x r )0 θ 1 rk rp x i θ 2 rx x i θ rp x i et comme : 2 θ 2 ln L (θ; x 1,..., x r ) < 0 donc l estimateur du maximum de vraisemblance d un r-échantillon de cette structure est : ˆθ 1 rx X i rk 3. Pour tout θ, θ>0, ettout(x 1,...,x r ) R r, tous strictement positifs, on a : rp L (θ; x 1,..., x r ) 1 [(k 1)!] r θ (x 1...x rk r ) k 1 exp x i 1 [(k 1)!] r θ (x 1...x rk r ) k 1 exp rkˆθ (x 1,..., x r ) θ D aprèslethéorèmedefactorisation,ˆθ est un résumé exhaustif puisque : ³ L (θ; x 1,...,x r )g θ; ˆθ (x 1,..., x r ) h (x 1,..., x r ) θ θ 17
22 Structures Statistiques et Estimation A. El Mossadeq où : et : 4. Puisque : alors : et : ³ g θ; ˆθ (x 1,..., x r ) 1 θ exp rkˆθ (x 1,...,x r ) rk θ h (x 1,..., x r ) 1 [(k 1)!] r (x 1...x r ) k 1 ˆθ 1 rk rx X i i E hˆθ 1 E [X] θ k V hˆθi V [X] rk 2 θ2 rk On en déduit que ˆθ est un estimateur sans biais et convergent de θ. 5. Calculons la quantité d information de Fisher, I [X, θ], concernant θ. On a : 2 I [X, θ] E 2 ln f (θ, X) θ µ 2 E θ 2 ln (k 1)! + (k 1) ln X k ln θ X θ E k θ 2 + 2X θ 3 k θ 2 Donc la quantité d information de Fisher, I [X 1,..., X r,θ], concernant θ fournie par le r-échantillon est : i Calculons l efficacité e hˆθ de.ˆθ. On a : I [X 1,..., X r,θ] ri [X, θ] rk i e hˆθ 1 I [X 1,..., X r,θ] V θ 2 hˆθi 1 18
23 A. El Mossadeq Structures Statistiques et Estimation donc, ˆθ est efficace. Exercice 4 Soit X une variable aléatoire dont la densité de probabilité f est définie par : 0 si x / [0,θ] f (x) 1 θ si x [0,θ] où θ est un paramètre réel. 1. Déterminer la fonction de répartition de X. 2. Calculer la quantité d information de Fisher. 3. Déterminer l estimateur du maximum de vraisemlance ˆθ de θ d un r-échantillon de variable parente X. 4. Calculer l espérance mathématique et la variance de ˆθ. Que peut-on conclure? 5. Dans le cas où ˆθ est biasé, proposer un estimateur sans biais de θ. Solution 4 1. La fonction de répartition F de X est définie pour tout x R par : d où : de plus : F (x) F (x) Z x f (t) dt 0 si x 0 x θ si 0 x θ 1 si x θ E [X] θ 2 2.PuisqueledomaineD θ : V [X] θ2 12 D θ {x R f (x) > 0} [0,θ] 19
24 Structures Statistiques et Estimation A. El Mossadeq dépend de θ, donc la quantité d information de Fisher n existe pas. 3. Considérons un r-échantillon de cette structure. Sa fonction de vraisemblance est définie pour tout θ, θ>0, ettout(x 1,...,x r ) [0,θ] r : ry L (θ; x 1,...,x r ) f (x i ) 1 θ r La fonction : θ L (θ; x 1,..., x r ) est strictement décroissante, donc elle atteint son maximum lorsque θ est minimum. Et comme : i {1,..., r} : θ x i Il en résulte que θ est minimum lorsque : θ max(x 1,..., x r ) Donc l estimateur du maximum de vraisemblance d un r-échantillon d une structure uniforme est : ˆθ max(x 1,..., X r ) 4. Pour déterminer la densité de probabilité de ˆθ, commençons d abord par calculer sa fonction de répartition. (a) Fonction de répartition de ˆθ : 20
25 A. El Mossadeq Structures Statistiques et Estimation Pour tout u R on a : i Fˆθ (u) P hˆθ <u P [max (X 1,...,X r ) <u] P [X 1 < u,..., X r <u] ry P [X k <u] k1 [F (u)] r 0 si u 0 ³ u r si 0 u θ θ 1 si u θ 21
26 Structures Statistiques et Estimation A. El Mossadeq (b) Densité de probabilité de ˆθ : Pour tout u R {0,θ} on a : fˆθ (u) d du Fˆθ (u) 0 si u / ]0,θ[ r ur 1 θ r si u ]0,θ[ (c) Espérance mathématique de ˆθ : i E hˆθ Z ufˆθ (u) du R Z θ r ur 0 θ r du r r +1 θ (d) Espérance mathématique de ˆθ 2 : E hˆθ2 i Z u 2 fˆθ (u) du (e) Variance de ˆθ : V hˆθi R Z θ 0 r ur+1 θ r du r r +2 θ2 E hˆθ2 i i 2 E hˆθ r (r +1) 2 (r +2) θ2 L estimateur ˆθ de θ est biaisé, mais il est asymptotiquement sans biais. 5. Considérons l estimateur : Alors : T r +1 ˆθ r E [T ] r +1 i E hˆθ r θ 22
27 A. El Mossadeq Structures Statistiques et Estimation et : V [T ] µ 2 r +1 hˆθi V r 1 r (r +2) θ2 T est donc un estimateur sans biais et convergent de θ. Exercice 5 Soit X une variable aléatoire dont la densité de probabilité f est définie par : 0 si x < θ f (x) exp (θ x) si x θ où θ est un paramètre réel. 1. Déterminer la fonction de répartition de X. 2. Calculer la quantité d information de Fisher. 3. Déterminer l estimateur du maximum de vraisemlance ˆθ de θ d un r-échantillon de variable parente X. 4. Calculer l espérance mathématique et la variance de ˆθ. Que peut-on conclure? 5. Dans le cas où ˆθ est biasé, proposer un estimateur sans biais de θ. Solution 5 1. La fonction de répartition F de X est définie pour tout x R par : d où : de plus : F (x) Z x f (t) dt 0 si x θ F (x) 1 exp (θ x) si x θ E [X] θ +1 V [X] 1 23
28 Structures Statistiques et Estimation A. El Mossadeq 2.PuisqueledomaineD θ : D θ {x R f (x) > 0} [θ, + [ dépend de θ, donc la quantité d information de Fisher n existe pas. 3. Considérons un r-échantillon de cette structure. Sa fonction de vraisemblance est définie pour tout θ R, ettout(x 1,..., x r ) ([θ, + [) r : La fonction : ry L (θ; x 1,..., x r ) f (x i ) exp rx (θ x i ) θ L (θ; x 1,..., x r ) est strictement croissante, donc elle atteint son maximum lorsque θ est maximum. Et comme : i {1,..., r} : θ x i Il en résulte que θ est maximum lorsque : θ min(x 1,..., x r ) Donc l estimateur du maximum de vraisemblance d un r-échantillon de cette structure est : ˆθ min(x 1,..., X r ) 4. Pour déterminer la densité de probabilité de ˆθ, commençons d abord par calculer sa fonction de répartition. 24
29 A. El Mossadeq Structures Statistiques et Estimation (a) Fonction de répartition de ˆθ : Pour tout v R on a : Fˆθ (v) i P hˆθ <v P [min (X 1,...,X r ) <v] 1 P [min (X 1,..., X r ) v] 1 P [X 1 v,..., X r v] ry 1 P [X k v] 1 k1 ry (1 P [X k <v]) k1 1 [1 F (v)] r 0 si v θ 1 exp r (θ v) si v θ (b) Densité de probabilité de ˆθ : Pour tout u R {θ} on a : d fˆθ (v) dv Fˆθ (v) 0 si v < θ r exp r (θ v) si v > θ (c) Espérance mathématique de ˆθ : i Z E hˆθ vfˆθ (v) dv R Z + rv exp r (θ v) dv θ θ + 1 r 25
30 Structures Statistiques et Estimation A. El Mossadeq (d) Espérance mathématique de ˆθ 2 : E hˆθ2 i Z v 2 fˆθ (v) dv (e) Variance de ˆθ : V hˆθi R Z + θ rv 2 exp r (θ v) dv µ θ r r 2 E hˆθ2 i i 2 1 E hˆθ r 2 L estimateur ˆθ de θ est biaisé, mais il est asymptotiquement sans biais. 5. Considérons l estimateur : T ˆθ 1 r Alors : et : i E [T ]E hˆθ 1 r θ V [T ]V hˆθi 1 r 2 T est donc un estimateur sans biais et convergent de θ. Exercice 6 Les éléments d une population possédent un caractère X qui suit une loi de P oisson de paramètre inconnu α. Une suite de r expériences a fourni les valeurs k 1,..., k r. 1. Déterminer l estimateur du maximum de vraisemlance ˆα de α et étudier les propriétés de cet estimateur. 2. ˆα est-il un résumé exhaustif? 3. On désire estimer la quantité : δ P [X 0] Déterminer l estimateur du maximum de vraisemlance ˆδ de δ. Que remarquez-vous? 26
31 A. El Mossadeq Structures Statistiques et Estimation Solution 6 1. Soit X une variable aléatoire de Poisson de paramètre α. pour tout x N, la probabilité élémentaire p (x) de x est : de plus : p (x) αx x! exp α E [X] α V [X] α (a) Recherche du maximum de vraisemlance : Considérons un r-échantillon de cette structure. Sa fonction de vraisemblance est définie pour tout α, α > 0, ettout (k 1,..., k r ) N r par : ry L (α; k 1,..., k r ) p (k i ) d où : rp ln L (α; k 1,...,k r ) ln (k 1!...k r!) + Il en résulte que : d où : α ln L (α; k 1,...,k r ) k i α exp rα k 1!...k r! rp rx k i ln α rα k i α r α ln L (α; k 1,..., k r )0 p 1 r et comme : 2 α ln L (α; k 1,..., k 2 r ) < 0 donc l estimateur du maximum de vraisemblance d un r-échantillon d une structure de Poisson est : ˆα 1 rx X i r C est la moyenne empirique du r-échantillon. rx x i 27
32 Structures Statistiques et Estimation A. El Mossadeq (b) Etude des propriétés de ˆα : Puisque : et : E [ˆα] E [X] α V [ˆα] V [X] r α r On en déduit que ˆα est un estimateur sans biais et convergent de α. 2. Pour tout α, α>0, ettout(k 1,..., k r ) N r on a : αrˆα(k 1,...,k r ) L (α; x 1,..., x r ) exp rα x 1!...x r! D aprèslethéorèmedefactorisation,ˆθ est un résumé exhaustif puisque : où : et : 3. On a : L (α; x 1,..., x r )g (α;ˆα (x 1,..., x r )) h (x 1,...,x r ) g (α;ˆα (x 1,..., x r )) α rˆα(k 1,...,k r) exp rα h (x 1,..., x r ) 1 x 1!...x r! δ P [X 0] exp α Pour tout δ, δ>0, ettout(k 1,..., k r ) N r par : ry L (δ; k 1,..., k r ) p (k i ) d où : ln L (δ; k 1,...,k r ) ln (k 1!...k r!) + rp ( ln δ) k 1!...k r! k i δ r rx k i ln ( ln δ)+rln δ 28
33 A. El Mossadeq Structures Statistiques et Estimation Il en résulte que : d où : δ ln L (δ; k 1,...,k r ) rp k i δ ln δ + r δ Ã δ ln L (δ; k 1 1,..., k r )0 δ exp r! rx k i et comme : 2 δ 2 ln L (δ; k 1,..., k r ) < 0 donc l estimateur du maximum de vraisemblance d un r-échantillon de cette structure est : Ã! 1 rx ˆδ exp X i r exp ˆα Exercice 7 Soit α un réel appartenant à ]1, + [ et X une variable aléatoire telle que : P [X k] 1 µ 1 1 k 1,k N α α 1. Calculer l espérance mathématique et la variance de X. 2. Déterminer l estimateur du maximum de vraisemlance ˆα de α d un r-échantillon de variable parente X et étudier ses propriétés. 3. ˆα est-il un résumé exhaustif? Solution 7 1. On a : E [X] α X kp [X k] k1 X k1 µ k 1 1 k 1 α α 29
34 Structures Statistiques et Estimation A. El Mossadeq et : E [X (X 1)] X k (k 1) P [X k] k1 X µ k (k 1) 1 1 k 1 α α k1 µ 2α α d où : et : E X 2 E [X (X 1)] + E [X] α (2α 1) V [X] E X 2 E [X] 2 α (α 1) 2. Considérons un r-échantillon de cette structure. Sa fonction de vraisemblance est définie pour tout α ]1, + [ et tout (x 1,..., x r ) (N ) r par : ry L (α; x 1,..., x r ) p (x i ) d où : 1 α r µ 1 1 P r x i r α Ã rx! µ ln L (α; x 1,..., x r ) rln α + x i r ln 1 1 α Il en résulte que : α ln L (α; x 1,..., x r ) r α + rp x i r α (α 1) rp x i rα α (α 1) 30
35 A. El Mossadeq Structures Statistiques et Estimation d où : α ln L (α; x 1,..., x r )0 α 1 r et comme : 2 α ln L (p; x 1,...,x 2 r ) < 0 donc l estimateur du maximum de vraisemblance d un r-échantillon d une structure géométrique est : ˆα 1 rx X i r C est la moyenne empirique du r-échantillon. 3. Puisque : alors : et : ˆα 1 r rx X i E [ˆα] E [X] α V [ˆα] V [X] r α (α 1) r On en déduit que ˆα est un estimateur sans biais et convergent du paramètre α d une structure géométrique. rx x i Exercice 8 Soit X une variable aléatoire qui suit une loi de Pareto dont la densité de probabilité f est définie par : f (x) αa α x α+1 si x a 0 si x < a où X représente le revenu par habitant, a le revenu minimum et α, α>2, un coefficient dépendant du type du pays où l on se place. 31
36 Structures Statistiques et Estimation A. El Mossadeq 1. Vérifier que f est bien une densité de probabilité. 2. Calculer l espérance mathématique et la variance de X. 3. Calculer la fonction de répartition de X. 4. Déterminer l estimateur du maximum de vraisemlance â de a d un r-échantillon issu X. 5. Dans le cas où â est biasé, proposer un estimateur sans biais de a. Solution 8 1. La densité de probabilité de la loi de Pareto est définie par : αa α si x a f (x) x α+1 0 si x < a f est bien une densité de probabilité. En effet : Z f (x) dx 2. On a : et : d où : R E [X] E X 2 1 Z Z + a R Z + a αa α dx xα+1 xf (x) dx α α 1 a Z R Z + a αa α x α dx x 2 f (x) dx α α 2 a2 αa α dx xα 1 V [X] E X 2 E [X] 2 α (α 2) (α 1) 2 a2 32
37 A. El Mossadeq Structures Statistiques et Estimation 3. La fonction de répartition F de X est définie pour tout x R par : Z x F (x) f (t) dt 0 si x a Z x αa α dt si x a a tα+1 0 si x a 1 aα si x a x α 4. Considérons un r-échantillon de cette structure. Sa fonction de vraisemblance est définie pour tout a R et tout (x 1,..., x r ) (]a, + [) r,par: ry L (a; x 1,..., x r ) f (x i ) α r a rα (x 1...x r ) α+1 La fonction : a L (a; x 1,...,x r ) est strictement croissante, donc elle atteint son maximum lorsque a est maximum. Et comme : i {1,..., r} : a x i Il en résulte que θ est maximum lorsque : a min(x 1,..., x r ) Donc l estimateur du maximum de vraisemblance d un r-échantillon de cette structure est : â min(x 1,..., X r ) 5. Pour déterminer la densité de probabilité de ˆθ, commençons d abord par calculer sa fonction de répartition. 33
38 Structures Statistiques et Estimation A. El Mossadeq (a) Fonction de répartition de â : Pour tout x R on a : Fâ (x) P [â <x] P [min (X 1,..., X r ) <x] 1 P [min (X 1,..., X r ) x] 1 P [X 1 v,..., X r x] ry 1 P [X k x] 1 k1 ry (1 P [X k <x]) k1 (b) Densité de probabilité de ˆθ : Pour tout x R {a} on a : 1 [1 F (x)] r 0 µ si x a a α r 1 si x a d fâ (x) dv F â (x) 0 si x < a rαa rα x rα+1 si x > a (c) Espérance mathématique de â : Z E [â] vfâ (v) dv x α R Z + a rα rα 1 a rαa rα v dv rα (d) Espérance mathématique de â 2 : E â 2 Z v 2 fâ (v) dv R Z + a rα rα 2 a2 rαa rα dv vrα 1 34
39 A. El Mossadeq Structures Statistiques et Estimation (e) Variance de â : V [â] E â 2 E [â] 2 rα (rα 2) (rα 1) 2 a2 L estimateur â de a est biaisé, mais il est asymptotiquement sans biais. (f) Considérons l estimateur : T rα 1 rα â Alors : E [T ]a et : µ 2 rα 1 V [T ] V [â] rα 1 rα (rα 2) a2 T est donc un estimateur sans biais et convergent de a. Exercice 9 Soit X une variable aléatoire dont la densité de probabilité f est définie par : 0 si x θ f (x) 1 (θ x) exp si x > θ α α où θ est un paramètre réel et α un paramètre réel strictement positif. 1. Vérifier que f est bien une densité de probabilité. 2. Calculer l espérance mathématique et la variance de X. 3. Calculer la fonction de répartition de X. 4. On suppose θ connu et α inconnu. (a) Déterminer l estimateur du maximum de vraisemlance ˆα de α d un r- échantillon issu X. (b) Etudier les propriétés de ˆα. (c) Dans le cas où ˆα est biasé, proposer un estimateur sans biais de α. 5. On suppose α connu et θ inconnu. (a) Déterminer l estimateur du maximum de vraisemlance ˆθ de θ d un r- échantillon issu de X. (b) Etudier les propriétés de ˆθ (c) Dans le cas où ˆθ est biasé, proposer un estimateur sans biais de θ. 35
40 Structures Statistiques et Estimation A. El Mossadeq 6. On suppose que θ et α sont tous les deux inconnus. (a) Déterminer l estimateur du maximum de vraisemlance d un r-échantillon issu de³ X. (b) Etudier les propriétés de ˆα, ˆθ (c) Proposer un estimateur sans biais de (α, θ). ³ ˆα, ˆθ de (α, θ) Solution 9 1. f est bien une densité de probabilité. En effet : Z f (x) dx 2. On a : et : d où : R E [X] E X 2 1 Z Z + θ Z + 0 R Z + θ Z + 0 α + θ Z 1 α xf (x) dx R Z + θ Z + 0 x α (θ x) exp dx α exp tdt (θ x) exp dx α (αt + θ)exp tdt x 2 f (x) dx x 2 α (θ x) exp dx α (αt + θ) 2 exp tdt 2α 2 +2αθ + θ 2 (α + θ) 2 + α 2 V [X] E X 2 E [X] 2 α 2 36
41 A. El Mossadeq Structures Statistiques et Estimation 3. La fonction de répartition F de X est définie pour tout x R par : F (x) Z x f (t) dt 0 si x θ Z x 1 (θ t) exp dt si x θ θ α α 0 si x θ 1 exp 4. On suppose θ connu et α inconnu. (θ x) α si x θ (a) Considérons un r-échantillon de cette structure. Sa fonction de vraisemblance est définie pour tout α, α>0, θ R et tout (x 1,..., x r ) (]θ, + [) r par : ry L (α; x 1,..., x r ) f (x i ) d où : Il en résulte que : 1 rx α exp r ln L (α; x 1,..., x r ) r ln α + 1 α α ln L (α; x 1,..., x r ) r α 1 α 2 " 1 r 1 α α (θ x i ) α rx (θ x i ) d où : α ln L (α; x 1,..., x r )0 α 1 r α rx (θ x i ) # rx (θ x i ) " 1 r rx (x i θ) # rx x i θ 37
42 Structures Statistiques et Estimation A. El Mossadeq et comme : 2 α ln L (α; x 1,..., x 2 r ) < 0 donc l estimateur du maximum de vraisemblance d un r-échantillon de cette structure est : " # 1 rx ˆα X i θ r (b) On a : et : E [ˆα] E α V [ˆα] V "Ã 1 r "Ã 1 r V [X] r α2 r 5. On suppose α connu et θ inconnu.! # rx X i θ! # rx X i θ (a) Considérons un r-échantillon de cette structure. Sa fonction de vraisemblance est définie pour tout α, α>0, θ R et tout (x 1,..., x r ) (]θ, + [) r, tous strictement positifs, par : ry L (θ; x 1,..., x r ) f (x i ) 1 rx α exp r (θ x i ) α La fonction : θ L (θ; x 1,..., x r ) est strictement croissante, donc elle atteint son maximum lorsque θ est maximum. 38
43 A. El Mossadeq Structures Statistiques et Estimation Et comme : i {1,..., r} : θ x i Il en résulte que θ est maximum lorsque : θ min(x 1,..., x r ) Donc l estimateur du maximum de vraisemblance d un r-échantillon de cette structure est : ˆθ min(x 1,..., X r ) (b) Pour déterminer la densité de probabilité de ˆθ, commençonsd abordpar calculer sa fonction de répartition. (i) Fonction de répartition de ˆθ : Pour tout v R on a : i Fˆθ (v) P hˆθ <v P [min (X 1,..., X r ) <v] 1 P [min (X 1,..., X r ) v] 1 P [X 1 v,..., X r v] ry 1 P [X k v] 1 k1 ry (1 P [X k <v]) k1 1 [1 F (v)] r 0 si v θ µ θ v 1 exp r si v θ α (ii) Densitédeprobabilitédeˆθ : Pour tout v R {θ} on a : fˆθ (v) d dv Fˆθ (v) 0 si v < θ µ r θ v α exp r si v > θ α 39
44 Structures Statistiques et Estimation A. El Mossadeq (iii) Espérancemathématiquedeˆθ : i Z E hˆθ vfˆθ (v) dv R Z + µ r θ v θ α v exp r dv α Z + ³ α θ r t + exp tdt 0 α r + θ (iv) Espérancemathématiquedeˆθ 2 : E hˆθ2 i Z v 2 fˆθ (v) dv R Z + r θ α v2 exp r (θ v) dv ³ α r + θ 2 ³ α 2 + r (v) Variance de ˆθ : hˆθi V E hˆθ2 i i 2 E hˆθ ³ α 2 r L estimateur ˆθ de θ est biaisé, mais il est asymptotiquement sans biais. (c) Considérons l estimateur : Alors : T ˆθ α r i E [T ] E hˆθ α r θ et : hˆθi V [T ] V α r 2 T est donc un estimateur sans biais et convergent de θ. 40
45 A. El Mossadeq Structures Statistiques et Estimation 6. On suppose que θ et α sont tous les deux inconnus. (a) Considérons un r-échantillon de cette structure. Sa fonction de vraisemblance est définie pour tout α, α>0, θ R et tout (x 1,..., x r ) (]θ, + [) r, tous strictement positifs, par : ry L (α, θ; x 1,...,x r ) f (x i ) 1 rx α exp r (θ x i ) α Compte tenu des questions précedentes, la fonction : atteint son maximum pour : (α, θ) 7 L (α, θ; x 1,..., x r ) θ min(x 1,..., x r ) α " 1 r # rx x i θ d où, les estimateurs du maximum de vraisemblance donnés par : (b) On a : et : ˆθ min(x1,..., X r ) ˆα " 1 r # rx X i ˆθ i E hˆθ α r + θ i E [ˆα] E [X] E hˆθ r 1 α r Donc les estimateurs ˆα et ˆθ sont biaisés. ³ ˆα, ˆθ de (α, θ) sont 41
46 Structures Statistiques et Estimation A. El Mossadeq (c) Considérons les estimateurs T et S de α et θ respectivement définis par : T r r 1 ˆα S ˆθ 1 r 1 ˆα alors : E [T ]α E [S] θ Donc T et S sont des estimateurs sans biais de α et θ respectivement. Exercice 10 Soient X et Y deux variables aléatoires indépendantes, la première prenant les valeurs 1 et 0 avec les probabilités respectives α et 1 α, et la deuxième prenant les valeurs 1 et 0 avec les probabilités respectives P et 1 P.Onsupposeα inconnue et P connue, P>0.5. On définit la variable aléatoire Z par : Z 1 si X Y Z 0 si X 6 Y On considère un n-échantillon ((X 1,Y 1 ),..., (X n,y n )) de (X, Y ) et on définit Z i, 1 i n, à partir de X i et Y i comme on a défini Z àpartirdex et Y. 1. Montrer que (Z 1,..., Z n ) est un n-échantillon de Z. 2. Etudier les propriétés de l estimateur : T 1 n (Z Z n ) 3. Proposer alors un estimateur sans biais S de α. 4. Etudier la variance de S en fonction de P. 5. Indiquer un intervalle de confiance pour α lorsque n est grand, en supposant qu on dispose d une observation p de la variable : T 1 n (Z Z n ) 6. Voyez-vous une application de ce qui précède dans le domaine des sondages d opinion? 42
47 A. El Mossadeq Structures Statistiques et Estimation Solution 10 On a : P [X 0]1 α P [X 1]α et : P [Y 0]1 P P [Y 1]P X et Y deux variables aléatoires de Bernouilli de paramètres α et P respectivement. Déterminons la loi de probabilité de Z : et : P [Z 0] P [X 6 Y ] P [{(X, Y )(0, 1)} {(X, Y )(0, 1)}] P [X 0]P [Y 1]+P [X 1]P [Y 0] (1 α) P + α (1 P ) P [Z 1] P [X Y ] P [{(X, Y )(0, 0)} {(X, Y )(1, 1)}] P [X 0]P [Y 0]+P [X 1]P [Y 1] (1 α)(1 P )+αp Z est donc une variable aléatoire de Bernouilli de paramètre : de plus : θ (1 α)(1 P )+αp E [Z] θ V [Z] θ (1 θ) 1. Puisque (X 1,Y 1 ),..., (X n,y n ) sont indépentants et suivent la même loi que (X, Y ), on en déduit que (Z 1,..., Z n ) sont indépendants et suivent la même loi que Z, donc c est un n-échantillon de Z. 2. Soit l estimateur : T 1 n (Z Z n ) On a : E [T ] E [Z] (1 α)(1 P )+αp 43
48 Structures Statistiques et Estimation A. El Mossadeq et : V [T ] 1 n V [Z] 1 [(1 α)(1 P )+αp ][(1 α) P + α (1 P )] n 3. T est donc un estimateur biaisé de α sauf lorsque : ou : α 1 2 P 1 (a) Si : α 1 2 ou P 1 alors il suffit deprendre: (b) Si : S T α et P On a : alors il suffit deprendre: V [S] S 1 [T (1 P )] 2P 1 1 (2P 1) 2 V [T ] 1 2 [(1 α)(1 P )+αp ][(1 α) P + α (1 P )] n (2P 1) 44
49 T ests d H ypoth èses Les Fréquences
50
51 A. El Mossadeq Tests : Les Fréquences Exercice 1 A la veille d une consultation électorale, on a intérrogé cent électeurs constituant un échantillon au hasard. Soixante ont déclaré avoir l intention de voter pour le candidat C. En quelles limites, au moment du sondage, la proportion du corps électoral favorable à C se situe-t-elle? Solution 1 Construisons l intervalle de confiance correspondant à la fréquence f 0.6 du corps électoral favorable à C observée sur un échantillon de taille n 100. Au seuil α, cet intervalle est défini par : " r r f (1 f) f (1 f) f t 1 α/2,f + t 1 α/2 n n # Pour α 5%,ona: on obtient alors l intervalle : A 95%, le candidat C serait élu. t [.504,.696] Exercice 2 Onsaitqueletauxdemortalitéd unecertainemaladieestde30%. Sur 200 malades testés, combien peut-on envisager de décès? Solution 2 Construisons d obord l intervalle de pari, pour un échantillon de taille n 200, correspondant à la probabilité de décès p 0.3. Au seuil α, cet intervalle est défini par : " r r p (1 p) p (1 p) p t 1 α/2,p+ t 1 α/2 n n # Pour α 5%,ona: t
52 Tests : Les Fréquences A. El Mossadeq on obtient alors l intervalle : [.24,.36] Il en résulte que sur les 200 malades, le nombre de décès à envisager serait compris, à 95%, entre48 et 72 décès. Exercice 3 Dans une pré-enquête, on selectionne, par tirage au sort cent dossiers. Quinze d entre eux sont incomplets. Combien de dossiers incomplets trouvera-t-on sur dix milles dossiers? Solution 3 Construisons l intervalle de confiance correspondant à la fréquence f 0.15 de dossiers incomplets observée sur un échantillon de taille n 100. Au seuil α, cet intervalle est défini par : " r r f (1 f) f (1 f) f t 1 α/2,f + t 1 α/2 n n Pour α 5%,ona: t on obtient alors l intervalle : [.08,.22] Il en résulte que sur les dossiers, le nombre de dossiers incomplets serait compris, à 95%, entre800 et 2200 dossiers. # Exercice 4 Dans une maternité, on fait le point de la proportion de filles toutes les cent naissances. Comment peut varier cette proportion d une fois à l autre si l on admet qu il nait en moyenne 51% de filles? Solution 4 Construisons l intervalle de pari, pour un échantillon de taille n 100, correspondant à la probabilité d obtenir une fille p
53 A. El Mossadeq Tests : Les Fréquences Au seuil α, cet intervalle est défini par : " r r # p (1 p) p (1 p) p t 1 α/2,p+ t 1 α/2 n n Pour α 5%,ona: t on obtient alors l intervalle : [.41,.61] Il en résulte, qu à 95%, la proportion de filles varie d une fois à l autre, entre 41% et 61%. Exercice 5 Une machine à former des pilules fonctionne de façon satisfaisante si la proportion de pilules non réussies est de 1 pour Sur un échantillon de pilules, on a trouvé 15 pilules défectueuses. Que faut-il conclure? Solution 5 Ici on : Testons, au seuil α, l hypothèse nulle : Sous cette hypothèse, la quantité : n 10 4 f p 10 3 H 0 : la machine est bien réglée f p t r p (1 p) n peut être considérée comme une réalisation d une variable aléatoire normale centrée réduite. Pour α 5%,ona: t
54 Tests : Les Fréquences A. El Mossadeq et comme : t f p r p (1 p) 1.58 on accepte donc l hypothèse nulle H 0 au seuil α 5%, c est à dire, qu au seuil α 5%, la machine fonctionne de façon satisfaisante. n Exercice 6 Sur un échantillon de 600 sujets atteints du cancer des poumons, on a trouvé 550 fumeurs. Que peut-on dire du pourcentage de fumeurs parmi les cancéreux? Solution 6 Construisons l intervalle de confiance correspondant à la fréquence f des cancéreux parmi les fumeurs observée sur un échantillon de taille n 600. Au seuil α, cet intervalle est défini par : " r r f (1 f) f (1 f) f t 1 α/2,f + t 1 α/2 n n Pour α 5%,ona: t on obtient alors l intervalle : [.9,.94] Il en résulte que parmi, les fumeurs, la proportion des atteints par le cancer des poumons est comprise, à 95%, entre90% et 94%. # Exercice 7 Avant de procéder au lancement d un produit, une entreprise a fait procéder à une enquête portant sur deux régions géographiques A et B. Sur 1800 réponses provenant de la région A, 630 se déclarent intéressées par le produit. En provenance de B, 150 réponses sur 600 se déclarent favorables. Tester, au seuil de 5%, l hypothèse de l identité des opinions des régions A et B quant au produit considéré. 50
55 A. El Mossadeq Tests : Les Fréquences Solution 7 Ici on : n A 1800 et f A 7 20 n B 600 et f B 1 4 Testons, au seuil α, l hypothèse nulle : H 0 : les opinions des régions A et B sont identiques Sous cette hypothèse, la quantité : f A f B t r fa (1 f A ) + f B (1 f B ) n A n B peut être considérée comme une réalisation d une variable aléatoire normale centrée réduite. Pour α 5%,ona: t et comme : f A f B t r fa (1 f A ) + f B (1 f B ) n A n B 4.77 on rejette donc l hypothèse nulle H 0 à 95% (et même à 99.98%), c est à dire, les deux régions A et B ont des opinions différentes. Exercice 8 Dans un groupe de 200 malades atteints du cancer du col de l utérus, un traitement par application locale du radium a donné 50 guérisons. Unautregroupede150 sujets atteints de la même maladie a été traité par chirurgie, on a trouvé 50 guérisons. Que peut-on conclure? 51
56 Tests : Les Fréquences A. El Mossadeq Solution 8 Ici on : n 1 200, f n 2 150, f Testons, au seuil α, l hypothèse nulle : Sous cette hypothèse, la quantité : H 0 : les deux traitements sont équivalents f 1 f 2 t r f1 (1 f 1 ) + f 2 (1 f 2 ) n 1 n 2 peut être considérée comme une réalisation d une variable aléatoire normale centrée réduite. Pour α 5%,ona: t et comme : f 1 f 2 t r f1 (1 f 1 ) + f 2 (1 f 2 ) n 1 n on accepte donc l hypothèse nulle H 0 au seuil 5%, c est à dire, les deux méthodes sont équivalentes. Exercice 9 Aux guichets d une gare parisienne, sur les 350 billets vendus vendredi après-midi, 95 étaient des billets de 1ère classe. Sur les 250 billets vendus la matinée du lundi suivant, 55 étaient de 1ère classe. Peut-on considérer qu il y a une différence entre les proportions de vente de parcours en 1ère classe pour les fins et débuts de semaines? 52
57 A. El Mossadeq Tests : Les Fréquences Solution 9 Ici on : n 1 350, f n 2 250, f Testons, au seuil α, l hypothèse nulle : H 0 : les taux de billets de 1ère classe vendus en fin et début de semaines sont identiques Sous cette hypothèse, la quantité : f 1 f 2 t r f1 (1 f 1 ) + f 2 (1 f 2 ) n 1 n 2 peut être considérée comme une réalisation d une variable normale centrée réduite. Pour α 5%,ona: et comme : t f 1 f 2 t r f1 (1 f 1 ) + f (1 f 2 ) n 1 n 2 on accepte donc l hypothèse nulle H 0 au seuil 5%, c est à dire, les taux de billets de parcours en 1ère classe vendus en fins et débuts de semaines sont identiques et qu on peut estimer par : f n 1f 1 + n 2 f 2 n 1 + n Exercice 10 On a lancé cent fois une pièce de monnaie et l on a obtenu soixante fois pile et quarante fois face. Tester au seuil de 5%, puis 1%, l hypothèse de la loyauté de la pièce. 53
58 Tests : Les Fréquences A. El Mossadeq Solution 10 Ici on : où f est la fréquence de pile. Testons, au seuil α, l hypothèse nulle : Sous cette hypothèse, on a : et la quantité : ½ n 100 f 0.6 H 0 : la pièce est loyale p 0.5 f p t r p (1 p) n peut être considérée comme une réalisation d une variable aléatoire normale centrée réduite. on a : f p t r p (1 p) 2 n (1) Pour α 5%,ona: t on rejette donc l hypothèse nulle H 0 à 95%, c est à dire, qu à 95%, la pièce est truquée. (2) Pour α 1%,ona: 2.57 <t.995 < 2.58 on accepte donc l hypothèse nulle H 0 au seuil α 1%, c est à dire, qu au seuil α 1%, la pièce est normale. Exercice 11 Un échantillon de taille n a donné lieu au calcul d une fréquence observée f correspondant à l intervalle de confiance [.22.34] au seuil α 5%. 1. Calculer n. 2. Par rapport à la proportion p 0.3, l écart est-il significatif au seuil α 5%? 3. Déterminer l intervalle de confiance de f p au seuil α 5%. 54
59 A. El Mossadeq Tests : Les Fréquences Solution Au seuil α, l intervalle de confiance correspondant à une fréquence f observée sur un échantillon de taille n est défini par : " r r # f (1 f) f (1 f) f t 1 α/2,f + t 1 α/2 n n On en déduit : f Pour α 5%,ona: n t 2 f (1 f) 1 α/2 (f 0.22) 2 t on obtient alors : ½ f.28 n Testons, au seuil α, l hypothèse nulle : Sous cette hypothèse, la quantité : H 0 : l écart n est pas singificatif f p t r p (1 p) n peut être considérée comme une réalisation d une variable aléatoire normale centrée réduite. On a : f p t r p (1 p) n 0.64 Pour α 5%,ona: t on accepte donc l hypothèse nulle H 0 au seuil α 5%. 3. Au seuil α : f p r t 1 α/2,t 1 α/2 p (1 p) n 55
60 Tests : Les Fréquences A. El Mossadeq donc, au seuil α : Pour α 5%,ona: d où : " r # p (1 p) f p 0,t 1 α/2 n t f p [0, 0.06] Exercice 12 L étude du taux de défectuosités afférentes aux caractéristiques de traitements thermiques d une même pièce, traitée par deux fours différents, a donné lieu aux résultats suivants : *Pour le premier four,20 pièces défectueuses sur un échantillon de 200 pièces traitées. * Pour le second four, 120 pièces défectueuses sur un échantillon de 800 pièces traitées. Que peut-on conclure? Solution 12 Ici on : n 1 200, f n 2 800, f Testons, au seuil α, l hypothèse nulle : H 0 : les deux traitements thermiques sont équivalents Sous cette hypothèse, la quantité : t f 1 f 2 r f1 (1 f 1 ) n 1 + f 2 (1 f 2 ) n 2 peut être considérée comme une réalisation d une variable aléatoire normale centrée réduite. Pour α 5%,ona: t
61 A. El Mossadeq Tests : Les Fréquences et comme : f 1 f 2 t r f1 (1 f 1 ) + f 2 (1 f 2 ) n 1 n on rejette donc l hypothèse nulle H 0 à 95%, c est à dire, les deux traitements ne sont pas équivalents. Exercice 13 Un questionnaire auquel on ne peut répondre que par oui ou par non, a été rempli par un échantillon de taille n. L intervalle de confiance de la fréquence observée f des réponses oui est ( ) au seuil α 5%. 1. Quelle est la taille n de l échantillon. 2. Par rapport à la proportion p 0.4, l écart est-il significatif au seuil α 5%? 3. Déterminer l intervalle de confiance de f p au seuil α 5%. Solution Au seuil α, l intervalle de confiance correspondant à une fréquence f observée sur un échantillon de taille n est défini par : On en déduit : " r r # f (1 f) f (1 f) f t 1 α/2,f + t 1 α/2 n n f Pour α 5%,ona: on obtient alors : n t 2 f (1 f) 1 α/2 (f 0.35) 2 t f 0.39 n
62 Tests : Les Fréquences A. El Mossadeq 2. Testons, au seuil α, l hypothèse nulle : Sous cette hypothèse, la quantité : H 0 : l écart n est pas singificatif f p t r p (1 p) n peut être considérée comme une réalisation d une variable aléatoire normale centrée réduite. On a : f p t r p (1 p) n 0.49 Pour α 5%,ona: t On accepte donc l hypothèse nulle H 0 au seuil α 5%. 3. Au seuil α : f p r t 1 α/2,t 1 α/2 p (1 p) donc, au seuil α : Pour α 5%,ona: d où : n " r # p (1 p) f p 0,t 1 α/2 n t f p [0, 0.04] Exercice 14 Parmi 470 sujets exposés à une infection, 370 n ayant pas été immunisés. Parmi ces derniers, 140 contractent la malidie ainsi que 25 sujets immunisés. Le traitement donne-t-il une protection significative? 58
63 A. El Mossadeq Tests : Les Fréquences Solution 14 Soient f 1 la fréquence de contracter la maladie pour un sujet non immunisé et f 2 la fréquence de contracter la maladie pour un sujet immunisé. Ici on : n et f n et f Testons, au seuil α, l hypothèse nulle : Sous cette hypothèse, la quantité : H 0 : le traitements n est pas efficace t f 1 f 2 r f1 (1 f 1 ) n 1 + f 2 (1 f 2 ) n 2 peut être considérée comme une réalisation d une variable aléatoire normale centrée réduite. Pour α 5%,ona: t et comme : f 1 f 2 t r f1 (1 f 1 ) + f 2 (1 f 2 ) n 1 n On rejette donc l hypothèse nulle H 0 à 95%, c est à dire, le traitement donne une protection significative. 59
64
65 Les Tests du Khi-deux
66
67 A. El Mossadeq Les Tests du Khi-Deux Exercice 1 Avant de procéder au lancement d un produit, une entreprise a fait procéder à une enquête portant sur deux régions géographiques A et B. Sur 1800 réponses provenant de la région A, 630 se déclarent intéressées par le produit. En provenance de B, 150 réponses sur 600 se déclarent favorables. Tester, au seuil de 5%, l hypothèse de l identité des opinions des régions A et B quant au produit considéré. Solution 1 La répartition observée est : T ableau des effectifs observées RégionÂOpinion favorable non favorable Total Région A Région B Total Testons, au seuil α, l hypothèse nulle : H 0 : les régions A et B ont la même opinion Calculons, sous cette hypothèse, la répartition théorique : T ableau des effectifs théoriques RégionÂOpinion favorable non favorable Total Région A Région B Total Sous l hypothèse nulle H 0,laquantité: 2X 2X χ 2 (o ij t ij ) 2 j1 t ij 63
68 Les Tests du Khi-Deux A. El Mossadeq est une réalisation d une variable du Khi-deux à : degré de liberté. Pour α 5%,ona: Et comme : χ 2 (2 1) (2 1) 1 χ 2 1; X X (o ij t ij ) 2 On rejette alors H 0 à 95% (et même à 99.5%), c est à dire, les deux régions ont des opinions différentes quant au produit considéré. j1 t ij Exercice 2 Dans un groupe de 200 malades atteints du cancer du col de l utérus, un traitement par application locale du radium a donné 50 guérisons. Unautregroupede150 sujets atteints de la même maladie a été traité par chirurgie, on a trouvé 54 guérisons. Que peut-on conclure? Solution 2 La répartition observée est : T ableau des effectifs observées TraitementÂRésultat guéri non guéri Total radium chirurgie Total Testons, au seuil α, l hypothèse nulle : H 0 : les deux traitements sont équivalents 64
69 A. El Mossadeq Les Tests du Khi-Deux Calculons, sous cette hypothèse, la répartition théorique : T ableau des effectifs théoriques TraitementÂRésultat guéri non guéri Total radium chirurgie Total Sous l hypothèse nulle H 0,laquantité: 2X 2X χ 2 (o ij t ij ) 2 j1 est une réalisation d une variable du Khi-deux à : degré de liberté. Pour α 5%,ona: Et comme : χ 2 t ij (2 1) (2 1) 1 χ 2 1; X X (o ij t ij ) 2 On rejette alors H 0 à 95%,c estàdire,les deux traitements ne sont pas équivalents. j1 t ij Exercice 3 Aux guichets d une gare parisienne, sur les 350 billets vendus vendredi après-midi, 95 étaient des billets de 1ère classe. Sur les 250 billets vendus la matinée du lundi suivant, 55 étaient de 1ère classe. Peut-on considérer qu il y une différence entre les proportions de vente de parcours en 1ère classe pour les fins et débuts de semaines? 65
70 Les Tests du Khi-Deux A. El Mossadeq Solution 3 La répartition observée est : T ableau des effectifs observées jourâclasse 1ère classe 2ère classe Total VendrediA.M Lundi matin Testons, au seuil α, l hypothèse nulle : H 0 : Total les taux de billets de parcours en 1ère classe vendus en fin et début de semaines sont identiques Calculons, sous cette hypothèse, la répartition théorique : T ableau des effectifs théoriques JourÂClasse 1ère classe 2ère classe Total VendrediA.M Lundi matin Total Sous l hypothèse nulle H 0,laquantité: 2X 2X χ 2 (o ij t ij ) 2 j1 est une réalisation d une variable du Khi-deux à : degré de liberté. Pour α 5%,ona: t ij (2 1) (2 1) 1 χ 2 1;
71 A. El Mossadeq Les Tests du Khi-Deux Et comme : χ 2 2X X (o ij t ij ) 2 On accepte alors H 0 au seuil α 5%, c est à dire, les taux de billets de parcours en 1 ère classe vendus en fins et débuts de semaines sont identiques. j1 t ij Exercice 4 On a lancé cent fois une pièce de monnaie et l on a obtenu soixante fois pile et quarante fois face. Tester au seuil de 5% puis 1%, l hypothèse de la loyauté de la pièce. Solution 4 Testons, au seuil α, l hypothèse nulle : Sous cette hypothèse, on a : d où les répartitions : H 0 : la pièce est loyale p 0.5 Côté Répartition Observée Répartition T héorique pile face Total Sous l hypothèse nulle H 0,laquantité: 2X χ 2 (o i t i ) 2 t i 67
72 Les Tests du Khi-Deux A. El Mossadeq est une réalisation d une variable du Khi-deux à : degré de liberté. On a : χ X (o i t i ) 2 t i (1) Pour α 5%,ona: χ 2 1; On rejette donc l hypothèse nulle H 0 à 95%, c est à dire, qu à 95%, la pièce est truquée. (2) Pour α 1%,ona: χ 2 1; On accepte donc l hypothèse nulle H 0 au seuil α 1%, c est à dire, qu au seuil α 1%, la pièce est normale. Exercice 5 On veut savoir si la réussite (R) d un traitement est indépendantes du niveaux de la tension artérielle du malade (T ). On dispose pour cela de 250 observations réparties comme suit : Que peut-on conclure? T ÂR échec succès basse élevée
73 A. El Mossadeq Les Tests du Khi-Deux Solution 5 La répartition observée est : Testons, au seuil α, l hypothèse nulle : T ableau des effectifs observées T ÂR Echec Succès Total Basse Elevée Total H 0 : la réussite du traitement est indépendante du niveau de la tension artérielle Calculons, sous cette hypothèse, la répartition théorique, le tableau de cette répartition est donné ci-après. T ableau des effectifs théoriques T ÂR Echec Succès Total Basse Elevée Total Sous l hypothèse nulle H 0,laquantité: 2X 2X χ 2 (o ij t ij ) 2 j1 est une réalisation d une variable du Khi-deux à : degré de liberté. Pour α 5%,ona: t ij (2 1) (2 1) 1 χ 2 1;
74 Les Tests du Khi-Deux A. El Mossadeq Et comme : χ 2 2X 1.6 2X (o ij t ij ) 2 On accepte alors H 0 au seuil α 5%, c est à dire, la réussite du traitement est indépendante du niveau de la tension artérielle. j1 t ij Exercice 6 On veut savoir s il y a une liason entre la localisation (L) du cancer du poumon (périphérique, non périphérique) et le côté (C) de la lésion (poumon gauche, poumon droit). L étude a porté sur 1054 malades : Que peut-on conclure? LÂC gauche droit périphérique non périphérique Solution 6 La répartition observée est : T ableau des effectifs observées Testons, au seuil α, l hypothèse nulle : H 0 : LÂC gauche droit Total périphérique non périphérique Total la localisation du cancer est indépendante du côté de la lésion Calculons, sous cette hypothèse, la répartition théorique. Le tableau de cette répartition est donnée ci-après. 70
75 A. El Mossadeq Les Tests du Khi-Deux Sous l hypothèse nulle H 0,laquantité: T ableau des effectifs théoriques LÂC gauche droit Total périphérique nonpériphérique Total χ 2 2X 2X (o ij t ij ) 2 j1 est une réalisation d une variable du Khi-deux à : degré de liberté. Pour α 5%,ona: Et comme : χ 2 t ij (2 1) (2 1) 1 χ 2 1; X X (o ij t ij ) 2 On rejette alors H 0 à 95% (même à 97.5%), c est à dire, la localisation du cancer dépend du côté de la lésion. j1 t ij Exercice 7 De nombreuses observations cliniques ont montré que jusque là : 30% des malades atteints de M ont une survie inférieure à un an 50% ont une survie entre un an et deux ans 10% ont une survie entre deux ans et cinq ans 10% ont une survie supérieure à cinq ans. On applique un nouveau traitement à 80 malades atteint de la maladie M et on constate : 71
76 Les Tests du Khi-Deux A. El Mossadeq 12 ont une survie inférieure à un an 56 ont une survie entre un an et deux ans 8 ont une survie entre deux ans et cinq ans 4 ont une survie supérieure à cinq ans. Que peut-on conclure? Solution 7 Testons, au seuil α, l hypothèse nulle : H 0 : le nouveau traitement n est pas actif contre la maladie M Sous cette hypothèse, on a les répartitions : Survie Répartition Observée Répartition T héorique survie 1 an an < survie 2 ans an < survie 5 ans 8 8 survie > 5 ans 4 8 Total Sous l hypothèse nulle H 0,laquantité: 4X χ 2 (o i t i ) 2 est une réalisation d une variable du Khi-deux à : 4 13 degrés de liberté. t i Pour α 5%,ona: χ 2 3;
77 A. El Mossadeq Les Tests du Khi-Deux Et comme : χ 2 2X (o i t i ) on rejette donc l hypothèse nulle H 0 à 95% (même à 99.5%), c est à dire, qu à 99.5%, le nouveau traitement est actif contre la maladie M. t i Exercice 8 On suppose pouvoir classer les malades atteints d une maladie M en trois catégories cliniques : A, B, C. On se demande si ces trois catégories diffèrent par leurs survies à un an. Les effectifs observés sont les suivants : SurvieÂCatégorie A B C survie àunan décés avant un an Que peut-on conclure? Solution 8 La répartition observée est : T ableau des effectifs observées SurvieÂCatégorie A B C Total Survie àunan Décés avant un an Total Testons, au seuil α, l hypothèse nulle : H 0 : la survie à un an est indépendante de la catégorie clinique Calculons, sous cette hypothèse, la répartition théorique. 73
78 Les Tests du Khi-Deux A. El Mossadeq T ableau des effectifs théoriques SurvieÂCatégorie A B C Total Survie àunan Décés avant un an Total Sous l hypothèse nulle H 0,laquantité: 2X 3X χ 2 (o ij t ij ) 2 j1 est une réalisation d une variable du Khi-deux à : (2 1) (3 1) 2 degrés de liberté. t ij Pour α 5%,ona: Et comme : χ 2 2; χ 2 2X.65 3X (o ij t ij ) 2 On accepte alors H 0 au seuil α 5%, c est à dire, la survie à un an est indépendante de la catégorie clinique. j1 t ij Exercice 9 75 enfants sont vus en consultation pour un asthme. On relève chez eux les deux symptômes suivants : * Intensité de la maladie asmathique : légère, moyenne, forte * Existence ou absence d un eczéma au moment de l observation ou dans le passé. 74
79 A. El Mossadeq Les Tests du Khi-Deux On peut classer les enfants selon la répartition suivante : EÂA fort moyen léger présent passé jamais Au vu de ces résultats, existe-t-il une association entre l intensité de l asthme et l existence d un eczéma? Solution 9 Le tableau de la répartition observée est donnée ci-après: T ableau des effectifs observées EczémaÂAsthme fort moyen léger Total Testons, au seuil α, l hypothèse nulle : présent passé jamais Total H 0 : l intensité de l asthme est indépendantedel existenced uneczéma Calculons, sous cette hypothèse, la répartition théorique. Le tableau de cette répartition est donnée ci-après. 75
80 Les Tests du Khi-Deux A. El Mossadeq T ableau des effectifs théoriques EczémaÂAsthme fort moyen léger Total présent passé jamais Total Les effectifs théoriques sur la première ligne sont strictement inférieurs à cinq, ce qui empêche l application d un test du Khi-deux.On peut remédier à cet état en opérant le groupement logique des classes présent et passé. Les nouveaux tableaux des effectifs observés et théoriques, obtenus après regroupement de ces deux classes sont donnés ci-après. T ableau des effectifs observées EczémaÂAsthme fort moyen léger Total présent ou passé jamais Total T ableau des effectifs théoriques EczémaÂAsthme fort moyen léger Total présent ou passé jamais Total Sous l hypothèse nulle H 0,laquantité: 2X 3X χ 2 (o ij t ij ) 2 j1 t ij 76
81 A. El Mossadeq Les Tests du Khi-Deux est une réalisation d une variable du Khi-deux à : degrés de liberté. Pour α 5%,ona: Et comme : χ 2 (2 1) (3 1) 2 χ 2 2; X X (o ij t ij ) 2 On rejette alors H 0 à 95% (même à 99.5%), c est à dire, l intensité de l asthme dépend de l existence d un eczéma. j1 t ij Exercice 10 Une étude statistique relative aux résultats d admission du concours d une grande école fait ressortir la répartition des admis selon la profession des parents lorsque celle-ci est connue. 1. La profession des parents a-t-elle une influence sur l accès à cette école? 2. Cette conclusion persiste-t-elle lorsqu on tient compte pour compléter la statistique précédente de 961 candidats dont l origine socio-professionnelle est inconnue et qui ont obtenus 43 succès? P rofession des P arents Candidats Admis F ontionnaires et Assimilés Commerce et Industrie P rof essions Libérales Propriétaires Rentiers Propriétaires Agricoles Artisans Banques et Assurances
82 Les Tests du Khi-Deux A. El Mossadeq Solution La répartition observée est : P rofession des P arents Candidats Admis Non admis F ontionnaires et Assimilés Commerce et Industrie P rofessions Libérales Propriétaires Rentiers Propriétaires Agricoles Artisans Banques et Assurances Total Testons, au seuil α, l hypothèse nulle : H 0 : l accès à l Ecole est indépendant de la profession des parents Calculons, sous cette hypothèse, la répartition théorique : P rofession des P arents Candidats Admis Non admis F ontionnaires et Assimilés Commerce et Industrie P rofessions Libérales Propriétaires Rentiers Propriétaires Agricoles Artisans Banques et Assurances Total
83 A. El Mossadeq Les Tests du Khi-Deux Sous l hypothèse nulle H 0,laquantité: 7X 2X χ 2 (o ij t ij ) 2 j1 est une réalisation d une variable du Khi-deux à : degrés de liberté. Pour α 5%,ona: Et comme : χ 2 t ij (7 1) (2 1) 6 2X χ 2 6; X (o ij t ij ) t ij j1 On accepte alors H 0 au seuil α 5%, c est à dire, l accès à l Ecole est indépendant de la profession des parents. 2. Si l on tient compte des 961 candidats dont l origine socio-professionnelle est inconnue et qui ont obtenus 43 succès, la répartition observée et la répartition théorique, sous la même hypothèse nulle, deviennent comme consognés ci-après. T ableau des effectifs observées P rofession des P arents Candidats Admis Non admis F ontionnaires et Assimilés Commerce et Industrie P rofessions Libérales Propriétaires Rentiers Propriétaires Agricoles Artisans Banques et Assurances Autres Total
84 Les Tests du Khi-Deux A. El Mossadeq T ableau des effectifs théoriques P rofession des P arents Candidats Admis Non admis F ontionnaires et Assimilés Commerce et Industrie P rofessions Libérales Propriétaires Rentiers Propriétaires Agricoles Artisans Banques et Assurances Autres Total Sous l hypothèse nulle H 0,laquantité: 8X 2X χ 2 (o ij t ij ) 2 j1 est une réalisation d une variable du Khi-deux à : degrés de liberté. Pour α 5%,ona: Et comme : χ 2 t ij (8 1) (2 1) 7 2X χ 2 7; X (o ij t ij ) t ij j1 On rejette alors H 0 à 95% (même à 99.5%), c est à dire, l accès à l Ecole est indépendant de la profession des parents. 80
85 A. El Mossadeq Les Tests du Khi-Deux Exercice 11 Sur un échantillon de 84 prématurés, on cherche s il existe une liaison entre la survenue d une hypoglycémie et la survenue d un ictère : sur 43 enfants n ayant pas d ictère, 23 sont hypoglycémiques sur 20 enfants ayant un ictère modéré, 6 sont hypoglycémiques sur 21 enfants ayant un ictère intense, 4 sont hypoglycémiques Que peut-on conclure? Solution 11 La répartition observée est donnée dans le tableau : T ableau des effectifs observées IctèreÂHypoglycémie hypoglycémique non hypoglycémique Total pas d 0 ictère ictère modéré ictère intense Total Testons, au seuil α, l hypothèse nulle : H 0 : la survenue d une hypoglycémie est indépendante de la survenue d un ictère Calculons, sous cette hypothèse, la répartition théorique : T ableau des effectifs théoriques IctèreÂHypoglycémie hypoglycémique non hypoglycémique Total pas d 0 ictère ictère modéré ictère intense Total
86 Les Tests du Khi-Deux A. El Mossadeq Sous l hypothèse nulle H 0,laquantité: 2X 2X χ 2 (o ij t ij ) 2 j1 est une réalisation d une variable du Khi-deux à : degrés de liberté. Pour α 5%,ona: Et comme : χ 2 t ij (3 1) (2 1) 2 χ 2 2; X X (o ij t ij ) 2 On rejette alors H 0 à 95% (même à 97.5%), c est à dire, la survenue d une hypoglycémie dépend de la survenue d un ictère. j1 t ij Exercice 12 Un médicament essayé sur 42 patients est contrôlé quant aux effets secondaires qu il peut avoir sur le poids des malades. On peut considérer que : quinze d entre eux ont maigri dix sept n ont pas changé de poids dix ont grossi En supposant que la maladie est sans effet sur les variations de poids, le médicament a-t-il un effet significatif sur le poids? Solution 12 Testons, au seuil α, l hypothèse nulle : H 0 : le traitement est sans effet sur les variations du poids Si le traitement est sans effet sur les variations du poids, alors ces variations sont dûes seulement au hasard. La loi de probabilité est donc la loi uniforme, c est à dire la probabilité de chaque classe est la même et est égale à
87 A. El Mossadeq Les Tests du Khi-Deux D où les répartitions : Variations Répartition Observée Répartition T héorique ont maigri n 0 ont pas changé ont grossi Total Sous l hypothèse nulle H 0,laquantité: 3X χ 2 (o i t i ) 2 est une réalisation d une variable du Khi-deux à : 3 12 degrés de liberté. t i Pour α 5%,ona: Et comme : χ 2 2; χ 2 2X (o i t i ) on accepte donc l hypothèse nulle H 0 au seuil α 5%, c est à dire, le traitement est sans effet sur les variations du poids. t i Exercice 13 Pour étudier la densité de poussières dans un gaz, on a procédé à une série d observations de petits échantillons de gaz au moyen d un microscope. On a ainsi effectué 143 observations et les résultats sont les suivants : 83
88 Les Tests du Khi-Deux A. El Mossadeq Nombre de particules en suspension Nombre d 0 échantillons de gaz > 5 0 Peut-on admettre, au seuil α 5%, que le nombre de particules en suspension est une variable de P oisson? Solution 13 Testons, au seuil α, l hypothèse nulle : H 0 : lenombredeparticulesensuspensionestunevariabledepoisson Calculons une estimation ponctuelle du paramètre α de cette loi : P [X k] αk exp α k! où X est la variable aléatoire représentant le nombre de particules en suspension. On sait que : ˆα 1 nx X i n est un estimateur sans biais et convergent de α. Une estimation ponctuelle α de α est donnée par : D où les répartitions : α X in i i
89 A. El Mossadeq Les Tests du Khi-Deux P articules en suspension Répartition observée Répartition théorique > Total L effectif théorique t k, k 0, représentant le nombre particules en suspension k est donné par : t k np [X k] On constate que le tableau contient des effectifs théoriques strictement inférieurs à 5, ce qui empêche l utilisation d un test du khi-deux. On peut remédier à cet état en opérant le groupement logique des classes 4 et plus. Les tableaux des effectifs observés et théoriques deviennent comme consignés ciaprès. P articules en suspension Répartition observée Répartition théorique Total
90 Les Tests du Khi-Deux A. El Mossadeq Sous l hypothèse nulle H 0,laquantité: χ 2 4X (o i t i ) 2 i0 est une réalisation d une variable du Khi-deux à : t i degrés de liberté.puisque pour calculer les effectifs théoriques, nous avons utilisé l estimation, et non la valeur réel, du paramètre α de la loi de Poisson. Pour α 5%,ona: Et comme : χ 2 3; χ On accepte alors H 0 au seuil α 5%, c est à dire, le nombre de particules en suspension peut être ajusté par une loi de Poisson dont le paramètre α est estimé par : α Exercice 14 Le tableau ci-après concerne le nombre annuel de cyclones tropicaux ayant atteint la côte orientale des Etats-Unis entre 1887 et 1956 : Nombre annuel de cyclones Nombre d 0 années > 9 0 Peut-on admettre, au seuil α 5%, que ce nombre annuel de cyclones est une variable de P oisson? 86
91 A. El Mossadeq Les Tests du Khi-Deux Solution 14 Testons, au seuil α, l hypothèse nulle : H 0 : lenombreannueldecyclonesestunevariabledepoisson Calculons une estimation ponctuelle du paramètre α de cette loi : P [X k] αk exp α k! où X est la variable aléatoire représentant le nombre annuel de cyclones. On sait que : ˆα 1 nx X i n est un estimateur sans biais et convergent de α. Une estimation ponctuelle α de α est donnée par : α X in i i0 L effectif théorique t k, k 0, représentant le nombre d années à k cyclones est donné par : t k np [X k] D où les répartitions : Nombre annuel de cyclones Effectifs observés Effectifs théoriques > Total On constate que le tableau contient des effectifs théoriques strictement inférieurs à 5, ce qui empêche l utilisation d un test du khi-deux. On peut remédier à cet état en opérant le groupement logique : * des classes 0 et 1 d une part, * et des classes 7 et plus d autre part. 87
92 Les Tests du Khi-Deux A. El Mossadeq Les tableaux des effectifs observés et théoriques deviennent : Nombre annuel de cyclones Effectifs observés Effectifs théoriques 0 ou Total Sous l hypothèse nulle H 0,laquantité: 7X χ 2 (o i t i ) 2 est une réalisation d une variable du Khi-deux à : t i degrés de liberté.puisque pour calculer les effectifs théoriques, nous avons utilisé l estimation, et non la valeur réel, du paramètre α de la loi de Poisson. Pour α 5%,ona: χ 2 5; Et comme : χ On accepte alors H 0 au seuil α 5%, c est à dire, le nombre annuel de cyclones peut être ajusté par une loi de Poisson dont le paramètre α est estimé par : α
93 A. El Mossadeq Les Tests du Khi-Deux Exercice 15 Le tableau suivant indique le résultat de l examen de 124 sujets, classés d après la couleur de leurs yeux (Y ) et la couleur de leus cheveux (C) : Y ÂC Blonds Bruns Noirs Roux Bleus Gris ou V erts Marrons Existe-t-il une liason entre ces deux caractères? Solution 15 La répartition observée est : Y ÂC Blonds Bruns Noirs Roux Total Bleus Gris ou V erts Marrons Total Testons, au seuil α, l hypothèse nulle : H 0 : les couleurs des yeux et des cheveux sont indépendantes Calculons, sous cette hypothèse, la répartition théorique : Y ÂC Blonds Bruns Noirs Roux Total Bleus Gris ou V erts Marrons Total
94 Les Tests du Khi-Deux A. El Mossadeq Sous l hypothèse nulle H 0,laquantité: 3X 4X χ 2 (o ij t ij ) 2 j1 est une réalisation d une variable du Khi-deux à : degrés de liberté. Pour α 5%,ona: Et comme : χ 2 t ij (3 1) (4 1) 6 χ 2 6; X 15 3X (o ij t ij ) 2 On rejette alors H 0 à 95% (même à 97.5%), c est à dire, les couleurs des yeux et des cheveux ne sont pas indépendantes. j1 t ij Exercice 16 On considère les familles de quatre enfants. Sur un échantillon de cent familles à quatre enfants, la répartition suivante a été observée : Nombre de filles Nombre de familles Peut-on considérer que la probabilité qu un enfant soit une fille est 1 2? 90
95 A. El Mossadeq Les Tests du Khi-Deux Solution 16 Testons, au seuil α, l hypothèse nulle : H 0 : la probabilité d avoir une fille est 1 2 Sous l hypothèse nulle H 0, la variable aléatoire X égale au nombre de filles parmi les quatre enfants suit une loi binomiale d ordre 4 et de paramètre 1 µ 2 : B 4, 1. 2 Ainsi, pour tout k, 0 k 4, la probabilité p k d avoir k filles parmi les quatre enfants est : p k C (4,k) µ L effectif théorique t k, 0 k 4, représentant le nombre de familles ayant k filles parmi les quatre enfants est donné par : D où les répartitions : t k np k Nombre de filles Répartition observée Répartition théorique Total Sous l hypothèse nulle H 0,laquantité: 4X χ 2 (o i t i ) 2 i0 est une réalisation d une variable du Khi-deux à : degrés de liberté. Pour α 5%,ona: t i 5 14 χ 2 4;
96 Les Tests du Khi-Deux A. El Mossadeq Et comme : χ On accepte alors H 0 au seuil α 5%: la probabilité d avoir une fille est 1 2. Exercice 17 On distribue un jeu de quarante cartes à quatre joueurs : A, B, C, D;chacun reçevant dix cartes Un statisticien a élaboré un programme de distribution de donnes par ordinateur. Pour un ensemble de deux cents donnes, obtenues à partir de ce programme, il observe le nombre de donnes où le joueur A reçoit k as, 0 k 4. Les résultats sontlessuivants: Nombre d 0 as Nombre de donnes Le programme du statisticien est-il fiable? Solution 17 Testons, au seuil α, l hypothèse nulle : H 0 : le programme du statisticien est fiable Sous l hypothèse nulle H 0, la variable aléatoire X égaleaunombred asdujoueur A suit une loi hypergéométrique. Ainsi, pour tout k, 0 k 4, la probabilité p k pourquelejoueura ait k as est : C (4,k) C (36, 10 k) p k C (40, 10) L effectif théorique t k, 0 k 4, représentant le nombre de donnes à k as, du joueur A, est donné par : t k np k 92
97 A. El Mossadeq Les Tests du Khi-Deux D où les répartitions : Nombre d 0 as Répartition observée Répartition théorique Total On constate que le tableau contient des effectifs théoriques strictement inférieurs à 5, ce qui empêche l utilisation d un test du khi-deux. On peut remédier à cet état en opérant le groupement logique des classes 3 et 4. Le tableau des effectifs observés et théoriques deviennent : Nombre d 0 as Répartition observée Répartition théorique ou Total Sous l hypothèse nulle H 0,laquantité: 3X χ 2 (o i t i ) 2 i0 est une réalisation d une variable du Khi-deux à : 4 13 degrés de liberté. t i 93
98 Les Tests du Khi-Deux A. El Mossadeq Pour α 5%,ona: χ 2 3; Et comme : χ On accepte alors H 0 au seuil α 5%, c est à dire, le programme du statisticien est fiable. 94
99 T ests d H ypoth èses Moyennes et Variances
100
101 A. El Mossadeq Tests : Moyennes et Variances Exercice 1 Une série de cent mesures a donné comme résultat : X100 x i 5200 X100 " x i P j1 x j # Estimer la moyenne et la variance. 2. Quel est, à 95%, l intervalle de confiance de la moyenne? 3. En supposant la variable mesurée gaussienne, déterminer, à 95%, l intervalle de confiance de la variance. Solution 1 1. Soit m l estimation de la moyenne et s 2 celle de la variance. On a : et : m s X100 X100 x i (x i m) 2 2. Au seuil α, l intervalle de confiace de la moyenne est défini par : m t 1 α/2 σ n,m+ t 1 α/2 σ n Pour α 5%,ona: t d où l intervalle de confiance à 95% : [51.608, ] 3. Au seuil α, l intervalle de confiacedelavarianceestdéfini par : " (n 1) χ 2 n 1;1 α/2 s 2, # (n 1) s 2 χ 2 n 1;α/2 97
102 Tests : Moyennes et Variances A. El Mossadeq Pour α 5%: χ 2 99;.025 ' χ 2 100; χ 2 99;.975 ' χ 2 100; d où l intervalle de confiace del écart-typeà95% : [3.06, 5.34] Exercice 2 Laforcederuptured uncertaintypedecablepeutêtreassimiléeàunevariable aléatoire normale. Des essais portant sur dix cables ont donné une variance empirique s 2 de 1560 N 2. Construire un intervalle de confiance, à 95%, de l écart-type de cette force de rupture. Solution 2 Au seuil α, l intervalle de confiacedel écart-typeestdéfini par : "s s # (n 1) (n 1) s, s χ 2 n 1;1 α/2 χ 2 n 1;α/2 Pour α 5%: χ 2 9; χ 2 9; d où l intervalle de confiace del écart-typeà95% : [27.18 N, N] Exercice 3 Une enquête statistique effectuée sur cent sujets permet de définir, à 95%, l intervalle de confiance de la moyenne : [ ] Dans quelles conditions aurait-il été possible que le résultat fût à 95% : [ ] 98
103 A. El Mossadeq Tests : Moyennes et Variances Solution 3 Il s agit de déterminer la taille n 0 de l échantillon à prélever pour que l intervalle de confiance de la moyenne à 95% soit : [49.8, 50.2] sachant que pour un échantillon de taille n 100, cet intervalle est : Puisque : [49.6, 50.4] σ σ m t 1 α/2 n,m+ t 1 α/2 n [49.6, 50.4] on en déduit : m et : L égalité : σ ' 2.04 n ( ) 2t 1 α/ m + t 1 α/2 σ n 0 implique : µ 2 σt1 α/2 n m 400 Exercice 4 Pour déterminer le point de fusion moyen μ d un certain alliage, on a procédé à neuf observations qui ont données une moyenne m 1040 C et un écart-type s 16 C. Construire un intervalle de confiance de la moyenne μ à 95%. 99
104 Tests : Moyennes et Variances A. El Mossadeq Solution 4 Ici on a : n 9 m 1040 C s 16 C Au seuil α, l intervalle de confiace d une telle moyenne est défini par : s s m t n 1;1 α/2,m+ t n 1;1 α/2 n n Pour α 5%,ona: t 8; d où l intervalle de confiance à 95% : [ C, C] Exercice 5 La taille de 1200 conscrits du bureau de recrutement X a pour moyenne X 172cm et pour écart-type s X 6cm. Les mêmes mesures effectuées sur les 250 conscrits du bureau de recrutement Y ont donné pour moyenne Ȳ 170 cm et pour écart-type s X 5cm. Que peut-on conclure? Solution 5 Testons au seuil α l hypothèse nulle : H 0 : les conscrits des bureaux de recrutement X et Y ont la même taille Sous l hypothèse nulle H 0,laquantité: X Ȳ t r s 2 X + s2 Y n 1 n 2 peut être considérée comme une réalisation d une variable aléatoire normale centrée réduite. Pour α 5%,ona: t
105 A. El Mossadeq Tests : Moyennes et Variances Et comme : X Ȳ t r s 2 X + s2 Y n 1 n On rejette alors l hypothèse nulle H 0 à 95% (même à 99%), c est à dire, les conscrits des bureaux de recrutement X et Y ont des tailles moyennes différentes. Exercice 6 On se propose de comparer le poids à la naissance chez une série de primapares (série 1) et une série de multipares (série 2) : Que peut-on conclure? Série 1: n 1 95 m g s g 2 Série 2: n m g s g 2 Solution 6 Testons au seuil α l hypothèse nulle : H 0 : les primapares et les multipares ont le même poids moyen à la naissance Sous l hypothèse nulle H 0,laquantité: t m 1 m r 2 s s2 2 n 1 n 2 peut être considérée comme une réalisation d une variable aléatoire normale centrée réduite.pour α 5%,ona: t Et comme : m 1 m 2 t r s s2 2 n 1 n On rejette alors l hypothèse nulle H 0,à95% (même à 99%), c est à dire, les primapares et les multipares n ont pas le même poids moyen à la naissance 101
106 Tests : Moyennes et Variances A. El Mossadeq Exercice 7 Chez cent sujet normaux, on dose l acide urique, les résultats sont : ½ m1 53.3mg/ l s 1 9.1mg/ l Chezcentsujetatteintsdelamaladiedegoutte,lemêmedosagedel acideurique fournit les résultats : ½ m2 78.6mg/ l Que peut-on conclure? s mg/ l Solution 7 Testons au seuil α, l hypothèse nulle : H 0 : la maladie de goutte n a pas d influence sur la dose de l acide urique Sous cette hypothèse, la quantité : t m 1 m r 2 s s2 2 n 1 n 2 peut être considérée comme une réalisation d une variable aléatoire normale centrée réduite. Pour α 5%,ona: t et comme : m 1 m 2 t r s s2 2 n 1 n On rejette l hypothèse nulle H 0 à 95% (même à 99.99%), c est à dire, la maladie de goutte a une influence sur la dose de l acide urique. Exercice 8 On admet que la valeur moyenne de la glycémie du sujet normal est 1g/ l. Sur 17 sujets, on a trouvé une moyenne de.965 g/ l et un écart-type estimé de.108 g/ l. Cettevaleurpeut-elleêtreconsidéréecommedifférente du taux normal? 102
107 A. El Mossadeq Tests : Moyennes et Variances Solution 8 Testons au seuil α, l hypothèse nulle : Sous cette hypothèse, la quantité : H 0 : la valeur est normale t m s μ n est une réalisation de la variable aléatoire T n 1 de Student à : degrés de liberté. Pour α 5%,ona: et comme : n 116 t 16; t m μ s n on accepte l hypothèse nulle H 0 au seuil α 5%, c est à dire, la valeur est normale. Exercice 9 Dans un échantillon de 17 prématurés, la moyenne du Na-plasmatique est : m s Soit un autre échantillon de 25 dysmaturés, dans lequel la moyenne du Na-plasmatique est : m Que peut-on conclure? s Solution 9 Testons d abord, au seuil α 10%, l hypothèse nulle d égalité des variances du Naplasmatique chez les prématurés et les dysmaturés. 103
108 Tests : Moyennes et Variances A. El Mossadeq Sous cette hypothèse, la quantité : f s2 1 s 2 2 est une réalisation d une variable aléatoire de Fisher à : degrés de liberté. Pour α 10%,ona: Et comme : (n 1 1,n 2 1) (16, 24) F 16,24; f s2 1 s on accepte donc l hypothèse d égalité des variances des deux populations. Calculons maintenant l estimation commune s 2 de cette variance : et testons l hypothèse nulle : s 2 (n 1 1) s 2 1 +(n 2 1) s 2 2 n 1 + n H 0 : les prématurés et les dysmaturés ont la même moyenne du Na-plasmatique Sous cette hypothèse, la quantité : t m 1 m r 2 1 s + 1 n 1 n 2 est une réalisation de la variable aléatoire de Student à : degrés de liberté. Pour α 10%,ona: Et comme : n 1 + n t 40; m 1 m 2 t r 1 s + 1 n 1 n
109 A. El Mossadeq Tests : Moyennes et Variances On accepte l hypothèse nulle H 0 au seuil α 10%, c est à dire, les prématurés et les dysmaturés ont la même moyenne du Na-plasmatique estimée par : m n 1m 1 + n 2 m 2 n 1 + n Exercice 10 Lorqu une machine est bien réglée, elle produit des pièces dont le diamètre D est une variable gaussienne de moyenne 25 mm. Deux heures après le réglage de la machine, on a prélevé au hasard neuf pièces. Leurs diamètres ont pour mesure en mm : Que peut-on conclure quant à la qualité du réglage après deux heures de fonctionnement de la machine? Solution 10 Calculons d abord les estimations m et s 2 de la moyenne et de la variance sur cet échantillon de taille n 9. On a : m 1 nx x i n et : Testons l hypothèse nulle : s 2 23mm 1 n 1 3mm 2 Sous l hypothèse nulle H 0,laquantité: nx (x i m) 2 H 0 : la machine est bien réglée t m μ s n 105
110 Tests : Moyennes et Variances A. El Mossadeq est une réalisation d une variable aléatoire de Student à : degrés de liberté : T 8. Pour α 5%,ona: et comme : n 18 t 8; t m μ s n On rejette l hypothèse nulle H 0 à 95% (même à 99%), c est à dire, leréglagedela machine est rompu. Exercice 11 Si l écart-type de la durée de vie d un modèle de lampe électrique est estimé à cent heures,quelledoitêtrelatailledel échantillonàpréleverpourquel erreursur l estimation de la durée de vie moyenne n exède pas vingt heures et ce avec une probabilité de 95% puis 99%? Solution 11 L erreur sur l estimation de la moyenne est donnée par : t 1 α/2 s n (1) Pour α 5%, on a : d où : t 1 α/2 t 1 α/ s 20 n 97 n (2) Pour α 1%, on a : t 1 α/ d où : t 1 α/2 s 20 n 166 n 106
111 A. El Mossadeq Tests : Moyennes et Variances Exercice 12 Une machine fabrique des rondelles dont le diamètre D est une variable guassienne. On prélève au hasard un échantillon de huit rondelles. Leurs diamètres ont pour mesure en mm : Construire à 95% puis 99% les intervalles de confiance de la moyenne et de la variance. Solution 12 Calculons d abord les estimations m et s 2 de la moyenne et de la variance sur cet échantillon de taille n 8. On a : m 1 nx x i n et s mm 1 n 1 nx (x i m) mm 2 1. L intervalle de confiance de la moyenne à 1 α est : s s m t n 1;1 α/2,m+ t n 1;1 α/2 n n (a) Pour α 5%,ona: d où l intervalle : t 7; [19.163, ] (b) Pour α 1%,ona: d où l intervalle : t 7; [18.427, ] 107
112 Tests : Moyennes et Variances A. El Mossadeq 2. L intervalle de confiance de la variance à 1 α est : " # (n 1) s 2 (n 1) s2, χ 2 n 1;1 α/2 χ 2 n 1;α/2 (a) Pour α 5%,ona: d où l intervalle : (b) Pour α 1%,ona: d où l intervalle : χ 2 7; χ 2 7; [.79931, ] χ 2 7; χ 2 7; [.63, ] Exercice 13 On effectueundosagepardeuxméthodesdifférentes A et B. On obtient les résultats suivants : Méthode A Méthode B Peut-on considérer que les deux méthodes sont équivalentes? Solution 13 Calculons les estimations (m 1,s 2 1) de (μ 1,σ 2 1) et (m 2,s 2 2) de (μ 2,σ 2 2) : m 1 1 9X x 1i.71 9 s X (x 1i m 1 )
113 A. El Mossadeq Tests : Moyennes et Variances et : m s X x 2i.68 9X (x 2i m 2 ) Testons d abord, au seuil α 10%, l hypothèse nulle d égalité des variances des deux méthodes de dosage. Sous cette hypothèse, la quantité : f s2 2 s 2 1 est une réalisation d une variable aléatoire de Fisher à : degrés de liberté. Pour α 10%,ona: et comme : (n 2 1,n 1 1) (8, 8) F 8,8; f s2 2 s On accepte donc l hypothèse d égalité des variances des deux populations. Calculons maintenant l estimation commune s 2 de cette variance : et testons l hypothèse nulle : s 2 (n 1 1) s 2 1 +(n 2 1) s 2 2 n 1 + n H 0 : les deux méthodes de dosage sont équivalentes. Sous cette hypothèse, la quantité : t m 1 m r 2 1 s + 1 n 1 n 2 est une réalisation de la variable aléatoire de Student à : degrés de liberté. n 1 + n
114 Tests : Moyennes et Variances A. El Mossadeq Pour α 10%,ona: et comme : t 16; m 1 m 2 t r 1 s + 1 n 1 n on accepte l hypothèse nulle H 0 au seuil α 10%, c est à dire, les deux méthodes de dosage sont équivalentes. Exercice 14 Dansdeuxtypesdeforêts,onamesuréleshauteursdetreizeetquatorzepeuplements choisis au hasard et indépendamment dans le but de vérifier si les hauteurs de ces deux types d arbres sont ou ne sont pas égales. Lesrésultatssontlessuivants: Type 1: Type 2: On admet que les hauteurs de ces deux types d arbres sont des variables gaussiennes N (μ 1,σ 2 1) et N (μ 2,σ 2 2). Que peut-on conclure? Solution 14 Calculons les estimations (m 1,s 2 1) de (μ 1,σ 2 1) et (m 2,s 2 2) de (μ 2,σ 2 2) : m s X 13X x 1i (x 1i m 1 )
115 A. El Mossadeq Tests : Moyennes et Variances et : m s X 14X x 2i 26.1 (x 2i m 2 ) Testons d abord, au seuil α 10%, l hypothèse nulle d égalité des variances des hauteurs des deux types d arbres. Sous cette hypothèse, la quantité : f s2 1 s 2 2 est une réalisation d une variable aléatoire de Fisher à : degrés de liberté. Pour α 10%,ona: et comme : (n 1 1,n 2 1) (12, 13) F 12,13; f s2 1 s on accepte donc l hypothèse d égalité des variances des hauteurs des deux types d arbres. Calculons maintenant l estimation commune s 2 de cette variance : et testons l hypothèse nulle : s 2 (n 1 1) s 2 1 +(n 2 1) s 2 2 n 1 + n H 0 : les deux types d arbres ont la même hauteur Sous cette hypothèse, la quantité : t m 1 m r 2 1 s + 1 n 1 n 2 111
116 Tests : Moyennes et Variances A. El Mossadeq est une réalisation de la variable aléatoire de Student à : degrés de liberté. n 1 + n Pour α 10%,ona: et comme : t 25; m 1 m 2 t r 1 s + 1 n 1 n on accepte l hypothèse nulle H 0 au seuil α 10%, c est à dire, les deux types d arbres ont la même hauteur moyenne estimée par : m n 1m 1 + n 2 m 2 n 1 + n Exercice 15 On considère deux variétés de maïs M 1 et M 2 dont les rendements sont des variables aléatoires gaussiennes N (μ 1,σ 2 1) et N (μ 2,σ 2 2). Afin de comparer les rendements de ces deux variétés de maïs, on a choisi de cultiver dans neuf stations différentes des parcelles voisines encemencées de l une ou l autre des deux variétés.on a observé les rendements suivants : Station Variété Variété Que peut-on conclure? 112
117 A. El Mossadeq Tests : Moyennes et Variances Solution 15 Calculons les estimations (m 1,s 2 1) de (μ 1,σ 2 1) et (m 2,s 2 2) de (μ 2,σ 2 2) : et : m s m s X 13X 14X 14X x 1i 32.4 (x 1i m 1 ) x 2i 31.1 (x 2i m 2 ) Testons d abord, au seuil α 10%, l hypothèse nulle d égalité des variances des rendements des deux variétés de maïs. Sous cette hypothèse, la quantité : f s2 2 s 2 1 est une réalisation d une variable aléatoire de Fisher à : degrés de liberté. Pour α 10%,ona: et comme : (n 2 1,n 1 1) (8, 8) F 8,8; f s2 2 s On accepte donc l hypothèse d égalité des variances des hauteurs des deux types d arbres. Calculons maintenant l estimation commune s 2 de cette variance : s 2 (n 1 1) s 2 1 +(n 2 1) s 2 2 n 1 + n 2 2 s2 1 + s
118 Tests : Moyennes et Variances A. El Mossadeq et testons l hypothèse nulle : H 0 : les deux variétés de maïs ont le même rendement Sous cette hypothèse, la quantité : t m 1 m r 2 1 s + 1 n 1 n 2 est une réalisation de la variable aléatoire de Student à : degrés de liberté. Pour α 10%,ona: et comme : n 1 + n t 16; m 1 m 2 t r 1 s + 1 n 1 n on accepte l hypothèse nulle H 0 au seuil α 10%, c est à dire, les deux variétés de maïs ont le même rendement moyen estimé par : m n 1m 1 + n 2 m 2 n 1 + n Exercice 16 Le relevé des températures journalières minimales de deux stations S 1 et S 2,au cours de neuf journées consécutives a fourni les valeurs suivantes en C: Station Station On admet que la distribution des températures journalières minimales des deux stations S 1 et S 2 sont des variables gaussiennes N (μ 1,σ 2 1) et N (μ 2,σ 2 2). 1. Déterminer les estimations des moyennes et des variances des températures journalières minimales des deux stations S 1 et S Construire, au seuil α 5%, les intervalles de confiance de ces estimations. 114
119 A. El Mossadeq Tests : Moyennes et Variances 3. Peut-on admettre, au seuil α 10%, l hypothèse selon laquelle les températures journalières minimales moyennes des deux stations S 1 et S 2 sont identiques? Solution Calculons les estimations (m 1,s 2 1) de (μ 1,σ 2 1) et (m 2,s 2 2) de (μ 2,σ 2 2). On a : m X x 1i 10 C et : s m X 10X (x 1i m 1 ) x 2i 9 C s X (x 2i m 2 ) (a) L intervalle de confiance de μ 1 à 1 α est défini par : s 1 s m 1 t n 1;1 α/2,m 1 + t n 1;1 α/2 1 n n Pour α 5%,ona: t 8; d où l intervalle : [8.56 C, C] (b) L intervalle de confiance de σ 2 1 à 1 α est défini par : " # (n 1) s 2 1, (n 1) s2 1 χ 2 n 1;1 α/2 χ 2 n 1;α/2 Pour α 5%,ona: χ 2 8; χ 2 8;
120 Tests : Moyennes et Variances A. El Mossadeq d où l intervalle : [1.6, 12.8] (c) L intervalle de confiance de μ 2 à 1 α est défini par : s 2 s m 2 t n 1;1 α/2,m 2 + t n 1;1 α/2 2 n n Pour α 5%,ona: t 8; d où l intervalle : [7.37 C, C] (d) L intervalle de confiance de σ 2 2 à 1 α est défini par : " # (n 1) s 2 2, (n 1) s2 2 χ 2 n 1;1 α/2 χ 2 n 1;α/2 Pour α 5%,ona: d où l intervalle : χ 2 8; χ 2 8; [2.06, 16.51] 2. Testons d abord, au seuil α 10%, l hypothèse nulle d égalité des variances des températures journalières minimales des deux stations S 1 et S 2. Sous cette hypothèse, la quantité : f s2 2 s 2 1 est une réalisation d une variable aléatoire de Fisher à : degrés de liberté. Pour α 10%,ona: et comme : (n 2 1,n 1 1) (8, 8) F 8,8; f s s 2 1 On accepte donc l hypothèse d égalité des variances. 116
121 A. El Mossadeq Tests : Moyennes et Variances Calculons maintenant l estimation commune s 2 de cette variance : et testons l hypothèse nulle : H 0 : s 2 (n 1 1) s 2 1 +(n 2 1) s 2 2 n 1 + n 2 2 s2 1 + s les températures journalières minimales moyennes des deux stations S 1 et S 2.sont identiques Sous cette hypothèse, la quantité : t m 1 m r 2 1 s + 1 n 1 n 2 est une réalisation de la variable aléatoire de Student à : degrés de liberté. n 1 + n Pour α 10%,ona: et comme : t 16; t m 1 m r 2 1 s n 1 n 2 On accepte l hypothèse nulle H 0 au seuil α 10%, c est à dire, les températures journalières minimales moyennes des deux stations S 1 et S 2.sont identiques. Cette température moyenne peut être estimée par : m n 1m 1 + n 2 m 2 n 1 + n 2 m 1 + m
122 Tests : Moyennes et Variances A. El Mossadeq Exercice 17 On étudie l effet d une substance sur la croissance d une tumeur greffée. Les résultats sont consignés sur le tableau ci-dessous donnant la surface de la tumeur au 20ème jour après sa greffe : Surface T émoins Traités Le traitement a-t-il un effet significatif sur la surface tumorale? On suppose que la surface tumorale est distribuée selon des lois normales N (μ 1,σ 2 1) et N (μ 2,σ 2 2) chez les témoins et les traités respectivement. Solution 17 Calculons les estimations (m 1,s 2 1) de (μ 1,σ 2 1) et (m 2,s 2 2) de (μ 2,σ 2 2). On a : m 1 1 6X n 1i x i 7 21 et : s X n 1i (x i m 1 ) m 2 1 6X n 2i x i s X n 2i (x i m 2 ) Testons d abord, au seuil α 2%, l hypothèse nulle d égalité des variances des surfaces tumorales chez les populations des témoins et des traités. Sous cette hypothèse, la quantité : f s2 2 s 2 1 est une réalisation d une variable aléatoire de Fisher à : degrés de liberté. (n 2 1,n 1 1) (20, 20) 118
123 A. El Mossadeq Tests : Moyennes et Variances Pour α 2%,ona: et comme : F 20,20; f s2 2 s on accepte donc l hypothèse d égalité des variances des deux populations. Calculons maintenant l estimation commune s 2 de cette variance : et testons l hypothèse nulle : s 2 (n 1 1) s 2 1 +(n 2 1) s 2 2 n 1 + n H 0 : le traitement est sans effetsurlacroissancedelasurfacetumorale Sous cette hypothèse, la quantité : t m 1 m r 2 1 s + 1 n 1 n 2 est une réalisation de la variable aléatoire de Student à: degrés de liberté. Pour α 2%,ona: et comme : n 1 + n t 40; m 1 m 2 t r 1 s + 1 n 1 n on rejette l hypothèse nulle H 0 à 98%, c est à dire, le traitement a une influence sur la croissance de la surface tumorale. 119
124
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE
UE4 : Biostatistiques Chapitre 6 Test de comparaison de pourcentages χ² José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Nature des variables
Probabilités III Introduction à l évaluation d options
Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un
Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.
Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un
Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.
14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,
BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE
BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la
MATHS FINANCIERES. [email protected]. Projet OMEGA
MATHS FINANCIERES [email protected] Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option
Chapitre 1 : Évolution COURS
Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
Loi binomiale Lois normales
Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli
TESTS D'HYPOTHESES Etude d'un exemple
TESTS D'HYPOTHESES Etude d'un exemple Un examinateur doit faire passer une épreuve type QCM à des étudiants. Ce QCM est constitué de 20 questions indépendantes. Pour chaque question, il y a trois réponses
Moments des variables aléatoires réelles
Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................
Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE
UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction
Baccalauréat ES/L Amérique du Sud 21 novembre 2013
Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée
Baccalauréat ES Pondichéry 7 avril 2014 Corrigé
Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient
MÉTHODE DE MONTE CARLO.
MÉTHODE DE MONTE CARLO. Alexandre Popier Université du Maine, Le Mans A. Popier (Le Mans) Méthode de Monte Carlo. 1 / 95 PLAN DU COURS 1 MÉTHODE DE MONTE CARLO 2 PROBLÈME DE SIMULATION Théorème fondamental
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA
3. Conditionnement P (B)
Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte
Feuille d exercices 2 : Espaces probabilisés
Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un
Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes
IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de
Commun à tous les candidats
EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle
Amphi 3: Espaces complets - Applications linéaires continues
Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite
Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES
LES STATISTIQUES INFERENTIELLES (test de Student) L inférence statistique est la partie des statistiques qui, contrairement à la statistique descriptive, ne se contente pas de décrire des observations,
Principe d un test statistique
Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre
Statistiques Décisionnelles L3 Sciences Economiques & Gestion Faculté d économie, gestion & AES Université Montesquieu - Bordeaux 4 2013-2014
Tests du χ 2 Statistiques Décisionnelles L3 Sciences Economiques & Gestion Faculté d économie, gestion & AES Université Montesquieu - Bordeaux 4 2013-2014 A. Lourme http://alexandrelourme.free.fr Outline
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #16
ACTUARIAT 1, ACT 2121, AUTOMNE 201 #16 ARTHUR CHARPENTIER 1 Dans une petite compagnie d assurance le nombre N de réclamations durant une année suit une loi de Poisson de moyenne λ = 100. On estime que
Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens
Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques
INTRODUCTION. 1 k 2. k=1
Capes externe de mathématiques : session 7 Première composition INTRODUCTION L objet du problème est l étude de la suite (s n n définie par : n, s n = Dans une première partie, nous nous attacherons à
Les devoirs en Première STMG
Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES
Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,
Introduction à la Statistique Inférentielle
UNIVERSITE MOHAMMED V-AGDAL SCIENCES FACULTE DES DEPARTEMENT DE MATHEMATIQUES SMI semestre 4 : Probabilités - Statistique Introduction à la Statistique Inférentielle Prinemps 2013 0 INTRODUCTION La statistique
Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé
Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue
NOTE SUR LA MODELISATION DU RISQUE D INFLATION
NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui
4 Distributions particulières de probabilités
4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
Le modèle de Black et Scholes
Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un
Variables Aléatoires. Chapitre 2
Chapitre 2 Variables Aléatoires Après avoir réalisé une expérience, on ne s intéresse bien souvent à une certaine fonction du résultat et non au résultat en lui-même. Lorsqu on regarde une portion d ADN,
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
Probabilités Loi binomiale Exercices corrigés
Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre
BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL
BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par
EXERCICE 4 (7 points ) (Commun à tous les candidats)
EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat
EXERCICES - ANALYSE GÉNÉRALE
EXERCICES - ANALYSE GÉNÉRALE OLIVIER COLLIER Exercice 1 (2012) Une entreprise veut faire un prêt de S euros auprès d une banque au taux annuel composé r. Le remboursement sera effectué en n années par
Précision d un résultat et calculs d incertitudes
Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................
Ressources pour le lycée général et technologique
éduscol Ressources pour le lycée général et technologique Ressources pour la classe de terminale générale et technologique Exercices de mathématiques Classes de terminale S, ES, STI2D, STMG Ces documents
Que faire lorsqu on considère plusieurs variables en même temps?
Chapitre 3 Que faire lorsqu on considère plusieurs variables en même temps? On va la plupart du temps se limiter à l étude de couple de variables aléatoires, on peut bien sûr étendre les notions introduites
Introduction à l approche bootstrap
Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?
Séminaire TEST. 1 Présentation du sujet. October 18th, 2013
Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12 ARTHUR CHARPENTIER 1 Une compagnie d assurance modélise le montant de la perte lors d un accident par la variable aléatoire continue X uniforme sur l intervalle
Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison
Estimation: intervalle de fluctuation et de confiance Mars 2012 IREM: groupe Proba-Stat Estimation Term.1 Intervalle de fluctuation connu : probabilité p, taille de l échantillon n but : estimer une fréquence
Travaux dirigés d introduction aux Probabilités
Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien
I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300
I3, Probabilités 2014 Travaux Dirigés TD 1 : rappels. Exercice 1 Poker simplié On tire 3 cartes d'un jeu de 52 cartes. Quelles sont les probabilités d'obtenir un brelan, une couleur, une paire, une suite,
Projet Etienne Marceau Méthodes statistiques en assurance non vie
Trinôme : Carine Sauser, Mélanie Groisne, Xavier Milhaud Projet Etienne Marceau Méthodes statistiques en assurance non vie Méthodes statistiques pour la finance et l assurance ISFA - Décembre 2007 Table
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Suites numériques 4. 1 Autres recettes pour calculer les limites
Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est
Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé
Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
Les mathématiques de la finance Université d été de Sourdun Olivier Bardou [email protected] 28 août 2012 De quoi allons nous parler? des principales hypothèses de modélisation des marchés, des
MODELES DE DUREE DE VIE
MODELES DE DUREE DE VIE Cours 1 : Introduction I- Contexte et définitions II- Les données III- Caractéristiques d intérêt IV- Evènements non renouvelables/renouvelables (unique/répété) I- Contexte et définitions
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
Probabilités conditionnelles Loi binomiale
Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard
Correction du Baccalauréat S Amérique du Nord mai 2007
Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n
1 TD n 1:dénombrement
MA3 Exercices corrigés TD n :dénombrement Exercice On considère un groupe de n personnes. Quelle est la probabilité que deux d entre elles aient le même jour d anniversaire? (On suppose qu il n y a pas
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5 ARTHUR CHARPENTIER 1 Un certain test médical révèle correctement, avec probabilité 0.85, qu une personne a le sida lorsqu elle l a vraiment et révèle incorrectement,
4. Martingales à temps discret
Martingales à temps discret 25 4. Martingales à temps discret 4.1. Généralités. On fixe un espace de probabilités filtré (Ω, (F n ) n, F, IP ). On pose que F contient ses ensembles négligeables mais les
Lois de probabilité. Anita Burgun
Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage
TABLE DES MATIERES. C Exercices complémentaires 42
TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Statistiques Descriptives à une dimension
I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des
Corrigé des TD 1 à 5
Corrigé des TD 1 à 5 1 Premier Contact 1.1 Somme des n premiers entiers 1 (* Somme des n premiers entiers *) 2 program somme_entiers; n, i, somme: integer; 8 (* saisie du nombre n *) write( Saisissez un
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
3. Caractéristiques et fonctions d une v.a.
3. Caractéristiques et fonctions d une v.a. MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: fonctions d une v.a. 1/32 Plan 1. Caractéristiques d une distribution 2. Fonctions
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e
Analyse de la variance Comparaison de plusieurs moyennes
Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction
LES GENERATEURS DE NOMBRES ALEATOIRES
LES GENERATEURS DE NOMBRES ALEATOIRES 1 Ce travail a deux objectifs : ====================================================================== 1. Comprendre ce que font les générateurs de nombres aléatoires
Cours de méthodes de scoring
UNIVERSITE DE CARTHAGE ECOLE SUPERIEURE DE STATISTIQUE ET D ANALYSE DE L INFORMATION Cours de méthodes de scoring Préparé par Hassen MATHLOUTHI Année universitaire 2013-2014 Cours de méthodes de scoring-
Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de
Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de l espérance d utilité Olivier Bos [email protected]
CCP PSI - 2010 Mathématiques 1 : un corrigé
CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P
TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options
Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce
Estimation et tests statistiques, TD 5. Solutions
ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études
Une variable binaire prédictrice (VI) et une variable binaire observée (VD) (Comparaison de pourcentages sur 2 groupes indépendants)
CIVILITE-SES.doc - 1 - Une variable binaire prédictrice (VI) et une variable binaire observée (VD) (Comparaison de pourcentages sur 2 groupes indépendants) 1 PRÉSENTATION DU DOSSIER CIVILITE On s intéresse
Probabilités conditionnelles Exercices corrigés
Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.
LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.
LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,
Correction du baccalauréat ES/L Métropole 20 juin 2014
Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)
Introduction au pricing d option en finance
Introduction au pricing d option en finance Olivier Pironneau Cours d informatique Scientifique 1 Modélisation du prix d un actif financier Les actions, obligations et autres produits financiers cotés
Annexe commune aux séries ES, L et S : boîtes et quantiles
Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans
DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )
DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité
Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015
Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k
Cours 02 : Problème général de la programmation linéaire
Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =
GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau
GEA II Introduction aux probabilités Poly. de révision Lionel Darondeau Table des matières Énoncés 4 Corrigés 10 TD 1. Analyse combinatoire 11 TD 2. Probabilités élémentaires 16 TD 3. Probabilités conditionnelles
Chapitre 2. Matrices
Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce
Circuits RL et RC. Chapitre 5. 5.1 Inductance
Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01
Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke
www.fundp.ac.be/biostats Module 140 140 ANOVA A UN CRITERE DE CLASSIFICATION FIXE...2 140.1 UTILITE...2 140.2 COMPARAISON DE VARIANCES...2 140.2.1 Calcul de la variance...2 140.2.2 Distributions de référence...3
Quantification Scalaire et Prédictive
Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction
