1 TD n 1:dénombrement

Dimension: px
Commencer à balayer dès la page:

Download "1 TD n 1:dénombrement"

Transcription

1 MA3 Exercices corrigés TD n :dénombrement Exercice On considère un groupe de n personnes. Quelle est la probabilité que deux d entre elles aient le même jour d anniversaire? (On suppose qu il n y a pas d années bissextiles) Exercice Un savant possède livres dans son bureau, livres de maths et livres de physique. Il souhaite ranger ses livres sur une étagère.. Combien y a t-il de rangements possibles s il souhaite ranger ses livres de façon à ce que les livres de maths soient groupés ensemble et les livres de physique ensemble?. Combien y a t-il de rangements possibles si la seule chose qui compte est que les livres de maths soient groupés ensemble? Exercice 3 Robert fait ses affaires pour aller skier. Son armoire est remplie de paires de gants. Il décide de prendre 4 gants. Le problème est que Robert est un garçon dans la lune et qu il choisit les gants au hasard. Quelle est la probabilité qu il tire:. deux paires complètes? ( veinard ). au moins une paire? 3. une paire et une seule? Exercice 4 On dispose d une urne contenant n boules, dont m sont noires, le reste étant des boules blanches. On effectue un tirage sans remise de r boules parmi ces n boules. Calculer la probabilité detirerk boules noires dans un tel tirage. Exercice 5 Un joueur de Poker recoit une main de 5 cartes d un jeu de 3. contienne: Quelle est la probabilté quesamain. Une seule paire?. deux paires? 3. un brelan? 4. un carré?

2 MA3 Exercices corrigés Exercice 6 On considère les lettres du mot : ANNIVERSAIRE. Combien de mots peut on former avec ces lettres? (On ne se préoccupera pas du sens des mots formés). Combien de mots commençant et finissant par une voyelle peut on former? 3. Combien de mots peut on former si on veut que toutes les voyelles soient groupées ensemble? Correction de l Exercice Il est ici plus facile de calculer la probabilité de l évènement contraire: A aucune des n personnes n a la même date d anniversaire On donne des numéros aux n personnes, et on note dans un n uplet leurs dates d anniversaire. L ensembles des résultats possibles est donc Ω {(d,d,...,d n ),d i date d anniversaire de la ième personne} Quel est le cardinal de Ω? C est évidemment 365 n (Pour chaque d i, il y a 365 choix possibles). Calculons card(a): Si aucune des personnes n a la même date d anniversaire, alors les d i sont àdistincts. Donc A {(d,d,...,d n ),d i d j si i j}. Pardéfinition, card(a) A n 365 (A est l ensemble des n arrangements) Donc P ( personnes ont la même date d anniversaire) An n Correction de l Exercice. Il y a deux choix: Soit les livres de maths sont à gauche, soit ils sont à droite. Ensuite, à l intérieur du bloc des livres de maths, on peut faire! rangements différents. Etdanslegroupedeslivresdephysique, on peut faire! rangements différents. D où.!! rangements possibles. Ici, le bloc des livres de maths peut avoir plusieurs positions: être à gauche, avoir livre de physique à gauche et le reste à droite, livres de physique àgaucheetleresteà droite, etc. ce qui fait positions. Ensuite, on peut comme précédemment permuter les livres de maths de! façons et les livres de physique de! façons. D où.!! rangements possibles Correction de l Exercice 3. On suppose qu il choisit les gants simultanément. Il y a donc C 4 possibilités. Il a C façons de choisir les paires. Donc P ( il choisit paires ) C C 4.9. On va calculer la probabilité de l évènement contraire: { tous les gants proviennent de paires différentes }

3 MA3 Exercices corrigés 3 Il y a C 4 façons de choisir les 4 paires d où proviennent les gants. Ensuite, pour une paire, il y a choix possibles. D où P ( il tire au moins paire ) C4 4 C En notant E {il tire paires}, E {il tire au moins une paire} et E 3 {il tire paire et seule}, ona: E E E 3.OrE et E 3 sont disjoints, donc P (E )P (E )+P (E 3 ). D où P ( il choisit paire et seule) C4 4 C 4 C C 4.97 On peut aussi le calculer directement, en écrivant P ( il choisit paire et seule) C 9 C 4 Correction de l Exercice 4 On peut ici raisonner de deux manières différentes. Le tirage effectué, on peut considerer le résultat comme:. une partie à r éléments de l ensemble des n boules, où l ordre n intervient pas.. Une liste ordonnée de r boules. ere méthode L ensemble des résultats possibles a dans ce cas Cn r éléments. il y a Cm k façons de tirer les k boules noires, et Cr k n m façons de tirer les boules blanches. Donc P (ilyak boules noires dans le tirage) Ck mcn m r k Cn r eme méthode L ensemble des résultats possibles a dans ce cas A r n éléments. Choissisons les instants où onatirélesk boules noires. Il y a Cr k possibilités. Ensuite, on a A k m façons de tirer les k boules noires, et A r k n m façons de tirer les r k boules blanches. Donc P (ilyak boules noires dans le tirage) Ak ma r k n m Ck r A r n (On vérifie qu on trouve bien le même résultat avec les méthodes) Correction de l Exercice 5 Le problème de l exercice est de comprendre ce que demande l énoncé et de connaitre les règles du poker (ce qui n est pas trop mon cas...) En fait, la solution que je donne n est peut etre pas exacte du point de vue du poker, car je me suis rendu compte qu il existait d autres figures que la paire, les paires, le brelan, le full ou le carré. Par exemple la couleur: dans la solution que je donne je n en tiens pas compte.. Choisissons la paire: Il y a 8 choix pour la valeur; ensuite il y a C4 façons de choisir les cartes qui composent la paire. Ensuite il reste 3 cartes à choisir. Ces 3 cartes doivent être de valeur différente, car si deux d entre elles ont la même valeur, on a paires; elles doivent aussi ne pas avoir la même valeur que celle de la paire choisie, sinon on aurait un brelan. Ce qui laisse 3 valeurs à choisir parmi 7; ensuite on a 4 couleurs possibles pour chaque valeur choisie. D où 8C4C possibilités

4 MA3 Exercices corrigés 4. Choisissons les valeurs des paires: C8 possibilités. Une fois choisies ces valeurs, on a C 4 possibilités pour choisir les cartes qui compose une paire. Ensuite, il reste une carte à choisir, qui ne doit pas avoir la même valeur que les valeurs déjà choisies (sinon on aurait un full): ce qui donne cartes possibles. On obtient ( ) C 4 4 possibilités C 8 3. On choisit la valeur du brelan: 8 choix possibles. On choisit les 3 cartes du brelan: C3 4 choix. Ensuite il faut choisir les cartes restantes: elles ne peuvent pas avoir la même valeur, (sinon on a un full), elles doivent avoir une valeur différente de celle du brelan (sinon on a un carré); Il faut donc choisir valeurs parmi les 7 valeurs possibles restantes. Ensuite 4 choix pour chaque carte. On obtient 8C 3 4 C 7 4 possibilités (la aussi se pose un problème sémantique: si la main contient un full, dit-on en langage de poker qu elle contient un brelan??? je ne sais pas, dans mon calcul j ai estimé que non) 4. Choisissons la valeur du carré: 8 possibilités; ensuite on a 8 possibilités pour la carte restante. On obtient 8.8 possibilités Correction de l Exercice 6. er méthode: IlyaA,E,R,IetN;etVetN. ( ) ( ) ( ) 8 PlaçonslesA:ilya façons de faire; Ensuite, il y a façons de placer les E, puis façons pour les R, et ainsi de suite. Il reste ensuite le V et le N à placer sur les places qui restent: on a choix. On obtient donc ( )( )( 8 )( )( ) 6 4 mots possibles. ième méthode: Il y a lettres dans le mot ANNIVERSAIRE. En les permutant, on obtient! mots possibles. Cependant, il y a A, E, R, I et N. Il faut donc diviser! par!!!!! ( car en permutant les A, les E..., on obtient les mêmes mots). On obtient donc!!!!!!! mots possibles. 5. On va distinguer cas: er cas: Les voyelles du début et de la fin sont identiques. Il y a 3 types de voyelles différentes: A, E, I. On a donc 3 façons la voyelle qui commence et finit le mot. Ensuite, il faut calculer le nombre de mots faisables avec les types de voyelles identiques restantes ( A et E par exemple si on a choisi le I pour commencer et finir le mot) et les N, R, le S et le V. Avec un raisonnement identique à celui de la question ), on obtient ( )( 8 )( )( ) 6 4 mots possibles.

5 MA3 Exercices corrigés 5 Dans ce cas, on trouve donc 3. ( )( 8 )( )( ) !!!!! 3.! 4 mots ième cas: Les voyelles du début et de la fin ne sont pas identiques. Choisissons les types de voyelles parmi les 3 qui seront au début et àlafindumot.ilya Ensuite on peut les permuter de façons. ( ) 3 façons. Ensuite il reste comme lettres: N, R, V, R, ( type de voyelle non choisie pour commencer le mot), voyelle identique à celle du début, voyelle identique à celle de la fin. ( )( )( ) 8 6 Avec ces lettres, on peut former 4! mots. ( )( )( )( ) On obtient donc 4! 3.! mots. Conclusion: Il y a donc 3.! ! Le bloc des voyelles a 7 places possibles. A l interieur de ce bloc, il y a ( cf question )) 6! façons de 3 ranger les voyelles. Ensuite, il y a ( cf question )) 6! façons de ranger les autres lettres. 3 On a donc 7!6! 34 façons de ranger les lettres. 5 TD n : probabilités conditionnelles et indépendance Exercice 7 On considère un groupe de personnes. Parmi ces personnes figurent des medecins (8%) et des profs de maths (5%), et des gens normaux (77%) C est bien connu: les profs de maths écrivent très mal. Mais dans ce domaine ils sont battus par les médecins, qui écrivent encore plus mal. Ainsi 5% des profs de maths écrivent de facon illisible, mais cette proportion atteint 7% des medecins. Quand aux gens normaux, seuls 3% ecrivent de façon incompréhensible. On considère un mot écrit par une personne du groupe.. Quelle est la probabilité que ce mot soit illisible?. Le mot est en effet illisible. Quelle est la probabilité qu il ait été écrit par une main noble? (c est a dire par un prof de math) Exercice 8 ( formule des probabilités conditionnelles en cascade) Soit (Ω, A,P) un espace probabilisé. Soient A,A,..., A n des évènements.. Montrer que P (A A...A n )P (A )P (A A )...P (A n A A...A n ) (on suppose que P (A A... A n ) )

6 MA3 Exercices corrigés 6. On considère une urne qui contient n boules noires et n boules blanches. On tire deux par deux, sans remise, toutes les boules de l urne. Quelle est la probabilité d obtenir à chaque tirage deux boules de couleur différentes? Exercice 9 Les Anglais et les Américains orthographient le mot rigueur, respectivement, rigour et rigor. On trouve dans un hôtel parisien ce mot sur un bout de papier. Une lettre est prise au hasard dans ce mot, c est une voyelle. Or 4% des anglophones de l hôtel sont des Anglais et les 6% restants sont Américains. Quelle est la probabilité que l auteur du mot soit anglais? Exercice (Indépendance) On considère une famille. Soit A l événement: la famille a des enfants des deux sexes et B l évènement: la famille a au plus un garçon.. Montrer que A et B sont indépendants si la famille a trois enfants.. Montrer que A et B ne sont pas indépendants si la famille a deux enfants. Exercice Un joueur de foot s entraine à tirer des penaltys. La probabilité qu il réussise est p. Iltiren penaltys. Les tirs sont supposés indépendants. Calculer la probabilité qu il réussisse k penaltys. (k n) Exercice On considère un jeu de 3 cartes truqué quipossède deux dames de coeur.. On tire n cartes au hasard dans le jeu. Calculer la probabilité de s apercevoir que le jeu est truqué.. On suppose n 4 et on renouvelle l expérience consistant à tirer 4 cartes du jeu (en remettant les 4 cartes tirées à chaque fois). Quel est le nombre minimum d expériences à réaliser pour qu on s apercoive que le jeu est truqué avec une probabilité de.95? Exercice 3 Un quart d une population a été vaccinée. Si on est vacciné, on tombe malade avec une probabilité de. Parmi les malades, il y a 4 non-vaccinés pour vacciné. Quelle est la probabilité pour un non-vacciné de tomber malade? Exercice 4 (encore des maladies) On considére une maladie dont est atteinte % de la population. Si on est malade, on meurt avec la probabilité.5. Il existe un traitement contre la maladie, qui fait qu un individu malade et traité n a plus que % de chances de mourir. Le test de dépistage permet de detecter 8 % des malades, mais désigne aussi à tort 3% de personnes saines. Or si une personne saine est traitée, elle meurt dans % des cas.

7 MA3 Exercices corrigés 7. Si on effectue aucun test de dépistage, quelle est la probabilité de mourir de cette maladie?. On décide de procéder àundépistage généralisé età un traitement des individus désignés comme malades. Quelle est la probabilité de mourir dans ce cas? (a cause de la maladie ou du traitement ) Correction de l Exercice 7 On note A l évènement : la personne qui a écrit le mot est un prof de math, A la personne qui a écrit le mot est un médecin, A 3 la personne qui a écrit le mot est normale On a d après l énoncé P (A ).5, P (A ).8, P (A 3 ).77 Les évènements (A,A,A 3 ) forment un système complet d évènements. En effet, ils sont à disjoints, de probabilité non nulle, et recouvrent tous les cas possibles.. Pour cette question, on applique la formule des probabilités totales: P ( le mot est illisible ) P ( le mot est illisible A )P (A )+P ( le mot est illisible A )P (A ) + P ( le mot est illisible A 3 )P (A 3 ) On utilise ici la formule de Bayes. P (A le mot est illisible ) P ( le mot est illisible A )P (A ) P ( le mot est illisible ) Correction de l Exercice 8. On développe le membre de droite; On a : P (A A ) P (A A ) P (A ),P(A 3 A A ) P (A 3 A A )... P (A A ) Donc D où lerésultat. P (A A...A n )P (A ) P (A A ) P (A )... P (A A...A n ) P (A... A n ). On pose A i on tire boules de couleur différente au ième tirage. On a facilement P (A ) n,p(a Cn A ) (n )... En effet, le conditionnement nous permet de savoir Cn ce qui s est passé aux tirages précédents. D où lerésultat: P ( boules différentes à chaque tirage ) n (n ) Cn Cn... n (n!) après calculs n!

8 MA3 Exercices corrigés 8 Correction de l Exercice 9 Notons V la lettre choisie dans le mot est une voyelle, C le lettre choisie est une consonne, A lemot est écrit par un anglais, A lemotestécrit par un américain. On cherche donc P (A V ). D aprèslaformuledebayes,p (A V ) { P (V A ) 3 6 Or P (V A ) 5 D où P (V A )P (A ) P (V A )P (A )+P (V A )P (A ) ( si l auteur du mot est anglais, c est rigour qui comporte 6 lettres dont 3 voyelles ) P (A V ), 5., 4, 5., 4+ 5, 6 Correction de l Exercice. Listons toutes les possibilités possibles: si la famille a 3 enfants, la composition de celle ci est {G, G, G}, {G, F, G}, {F, F, G}, {F, F, F} (4 posiblités, sans tenir compte de l ordre de naissance des enfants. Si on décide de tenir compte de l ordre, ce qui est un choix possible, on trouve 8 possibilités) P (A B) P ( la famille a exactement un garçon) 4 (un seul cas favorable: {F, F, G}) Or P (A) 4 ( les cas {G, F, G} et {F, F, G}), de même P (B) 4. D où l indépendance de A et B, puisque P (A B) P (A)P (B).. Il n y a plus que 3 eventualités possibles dans ce cas: {G, G}, {F, G}, {F, F} P (A B) 3,etP (A) 3, P (B) 3. On a plus d indépendance. Correction de l Exercice Vu en cours Correction de l Exercice. S apercevoir que le jeu est truqué, c est tirer les dames de coeur parmi les n; si on doit tirer les n cartes, et que pour deux d entre elles nous n avons pas le choix, cela revient àtirern cartes parmi les 3 qui restent. Or il y a en tout C3 n tirages possibles. Donc P (voir que le jeu est truqué ) Cn 3 C3 n. C est le même raisonnement que l on a fait dans un exercice du cours. On cherche k tel que P ( s apercevoir de l erreur en k tirages).95. Il est plus simple de calculer P ( ne pas s apercevoir de l erreur en k tirages). En effet, si on note p probabilité de s apercevoir de l erreur lors d un tirage, on a P ( ne pas s apercevoir de l erreur en k tirages) ( p) k par indépendance des tirages On cherche donc k tq ( p) k.95. On calculé p àlaquestionprécédente, ici on trouve p 3 48 et k 47

9 MA3 Exercices corrigés 9 Correction de l Exercice 3 Notons : V être vacciné, M être malade. On notera V le contraire de V. D après l énoncé, on peut écrire: P (M V ), P (V M) 5, P (V ) 4. On cherche x P (M V ). On a: x P (M,V ) P (V ) P (V M)P (M) P (V ) Or: P (M) P (M V )P (V )+P (M V )P (V ) ( formule des probas totales ). D où: x P (V M) ( ) P (M V )P (V )+P (M V )P (V ) P (V ) P (V M) ( ) P (M V )P (V )+xp (V ) P (V ) Or P (V M) 4 5. D où x 4 5 ( 4 ) + x 4 5 x 5 4 Correction de l Exercice 4 Notons: M être malade, Mo mourir, D être désigné positif par le test. D après l énoncé, on sait que: P (M)., P (Mo M,D).5, P (D M).8, P (D M).3, P (Mo D, M)., P (Mo D, M). On aura besoin par la suite des valeurs suivantes:. P (D) P (D M)P (M)+P (D M)P (M) P (D, M) P (D M)P (M).8..8 P (D, M) P (D M)P (M) P (M,D) P (M) P (D, M)..8.. On cherche P (Mo). Dans ce cas, il n y a pas de test donc P (Mo)P (Mo M,D)P (M,D)+P (Mo M,D)P (M,D) C est plus compliqué. On a: P (Mo)P (Mo M)P (M)+P (Mo M)P (M). (a) Calculons P (Mo M) P (Mo,M). P (M) D où P (Mo M).8..8 P (Mo,M) P (Mo,M,D)+P (Mo,M,D) P (Mo M,D)P (M,D)+P (Mo M,D)P (M,D) (.).8

10 MA3 Exercices corrigés (b) Calculons P (Mo M) P (Mo,M). P (M) P (Mo,M) P (Mo,M,D)+P (Mo,M,D) P (Mo M,D)P (M,D)+P (Mo M,D)P (M,D) D où P (Mo M) (c) D où lerésultat: P (Mo) On constate donc que la probabilité de mourir est plus faible; il vaut donc mieux faire effectuer un traitement systématique des personnes détectées. Et tant pis pour les personnes traitées à tort et qui mourront des suites du traitement... 3 TD n 3: V.Adiscrètes Exercice 5 On considère une v.a X prenant 5 valeurs k,..., k 5. On a regroupé ces valeurs dans le tableau:. Calculer la valeur du paramètre a.. Calculer E(X), var(x). k i k k k 3 k 4 k 5 P (X k i ) a a a 3 a 4 a Exercice 6 Dans un zoo on a regroupé danslemême parc chameaux, 5 lamas et 4 dromadaires. Un visiteur prend au hasard 3 animaux en photo. On note X nombre de bosses présentes sur la photo.. Calculer la loi de X.. Calculer E(X) et var(x) Exercice 7 On considère un réseau où on transmet des bits. Chacun de ses bits a une probabilité p d être détruit ou perdu. Une trame formée de n bits est erronée si il manque au moins un bit.. Quelle est la probabilité qu une trame soit erronée?. Si on doit emettre 4 trames consécutivement (et de maniere indépendante), combien de trames intactes peut on espérer recevoir? 3. Combien peut on espérer recevoir de trames intactes avant l arrivée de la première trame erronée? Exercice 8 Robert vit mal son célibat et décide pendant cette soirée de quitter cette condition difficile. Il n est pas très doué pour la séduction, et adopte la tactique suivante: il va voir chaque fille jusqu à ce que l une d entre elle accepte ses propositions. La probabilité qu une fille accepte ses propositions est p.

11 MA3 Exercices corrigés. On note X nombre d essai avant qu une jeune fille cède à sa demande. Calculer la loi de X.. Au bout de combien d essais peut il espérer sortir du célibat? Exercice 9 Le nombre de clients entrant dans un magasin en un jour suit une loi de Poisson Poi(λ). Ce magasin possède n caisses, chaque client choisit sa caisse au hasard parmi les n. OnnoteX nombre d utilisateurs de la caisse.. On suppose que tous les clients entrant achètent au moins un article. Calculer la loi de X, etendéduire le nombre moyen de clients passant àlacaisse. On suppose que client sur n achete rien et ne passe pas à la caisse. Calculer la loi de X. Exercice Le nombre N d enfants d une famille d une population est une v.a de loi de Poisson de paramètre λ. Chaque enfant a la probabilité p d avoir un gène A, et ceci de façon indépendante. Soit X le nombre d enfants d une famille ayant le gène A et Y le nombre d enfants de la famille ne l ayant pas.. Quelle relation existe-t-il entre N, X, Y?. Pour n N et k {...n}, déterminer P (X k N n). Calculer la loi de X. 3. Déterminer la loi de Y. 4. Montrer que X et Y sont indépendantes. 5. Application. λ, p, 4. Déterminer la probabilité pour une famille d avoir 3 enfants présentant le gène A et enfants ne l ayant pas. Exercice Un fleuriste doit faire un bouquet de p + roses blanches pour un client. Son stock de roses est consitué de 4n roses, dont n sont blanches. (p +<n) Mais, troublé par une cliente venant d entrer, il choisit les roses au hasard. Soit X n le nombre de roses blanches dans le bouquet.. Calculer la loi de X n. Que se passe t-il si n tend vers +? Correction de l Exercice 5 Pas de problème Correction de l Exercice 6

12 MA3 Exercices corrigés. On determine d abord l ensemble des valeurs que peut prendre X. Au pire il y a 3 lamas et bosses, au mieux il y a 3 chameaux, donc 6 bosses sur la photo. X {,...6}. Donc Ensuite on en déduit le tableau suivant: k P (X k) C5 3 C9 3 C 5 C 4 C 3 9 C 4 C 5 + C C 5 C 3 9 C C 4 C C 5 C 3 9 C 5 C + C 5 C 4 C 3 9 C 4 C C 3 9 C 3 C9 3 On vérifie bien que k P (X k). On trouve E(X) et var(x) Correction de l Exercice 7. On a P (trame erronée) P (trame correcte) ( p) n. X nombres de trames intactes reçues. On a affaire au schéma classique d une loi binomiale. (nombre de succès dans la réalisation de 4 épreuves de Bernoulli indépendantes). Si on note q P (trame correcte), on a donc X B( 4,q). Donc E(X) 4 q 4 ( p) n 3. Notons Y nombre de trame intactes reçues avant de recevoir la premiere trame erronée. On a P (Y k) q k ( q) Pour faire une analogie avec le cours (nombre de tentatives que met un joueur de foot àréussir son penalty), Y + est un loi géométrique de paramètre q. Or l espérance d une telle loi géométrique est q. Donc E(Y )+E() q E(Y ) q q Correction de l Exercice 8. On est en présence d un schéma géométrique: la v.a prend ses valeurs dans {,...} N et P (X k) p( p) k Attention, ce n est pas (c en est presque une!) la loi géométrique telle qu elle a été définie dans le cours; il y a une translation de : la v.a X +estgéométrique de paramètre p. On cherche donc E(X). Or E(X +) p,donc E(X) p p Correction de l Exercice 9

13 MA3 Exercices corrigés 3. C est un exercice important, car on doit employer la formule des probabilités totales, ce qui arrive fréquemment. Le principe de raisonnement est le suivant: On est incapable de calculer directement la loi de X, car cette loi depend du nombre de clients qui sont entrées dans le magasin, or ce nombre est aléatoire! Notons N nombre de clients qui sont entrées dans le magasin. D après l énoncé, N Poi(λ). Si N k (si je sais combien de clients sont entrées), il est facile de calculer P (X k) En effet, cela revient à choisir parmi les k ceux qui sont passés à la caisse, sachant que pour un client, P ( passer àlacaisse n.c est un schéma binomial. Récapitulons : je connais Posons p n.ona: P (X i) { la loi de N: P (N k) e λ λ k k! la loi conditionnelle de X sachant N: P (X i N k) Ck i ( i ( n n) n + k + ki + ki e λ p i λ i + λ (λp)i e i! P (X i N k)p (N k) P (X i N k)p (N k) Ck i pi ( p) k i λ λk e k! ki + ki C i k k! λk i ( p) k i (λ( p)) k i (k i)! car on a forcément X N ) k i Or + ki (λ( p)) k i (k i)! e λ( p).d où P (X i) e λp (λp) i. Ainsi X Poi(λp) i!. C est exactement le même raisonnement, sauf que p ne vaut plus n,mais 9 n. Correction de l Exercice. On a N X + Y. Pour n N et k {...n}, onap (X k N n) Cnp k k ( p) n k. En effet, si on sait que la famille possède n enfants, que X k, onaforcément n k enfantsaveclegène B. On en déduit : P (X k) + nk + nk P (X k N n)p (N n) Cnp k k ( p) n k λ λn e n! e λ p k λ k + λ (λp)k e k! nk + nk C k n n! λn k ( p) n k (λ( p)) n k (n k)!

14 MA3 Exercices corrigés 4 Or + nk (λ( p)) n k (n k)! e λ( p) D où P (X k) e λp (λp) k. Ainsi k! 3. Par le même raisonnement, Y Poi(λ( p). X Poi(λp) 4. Soient k N,q N. calculonsp (X k, Y q). On a {X k, Y q} {N k + q}. Donc P (X k, Y q) P (X k, Y q,n k + q) P (X k, Y q N k + q)p (N k + q) (C k+q k pk ( p) q) ( e λ ) (k + q)! (λ)k+q λp (λp)k λ( p) (λ( p))q e e k! q! D où P (X k, Y q) P (X k)p (Y q). QED 5. Application. λ, p, 4. On cherche P (X 3,Y ). Parindépendance, P (X 3,Y )P (X 3)P (Y ).8 Correction de l Exercice. P (X n k) C k p+ A k n Ap+ k 3n A p+. 4n Rmq: en raisonnant d une autre manière, on peut aussi trouver P (X n k) Ck nc p+ k 3n même chose!) C p+ 4n (ce qui est la. Quand n +, ona:a k n nk. En effet, A k n est un polynôme en n; en+, il est donc equivalent à son terme de plus haut degré. On en déduit: P (X n k) Cp+ k n k (3n) p+ k (4n) p+ Cp+ k ( 4 ) k ( ) 3 p+ k 4 ( Donc P (X n k) k ( 3 ) p+ k. n + Ck p+ 4) 4 Quand n est grand, la loi de Xn est la loi B(p +, 4 ). On parle de convergence en loi. 4 TD n 4: V.Acontinues

15 MA3 Exercices corrigés 5 Exercice La vitesse d une molécule au sein d un gaz homogène en état d équilibre est une variable aléatoire dont la fonction de densité est donnée par m kt où b de la molécule. Évaluer a en fonction de b. f(x) ax exp( bx )six>,f(x) sinon et k, T, m sont respectivement la constante de Boltzmann, la température absolue et la masse Exercice 3 (Calcul de densités). Soit X une variable aléatoire continue ayant pour densité f(x) rx (r+) si x etf(x) sinon. (r>) (a) Donner l espérance et la variance de X. (b) Trouver la densité delavariablealéatoire Y ln(x). Soit X une v.a de loi N(, ). calculer la densité dey e X 3. Soit λ R +,soitu une v.a de loi uniforme sur [, ]. On considère X ln(u) λ. (a) Pourquoi peut on dire que X existe presque surement? (b) Calculer la loi de X Exercice 4 On considère une requête informatique. Deux serveurs A et B peuvent la traiter; le routeur envoie la requête au serveur A dans x% des cas, sinon à B. Le serveur B traite la requete selon un temps S B qui suit une loi Exp(), le serveur A fait le même travail selon un temps S A qui suit une loi Exp( ).. Quel serveur est le plus rapide en moyenne?. On note T temps de traitement de la requete. Calculer la loi de T 3. Quelle valeur donner à x pour qu en moyenne, le temps T soit inférieur à.5? Exercice 5 (Minimum de v.a de loi exponentielles). Soient T et T v.a indépendantes de loi exponentielle de paramètre λ et λ. On considère la v.a Z min(t,t ). Calculer la loi de Z. Généraliser au cas de n v.a (X,..., X n ) suivant respectivement des lois Exp(λ i ) 3. Robert attend au bureau de poste. Devant lui sont deux guichets occupés. Soient X et X les temps d occupation respectifs des deux guichets, on suppose que X et X sont indépendants st suivent des lois Exp(λ )etexp(λ ). On note Y le temps d attente de Robert. Calculer la loi de Y.

16 MA3 Exercices corrigés 6 Exercice 6 Une entreprise fabrique du chocolat. Une presse façonne les tablettes dont le poids X (exprimé en grammes suit une loi N(m, σ ), avec σ 3. Le réglage de la presse permet de modifier m par pas de. sans affecter σ. Les services de contrôle permettent que.5% des articles puissent peser moins que le poids net mentionné sur l emballage.. Determiner m pour respecter la loi si on indique 5 g sur l emballage.. On décide de vendre les paquets par lots de, avec comme indication 5 g. Calculerm dans ce cas. Si on vend plaques, quelle est en moyenne l économie réalisée? (On se souviendra que la loi de la somme de v.a indépendantes de loi N(m,σ )etn(m,σ ) est la loi N(m + m,σ + σ )) Exercice 7 Un appareil éléctrique fonctionne avec 3 piles P, P, P 3. Chacune de ces piles P i a une durée de vie X i, qui est une v.a de loi Exp(λ). On suppose de plus que les 3 durées de vie sont indépendantes. L appareil cesse de fonctionner dès que de ses piles sont mortes. On note T la durée de fonctionnement de l appareil.. Calculer G, la fonction de répartition de T.. T admet elle une densité? Si oui, la calculer. Exercice 8 Robert entre chez le coiffeur. Celui ci est occupé avec un client. La coupe dure (exactement) 3 min, et celle ci a débuté selon une durée aléatoire uniformément répartieentreet3min. Calculer la probabilité que t minutes après l entrée de Robert, le coiffeur n ait pas fini la coupe. Correction de l Exercice Il suffit de vérifier que. f(x). R f(x)dx Il suffit d avoir a pour que la première condition soit vraie. Pour la deuxième par contre, il faut faire un calcul. + f(x)dx ax e bx dx R a[ x b e bx ] + + a b + + π e bx dx (IPP) a b a π 4b 3 e bx dx a b b D où a 4b 3 π

17 MA3 Exercices corrigés 7 Correction de l Exercice 3. + E(X) xf(x)dx R [ rx r+ E(X) r r r ] + xrx (r+) dx On a par ailleurs var(x) E(X ) E(X).CalculonsE(X ): E(X ) x f(x)dx donc R + r r var(x) r dx xr [ rx r+ r r ( ) r r r On demande la densité deln(x). Notons g cette densité. g est la dérivée de F ln(x),lafonctionde répartition de ln(x). Or a R, F ln(x) (a) P (ln(x) a) Notons d abord que P (ln(x) a) sia, car X ] + P (ln(x) a) P (X e a ) car e x est croissante F X (e a ) Ainsi F ln(x) (a) F X (e a ). Dérivons cette relation, on obtient: ( Fln(X) ) (a) e a (F X ) (e a ) g(a) f(e a )e a car (F X ) densitédex! D où Rmq: ln(x) Exp(r) g(a) { { sia sia r e a re ra e a(r+). On va noter f la densité dex (donc f(x) π e x ), et on note g la densité dee X. On va calculer la fonction de répartition de e X, et ensuite la dériver pour trouver g. Soita R, calculons F e X (a) P (e X a). On a trivialement P (e X a) sia care X. On prend donc a>. P (e X a) P (X ln(a)) car ln est croissante F X (ln(a)) Donc en dérivant cette relation: (F e X ) (a) (F X ) (ln(a)) a g(a) a f(ln(a)) a ln(a) π e

18 MA3 Exercices corrigés 8 sia La densité dee X est donc g(a) ln(a) e sinon a π 3. (a) X est définie si U>. Or P (U ) P (U )caru est une v.a àdensité. Ainsi P (X n est pas définie) (b) Soit x R. Si x, on a bien sûr P (X x). Sinon, si x, : Donc X Exp(λ). P (X x) P ( ln(u) x) λ P (U e xλ )carlnestcroissante e λx Correction de l Exercice 4. En moyenne, le temps que met A à accomplir sa tache est E(S A ) Ainsi B est plus rapide en moyenne.. Soit a R. CalculonsP (T a). Si a, on a P (T a). On prend donc a. ;pourb c est E(S B ). Onacas:soitlarequête est traitée par A, soit elle est traitée par B. On est donc dans la sitution de l utilisation de la formule des probabilités totales. On note P (A) P (la requete passe par A), idem pour P (B). P (T a) P (T a A)P (A)+P (T a B)P (B) P (T a A)x + P (T a B)( x) Mais { P (T a A) a e t dt car S A Exp( ) P (T a B) a e t dt car S B Exp() Donc 3. On a E(T ) P (T a) x( e a )+( x)( e a ) ( x)e a xe a + P (T a)da ( x)+x x + + ( x)e a + xe a da On a donc + x, 5 x, 5 Correction de l Exercice 5

19 MA3 Exercices corrigés 9. Soit x R +.L évènement (Z >x) est egal àl évènement (T >x; T >x) En effet, si le minimum de deux nombres est plus grand que x, cela revient à dire que ces deux nombres sont plus grands que x. Donc : P ((Z >x) P (T >x; T >x) P (T >x)p (T >x)parindépendance e λx e λx e (λ +λ )x Donc P (Z <x) e (λ +λ )x, ce qui prouve que Z Exp(λ + λ )(six<, on trouve trivialement P (Z <) ). Montrons par récurrence que la loi de min(t,..., T n )estexp(λ + λ λ n ). Si n, c est evidemment vrai. Soit n. Supposons que la loi de min(t,..., T n ) est la loi Exp(λ λ n ), et calculons la loi de min(t,..., T n ). Si on note Z min(t,...t n ), on a: Z et T n indépendantes Z et T n suivent des lois exponentielles de paramètres (λ λ n )etλ n min(t,..., T n )min(z, T n ) Donc d après la question ), la loi de min(t,..., T n ) est donc la loi Exp((λ λ n )+λ n ). Donc: n N, la loi de min(t,..., T n ) est une loi exponentielle dont la paramètre est la somme des paramètres des T i. Correction de l Exercice 6. On cherche m tel que P (X >5).975. On a : Or si X N(m, σ ), X m σ P (X >5) P ( X m σ N(, ). > 5 m ) σ La table nous indique que si α.96, P ( X m σ >α).975. On a donc.96 5 m m 5.96σ m44. σ. On cherche maintenant m tel que P (X + X > 5) 975, où X et X représentent les poids de tablettes fabriquées. X et X sont donc indépendantes et suivent toutes deux des lois N(m, σ ). X + X suit donc la loi N(m, σ ). On a: P (X >5) P ( X m σ > 5 m σ ) On a donc comme au ) 5 m σ.96 m 5.96 σ m45.8

20 MA3 Exercices corrigés En moyenne, chaque plaque pèse donc m 45.8 grammes. En moyenne, on gagne donc 4. g par tablette si le réglage avait été simplement fait sur m 5 Ce qui fait, sur plaques, une écomomie de 4 g... 4 tonnes de chocolat, ce qui n est pas négligeable!!! Correction de l Exercice 7. Soit x R. CalculonsP (T x) Si x<, on a evidemment P (T x). Sinon, P (T x) P ( piles au moins sont tombées en panne pendant l intervalle [,x]) P ( piles exactement sont en panne ) + P (les3pilessontenpanne) Notons p P (une pile choisie au hasard tombe en panne pendant [,x]). Les piles ayant des durées de vie indépendantes, les évènements P i estenpanne et P j est en panne sont indépendants. Donc: P (T x) C 3 p ( p)+p 3 Or p P (D <x) e λx. Donc P (T x) 3e λx ( e λx ) +( e λx ) 3 { six< La loi de T est donc donnée par: P (T x) 3e λx ( e λx ) +( e λx ) 3 sinon Remarque: en développant, on obtient une expression plus simple: G(x) { six< +e 3λx 3e λx sinon. La fonction de répartition de G, calculée àlaquestionprécédente, est continue et de classe C par morceaux; ainsi T possède une dénsité qui est la dérivée de G. Le densité det est donc donnée par: { six< 6e 3λx +6e λx sinon Correction de l Exercice 8 Notons U le temps (en minutes) que le coiffeur a déjà passé avec le client qu il coiffe à l entrée de Robert. D après l énoncé, ce temps suit une loi uniforme sur [, 3]. Ainsi, la coupe va durer encore (3 U) minutes.soitt P ( le coiffeur n a pas fini sa coupe t minutes apres l entrée de Robert) P (3 U>t)P (U <3 t) si 3 t 3 t Or P (U <3 t) 3 si 3 t 3 si 3 3 t si 3 t t 3 si t 3 sit

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

Coefficients binomiaux

Coefficients binomiaux Probabilités L2 Exercices Chapitre 2 Coefficients binomiaux 1 ( ) On appelle chemin une suite de segments de longueur 1, dirigés soit vers le haut, soit vers la droite 1 Dénombrer tous les chemins allant

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

Fiche de révision sur les lois continues

Fiche de révision sur les lois continues Exercice 1 Voir la correction Le laboratoire de physique d un lycée dispose d un parc d oscilloscopes identiques. La durée de vie en années d un oscilloscope est une variable aléatoire notée X qui suit

Plus en détail

Exercices sur le chapitre «Probabilités»

Exercices sur le chapitre «Probabilités» Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 septième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement

Plus en détail

Que faire lorsqu on considère plusieurs variables en même temps?

Que faire lorsqu on considère plusieurs variables en même temps? Chapitre 3 Que faire lorsqu on considère plusieurs variables en même temps? On va la plupart du temps se limiter à l étude de couple de variables aléatoires, on peut bien sûr étendre les notions introduites

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Fiche TD avec le logiciel : a2-1-c Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Sylvain Mousset Rappels de probabilités / statistiques Table des matières 1 Probabilités

Plus en détail

Statistique descriptive et prévision

Statistique descriptive et prévision Statistique descriptive et prévision Année 2010/2011 L. Chaumont Contents 1. Étude d une variable 5 1.1. Définitions................................ 5 1.2. Représentations graphiques usuelles................

Plus en détail

Feuille d exercices 2 : Espaces probabilisés

Feuille d exercices 2 : Espaces probabilisés Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie... 1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................

Plus en détail

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader Terminale STMG O. Lader Table des matières 1 Information chiffrée (4s) 4 1.1 Taux d évolution....................................... 6 1.2 indices............................................. 6 1.3 Racine

Plus en détail

Probabilités. C. Charignon. I Cours 3

Probabilités. C. Charignon. I Cours 3 Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3

Plus en détail

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300 I3, Probabilités 2014 Travaux Dirigés TD 1 : rappels. Exercice 1 Poker simplié On tire 3 cartes d'un jeu de 52 cartes. Quelles sont les probabilités d'obtenir un brelan, une couleur, une paire, une suite,

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Exercices : VAR discrètes

Exercices : VAR discrètes Exercices : VAR discrètes Exercice 1: Une urne contient 2 boules blanches et 4 boules noires. On tire les boules une à une sans les remettre jusqu à ce qu il ne reste que des boules d une seule couleur

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Les probabilités. Chapitre 18. Tester ses connaissances

Les probabilités. Chapitre 18. Tester ses connaissances Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce

Plus en détail

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France Théorie et Codage de l Information (IF01) exercices 2013-2014 Paul Honeine Université de technologie de Troyes France TD-1 Rappels de calculs de probabilités Exercice 1. On dispose d un jeu de 52 cartes

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Événements et probabilités, probabilité conditionnelle et indépendance

Événements et probabilités, probabilité conditionnelle et indépendance Chapitre 1 Événements et probabilités, probabilité conditionnelle et indépendance On cherche ici à proposer un cadre mathématique dans lequel on puisse parler sans ambiguité de la probabilité qu un événement

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N

ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N ENS de Lyon TD 7-8 septembre 0 Introduction aux probabilités Exercice Soit (u n ) n N une suite de nombres réels. On considère σ une bijection de N dans N, de sorte que (u σ(n) ) n N est un réordonnement

Plus en détail

Couples de variables aléatoires discrètes

Couples de variables aléatoires discrètes Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude

Plus en détail

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

Variables Aléatoires. Chapitre 2

Variables Aléatoires. Chapitre 2 Chapitre 2 Variables Aléatoires Après avoir réalisé une expérience, on ne s intéresse bien souvent à une certaine fonction du résultat et non au résultat en lui-même. Lorsqu on regarde une portion d ADN,

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

Espérance, variance, quantiles

Espérance, variance, quantiles Espérance, variance, quantiles Mathématiques Générales B Université de Genève Sylvain Sardy 22 mai 2008 0. Motivation Mesures de centralité (ex. espérance) et de dispersion (ex. variance) 1 f(x) 0.0 0.1

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

Loi d une variable discrète

Loi d une variable discrète MATHEMATIQUES TD N : VARIABLES DISCRETES - Corrigé. P[X = k] 0 k point de discontinuité de F et P[X = k] = F(k + ) F(k ) Ainsi, P[X = ] =, P[X = 0] =, P[X = ] = R&T Saint-Malo - nde année - 0/0 Loi d une

Plus en détail

4 Distributions particulières de probabilités

4 Distributions particulières de probabilités 4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli

Plus en détail

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7 Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Petits jeux de probabilités (Solutions)

Petits jeux de probabilités (Solutions) Petits jeux de probabilités (Solutions) Christophe Lalanne En famille 1. Mon voisin a deux enfants dont l un est une fille, quelle est la probabilité pour que l autre soit un garçon? Une famille de deux

Plus en détail

1 TD1 : rappels sur les ensembles et notion de probabilité

1 TD1 : rappels sur les ensembles et notion de probabilité 1 TD1 : rappels sur les ensembles et notion de probabilité 1.1 Ensembles et dénombrement Exercice 1 Soit Ω = {1, 2, 3, 4}. Décrire toutes les parties de Ω, puis vérier que card(p(ω)) = 2 4. Soit k n (

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

P1 : Corrigés des exercices

P1 : Corrigés des exercices P1 : Corrigés des exercices I Exercices du I I.2.a. Poker : Ω est ( l ensemble ) des parties à 5 éléments de l ensemble E des 52 cartes. Cardinal : 5 I.2.b. Bridge : Ω est ( l ensemble ) des parties à

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio Exercices : Martine Quinio Exo7 Probabilité conditionnelle Exercice 1 Dans la salle des profs 60% sont des femmes ; une femme sur trois porte des lunettes et un homme sur deux porte des lunettes : quelle

Plus en détail

Estimation et tests statistiques, TD 5. Solutions

Estimation et tests statistiques, TD 5. Solutions ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études

Plus en détail

Introduction à la théorie des files d'attente. Claude Chaudet Claude.Chaudet@enst.fr

Introduction à la théorie des files d'attente. Claude Chaudet Claude.Chaudet@enst.fr Introduction à la théorie des files d'attente Claude Chaudet Claude.Chaudet@enst.fr La théorie des files d'attente... Principe: modélisation mathématique de l accès à une ressource partagée Exemples réseaux

Plus en détail

Précision d un résultat et calculs d incertitudes

Précision d un résultat et calculs d incertitudes Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................

Plus en détail

Exercices de dénombrement

Exercices de dénombrement Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.

Plus en détail

Lois de probabilité. Anita Burgun

Lois de probabilité. Anita Burgun Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage

Plus en détail

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements

Plus en détail

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Probabilités conditionnelles Exercices corrigés

Probabilités conditionnelles Exercices corrigés Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.

Plus en détail

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

CALCUL DES PROBABILITES

CALCUL DES PROBABILITES CALCUL DES PROBABILITES Exemple On lance une pièce de monnaie une fois. Ensemble des événements élémentaires: E = pile, face. La chance pour obtenir pile vaut 50 %, pour obtenir face vaut aussi 50 %. Les

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison

Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison Estimation: intervalle de fluctuation et de confiance Mars 2012 IREM: groupe Proba-Stat Estimation Term.1 Intervalle de fluctuation connu : probabilité p, taille de l échantillon n but : estimer une fréquence

Plus en détail

Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010

Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices fortement conseillés : 6, 10 et 14 1) Un groupe d étudiants est formé de 20 étudiants de première année

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES Spé Maths Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la

Plus en détail

Les devoirs en Première STMG

Les devoirs en Première STMG Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................

Plus en détail

Concours de recrutement interne PLP 2009

Concours de recrutement interne PLP 2009 Concours de recrutement interne PLP 2009 Le sujet est constitué de quatre exercices indépendants. Le premier exercice, de nature pédagogique au niveau du baccalauréat professionnel, porte sur le flocon

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

2. Probabilité. 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance. http://statwww.epfl.ch

2. Probabilité. 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance. http://statwww.epfl.ch 2. Probabilité 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance Probabilité et Statistiques I Chapître 2 1 2.1 Espaces de Probabilité Contenu Exemples élémentaires de probabilité,

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Notes de cours de Probabilités Appliquées. Olivier François

Notes de cours de Probabilités Appliquées. Olivier François Notes de cours de Probabilités Appliquées Olivier François 2 Table des matières 1 Axiomes des probabilités 7 1.1 Introduction................................. 7 1.2 Définitions et notions élémentaires.....................

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5 ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5 ARTHUR CHARPENTIER 1 Un certain test médical révèle correctement, avec probabilité 0.85, qu une personne a le sida lorsqu elle l a vraiment et révèle incorrectement,

Plus en détail

Calculs de probabilités conditionelles

Calculs de probabilités conditionelles Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS CONDITIONNELLES A.FORMONS DES COUPLES Pour la fête de l école, les élèves de CE 2 ont préparé une danse qui s exécute par couples : un garçon, une fille. La maîtresse doit faire des essais

Plus en détail

Chapitre 3 : INFERENCE

Chapitre 3 : INFERENCE Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12 Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont

Plus en détail

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique Télécom ParisTech, 09 mai 2012 http://www.mathematiquesappliquees.polytechnique.edu/ accueil/programmes/cycle-polytechnicien/annee-1/

Plus en détail

Arbre de probabilité(afrique) Univers - Evénement

Arbre de probabilité(afrique) Univers - Evénement Arbre de probabilité(afrique) Univers - Evénement Exercice 1 Donner l univers Ω de l expérience aléatoire consistant à tirer deux boules simultanément d une urne qui en contient 10 numérotés puis à lancer

Plus en détail

3 Exercices. 3.1 Probabilités simples. 3.2 Probabilités avec dénombrement. Probabilités 3. Exercice 1 On tire au hasard une carte parmi un jeu de 52.

3 Exercices. 3.1 Probabilités simples. 3.2 Probabilités avec dénombrement. Probabilités 3. Exercice 1 On tire au hasard une carte parmi un jeu de 52. Probabilités 3 3 Exercices 3.1 Probabilités simples Exercice 1 On tire au hasard une carte parmi un jeu de 52. Calculer la probabilité d obtenir : 1. un roi 2. le valet de trèfle 3. l as de coeur ou la

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Classe de Terminale S

Classe de Terminale S Classe de Terminale S Programme BO HS n 4 du 30 août 001 II.3 Probabilités et statistique Après avoir introduit en classe de seconde la nature du questionnement statistique à partir de travaux sur la fluctuation

Plus en détail

3. Caractéristiques et fonctions d une v.a.

3. Caractéristiques et fonctions d une v.a. 3. Caractéristiques et fonctions d une v.a. MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: fonctions d une v.a. 1/32 Plan 1. Caractéristiques d une distribution 2. Fonctions

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Cours de Tests paramétriques

Cours de Tests paramétriques Cours de Tests paramétriques F. Muri-Majoube et P. Cénac 2006-2007 Licence Ce document est sous licence ALC TYPE 2. Le texte de cette licence est également consultable en ligne à l adresse http://www.librecours.org/cgi-bin/main?callback=licencetype2.

Plus en détail

BACCALAUREAT GENERAL

BACCALAUREAT GENERAL ACCALAUREAT GENERAL Session 2009 MATHÉMATIQUES - Série ES - Enseignement de Spécialité Liban EXERCICE 1 1) 2) C 3) C 4) A Explication 1. Chacun des logarithmes existe si et seulement si x > 4 et x > 2

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

Espérance conditionnelle

Espérance conditionnelle Espérance conditionnelle Samy Tindel Nancy-Université Master 1 - Nancy Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 1 / 58 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle

Plus en détail

Corrigé de l examen partiel du 30 Octobre 2009 L2 Maths

Corrigé de l examen partiel du 30 Octobre 2009 L2 Maths Corrigé de l examen partiel du 30 Octobre 009 L Maths (a) Rappelons d abord le résultat suivant : Théorème 0.. Densité de Q dans R. QUESTIONS DE COURS. Preuve. Il nous faut nous montrer que tout réel est

Plus en détail

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre. Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences

Plus en détail