L équation de Dirac Notes de cours du Professeur Shaposhnikov

Dimension: px
Commencer à balayer dès la page:

Download "L équation de Dirac Notes de cours du Professeur Shaposhnikov"

Transcription

1 L équation de Dirac Notes de cours du Professeur Shaposhnikov Laura Messio 30 mai 01 1 Mécanique quantique relativiste 1.1 Transformation de Lorentz Nous avons vu que l équation d évolution de la fonction d onde dans le temps était donnée par i ψ = Ĥ ψ. (1) t Si Ĥ est invariant par translation et rotation dans l espace, cette équation l est aussi. Mais en plus de cette invariance, la théorie de la relativité restreinte requiert l invariance par transformation de Lorentz (aussi appelée boost) : x x = q x v c ct 1 v c ct ct = q ct v c x () 1 v c 1. Evolution relativiste de la fonction d onde L équation (1) n est visiblement pas invariante par une transformation de Lorentz car on a d un côté une dérivée première en temps, et de l autre, une dérivée seconde en espace. Cette équation est la limite non relativiste d une équation invariante de Lorentz, que nous allons essayer de déterminer. La manière la plus rigoureuse de traiter ce problème est l utilisation de la seconde quantification de manière relativiste, ce qui mène à la théorie des champs. Le traitement en détail sera vu en cours de théorie quantique des champs, mais un résumé succint est fourni ci-dessous (où l on a pris = 1) : 1. Pour des particules sans spin, les opérateurs de création et d annihilation vérifient les règles de commutation [a k, a k ] = δ kk (ce sont des bosons). Cas non-relativiste : Hamiltonien : Ĥ = k k m a k a k, (3) avec k = π L (n x, n y, n z ) dans une boîte de taille L. Impulsion : ˆP = k ka k a k. (4) Cas relativiste : en théorie relativiste, l objet (Ĥ, ˆP) doit être un quadrivecteur et se transformer comme (ct,x). Ce n est évidemment pas le cas pour 1

2 ( k m,k) qui apparaissent dans les expressions de Ĥ et ˆP. On fait donc la substitution suivante dans le Hamiltonien k m ǫ(k) = m c 4 + k c, Ĥ k ǫ(k)a k a k, (5) ce qui décrit correctement des bosons sans spin, comme le pion π 0. Maintenant, (ǫ(k), k) forme un quadrivecteur et la théorie est bien relativiste. L équation de Schrödinger (Eq. (1)) donne l évolution d un vecteur de l espace de Fock ψ et les amplitudes de probabilités sont données par des produits scalaires dans cet espace de Fock.. Pour des particules de spin 1/ non chargées, les opérateurs de création et d annihilation ont un indice supplémentaire indiquant le spin de la particule et vérifient les règles d anticommutation {a σk, a σ k } = δ σσ δ kk (ce sont des fermions). Cas non-relativiste : Ĥ = k m a σk a σk, (6) σk Cas relativiste : on peut faire exactement comme pour les particules sans spin, ce qui permet de décrire correctement les fermions de Majorana (qui sont leurs propres anti-particules), dont on soupçonne le neutrino de faire partie. 3. Pour des particules de spin 1/ chargées (par exemple les électrons, de charge e), on a besoin de nouveaux opérateurs pour décrire les antiparticules (positrons, de charge e) : Ĥ = σk ǫ(k)(a σk a σk + b σk b σk), (7) L équation de Dirac n a pas été découverte dans le cadre de la théorie quantique des champs, mais grâce à des arguments heuristiques (pas toujours rigoureux) que nous allons voir à présent, en suivant la logique de Dirac. L équation de Dirac.1 Tentative d obtention Nous allons d abord faire des tentatives infructueuses pour trouver une équation décrivant les particules de spin 1/. L énergie d une particule relativiste s écrit ǫ = m c 4 + p c. (8) En mécanique quantique, on a l habitude de remplacer p par i x. On peut donc proposer le Hamiltonien suivant : et l équation de Schrödinger suivante : Ĥ = m c 4 + ˆp c, (9) i ψ t = m c 4 c ψ. (10) Avec ces équations, la limite non relativiste sera correcte (elle est obtenue en développant la racine carrée en supposant m c 4 c ), mais la théorie est très

3 compliquée à cause de la racine carrée. Si l on développe le Hamiltonien en m c, on obtient des dérivées d ordre supérieur. De plus, si l on ne fait pas ce développement, l opérateur racine est non local : m c 4 c ψ(x) = dx f(x,x )ψ(x ), (11) avec f(x,x ) = dpe ip (x x )/ m c 4 + c p. (1) C est à dire que m c 4 c ψ(x) dépend des valeurs de la fonction ψ ailleurs que sur un voisinage de x. Peut-être peut-on tout simplement prendre le carré de l Eq. (10) et résoudre ces défauts de l équation? ψ t = (m c 4 c )ψ. (13) En la reformulant, on voit facilement que c est une relation relativiste : Pourtant, cette équation possède deux gros défauts : ( t c ) }{{} ψ = m c 4 ψ. (14) invariant de Lorentz 1. Pour un état avec une impulsion fixée, lévolution dans le temps est donnée par ; ψ e i/ ǫt, (15) avec ǫ vérifiant ǫ = m c 4 + c p, soit ǫ = ± m c 4 + c p. On obtient donc des particules avec des énergies négatives.. En mécanique quantique, la probabilité d avoir une particule est conservée au cours du temps : d dxψ (x)ψ(x) = 0. (16) dt De plus dxψ (x)ψ(x) > 0. (17) Dans le cas non relativiste, l équation (16) se prouve grâce à l équation de Schrödinger : ( d dψ dxψ (x)ψ(x) = dx dt dt (x)ψ(x) + dxψ (x) dψ ) dt (x) ( ) = dx (i Ĥψ) ψ + dxψ (i Ĥψ) = = 0. i ψ Ĥ ψ + i ψ Ĥ ψ Dans le cas relativiste, on ne peut pas prouver l équation (16) de la même manière, puisque l équation (14) fait intervenir la dérivée seconde par rapport au temps. 3

4 Mais alors, peut-être que la probabilité de présence est définie différemment et est bien conservée. Tentons avec l expression suivante : ρ(x) = i ( mc ψ ψ ) t ψ t ψ. (18) Avec cette définition, on a bien une probabilité de présence dans tout l espace dxρ(x) qui est conservée : ( ( dx ψ ψ )) ( t t ψ t ψ = dx ψ ψ t ψ ) t ψ = 0 (19) (on a remplacé la dérivée seconde en utilisant l équation (13)). Par contre, ce n est pas une quantité positive et par conséquent, ne peut pas représenter une probabilité. En théorie quantique des champs, on constate que cette quantité est reliée à la charge électrique.. Obtention On a vu que les dérivées secondes en temps étaient mauvaises : elles donnent des énergies négatives et la non conservation de la probabilité de présence. Mais l équation (10) avec une dérivée première n est pas non plus satisfaisante. Comment s en sortir? En 198, Dirac proposa de chercher un Hamiltonien linéaire pour les impulsions : Ĥ = α iˆp i c + βmc. (0) Au final, on voudrait obtenir une théorie où l espace et le temps sont sur un pied d égalité. En prenant le carré de cette équation, on souhaite retrouver l équation relativiste (14), mais si α i et β sont des nombres, cela n est pas possible : Ĥ = (α iˆp i c + βmc )(α j ˆp j c + βmc ) = c α i α j ˆp iˆp j + mc 3 (α i β + βα i )ˆp i + β m c 4 c p + m c 4. (1) Par contre, si α i et β sont d autres choses, qui ne commutent pas entr elles, on peut y arriver! Supposons que ce sont des matrices. Alors, pour que la dernière ligne de l équation précédente soit une égalité, elles doivent vérifier β = 1, {α i, α j } = δ ij, {α i, β} = 0. Contraintes supplémentaires : comme le Hamiltonien est hermitien, les matrices α i et β sont hermitiennes : { β = β, α i = α (3) i Nous allons maintenant déterminer la dimension de ces matrices. A partir des contraintes des Eq. () and (3), on peut montrer que les matrices α i et β sont de trace nulle : Tr(α i ) = Tr(α i β ) = Tr(βα i β) = Tr(α i ) Tr(β) = Tr(βα 1 ) = Tr(α 1 βα 1 ) = Tr(β) () 4

5 Comme α i = β = 1, les valeurs propres de ces matrices sont ±1. Comme leur trace est 0, elles doivent posséder autant de fois la valeur propre 1 que 1, donc au total, un nombre pair de valeurs propres. Ce sont donc des matrices n n avec n pair. Essayons d abord avec n =. On peut prendre pour α i les matrices de Pauli. Ainsi la première ligne de l équation () est vérifiée. Mais ensuite, aucune matrice β ne permet de vérifier les contraintes restantes. Maintenant, on prend n = 4. Cette fois, il est possible de vérifier toutes les contraintes en prenant par exemple α i = ( 0 σi σ i 0 ) ( ) 1 0, β = 0 1 Finalement, avec le Hamiltonien de l Eq. (0), l équation de Schrödinger est bien linéaire en dérivées de temps et d espace et vous montrerez en cours de mécanique quantique des champs que l invariance de Lorentz est respectée. On peut constater que le problème de la conservation des probabilités est résolu : ρ(x) = ψ ψ est positif et conservé (preuve découlant de l hermiticité de Ĥ)..3 Calcul des énergies propres L équation de Dirac est donnée par i ψ t (4) = Ĥψ. (5) avec le Hamiltonien de Dirac donné en Eq. (0). La fonction d onde de Dirac a quatre composantes puisque Ĥ est une matrice 4 4 d opérateurs. Ainsi, elle doit décrire un état avec quatre degrés de liberté. Deux correspondent au spin ( or ), et deux autres (4 = ) au choix particule/antiparticule. Cherchons les valeurs propres et vecteurs propres de Ĥ dans l espace réciproque (on fait la transformée de Fourier) Ĥ = α iˆp i c + βmc ( ) mc σpc = σpc mc (6) Sans nuire à la généralité, on peut prendre p e z. On note p son module. mc 0 pc 0 Ĥ = 0 mc 0 pc pc 0 mc 0 (7) 0 pc 0 mc Cette matrice est constituée de deux blocs diagonaux ( ) ( ) mc pc mc pc Ĥ 1 = pc mc, Ĥ 1 = pc mc (8) dont on peut calculer facilement les valeurs propres : { (mc ǫ 1 )( mc ǫ 1 ) p c = 0 ( mc ǫ )(mc ǫ ) p c = 0 ǫ 1/ = m c 4 + p c ǫ 1/ = ± m c 4 + p c (9) On retrouve le problème des énergies négatives! 5

6 E positive energy states negative energy states.4 Interprétation Nous allons voir l interprétation de Dirac. Supposons que les particules décrites par l équation de Dirac sont des fermions. Le système veut avoir l énergie la plus basse et a donc intérêt à avoir tous les niveaux d énergie négative remplis. Si les particules étaient des bosons, cela serait impossible, puisqu on pourrait mettre une infinité de particules dans chaque niveau d énergie. Mais avec des fermions, on a au maximum une particule par état (principe d exclusion de Pauli). Dans l état fondamental, les états d énergie négative sont remplis et ceux d énergie positive sont vides. On a alors deux types d excitations possibles : l occupation d un état d énergie positive, la non-occupation d un état d énergie négative, excitation de charge opposée à celle de l excitation précédente. On en déduit l existence d antiparticules, avec des énergies positives, mais une charge électrique opposée à celle d une particule (Prix Nobel en 1933 en commun avec Schrödinger). 3 Limite non relativiste : équation de Pauli Nous allons maintenant étudier la limite non relativiste de l équation de Dirac et voir que l on obtient l équation de Pauli. En présence d un champ électromagnétique, on fait le remplacement suivant : p µ p µ e c Aµ, (30) où A µ est le potentiel quadri-vecteur (A 0 = φ, (A 1, A, A 3 ) = A) : { i t i t eφ, i x i x e, (31) ca. ce qui donne l équation suivante : i ψ ( t = c α x e ) c A i } {{ } π +βmc + eφ ψ. (3) Remarque : cette équation peut être utilisée pour déterminer les niveaux d énergie d un électron soumis à un potentiel coulombien en prenant en compte les corrections relativistes (comme le couplage spin-orbite L S discuté au début du cours, obtenu en prenant φ = 1/r et A = 0). Essayons maintenant de résoudre l Eq. (3) dans la limite non relativiste (mc pc) 6

7 et dans la limite des champs faibles (mc eφ, mc e A ). On écrit la fonction d onde sous forme vectorielle : ( ϕ χ) ψ =, (33) où ϕ et ξ sont des spineurs à deux composantes. L équation de Dirac s écrit alors : i ( ϕ χ) ( χ ϕ) ( ) ( ϕ χ) = cσ π + mc ϕ + eφ. (34) t χ On cherche des solutions sous la forme ( ( ϕ χ) = e imc t/ ϕ, (35) χ) ce qui permet de se débarasser d un terme en mc. Pourquoi prenons nous cette forme particulière? Parce que l on cherche des particules dans la limite non relativiste, presque au repos et donc d énergie soit mc, soit mc. On choisit le premier cas. Les ocillations spatiales de la fonction d onde vont donc être très proches de l équation proposée (35) i ( ( ( ( ) ϕ χ ϕ 0 = cσ π + eφ mc t χ) ϕ) χ) χ { i ϕ t = cσ πχ + eφϕ i χ t = cσ πϕ + eφχ (36) mc χ. Analysons les ordres de grandeur des termes de la dernière ligne. Comme on est dans la limite des champs faibles, mc eφ (approximation valide pour un electron dans un atome : énergie de liaison 13eV, mc ev). On néglige donc le terme eφχ. Il reste χ = cσ π mc ϕ i χ mc t. (37) Nous allons maintenant résoudre cette équation par itération en supposant que le terme en χ t est petit. On fait une approximation d ordre 0, que l on réinjecte dans l équation (37) : χ 0 = cσ π mc ϕ χ 1 = cσ π mc ϕ i cσ π ϕ mc mc t La différence entre χ 1 et χ 0 est un terme d ordre 1/(mc ), négligeable par rapport à χ 0 qui est d ordre 1/(mc ). On garde donc uniquement l approximation d ordre 0 χ 0. On remarque que χ φ. χ est appelé la petite composante et φ la grande composante. On injecte χ dans la première ligne de l Eq. (36) : i t ϕ = ( (σ π) m (38) ) + eφ ϕ (39) On développe le terme au carré en utilisant la propriété des matrices de Pauli : (σ a)(σ b) = a b + iσ(a b) (40) Attention, π π 0 car A et p ne commutent pas. On obtient finalement l équation de Pauli : (( i p e t ϕ = c A) ) e m mc σ B + eφ ϕ (41) 7

8 Pour de faibles champs magnétiques uniforme, on peut faire le développement limité de cette équation selon A, ce qui donne pour A = 1 B r : i ( p t ϕ = m e ) (L + S) B ϕ, (4) mc où L = r p est le moment cinétique orbital. Cela nous donne un moment magnétique de µ = e mc pour l électron. 8

Equations de Dirac et fermions fondamentaux ( Première partie )

Equations de Dirac et fermions fondamentaux ( Première partie ) Annales de la Fondation Louis de Broglie, Volume 24, 1999 175 Equations de Dirac et fermions fondamentaux ( Première partie ) Claude Daviau La Lande, 44522 Pouillé-les-coteaux, France email : cdaviau@worldnet.fr

Plus en détail

= b j a i φ ai,b j. = ˆBa i φ ai,b j. = a i b j φ ai,b j. Par conséquent = 0 (6.3)

= b j a i φ ai,b j. = ˆBa i φ ai,b j. = a i b j φ ai,b j. Par conséquent = 0 (6.3) I Commutation d opérateurs Chapitre VI Les relations d incertitude I Commutation d opérateurs Un des résultats importants établis dans les chapitres précédents concerne la mesure d une observable  : une

Plus en détail

Chapitre 1. Une particule quantique sans spin, à 1 dimension (I) 1.1 Espace des états : les fonctions d'ondes

Chapitre 1. Une particule quantique sans spin, à 1 dimension (I) 1.1 Espace des états : les fonctions d'ondes Chapitre 1 Une particule quantique sans spin, à 1 dimension (I) Dans ce chapitre il y a beaucoup de rappels du cours de licence, mais avec une présentation aussi un peu plus formelle. Nous allons étudier

Plus en détail

La fonction d onde et l équation de Schrödinger

La fonction d onde et l équation de Schrödinger Chapitre 1 La fonction d onde et l équation de Schrödinger 1.1 Introduction En physique classique, une particule est décrite par sa position r(t). L évolution de sa position (la trajectoire de la particule)

Plus en détail

TD 9 Problème à deux corps

TD 9 Problème à deux corps PH1ME2-C Université Paris 7 - Denis Diderot 2012-2013 TD 9 Problème à deux corps 1. Systèmes de deux particules : centre de masse et particule relative. Application à l étude des étoiles doubles Une étoile

Plus en détail

LE PHYSICIEN FRANCAIS SERGE HAROCHE RECOIT CONJOINTEMENT LE PRIX NOBEL DE PHYSIQUE 2012 AVEC LE PHYSICIEN AMERCAIN DAVID WINELAND

LE PHYSICIEN FRANCAIS SERGE HAROCHE RECOIT CONJOINTEMENT LE PRIX NOBEL DE PHYSIQUE 2012 AVEC LE PHYSICIEN AMERCAIN DAVID WINELAND LE PHYSICIEN FRANCAIS SERGE HAROCHE RECOIT CONJOINTEMENT LE PRIX NOBEL DE PHYSIQUE 0 AVEC LE PHYSICIEN AMERCAIN DAVID WINELAND SERGE HAROCHE DAVID WINELAND Le physicien français Serge Haroche, professeur

Plus en détail

NOTICE DOUBLE DIPLÔME

NOTICE DOUBLE DIPLÔME NOTICE DOUBLE DIPLÔME MINES ParisTech / HEC MINES ParisTech/ AgroParisTech Diplômes obtenus : Diplôme d ingénieur de l Ecole des Mines de Paris Diplôme de HEC Paris Ou Diplôme d ingénieur de l Ecole des

Plus en détail

TABLE DES MATIÈRES CHAPITRE I. Les quanta s invitent

TABLE DES MATIÈRES CHAPITRE I. Les quanta s invitent TABLE DES MATIÈRES AVANT-PROPOS III CHAPITRE I Les quanta s invitent I-1. L Univers est en constante évolution 2 I-2. L âge de l Univers 4 I-2.1. Le rayonnement fossile témoigne 4 I-2.2. Les amas globulaires

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Physique quantique et physique statistique

Physique quantique et physique statistique Physique quantique et physique statistique 7 blocs 11 blocs Manuel Joffre Jean-Philippe Bouchaud, Gilles Montambaux et Rémi Monasson nist.gov Crédits : J. Bobroff, F. Bouquet, J. Quilliam www.orolia.com

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Circuits RL et RC. Chapitre 5. 5.1 Inductance

Circuits RL et RC. Chapitre 5. 5.1 Inductance Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite

Plus en détail

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU) 0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2

Plus en détail

PHYSIQUE QUANTIQUE ET STATISTIQUE PHYS-H-200

PHYSIQUE QUANTIQUE ET STATISTIQUE PHYS-H-200 UNIVERSITÉ LIBRE DE BRUXELLES Faculté des sciences appliquées Bachelier en sciences de l ingénieur, orientation ingénieur civil Deuxième année PHYSIQUE QUANTIQUE ET STATISTIQUE PHYS-H-200 Daniel Baye revu

Plus en détail

Où est passée l antimatière?

Où est passée l antimatière? Où est passée l antimatière? CNRS-IN2P3 et CEA-DSM-DAPNIA - T1 Lors du big-bang, à partir de l énergie disponible, il se crée autant de matière que d antimatière. Alors, où est passée l antimatière? Existe-t-il

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

Andrei A. Pomeransky pour obtenir le grade de Docteur de l Université Paul Sabatier. Intrication et Imperfections dans le Calcul Quantique

Andrei A. Pomeransky pour obtenir le grade de Docteur de l Université Paul Sabatier. Intrication et Imperfections dans le Calcul Quantique THÈSE présentée par Andrei A. Pomeransky pour obtenir le grade de Docteur de l Université Paul Sabatier Intrication et Imperfections dans le Calcul Quantique Directeur de thèse : Dima L. Shepelyansky Co-directeur

Plus en détail

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2 Introduction Page xxi (milieu de page) G = 6, 672 59 1 11 m 3 kg 1 s 2 Erratum de MÉCANIQUE, 6ème édition Page xxv (dernier tiers de page) le terme de Coriolis est supérieur à 1% du poids) Chapitre 1 Page

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

FUSION PAR CONFINEMENT MAGNÉTIQUE

FUSION PAR CONFINEMENT MAGNÉTIQUE FUSION PAR CONFINEMENT MAGNÉTIQUE Séminaire de Xavier GARBET pour le FIP 06/01/2009 Anthony Perret Michel Woné «La production d'énergie par fusion thermonucléaire contrôlée est un des grands défis scientifiques

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

La masse négative et l énergie positive des antiparticules

La masse négative et l énergie positive des antiparticules Annales de la Fondation Louis de Broglie, Volume 36, 2011 79 La masse négative et l énergie positive des antiparticules Roger Boudet 7 Av. de Servian, 34290 Bassan email: boudet@cmi.univ-mrs.fr RÉSUMÉ.

Plus en détail

Théorie des multiplets! appliquée à! la spectroscopie d ʼabsorption X!

Théorie des multiplets! appliquée à! la spectroscopie d ʼabsorption X! Théorie des multiplets! appliquée à! la spectroscopie d ʼabsorption X! Marie-Anne Arrio, Amélie Juhin! Institut de Minéralogie et Physique des Milieux Condensés, Paris! 1! Rappel : défini-on des seuils

Plus en détail

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples, Non-linéarité Contexte Pour permettre aux algorithmes de cryptographie d être sûrs, les fonctions booléennes qu ils utilisent ne doivent pas être inversées facilement. Pour cela, elles doivent être très

Plus en détail

Interactions des rayonnements avec la matière

Interactions des rayonnements avec la matière UE3-1 : Biophysique Chapitre 2 : Interactions des rayonnements avec la matière Professeur Jean-Philippe VUILLEZ Année universitaire 2011/2012 Université Joseph Fourier de Grenoble - Tous droits réservés.

Plus en détail

Techniques de Lyapunov en contrôle quantique pour le couplage dipolaire et polarisabilité

Techniques de Lyapunov en contrôle quantique pour le couplage dipolaire et polarisabilité Techniques de Lyapunov en contrôle quantique pour le couplage dipolaire et polarisabilité Andreea Grigoriu avec Jean-Michel Coron, Cătălin Lefter and Gabriel Turinici CEREMADE-Université Paris Dauphine

Plus en détail

PROBLÈMES DE RELATIVITÉ RESTREINTE (L2-L3) Christian Carimalo

PROBLÈMES DE RELATIVITÉ RESTREINTE (L2-L3) Christian Carimalo PROBLÈMES DE RELATIVITÉ RESTREINTE (L2-L3) Christian Carimalo I - La transformation de Lorentz Dans tout ce qui suit, R(O, x, y, z, t) et R (O, x, y, z, t ) sont deux référentiels galiléens dont les axes

Plus en détail

Mesures gaussiennes et espaces de Fock

Mesures gaussiennes et espaces de Fock Mesures gaussiennes et espaces de Fock Thierry Lévy Peyresq - Juin 2003 Introduction Les mesures gaussiennes et les espaces de Fock sont deux objets qui apparaissent naturellement et peut-être, à première

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique Chapitre 7 Circuits Magnétiques et Inductance 7.1 Introduction 7.1.1 Production d un champ magnétique Si on considère un conducteur cylindrique droit dans lequel circule un courant I (figure 7.1). Ce courant

Plus en détail

- I - Fonctionnement d'un détecteur γ de scintillation

- I - Fonctionnement d'un détecteur γ de scintillation U t i l i s a t i o n d u n s c i n t i l l a t e u r N a I M e s u r e d e c o e ffi c i e n t s d a t t é n u a t i o n Objectifs : Le but de ce TP est d étudier les performances d un scintillateur pour

Plus en détail

Relativité et électromagnétisme. Alain Comtet - alain.comtet@u-psud.fr, Notes de Florian Bolgar

Relativité et électromagnétisme. Alain Comtet - alain.comtet@u-psud.fr, Notes de Florian Bolgar Relativité et électromagnétisme Alain Comtet - alain.comtet@u-psud.fr, Notes de Florian Bolgar Table des matières 1 Symétries et principe de relativité 5 I) Symétries et groupes de transformation....................

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Qu est-ce qu un ordinateur quantique et à quoi pourrait-il servir?

Qu est-ce qu un ordinateur quantique et à quoi pourrait-il servir? exposé UE SCI, Valence Qu est-ce qu un ordinateur quantique et à quoi pourrait-il servir? Dominique Spehner Institut Fourier et Laboratoire de Physique et Modélisation des Milieux Condensés Université

Plus en détail

I - Quelques propriétés des étoiles à neutrons

I - Quelques propriétés des étoiles à neutrons Formation Interuniversitaire de Physique Option de L3 Ecole Normale Supérieure de Paris Astrophysique Patrick Hennebelle François Levrier Sixième TD 14 avril 2015 Les étoiles dont la masse initiale est

Plus en détail

Chap 8 - TEMPS & RELATIVITE RESTREINTE

Chap 8 - TEMPS & RELATIVITE RESTREINTE Chap 8 - TEMPS & RELATIVITE RESTREINTE Exercice 0 page 9 On considère deux évènements E et E Référentiel propre, R : la Terre. Dans ce référentiel, les deux évènements ont lieu au même endroit. La durée

Plus en détail

C f tracée ci- contre est la représentation graphique d une

C f tracée ci- contre est la représentation graphique d une TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe

Plus en détail

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M belayach@fsr.ac.ma 1 1.Le réseau

Plus en détail

Chapitre 11: Réactions nucléaires, radioactivité et fission

Chapitre 11: Réactions nucléaires, radioactivité et fission 1re B et C 11 Réactions nucléaires, radioactivité et fission 129 Chapitre 11: Réactions nucléaires, radioactivité et fission 1. Définitions a) Nucléides (= noyaux atomiques) Les nucléides renferment les

Plus en détail

SYSTEME DE PARTICULES. DYNAMIQUE DU SOLIDE (suite) Table des matières

SYSTEME DE PARTICULES. DYNAMIQUE DU SOLIDE (suite) Table des matières Physique Générale SYSTEME DE PARTICULES DYNAMIQUE DU SOLIDE (suite) TRAN Minh Tâm Table des matières Applications de la loi de Newton pour la rotation 93 Le gyroscope........................ 93 L orbite

Plus en détail

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière Algèbre 1 : (Volume horaire total : 63 heures) UE1 : Analyse et algèbre

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Sur une possible fusion nucléaire quasi-catalytique à basse température

Sur une possible fusion nucléaire quasi-catalytique à basse température Annales de la Fondation Louis de Broglie, Volume 37, 2012 187 Sur une possible fusion nucléaire quasi-catalytique à basse température Georges Lochak Fondation Louis de Broglie 23, rue Marsoulan 75012 Paris

Plus en détail

Une réponse (très) partielle à la deuxième question : Calcul des exposants critiques en champ moyen

Une réponse (très) partielle à la deuxième question : Calcul des exposants critiques en champ moyen Une réponse (très) partielle à la deuxième question : Calcul des exposants critiques en champ moyen Manière heuristique d'introduire l'approximation de champ moyen : on néglige les termes de fluctuations

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Les Prix Nobel de Physique

Les Prix Nobel de Physique Revue des Questions Scientifiques, 2013, 184 (3) : 231-258 Les Prix Nobel de Physique Plongée au cœur du monde quantique Bernard Piraux et André Nauts Institut de la Matière Condensée et des Nanosciences

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Algorithmes pour la planification de mouvements en robotique non-holonome

Algorithmes pour la planification de mouvements en robotique non-holonome Algorithmes pour la planification de mouvements en robotique non-holonome Frédéric Jean Unité de Mathématiques Appliquées ENSTA Le 02 février 2006 Outline 1 2 3 Modélisation Géométrique d un Robot Robot

Plus en détail

LE COSMODETECTEUR : UN EXEMPLE DE CHAÎNE DE MESURE

LE COSMODETECTEUR : UN EXEMPLE DE CHAÎNE DE MESURE LE COSMODETECTEUR : UN EXEMPLE DE CHAÎNE DE MESURE Enseignement : 1 ère STL Mesures et instrumentation Thème : Instrumentation : Instruments de mesure, chaîne de mesure numérique Notions et contenus :

Plus en détail

Quelleestlavaleurdel intensitéiaupointm?

Quelleestlavaleurdel intensitéiaupointm? Optique Ondulatoire Plan du cours [1] Aspect ondulatoire de la lumière [2] Interférences à deux ondes [3] Division du front d onde [4] Division d amplitude [5] Diffraction [6] Polarisation [7] Interférences

Plus en détail

- MANIP 2 - APPLICATION À LA MESURE DE LA VITESSE DE LA LUMIÈRE

- MANIP 2 - APPLICATION À LA MESURE DE LA VITESSE DE LA LUMIÈRE - MANIP 2 - - COÏNCIDENCES ET MESURES DE TEMPS - APPLICATION À LA MESURE DE LA VITESSE DE LA LUMIÈRE L objectif de cette manipulation est d effectuer une mesure de la vitesse de la lumière sur une «base

Plus en détail

Comment réaliser physiquement un ordinateur quantique. Yves LEROYER

Comment réaliser physiquement un ordinateur quantique. Yves LEROYER Comment réaliser physiquement un ordinateur quantique Yves LEROYER Enjeu: réaliser physiquement -un système quantique à deux états 0 > ou 1 > -une porte à un qubitconduisant à l état générique α 0 > +

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail

C algèbre d un certain groupe de Lie nilpotent.

C algèbre d un certain groupe de Lie nilpotent. Université Paul Verlaine - METZ LMAM 6 décembre 2011 1 2 3 4 Les transformations de Fourier. Le C algèbre de G/ Z. Le C algèbre du sous-groupe G 5 / vect{u,v }. Conclusion. G un groupe de Lie, Ĝ l ensemble

Plus en détail

III. Transformation des vitesses

III. Transformation des vitesses 9 III Transformation des vitesses La transformation de Lorentz entraîne de profondes modifications des règles de cinématique: composition des vitesses, transformation des accélérations. 1. Règle de composition

Plus en détail

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5.

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5. DÉVELOPPEMENT 32 A 5 EST LE SEUL GROUPE SIMPLE D ORDRE 60 Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5. Démonstration. On considère un groupe G d ordre 60 = 2 2 3 5 et

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

La physique quantique couvre plus de 60 ordres de grandeur!

La physique quantique couvre plus de 60 ordres de grandeur! La physique quantique couvre plus de 60 ordres de grandeur! 10-35 Mètre Super cordes (constituants élémentaires hypothétiques de l univers) 10 +26 Mètre Carte des fluctuations du rayonnement thermique

Plus en détail

Le produit semi-direct

Le produit semi-direct Le produit semi-direct Préparation à l agrégation de mathématiques Université de Nice - Sophia Antipolis Antoine Ducros Octobre 2007 Ce texte est consacré, comme son titre l indique, au produit semi-direct.

Plus en détail

Voir un photon sans le détruire

Voir un photon sans le détruire Voir un photon sans le détruire J.M. Raimond Université Pierre et Marie Curie UPMC sept 2011 1 Un siècle de mécanique quantique: 1900-2010 Planck (1900) et Einstein (1905): Quanta lumineux la lumière est

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Université de Caen. Relativité générale. C. LONGUEMARE Applications version 2.0. 4 mars 2014

Université de Caen. Relativité générale. C. LONGUEMARE Applications version 2.0. 4 mars 2014 Université de Caen LMNO Relativité générale C. LONGUEMARE Applications version.0 4 mars 014 Plan 1. Rappels de dynamique classique La force de Coulomb Le principe de moindre action : lagrangien, hamiltonien

Plus en détail

Le second nuage : questions autour de la lumière

Le second nuage : questions autour de la lumière Le second nuage : questions autour de la lumière Quelle vitesse? infinie ou pas? cf débats autour de la réfraction (Newton : la lumière va + vite dans l eau) mesures astronomiques (Rœmer, Bradley) : grande

Plus en détail

La physique nucléaire et ses applications

La physique nucléaire et ses applications La physique nucléaire et ses applications I. Rappels et compléments sur les noyaux. Sa constitution La représentation symbolique d'un noyau est, dans laquelle : o X est le symbole du noyau et par extension

Plus en détail

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2. Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3

Plus en détail

Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies

Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies Ariane Lançon (Observatoire de Strasbourg) en collaboration avec: Jean-Luc Vergely,

Plus en détail

Équations non linéaires

Équations non linéaires Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et

Plus en détail

Équivalence masse-énergie

Équivalence masse-énergie CHPITRE 5 NOYUX, MSSE ET ÉNERGIE Équivalence masse-énergie. Équivalence masse-énergie Einstein a montré que la masse constitue une forme d énergie appelée énergie de masse. La relation entre la masse (en

Plus en détail

Les équations différentielles

Les équations différentielles Les équations différentielles Equations différentielles du premier ordre avec second membre Ce cours porte exclusivement sur la résolution des équations différentielles du premier ordre avec second membre

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

Examen d informatique première session 2004

Examen d informatique première session 2004 Examen d informatique première session 2004 Le chiffre à côté du titre de la question indique le nombre de points sur 40. I) Lentille électrostatique à fente (14) Le problème étudié est à deux dimensions.

Plus en détail

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE Exercice en classe EXERCICE 1 : La fibre à gradient d indice On considère la propagation d une onde électromagnétique dans un milieu diélectrique

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES. CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires

Plus en détail

Sur certaines séries entières particulières

Sur certaines séries entières particulières ACTA ARITHMETICA XCII. 2) Sur certaines séries entières particulières par Hubert Delange Orsay). Introduction. Dans un exposé à la Conférence Internationale de Théorie des Nombres organisée à Zakopane

Plus en détail

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. 1 Ce sujet aborde le phénomène d instabilité dans des systèmes dynamiques

Plus en détail

Cours d analyse numérique SMI-S4

Cours d analyse numérique SMI-S4 ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,

Plus en détail

Corrigé du baccalauréat S Asie 21 juin 2010

Corrigé du baccalauréat S Asie 21 juin 2010 Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =

Plus en détail

AOT 13. et Application au Contrôle Géométrique

AOT 13. et Application au Contrôle Géométrique AOT 13 Géométrie Différentielle et Application au Contrôle Géométrique Frédéric Jean Notes de cours Édition 2011/2012 ii Table des matières 1 Variétés différentiables 1 1.1 Variétés différentiables............................

Plus en détail

Sur la possibilité d une structure complexe des particules de spin différent de 1/2

Sur la possibilité d une structure complexe des particules de spin différent de 1/2 Sur la possibilité d une structure complexe des particules de spin différent de 1/ Louis De Broglie To cite this version: Louis De Broglie. Sur la possibilité d une structure complexe des particules de

Plus en détail

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge

Plus en détail

Dynamique des protéines, simulation moléculaire et physique statistique

Dynamique des protéines, simulation moléculaire et physique statistique Dynamique des protéines, simulation moléculaire et physique statistique Gerald R. Kneller kneller@llb.saclay.cea.fr, kneller@cnrs-orleans.fr Université d Orléans Laboratoire Léon Brillouin, CEA Saclay

Plus en détail

Modèles et Méthodes de Réservation

Modèles et Méthodes de Réservation Modèles et Méthodes de Réservation Petit Cours donné à l Université de Strasbourg en Mai 2003 par Klaus D Schmidt Lehrstuhl für Versicherungsmathematik Technische Universität Dresden D 01062 Dresden E

Plus en détail

Chapitre 6. Réactions nucléaires. 6.1 Généralités. 6.1.1 Définitions. 6.1.2 Lois de conservation

Chapitre 6. Réactions nucléaires. 6.1 Généralités. 6.1.1 Définitions. 6.1.2 Lois de conservation Chapitre 6 Réactions nucléaires 6.1 Généralités 6.1.1 Définitions Un atome est constitué d électrons et d un noyau, lui-même constitué de nucléons (protons et neutrons). Le nombre de masse, noté, est le

Plus en détail

de suprises en surprises

de suprises en surprises Les supraconducteurs s de suprises en surprises titute, Japan hnical Research Inst Railway Tech Julien Bobroff Laboratoire de Physique des Solides, Université Paris-Sud 11 & CNRS Bobroff 2011 Supra2011

Plus en détail

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION) Terminale S CHIMIE TP n 2b (correction) 1 SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION) Objectifs : Déterminer l évolution de la vitesse de réaction par une méthode physique. Relier l absorbance

Plus en détail

CHOIX OPTIMAL DU CONSOMMATEUR. A - Propriétés et détermination du choix optimal

CHOIX OPTIMAL DU CONSOMMATEUR. A - Propriétés et détermination du choix optimal III CHOIX OPTIMAL DU CONSOMMATEUR A - Propriétés et détermination du choix optimal La demande du consommateur sur la droite de budget Résolution graphique Règle (d or) pour déterminer la demande quand

Plus en détail

Chapitre 15 - Champs et forces

Chapitre 15 - Champs et forces Choix pédagogiques Chapitre 15 - Champs et forces Manuel pages 252 à 273 Après avoir étudié les interactions entre deux corps en s appuyant sur les lois de Coulomb et de Newton, c est un nouveau cadre

Plus en détail

Approximations variationelles des EDP Notes du Cours de M2

Approximations variationelles des EDP Notes du Cours de M2 Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Mathématique et Automatique : de la boucle ouverte à la boucle fermée Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Maitine.Bergounioux@labomath.univ-orleans.fr Plan 1. Un peu de

Plus en détail