Dynamique des protéines, simulation moléculaire et physique statistique

Dimension: px
Commencer à balayer dès la page:

Download "Dynamique des protéines, simulation moléculaire et physique statistique"

Transcription

1 Dynamique des protéines, simulation moléculaire et physique statistique Gerald R. Kneller Université d Orléans Laboratoire Léon Brillouin, CEA Saclay Centre de Biophysique Moléculaire,CNRS PPF Orléans / Tours 20/01/2004 p.1/44

2 Intérêts de l équipe Etude et modélisation de la relation dynamique-fonction des protéines Développement d algorithmes de simulation (MD) Développement de logiciels pour la simulation moléculaire et leur analyse Spectroscopie neutronique, et autres techniques spectroscopiques (FCS, RMN,...) PPF Orléans / Tours 20/01/2004 p.2/44

3 Méthodes Simulations de dynamique moléculaire, calcul de modes normaux Traitement numérique du signal Spectroscopie neutronique (+ FCS + RMN) Physique statistique hors équilibre PPF Orléans / Tours 20/01/2004 p.3/44

4 Thématique actuelle Dynamique d une protéine sous pression - Thèse terminée sur la dynamique du lysozyme sous pression (V. Hamon, CBM Orléans) - Dynamique interne de protéines mésophiles et barophiles/-phobes sous l influence de la pression - recherche d une différence systématique (P. Calligari, LLB/ILL Grenoble) Développement d une plate-forme de simulation à l Institut Laue-Langevin PPF Orléans / Tours 20/01/2004 p.4/44

5 Thématiques à l horizon Dynamique lente et fonction des protéines - Etude par spectroscopie FCS / microscopie confocale (SOLEIL) - Développement de nouvelles méthodes stochastiques et quantiques de simulation (avec F. James, P.E. Jabin). Physico-chimie de la cellule - Transport de particules virales - Polymérisation dans le cytosquelette Phase exploratoire avec l Institut Pasteur PPF Orléans / Tours 20/01/2004 p.5/44

6 Simulation MD PPF Orléans / Tours 20/01/2004 p.6/44

7 MD classique Equations de Newton m α ẍ α = F α, α=1,...,n. Forces et potentiel / champ de force F α = U(x 1,...,x N ) x α Chaque atome est une masse ponctuelle Potentiel effectif pas d électrons explicits Dynamique newtonienne des atomes PPF Orléans / Tours 20/01/2004 p.7/44

8 Conditions périodiques PPF Orléans / Tours 20/01/2004 p.8/44

9 Condition de "images minimale" PPF Orléans / Tours 20/01/2004 p.9/44

10 Lyszoyme A gauche : Représentation atomique. A droite : squelette. PPF Orléans / Tours 20/01/2004 p.10/44

11 Chaînes polypeptidiques PPF Orléans / Tours 20/01/2004 p.11/44

12 Champ de force (AMBER 94) U = + + liaisons αβ angles αβγ ( k αβ r αβ r (0) αβ ) 2 ( ) 2 k αβγ φ αβγ φ (0) αβγ k αβγδ cos (n αβγδ θ αβγδ δ αβγδ ) dihèdres αβγδ + paires αβ 4ǫ αβ + paires αβ q α q β 4πǫ 0 r αβ ( [σαβ r αβ ] 12 [ σαβ r αβ ] 6 ) nonliées PPF Orléans / Tours 20/01/2004 p.12/44

13 Discrétisation Vitesse et accélération ẋ α x α(n +1) x α (n 1), 2 t ẍ α x α(n +1) 2x α (n)+x α (n 1). t 2 Algorithme de Verlet x α (n +1)=2x α (n) x α (n 1) + t2 m α F α (n). PPF Orléans / Tours 20/01/2004 p.13/44

14 Caractéristiques du calcul numérique Nombre d atomes N Nombre d interactions N 2 (interactions non-liées) Nombre de pas d intégration Adapté pour calcul parallèle : - décomposition en domaines - ou décomposition en sous-ensmbles fixes - en tout cas : communication forte PPF Orléans / Tours 20/01/2004 p.14/44

15 Echelles Echelle spatiale : 0.1nm 10nm Echelle de temps : 0.1ps 10ns Comparables aux échelles accessibles par diffusion de neutrons thermiques Comparaison facilitée par l interaction directe des neutrons avec des noyaux atomiques = objets simulés PPF Orléans / Tours 20/01/2004 p.15/44

16 Diffusion de neutrons PPF Orléans / Tours 20/01/2004 p.16/44

17 Expérience schématique k q θ k 0 k d²σ dωdω k 0 θ detectors sample PPF Orléans / Tours 20/01/2004 p.17/44

18 Section efficace différentielle Ici d 2 σ dωdω = k k 0 S(q,ω) q = k 0 k, ω= E 0 E sont les transferts de quantité de mouvement et de l énergie, respectivement, et S(q,ω) est le facteur de structure dynamique. PPF Orléans / Tours 20/01/2004 p.18/44

19 Facteur de structure dynamique S(q,ω) = 1 2π φ(q,t) = α,β + dt exp( iωt)φ(q,t), b α b β e iqt R β (t) e iqt R α (0). b α b β = moyenne sur isotopes et orientations relatives entre le spin du neutron et celui de l atome cible. φ(q,t) est la fonction intermédiaire de diffusion. PPF Orléans / Tours 20/01/2004 p.19/44

20 Spectre neutronique S(q,ω) elastic quasielastic inelastic ω = energy transfer PPF Orléans / Tours 20/01/2004 p.20/44

21 Analyse des simulations PPF Orléans / Tours 20/01/2004 p.21/44

22 Analyses simples Fonction de corrélation variables continues 1 c AB (t) = lim T T T/2 T/2 dτ A(τ + t)b (τ). Fonction de corrélation variables discrètes c AB (n)= 1 N t n N t n 1 k=0 A(k + n)b (k). Utilisation intensive de FFT. PPF Orléans / Tours 20/01/2004 p.22/44

23 Analyses sophistiquées Modélisation d une trajectoire MD par un processus stochastique autoregressif de l ordre P, u(t)= P n=1 a (P) n u(t n t)+ǫ P (t). ǫ P (t) est un bruit blanc de l amplitude σ P. Les coefficients {a (P) n,σ P } sont ajustés aux données (algorithme de Burg). PPF Orléans / Tours 20/01/2004 p.23/44

24 Modèle semi-analytique Modèle analytique dans le plan complexe : U(z)= + n= u(n)z n = 1 P σ P j=1 a(p) j z j Fonction d autocorrélation : C(z)= σ 2 P ( 1 )( P j=1 a(p) j z j 1 ). P l=1 a(p) l z l ) PPF Orléans / Tours 20/01/2004 p.24/44

25 Racines caractéristiques All-pole form of C(z) : C(z)= 1 a (P) P Les {z k } sont les racines de z P σp 2 P k=1 (z z k) P l=1 (z z 1 l ). p(z)=z P P k=1 a (P) k z P k. PPF Orléans / Tours 20/01/2004 p.25/44

26 Estimation directe de spectres Spectre de puissance par C(z) : c(ω)=c (exp[iω t]). Fonction de corrélation multiexponenetielle : C(n)= 1 2πi η dz z n 1 C(z)= P j=1 β j z n j. Here β j β j ({z k })=const., z j η : z >z j, j.! < 1, and PPF Orléans / Tours 20/01/2004 p.26/44

27 Simulation / Expérience exp. data IN5 (q el = 4 nm -1 ) global diffusion + Gaussian resolution simulation, total spectrum S(q,ω) [a. u.] e ω [mev] PPF Orléans / Tours 20/01/2004 p.27/44

28 Caractéristiques du calcul numérique Utilisation extensive de FFT Utilisation extensive de l algorithme de Burg pour estimer les paramètres du modèle AR. Efficacité comparable à la FFT. Parallélisation triviale - Les fonctions de corrélation pour chaque atomes peuvent être calculées indépendemment. - Idem pour différents vecteurs q dans S(q,ω). - = communication 0. PPF Orléans / Tours 20/01/2004 p.28/44

29 Développement de modèles PPF Orléans / Tours 20/01/2004 p.29/44

30 Relaxation non-exponentielle 100 MD simulation (q = 4nm -1 ) Fitted Lorentzian S(q,ω) [arb. units] ω [mev] S(q,ω) simulé pour la dynamique interne du lysozyme et lorentzienne ajustée. PPF Orléans / Tours 20/01/2004 p.30/44

31 Energie interne d une protéine potential energy surface in proteins substates Surface rugeuse de E pot d après Frauenfelder ( sous-états conformationnels ). Beaucoup de degrées de liberté couplés, avec des échelles de temps très différentes. PPF Orléans / Tours 20/01/2004 p.31/44

32 Fonction mémoire (Zwanzig, 1961) Equation de la fonction mémoire t c(t)= t 0 dτ ξ(t τ)c(τ) Dynamique Brownienne ξ(t) =γδ(t) = c(t) =c(0) exp( γt). PPF Orléans / Tours 20/01/2004 p.32/44

33 Dynamique brownienne fractionnaire Fonction de corrélation c(t)=e β ( (t/τ) β ), 0 <β 1. Fonction de Mittag-Leffler E β (z)= k=0 z k Γ(1 + βk). PPF Orléans / Tours 20/01/2004 p.33/44

34 Fonction de corrélation φ(t/τ) ξ fbd (t/τ) t/τ t/τ Modèle DBF (β =1/2) = ligne continue, exponentielle étirée (β =1/2)=points et traits, exponentielle = traits. PPF Orléans / Tours 20/01/2004 p.34/44

35 Fonction mémoire et spectre Fonction mémoire (0 <β<1) ξ(t) (β 1) ( t τ ) β 2, 0 dt ξ(t)=0. Spectre de c(t) S fbd (ω)= 2τ sin(βπ/2) ωτ ( ωτ β +2cos(βπ/2) + ωτ β ). pour 0 <β 1. Lorentzienne pour β =1. PPF Orléans / Tours 20/01/2004 p.35/44

36 Modèle et simulation 1.5 log 10 (ωτ) simulation fractional BD log 10 S(q, ν) Time [ps] log 10 (ν ps) Facteur de structue dynamique et fonction mémoire pour Lys à q =10nm 1 par MD et modèle DBF. PPF Orléans / Tours 20/01/2004 p.36/44

37 Nos codes PPF Orléans / Tours 20/01/2004 p.37/44

38 Molecular Modeling Toolkit Bibliothèque de simulation moléculaire Langages : Python et C Orienté objet Techniques implementées : Dynamique Moléculaire, Modes Normaux, Minimization d énergie, etc. Parallelisé Développé depuis 1996 par K. Hinsen http ://dirac.cnrs-orleans.fr/mmtk/ PPF Orléans / Tours 20/01/2004 p.38/44

39 nmoldyn Analyse de trajectoires de Dynamique Moléculaire, en particulier pour comparer avec la diffusion de neutrons Interface graphique Basé sur MMTK Langage : 100% Python Développé depuis 1991 par G. Kneller et collaborateurs http ://dirac.cnrs-orleans.fr/nmoldyn/ PPF Orléans / Tours 20/01/2004 p.39/44

40 nmoldyn PPF Orléans / Tours 20/01/2004 p.40/44

41 PPF et équipement PPF Orléans / Tours 20/01/2004 p.41/44

42 Nos intérêts Mise à disposition de nos codes par une interface Web. Prévoir échange de volumes de données importants (trajectoires MD). Les analyses par nmoldyn sont idéales pour un calcul distribué. PPF Orléans / Tours 20/01/2004 p.42/44

43 Equipement Saclay : 8 noeuds Opteron / partie d une grappe de 64 noeuds du DRECAM / CEA Saclay. Orléans : Grappe de 20 PC bi-proc Pentium III en fin de vie. + PCs de bureau. PPF Orléans / Tours 20/01/2004 p.43/44

44 Remerciements K. Hinsen, CBM Orléans LLB Saclay M.C. Bellissent-Funel, LLB Saclay Saclay V. Hamon, CBM Orléans G. Sutmann, FZ Jülich (D) T. Rog & K. Murzyn, Krakow (PL) PPF Orléans / Tours 20/01/2004 p.44/44

Résonance Magnétique Nucléaire : RMN

Résonance Magnétique Nucléaire : RMN 21 Résonance Magnétique Nucléaire : RMN Salle de TP de Génie Analytique Ce document résume les principaux aspects de la RMN nécessaires à la réalisation des TP de Génie Analytique de 2ème année d IUT de

Plus en détail

Interactions des rayonnements avec la matière

Interactions des rayonnements avec la matière UE3-1 : Biophysique Chapitre 2 : Interactions des rayonnements avec la matière Professeur Jean-Philippe VUILLEZ Année universitaire 2011/2012 Université Joseph Fourier de Grenoble - Tous droits réservés.

Plus en détail

ParMat : Parallélisation pour la simulation des Matériaux.

ParMat : Parallélisation pour la simulation des Matériaux. : Parallélisation pour la simulation des Matériaux. G. Bencteux (EDF) 3 septembre 2008 Outline 1 2 Un algorithme d ordre N pour les calculs ab initio (DFT/HF) 3 Simulation du dommage d irradiation par

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

1. L ADN et l information génétique. l ADN l information génétique est contenue dans l ADN. traduction. comment fait-on une protéine?

1. L ADN et l information génétique. l ADN l information génétique est contenue dans l ADN. traduction. comment fait-on une protéine? 1. L ADN et l information génétique l ADN l information génétique est contenue dans l ADN (ADN) (ARN) 1 2 A G T C U comment fait-on une protéine? traduction l information génétique est organisée par triplets

Plus en détail

Note de cadrage du PEPI MACS Mathématiques Appliquées & Calcul Scientifique

Note de cadrage du PEPI MACS Mathématiques Appliquées & Calcul Scientifique Note de cadrage du PEPI MACS Mathématiques Appliquées & Calcul Scientifique Périmètre Le périmètre du PEPI concerne les méthodes et outils utilisés pour le traitement informatisé des données scientifiques.

Plus en détail

Objectifs. Calcul scientifique. Champ d applications. Pourquoi la simulation numérique?

Objectifs. Calcul scientifique. Champ d applications. Pourquoi la simulation numérique? Objectifs Calcul scientifique Alexandre Ern ern@cermics.enpc.fr (CERMICS, Ecole des Ponts ParisTech) Le Calcul scientifique permet par la simulation numérique de prédire, optimiser, contrôler... le comportement

Plus en détail

TD 9 Problème à deux corps

TD 9 Problème à deux corps PH1ME2-C Université Paris 7 - Denis Diderot 2012-2013 TD 9 Problème à deux corps 1. Systèmes de deux particules : centre de masse et particule relative. Application à l étude des étoiles doubles Une étoile

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Chapitre 3. Mesures stationnaires. et théorèmes de convergence Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée

Plus en détail

Méthodes Numériques Dynamique moléculaire Licence L3 Physique UNS Thomas Frisch, Franck Celestini

Méthodes Numériques Dynamique moléculaire Licence L3 Physique UNS Thomas Frisch, Franck Celestini Méthodes Numériques Dynamique moléculaire Licence L3 Physique UNS Thomas Frisch, Franck Celestini 1) Introduction : Années 1950 : arrivée des ordinateurs Possibilité de simuler les équations de Newton

Plus en détail

Professeur Eva PEBAY-PEYROULA

Professeur Eva PEBAY-PEYROULA 3-1 : Physique Chapitre 8 : Le noyau et les réactions nucléaires Professeur Eva PEBAY-PEYROULA Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Finalité du chapitre

Plus en détail

ÉVALUATION DES PARAMÈTRES CINÉTIQUES DES RÉACTEURS NUCLÉAIRES APPLICATION AUX COMBUSTIBLES MIXTES

ÉVALUATION DES PARAMÈTRES CINÉTIQUES DES RÉACTEURS NUCLÉAIRES APPLICATION AUX COMBUSTIBLES MIXTES ÉVALUATION DES PARAMÈTRES CINÉTIQUES DES RÉACTEURS NUCLÉAIRES APPLICATION AUX COMBUSTIBLES MIXTES ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES TECHNIQUES PAR

Plus en détail

L effet Tunnel. Microscopie à effet tunnel. Approche documentaire. http://www.laradioactivite.com/fr/site/pages/effet_tunnel_ Radioactivite_Alpha.

L effet Tunnel. Microscopie à effet tunnel. Approche documentaire. http://www.laradioactivite.com/fr/site/pages/effet_tunnel_ Radioactivite_Alpha. L effet Tunnel L effet tunnel désigne la propriété que possède un objet quantique de franchir une barrière de potentiel même si son énergie est inférieure à l énergie minimale requise pour franchir cette

Plus en détail

Calculateur quantique: factorisation des entiers

Calculateur quantique: factorisation des entiers Calculateur quantique: factorisation des entiers Plan Introduction Difficulté de la factorisation des entiers Cryptographie et la factorisation Exemple RSA L'informatique quantique L'algorithme quantique

Plus en détail

Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS

Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS Formations EViews FORMATIONS GENERALES INTRODUCTIVES DEB : DECOUVERTE DU LOGICIEL EVIEWS INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS FORMATIONS METHODES ECONOMETRIQUES VAR : MODELES

Plus en détail

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay pascal.pernot@u-psud.fr

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay pascal.pernot@u-psud.fr Modélisation prédictive et incertitudes P. Pernot Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay pascal.pernot@u-psud.fr Le concept de Mesure Virtuelle mesure virtuelle résultat d un modèle visant

Plus en détail

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX T ale S Introduction : Une réaction nucléaire est Une réaction nucléaire provoquée est L'unité de masse atomique est une unité permettant de manipuler aisément

Plus en détail

Quelques points de traitement du signal

Quelques points de traitement du signal Quelques points de traitement du signal Introduction: de la mesure au traitement Source(s) BRUIT BRUIT Système d acquisition Amplitude (Pa) Temps (s) Amplitude (Pa) Mesure Opérations mathématiques appliquées

Plus en détail

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE CP7 MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE 1 ) Relation d'équivalence entre la masse et l'énergie -énergie de liaison 2 ) Une unité d énergie mieux adaptée 3 ) application 4

Plus en détail

Les appareillages des Spectrométrie optique

Les appareillages des Spectrométrie optique ATELIERS DE BIOPHOTONIQUE Les appareillages des Spectrométrie optique 1. Spectroscopies optiques conventionnelles Spectrophotomètre, Spectrofluorimètre, 2. Analyse Spectrale en Microscopie de fluorescence

Plus en détail

Chapitre 5 : Noyaux, masse et énergie

Chapitre 5 : Noyaux, masse et énergie Chapitre 5 : Noyaux, masse et énergie Connaissances et savoir-faire exigibles : () () (3) () (5) (6) (7) (8) Définir et calculer un défaut de masse et une énergie de liaison. Définir et calculer l énergie

Plus en détail

Équivalence masse-énergie

Équivalence masse-énergie CHPITRE 5 NOYUX, MSSE ET ÉNERGIE Équivalence masse-énergie. Équivalence masse-énergie Einstein a montré que la masse constitue une forme d énergie appelée énergie de masse. La relation entre la masse (en

Plus en détail

Modèle classique Extensions Modèle multi-branches. Théorie de la ruine. Esterina Masiello (ISFA)

Modèle classique Extensions Modèle multi-branches. Théorie de la ruine. Esterina Masiello (ISFA) Esterina Masiello Institut de Science Financière et d Assurances Université Lyon 1 Premières Journées Actuarielles de Strasbourg 6-7 octobre 2010 En résumé... Modèle classique de la théorie de la ruine

Plus en détail

Introduction. Mathématiques Quantiques Discrètes

Introduction. Mathématiques Quantiques Discrètes Mathématiques Quantiques Discrètes Didier Robert Facultés des Sciences et Techniques Laboratoire de Mathématiques Jean Leray, Université de Nantes email: v-nantes.fr Commençons par expliquer le titre.

Plus en détail

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge

Plus en détail

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Soutenance de doctorat, sous la direction de Pr. Bilodeau, M. et Pr. Ducharme, G. Université de Montréal et Université

Plus en détail

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème... TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................

Plus en détail

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2 Introduction Page xxi (milieu de page) G = 6, 672 59 1 11 m 3 kg 1 s 2 Erratum de MÉCANIQUE, 6ème édition Page xxv (dernier tiers de page) le terme de Coriolis est supérieur à 1% du poids) Chapitre 1 Page

Plus en détail

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. 1 Ce sujet aborde le phénomène d instabilité dans des systèmes dynamiques

Plus en détail

I - Quelques propriétés des étoiles à neutrons

I - Quelques propriétés des étoiles à neutrons Formation Interuniversitaire de Physique Option de L3 Ecole Normale Supérieure de Paris Astrophysique Patrick Hennebelle François Levrier Sixième TD 14 avril 2015 Les étoiles dont la masse initiale est

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Centre Commun de Calcul Intensif: www.univ-ag.fr/c3i

Centre Commun de Calcul Intensif: www.univ-ag.fr/c3i Centre Commun de Calcul Intensif: www.univ-ag.fr/c3i a HPC center in the Caribbean Mewbalaou Fédération de recherche fournissant des ressources à 6 laboratoires de l UAG: COVACHIM-M, GTSI, LAMIA, LARGE,

Plus en détail

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S Concours EPIT 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette MW K1200S Durée : 2h. Calculatrices autorisées. Présentation du problème Le problème

Plus en détail

Chapitre 11: Réactions nucléaires, radioactivité et fission

Chapitre 11: Réactions nucléaires, radioactivité et fission 1re B et C 11 Réactions nucléaires, radioactivité et fission 129 Chapitre 11: Réactions nucléaires, radioactivité et fission 1. Définitions a) Nucléides (= noyaux atomiques) Les nucléides renferment les

Plus en détail

Energie nucléaire. Quelques éléments de physique

Energie nucléaire. Quelques éléments de physique Energie nucléaire Quelques éléments de physique Comment produire 1 GW électrique Nucléaire (rendement 33%) Thermique (38%) Hydraulique (85%) Solaire (10%) Vent : 27t d uranium par an : 170 t de fuel par

Plus en détail

Health Monitoring pour la Maintenance Prévisionnelle, Modélisation de la Dégradation

Health Monitoring pour la Maintenance Prévisionnelle, Modélisation de la Dégradation Health Monitoring pour la Maintenance Prévisionnelle, Modélisation de la Dégradation Laurent Denis STATXPERT Journée technologique "Solutions de maintenance prévisionnelle adaptées à la production" FIGEAC,

Plus en détail

Qu est-ce qu un ordinateur quantique et à quoi pourrait-il servir?

Qu est-ce qu un ordinateur quantique et à quoi pourrait-il servir? exposé Ateliers de l information Bibliothèque Universitaire, Grenoble Qu est-ce qu un ordinateur quantique et à quoi pourrait-il servir? Dominique Spehner Institut Fourier et Laboratoire de Physique et

Plus en détail

de calibration Master 2: Calibration de modèles: présentation et simulation d

de calibration Master 2: Calibration de modèles: présentation et simulation d Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe

Plus en détail

Université Joseph Fourier MAT231 2008-2009

Université Joseph Fourier MAT231 2008-2009 Université Joseph Fourier MAT231 2008-2009 mat231-exo-03.tex (29 septembre 2008) Feuille d exercices n o 3 Exercice 3.1 Soit K un corps commutatif et soit {P 0, P 1,... P n } une famille de polynômes de

Plus en détail

TD1 Signaux, énergie et puissance, signaux aléatoires

TD1 Signaux, énergie et puissance, signaux aléatoires TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver

Plus en détail

MASTER (LMD) MANAGEMENT DE PROJET ET INNOVATION EN BIOTECHNOLOGIE

MASTER (LMD) MANAGEMENT DE PROJET ET INNOVATION EN BIOTECHNOLOGIE MASTER (LMD) MANAGEMENT DE PROJET ET INNOVATION EN BIOTECHNOLOGIE RÉSUMÉ DE LA FORMATION Type de diplôme : Master (LMD) Domaine ministériel : Sciences, Technologies, Santé Mention : BIOLOGIE SANTE Spécialité

Plus en détail

Lycée Galilée Gennevilliers. chap. 6. JALLU Laurent. I. Introduction... 2 La source d énergie nucléaire... 2

Lycée Galilée Gennevilliers. chap. 6. JALLU Laurent. I. Introduction... 2 La source d énergie nucléaire... 2 Lycée Galilée Gennevilliers L'énergie nucléaire : fusion et fission chap. 6 JALLU Laurent I. Introduction... 2 La source d énergie nucléaire... 2 II. Équivalence masse-énergie... 3 Bilan de masse de la

Plus en détail

Tutorat 2 de Mathématiques (1ère année)

Tutorat 2 de Mathématiques (1ère année) Tutorat 2 de Mathématiques (ère année) 9//200 Transformée de Radon et Tomographie par Rayons X Compte-rendu à déposer svp le casier de mon bureau. N hésitez pas à me contacter en cas de difficultés majeures

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Intérêt du découpage en sous-bandes pour l analyse spectrale

Intérêt du découpage en sous-bandes pour l analyse spectrale Intérêt du découpage en sous-bandes pour l analyse spectrale David BONACCI Institut National Polytechnique de Toulouse (INP) École Nationale Supérieure d Électrotechnique, d Électronique, d Informatique,

Plus en détail

Chapitre 3 : Le budget des ventes. Marie Gies - Contrôle de gestion et gestion prévisionnelle - Chapitre 3

Chapitre 3 : Le budget des ventes. Marie Gies - Contrôle de gestion et gestion prévisionnelle - Chapitre 3 Chapitre 3 : Le budget des ventes Introduction 2 Rappel des différents budgets opérationnels - budget des ventes (chapitre 3) - budget de production (chapitre 4) - budget des approvisionnements et des

Plus en détail

Modèle 0D du Véhicule Électrique

Modèle 0D du Véhicule Électrique Énergies renouvelables Production éco-responsable Transports innovants Procédés éco-efficients Ressources durables Modèle 0D du Véhicule Électrique Wissam DIB / IFP Energie nouvelles 07/04/2011 Plan Présentation

Plus en détail

Conception de réseaux de télécommunications : optimisation et expérimentations

Conception de réseaux de télécommunications : optimisation et expérimentations Conception de réseaux de télécommunications : optimisation et expérimentations Jean-François Lalande Directeurs de thèse: Jean-Claude Bermond - Michel Syska Université de Nice-Sophia Antipolis Mascotte,

Plus en détail

Séries de Fourier. T f (x) exp 2iπn x T dx, n Z. T/2 f (x) cos ( ) f (x) dx a n (f) = 2 T. f (x) cos 2πn x )

Séries de Fourier. T f (x) exp 2iπn x T dx, n Z. T/2 f (x) cos ( ) f (x) dx a n (f) = 2 T. f (x) cos 2πn x ) Séries de Fourier Les séries de Fourier constituent un outil fondamental de la théorie du signal. Il donne lieu à des prolongements et des extensions nombreux. Les séries de Fourier permettent à la fois

Plus en détail

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Mathématique et Automatique : de la boucle ouverte à la boucle fermée Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Maitine.Bergounioux@labomath.univ-orleans.fr Plan 1. Un peu de

Plus en détail

Méthodes numériques pour la finance

Méthodes numériques pour la finance Méthodes numériques pour la finance Olivier Guibé 1 mars 010 Table des matières 1 Les outils de modélisation pour les options 1.1 Options............................................... 1. Modèle du marché

Plus en détail

C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au

C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au 1 2 C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position est constant et il est égal au rayon du cercle. = 3 A- ouvement circulaire non uniforme

Plus en détail

Méthodes de Simulation

Méthodes de Simulation Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

PHYSIQUE Discipline fondamentale

PHYSIQUE Discipline fondamentale Examen suisse de maturité Directives 2003-2006 DS.11 Physique DF PHYSIQUE Discipline fondamentale Par l'étude de la physique en discipline fondamentale, le candidat comprend des phénomènes naturels et

Plus en détail

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière Algèbre 1 : (Volume horaire total : 63 heures) UE1 : Analyse et algèbre

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU) 0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2

Plus en détail

Contrôle par commande prédictive d un procédé de cuisson sous infrarouge de peintures en poudre.

Contrôle par commande prédictive d un procédé de cuisson sous infrarouge de peintures en poudre. Contrôle par commande prédictive d un procédé de cuisson sous infrarouge de peintures en poudre. Isabelle Bombard, Bruno da Silva, Pascal Dufour *, Pierre Laurent, Joseph Lieto. Laboratoire d Automatique

Plus en détail

Semestre 2 Spécialité «Analyse in silico des complexes macromolécules biologiques-médicaments»

Semestre 2 Spécialité «Analyse in silico des complexes macromolécules biologiques-médicaments» Master In silico Drug Design Semestre 2 Spécialité «Analyse in silico des complexes macromolécules biologiques-médicaments» 30NU01IS INITIATION A LA PROGRAMMATION (6 ECTS) Responsables : D. MESTIVIER,

Plus en détail

MCMC et approximations en champ moyen pour les modèles de Markov

MCMC et approximations en champ moyen pour les modèles de Markov MCMC et approximations en champ moyen pour les modèles de Markov Gersende FORT LTCI CNRS - TELECOM ParisTech En collaboration avec Florence FORBES (Projet MISTIS, INRIA Rhône-Alpes). Basé sur l article:

Plus en détail

SYSTEME DE PARTICULES. DYNAMIQUE DU SOLIDE (suite) Table des matières

SYSTEME DE PARTICULES. DYNAMIQUE DU SOLIDE (suite) Table des matières Physique Générale SYSTEME DE PARTICULES DYNAMIQUE DU SOLIDE (suite) TRAN Minh Tâm Table des matières Applications de la loi de Newton pour la rotation 93 Le gyroscope........................ 93 L orbite

Plus en détail

La plate-forme de modélisation et simulation

La plate-forme de modélisation et simulation La plate-forme de modélisation et simulation Hélène Raynal U-MIAT, INRA, Toulouse 1 / 25 Plan Eléments de contexte Les spécifications qui ont prévalu à la mise en place de la solution Principaux services

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

L expérience de Stern et Gerlach. ~ k3. Chapitre 8

L expérience de Stern et Gerlach. ~ k3. Chapitre 8 L expérience de Stern et Gerlach ~ k3 Chapitre 8 Quiz de bienvenue Si vous avez changé de canal, tapez: [Ch]-[4]-[1]-[Ch] ou [Go]-[4]-[1]-[Go] On considère un aimant placé dans un champ magnétique homogène.

Plus en détail

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique PGA & SDUEE Année 008 09 Interaction milieux dilués rayonnement Travaux dirigés n. Résonance magnétique : approche classique Première interprétation classique d une expérience de résonance magnétique On

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Université de Franche-Comté - UFR Sciences et Techniques - Département de Physique Master de Physique 1ère année. Mécanique Quantique Travaux Dirigés

Université de Franche-Comté - UFR Sciences et Techniques - Département de Physique Master de Physique 1ère année. Mécanique Quantique Travaux Dirigés Master de Physique 1ère année Mécanique Quantique Travaux Dirigés 1 Master de Physique 1ère année - Mécanique Quantique TD 1: Systèmes quantiques de dimension finie Exercice 11- Atome à 2 niveaux dans

Plus en détail

COURS DE STATISTIQUE APPLIQUÉE

COURS DE STATISTIQUE APPLIQUÉE UNIVERSITE PROTESTANTE AU CONGO CENTRE CONGOLAIS-ALLEMAND DE MICROFINANCE COURS DE STATISTIQUE APPLIQUÉE Professeur Daniel MUKOKO Samba daniel_mukoko@yahoo.fr Quelques références Droesbeke, Jean-Jacques,

Plus en détail

Techniques de Lyapunov en contrôle quantique pour le couplage dipolaire et polarisabilité

Techniques de Lyapunov en contrôle quantique pour le couplage dipolaire et polarisabilité Techniques de Lyapunov en contrôle quantique pour le couplage dipolaire et polarisabilité Andreea Grigoriu avec Jean-Michel Coron, Cătălin Lefter and Gabriel Turinici CEREMADE-Université Paris Dauphine

Plus en détail

La diversité du monde et l émergence de la complexité. Jean-Philippe UZAN

La diversité du monde et l émergence de la complexité. Jean-Philippe UZAN La diversité du monde et l émergence de la complexité Jean-Philippe UZAN Nous observons un univers structuré à toutes les échelles. Pourquoi les lois fondamentales de la nature permettent-elles l émergence

Plus en détail

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique 1 ANALYSE NUMERIQUE ET OPTIMISATION Une introduction à la modélisation mathématique et à la simulation numérique G. ALLAIRE 28 Janvier 2014 CHAPITRE I Analyse numérique: amphis 1 à 12. Optimisation: amphis

Plus en détail

Corrigé du baccalauréat S Polynésie juin 2004

Corrigé du baccalauréat S Polynésie juin 2004 Durée : 4 heures Corrigé du baccalauréat S Polynésie juin 4 EXERCICE Commun à tous les candidats 4 points. X suit la loi de durée de vie sans vieillissement ou encore loi eponentielle de paramètre λ ;

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

À propos d ITER. 1- Principe de la fusion thermonucléaire

À propos d ITER. 1- Principe de la fusion thermonucléaire À propos d ITER Le projet ITER est un projet international destiné à montrer la faisabilité scientifique et technique de la fusion thermonucléaire contrôlée. Le 8 juin 005, les pays engagés dans le projet

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

TD : Oscillateur harmonique

TD : Oscillateur harmonique TD : Oscillateur harmonique Observation du chromosome X par microscopie à force atomique. À gauche : nanoparticules observées par microscopie à force atomique (AFM, SP1-P2). Image du Dr. K. Raghuraman

Plus en détail

La physique quantique couvre plus de 60 ordres de grandeur!

La physique quantique couvre plus de 60 ordres de grandeur! La physique quantique couvre plus de 60 ordres de grandeur! 10-35 Mètre Super cordes (constituants élémentaires hypothétiques de l univers) 10 +26 Mètre Carte des fluctuations du rayonnement thermique

Plus en détail

PROJET MODELE DE TAUX

PROJET MODELE DE TAUX MASTER 272 INGENIERIE ECONOMIQUE ET FINANCIERE PROJET MODELE DE TAUX Pricing du taux d intérêt des caplets avec le modèle de taux G2++ Professeur : Christophe LUNVEN 29 Fevrier 2012 Taylan KUNAL - Dinh

Plus en détail

RÉVISION DE CALCUL NUMÉRIQUE

RÉVISION DE CALCUL NUMÉRIQUE RÉVISION DE CALCUL NUMÉRIQUE. Les ensembles numériques. Propriétés des nombres réels. Ordre des opérations. Nombres premiers. Opérations sur les fractions 7. Puissances entières 0.7 Notation scientifique.8

Plus en détail

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA MATHS FINANCIERES Mireille.Bossy@sophia.inria.fr Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

DYNAMIQUE DE FORMATION DES ÉTOILES

DYNAMIQUE DE FORMATION DES ÉTOILES A 99 PHYS. II ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Stabilité et Réactivité Nucléaire

Stabilité et Réactivité Nucléaire Chapitre 1 Stabilité et Réactivité Nucléaire Les expériences, maintes fois répétées, montraient chaque fois que les déflexions subies par les particules chargées en interaction avec les noyaux ne correspondaient

Plus en détail

trigonométrie équations mécanique homographie vision pas ordinateur

trigonométrie équations mécanique homographie vision pas ordinateur robotique algorithmes simulation modélisation vecteurs géométrie analytique informatique cinématique inverse produit scalaire Rapport de stage trigonométrie équations mécanique Laboratoire Informatique

Plus en détail

TP N 57. Déploiement et renouvellement d une constellation de satellites

TP N 57. Déploiement et renouvellement d une constellation de satellites TP N 57 Déploiement et renouvellement d une constellation de satellites L objet de ce TP est d optimiser la stratégie de déploiement et de renouvellement d une constellation de satellites ainsi que les

Plus en détail

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS David Ryckelynck Centre des Matériaux, Mines ParisTech David.Ryckelynck@mines-paristech.fr Bibliographie : Stabilité et mécanique non linéaire,

Plus en détail

TABLE DES MATIÈRES CHAPITRE I. Les quanta s invitent

TABLE DES MATIÈRES CHAPITRE I. Les quanta s invitent TABLE DES MATIÈRES AVANT-PROPOS III CHAPITRE I Les quanta s invitent I-1. L Univers est en constante évolution 2 I-2. L âge de l Univers 4 I-2.1. Le rayonnement fossile témoigne 4 I-2.2. Les amas globulaires

Plus en détail

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes

Plus en détail

Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN.

Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN. TD 6 corrigé - PFS Résolution analytique (Loi entrée-sortie statique) Page 1/1 Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN. Question : Réaliser le graphe de structure, puis compléter

Plus en détail

La détermination de l accélération d une sphère métallique à l aide de 21 mesures pendant un parcours dans le plan incliné enregistré par le MOTU 828

La détermination de l accélération d une sphère métallique à l aide de 21 mesures pendant un parcours dans le plan incliné enregistré par le MOTU 828 La détermination de l accélération d une sphère métallique à l aide de 21 mesures pendant un parcours dans le plan incliné enregistré par le MOTU 828 de Dr Franz Raemy septembre 2010 Introduction de l

Plus en détail

Processus aléatoires avec application en finance

Processus aléatoires avec application en finance Genève, le 16 juin 2007. Processus aléatoires avec application en finance La durée de l examen est de deux heures. N oubliez pas d indiquer votre nom et prénom sur chaque feuille. Toute documentation et

Plus en détail

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide)

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide) Épreuve pratique de mathématiques Printemps 2009 Descriptifs (Page vide) Sujet 001 Épreuve pratique de mathématiques Descriptif Étude d une fonction dépendant d un paramètre Étant donné une fonction dépendant

Plus en détail

Ing. M. VAN DROOGENBROEK Dr J. LECOINTRE PIERRARD Virton

Ing. M. VAN DROOGENBROEK Dr J. LECOINTRE PIERRARD Virton Influence d un film viscoélastique ultra-mince sur la réponse d une pointe oscillante : vers un aspect quantitatif du mode semi contact d un microscope à force atomique Ing. M. VAN DROOGENBROEK Dr J. LECOINTRE

Plus en détail

Conception de Médicament

Conception de Médicament Conception de Médicament Approche classique HTS Chimie combinatoire Rational Drug Design Ligand based (QSAR) Structure based (ligand et ou macromolec.) 3DQSAR Docking Virtual screening Needle in a Haystack

Plus en détail

Mesure agnostique de la qualité des images.

Mesure agnostique de la qualité des images. Mesure agnostique de la qualité des images. Application en biométrie Christophe Charrier Université de Caen Basse-Normandie GREYC, UMR CNRS 6072 Caen, France 8 avril, 2013 C. Charrier NR-IQA 1 / 34 Sommaire

Plus en détail

Gestion optimale des unités de production dans un réseau compte tenu de la dynamique de la température des lignes

Gestion optimale des unités de production dans un réseau compte tenu de la dynamique de la température des lignes Gestion optimale des unités de production dans un réseau compte tenu de la dynamique de la température des lignes M. Nick, R. Cherkaoui, M. Paolone «Le réseau électrique de demain» - EPFL, 21.05.2015 Table

Plus en détail