Dynamique des protéines, simulation moléculaire et physique statistique

Dimension: px
Commencer à balayer dès la page:

Download "Dynamique des protéines, simulation moléculaire et physique statistique"

Transcription

1 Dynamique des protéines, simulation moléculaire et physique statistique Gerald R. Kneller Université d Orléans Laboratoire Léon Brillouin, CEA Saclay Centre de Biophysique Moléculaire,CNRS PPF Orléans / Tours 20/01/2004 p.1/44

2 Intérêts de l équipe Etude et modélisation de la relation dynamique-fonction des protéines Développement d algorithmes de simulation (MD) Développement de logiciels pour la simulation moléculaire et leur analyse Spectroscopie neutronique, et autres techniques spectroscopiques (FCS, RMN,...) PPF Orléans / Tours 20/01/2004 p.2/44

3 Méthodes Simulations de dynamique moléculaire, calcul de modes normaux Traitement numérique du signal Spectroscopie neutronique (+ FCS + RMN) Physique statistique hors équilibre PPF Orléans / Tours 20/01/2004 p.3/44

4 Thématique actuelle Dynamique d une protéine sous pression - Thèse terminée sur la dynamique du lysozyme sous pression (V. Hamon, CBM Orléans) - Dynamique interne de protéines mésophiles et barophiles/-phobes sous l influence de la pression - recherche d une différence systématique (P. Calligari, LLB/ILL Grenoble) Développement d une plate-forme de simulation à l Institut Laue-Langevin PPF Orléans / Tours 20/01/2004 p.4/44

5 Thématiques à l horizon Dynamique lente et fonction des protéines - Etude par spectroscopie FCS / microscopie confocale (SOLEIL) - Développement de nouvelles méthodes stochastiques et quantiques de simulation (avec F. James, P.E. Jabin). Physico-chimie de la cellule - Transport de particules virales - Polymérisation dans le cytosquelette Phase exploratoire avec l Institut Pasteur PPF Orléans / Tours 20/01/2004 p.5/44

6 Simulation MD PPF Orléans / Tours 20/01/2004 p.6/44

7 MD classique Equations de Newton m α ẍ α = F α, α=1,...,n. Forces et potentiel / champ de force F α = U(x 1,...,x N ) x α Chaque atome est une masse ponctuelle Potentiel effectif pas d électrons explicits Dynamique newtonienne des atomes PPF Orléans / Tours 20/01/2004 p.7/44

8 Conditions périodiques PPF Orléans / Tours 20/01/2004 p.8/44

9 Condition de "images minimale" PPF Orléans / Tours 20/01/2004 p.9/44

10 Lyszoyme A gauche : Représentation atomique. A droite : squelette. PPF Orléans / Tours 20/01/2004 p.10/44

11 Chaînes polypeptidiques PPF Orléans / Tours 20/01/2004 p.11/44

12 Champ de force (AMBER 94) U = + + liaisons αβ angles αβγ ( k αβ r αβ r (0) αβ ) 2 ( ) 2 k αβγ φ αβγ φ (0) αβγ k αβγδ cos (n αβγδ θ αβγδ δ αβγδ ) dihèdres αβγδ + paires αβ 4ǫ αβ + paires αβ q α q β 4πǫ 0 r αβ ( [σαβ r αβ ] 12 [ σαβ r αβ ] 6 ) nonliées PPF Orléans / Tours 20/01/2004 p.12/44

13 Discrétisation Vitesse et accélération ẋ α x α(n +1) x α (n 1), 2 t ẍ α x α(n +1) 2x α (n)+x α (n 1). t 2 Algorithme de Verlet x α (n +1)=2x α (n) x α (n 1) + t2 m α F α (n). PPF Orléans / Tours 20/01/2004 p.13/44

14 Caractéristiques du calcul numérique Nombre d atomes N Nombre d interactions N 2 (interactions non-liées) Nombre de pas d intégration Adapté pour calcul parallèle : - décomposition en domaines - ou décomposition en sous-ensmbles fixes - en tout cas : communication forte PPF Orléans / Tours 20/01/2004 p.14/44

15 Echelles Echelle spatiale : 0.1nm 10nm Echelle de temps : 0.1ps 10ns Comparables aux échelles accessibles par diffusion de neutrons thermiques Comparaison facilitée par l interaction directe des neutrons avec des noyaux atomiques = objets simulés PPF Orléans / Tours 20/01/2004 p.15/44

16 Diffusion de neutrons PPF Orléans / Tours 20/01/2004 p.16/44

17 Expérience schématique k q θ k 0 k d²σ dωdω k 0 θ detectors sample PPF Orléans / Tours 20/01/2004 p.17/44

18 Section efficace différentielle Ici d 2 σ dωdω = k k 0 S(q,ω) q = k 0 k, ω= E 0 E sont les transferts de quantité de mouvement et de l énergie, respectivement, et S(q,ω) est le facteur de structure dynamique. PPF Orléans / Tours 20/01/2004 p.18/44

19 Facteur de structure dynamique S(q,ω) = 1 2π φ(q,t) = α,β + dt exp( iωt)φ(q,t), b α b β e iqt R β (t) e iqt R α (0). b α b β = moyenne sur isotopes et orientations relatives entre le spin du neutron et celui de l atome cible. φ(q,t) est la fonction intermédiaire de diffusion. PPF Orléans / Tours 20/01/2004 p.19/44

20 Spectre neutronique S(q,ω) elastic quasielastic inelastic ω = energy transfer PPF Orléans / Tours 20/01/2004 p.20/44

21 Analyse des simulations PPF Orléans / Tours 20/01/2004 p.21/44

22 Analyses simples Fonction de corrélation variables continues 1 c AB (t) = lim T T T/2 T/2 dτ A(τ + t)b (τ). Fonction de corrélation variables discrètes c AB (n)= 1 N t n N t n 1 k=0 A(k + n)b (k). Utilisation intensive de FFT. PPF Orléans / Tours 20/01/2004 p.22/44

23 Analyses sophistiquées Modélisation d une trajectoire MD par un processus stochastique autoregressif de l ordre P, u(t)= P n=1 a (P) n u(t n t)+ǫ P (t). ǫ P (t) est un bruit blanc de l amplitude σ P. Les coefficients {a (P) n,σ P } sont ajustés aux données (algorithme de Burg). PPF Orléans / Tours 20/01/2004 p.23/44

24 Modèle semi-analytique Modèle analytique dans le plan complexe : U(z)= + n= u(n)z n = 1 P σ P j=1 a(p) j z j Fonction d autocorrélation : C(z)= σ 2 P ( 1 )( P j=1 a(p) j z j 1 ). P l=1 a(p) l z l ) PPF Orléans / Tours 20/01/2004 p.24/44

25 Racines caractéristiques All-pole form of C(z) : C(z)= 1 a (P) P Les {z k } sont les racines de z P σp 2 P k=1 (z z k) P l=1 (z z 1 l ). p(z)=z P P k=1 a (P) k z P k. PPF Orléans / Tours 20/01/2004 p.25/44

26 Estimation directe de spectres Spectre de puissance par C(z) : c(ω)=c (exp[iω t]). Fonction de corrélation multiexponenetielle : C(n)= 1 2πi η dz z n 1 C(z)= P j=1 β j z n j. Here β j β j ({z k })=const., z j η : z >z j, j.! < 1, and PPF Orléans / Tours 20/01/2004 p.26/44

27 Simulation / Expérience exp. data IN5 (q el = 4 nm -1 ) global diffusion + Gaussian resolution simulation, total spectrum S(q,ω) [a. u.] e ω [mev] PPF Orléans / Tours 20/01/2004 p.27/44

28 Caractéristiques du calcul numérique Utilisation extensive de FFT Utilisation extensive de l algorithme de Burg pour estimer les paramètres du modèle AR. Efficacité comparable à la FFT. Parallélisation triviale - Les fonctions de corrélation pour chaque atomes peuvent être calculées indépendemment. - Idem pour différents vecteurs q dans S(q,ω). - = communication 0. PPF Orléans / Tours 20/01/2004 p.28/44

29 Développement de modèles PPF Orléans / Tours 20/01/2004 p.29/44

30 Relaxation non-exponentielle 100 MD simulation (q = 4nm -1 ) Fitted Lorentzian S(q,ω) [arb. units] ω [mev] S(q,ω) simulé pour la dynamique interne du lysozyme et lorentzienne ajustée. PPF Orléans / Tours 20/01/2004 p.30/44

31 Energie interne d une protéine potential energy surface in proteins substates Surface rugeuse de E pot d après Frauenfelder ( sous-états conformationnels ). Beaucoup de degrées de liberté couplés, avec des échelles de temps très différentes. PPF Orléans / Tours 20/01/2004 p.31/44

32 Fonction mémoire (Zwanzig, 1961) Equation de la fonction mémoire t c(t)= t 0 dτ ξ(t τ)c(τ) Dynamique Brownienne ξ(t) =γδ(t) = c(t) =c(0) exp( γt). PPF Orléans / Tours 20/01/2004 p.32/44

33 Dynamique brownienne fractionnaire Fonction de corrélation c(t)=e β ( (t/τ) β ), 0 <β 1. Fonction de Mittag-Leffler E β (z)= k=0 z k Γ(1 + βk). PPF Orléans / Tours 20/01/2004 p.33/44

34 Fonction de corrélation φ(t/τ) ξ fbd (t/τ) t/τ t/τ Modèle DBF (β =1/2) = ligne continue, exponentielle étirée (β =1/2)=points et traits, exponentielle = traits. PPF Orléans / Tours 20/01/2004 p.34/44

35 Fonction mémoire et spectre Fonction mémoire (0 <β<1) ξ(t) (β 1) ( t τ ) β 2, 0 dt ξ(t)=0. Spectre de c(t) S fbd (ω)= 2τ sin(βπ/2) ωτ ( ωτ β +2cos(βπ/2) + ωτ β ). pour 0 <β 1. Lorentzienne pour β =1. PPF Orléans / Tours 20/01/2004 p.35/44

36 Modèle et simulation 1.5 log 10 (ωτ) simulation fractional BD log 10 S(q, ν) Time [ps] log 10 (ν ps) Facteur de structue dynamique et fonction mémoire pour Lys à q =10nm 1 par MD et modèle DBF. PPF Orléans / Tours 20/01/2004 p.36/44

37 Nos codes PPF Orléans / Tours 20/01/2004 p.37/44

38 Molecular Modeling Toolkit Bibliothèque de simulation moléculaire Langages : Python et C Orienté objet Techniques implementées : Dynamique Moléculaire, Modes Normaux, Minimization d énergie, etc. Parallelisé Développé depuis 1996 par K. Hinsen http ://dirac.cnrs-orleans.fr/mmtk/ PPF Orléans / Tours 20/01/2004 p.38/44

39 nmoldyn Analyse de trajectoires de Dynamique Moléculaire, en particulier pour comparer avec la diffusion de neutrons Interface graphique Basé sur MMTK Langage : 100% Python Développé depuis 1991 par G. Kneller et collaborateurs http ://dirac.cnrs-orleans.fr/nmoldyn/ PPF Orléans / Tours 20/01/2004 p.39/44

40 nmoldyn PPF Orléans / Tours 20/01/2004 p.40/44

41 PPF et équipement PPF Orléans / Tours 20/01/2004 p.41/44

42 Nos intérêts Mise à disposition de nos codes par une interface Web. Prévoir échange de volumes de données importants (trajectoires MD). Les analyses par nmoldyn sont idéales pour un calcul distribué. PPF Orléans / Tours 20/01/2004 p.42/44

43 Equipement Saclay : 8 noeuds Opteron / partie d une grappe de 64 noeuds du DRECAM / CEA Saclay. Orléans : Grappe de 20 PC bi-proc Pentium III en fin de vie. + PCs de bureau. PPF Orléans / Tours 20/01/2004 p.43/44

44 Remerciements K. Hinsen, CBM Orléans LLB Saclay M.C. Bellissent-Funel, LLB Saclay Saclay V. Hamon, CBM Orléans G. Sutmann, FZ Jülich (D) T. Rog & K. Murzyn, Krakow (PL) PPF Orléans / Tours 20/01/2004 p.44/44

Note de cadrage du PEPI MACS Mathématiques Appliquées & Calcul Scientifique

Note de cadrage du PEPI MACS Mathématiques Appliquées & Calcul Scientifique Note de cadrage du PEPI MACS Mathématiques Appliquées & Calcul Scientifique Périmètre Le périmètre du PEPI concerne les méthodes et outils utilisés pour le traitement informatisé des données scientifiques.

Plus en détail

Olivier Coulaud Projet ScAlApplix. 8 janvier 2008

Olivier Coulaud Projet ScAlApplix. 8 janvier 2008 Simulation de la propagation de fissures dans les lentilles du Laser Méga Joule : de la physique des matériaux au calcul haute performance en passant par l'algorithmique, la visualisation et le pilotage

Plus en détail

Génération aléatoire de structures ordonnées

Génération aléatoire de structures ordonnées Génération aléatoire de structures ordonnées Olivier Roussel Équipe APR Laboratoire d Informatique de Paris 6 Université Pierre et Marie Curie ALÉA 2011 7 mars 2011 Olivier Roussel (LIP6) Génération de

Plus en détail

Programmer plus vite sans calculer trop lentement: le langage Python pour le calcul scientifique

Programmer plus vite sans calculer trop lentement: le langage Python pour le calcul scientifique Programmer plus vite sans calculer trop lentement: le langage Python pour le calcul scientifique Konrad HINSEN Centre de Biophysique Moléculaire (Orléans) Un bref historique 1991: Python est publié 1994:

Plus en détail

Interactions des rayonnements avec la matière

Interactions des rayonnements avec la matière UE3-1 : Biophysique Chapitre 2 : Interactions des rayonnements avec la matière Professeur Jean-Philippe VUILLEZ Année universitaire 2011/2012 Université Joseph Fourier de Grenoble - Tous droits réservés.

Plus en détail

Analyse des propriétés de matériaux sous choc par simulations moléculaires (Monte Carlo et dynamique moléculaire)

Analyse des propriétés de matériaux sous choc par simulations moléculaires (Monte Carlo et dynamique moléculaire) Analyse des propriétés de matériaux sous choc par simulations moléculaires (Monte Carlo et dynamique moléculaire) Laurent Soulard CEA-DAM Ile-de-France laurent.soulard@cea.fr 1 Problématique La DAM est

Plus en détail

TP Méthodes Numériques

TP Méthodes Numériques ENSIMAG 1ère année, 2007-2008 TP Méthodes Numériques Objectifs Les objectifs de ce TP sont : de revenir sur les méthodes de résolution des équations différentielles vues en cours de MN ; d utiliser un

Plus en détail

PROGRAMME DES COURS :

PROGRAMME DES COURS : PROGRAMME DES COURS : M1 : Physique des Matériaux Propriétés thermiques des isolants Défauts et imperfections dans les matériaux cristallins Théorie des électrons libres Capacité calorifique, Conductivités

Plus en détail

1.Principe 2.Algorhithmes 3.Détail de mise en oeuvre 4.Analyse des simulations 5.Relation avec des grandeurs expérimentales

1.Principe 2.Algorhithmes 3.Détail de mise en oeuvre 4.Analyse des simulations 5.Relation avec des grandeurs expérimentales II. Simulations de dynamique moléculaire 1.Principe 2.Algorhithmes 3.Détail de mise en oeuvre 4.Analyse des simulations 5.Relation avec des grandeurs Relation avec la structrure (le modèle) expérimental(e)

Plus en détail

champ de force pour la dynamique du chromophore de protéines fluorescentes GFP

champ de force pour la dynamique du chromophore de protéines fluorescentes GFP Détermination d un d champ de force pour la dynamique du chromophore de protéines fluorescentes GFP Germain Vallverdu, Jacqueline Ridard, Bernard Lévy, Isabelle Demachy Laboratoire de Chimie Physique Université

Plus en détail

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES RAPPELS DE MATHEMATIQUES ORTHOPHONIE Première année 27 28 Dr MF DAURES 1 RAPPELS DE MATHEMATIQUES I - LES FONCTIONS A - Caractéristiques générales des fonctions B - La fonction dérivée C - La fonction

Plus en détail

Programme du DAEU B. A compter d octobre 2013. IPST-Cnam/UPS

Programme du DAEU B. A compter d octobre 2013. IPST-Cnam/UPS Programme du DAEU B A compter d octobre 2013 MATHEMATIQUES 1. Suites numériques Définitions Raisonnement par récurrence Variations d une suite Propriétés des suites arithmétiques et géométriques Comportement

Plus en détail

1. L ADN et l information génétique. l ADN l information génétique est contenue dans l ADN. traduction. comment fait-on une protéine?

1. L ADN et l information génétique. l ADN l information génétique est contenue dans l ADN. traduction. comment fait-on une protéine? 1. L ADN et l information génétique l ADN l information génétique est contenue dans l ADN (ADN) (ARN) 1 2 A G T C U comment fait-on une protéine? traduction l information génétique est organisée par triplets

Plus en détail

Dynamique moléculaire. & Imagerie par auto-diffraction électronique

Dynamique moléculaire. & Imagerie par auto-diffraction électronique 1 / 27 Dynamique moléculaire ultra-rapiderapide & Imagerie par auto-diffraction électronique 2 / 27 Principaux axes de recherche: - Contrôle laser par résonances inhabituelles et applications Contrôle

Plus en détail

ParMat : Parallélisation pour la simulation des Matériaux.

ParMat : Parallélisation pour la simulation des Matériaux. : Parallélisation pour la simulation des Matériaux. G. Bencteux (EDF) 3 septembre 2008 Outline 1 2 Un algorithme d ordre N pour les calculs ab initio (DFT/HF) 3 Simulation du dommage d irradiation par

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

Définition La thermodynamique est la description macroscopique des propriétés de la matière en termes de grandeurs physiques spécifiques

Définition La thermodynamique est la description macroscopique des propriétés de la matière en termes de grandeurs physiques spécifiques Thermodynamique du grec Thermos: chaud du grec Dunamis: puissance Pr. Alfonso San Miguel Laboratoire de Physique de la Matière Condensée et Nanostructures Bât L. Brillouin Définition La thermodynamique

Plus en détail

FRET ( Förster / fluorescence resonance energy transfer )

FRET ( Förster / fluorescence resonance energy transfer ) FRET ( Förster / fluorescence resonance energy transfer ) I - Théorie II - Méthodes de mesure III - Applications à des études biologiques IV - Un exemple de l utilisation du FRET : étude de l interaction

Plus en détail

Problèmes de fiabilité dépendant du temps

Problèmes de fiabilité dépendant du temps Problèmes de fiabilité dépendant du temps Bruno Sudret Dépt. Matériaux et Mécanique des Composants Pourquoi la dimension temporelle? Rappel Résistance g( RS, ) = R S Sollicitation g( Rt (), St (),) t =

Plus en détail

Simulation des mouvements de protéines membranaires Application aux Complexes II et III de la chaine respiratoire

Simulation des mouvements de protéines membranaires Application aux Complexes II et III de la chaine respiratoire Simulation des mouvements de protéines membranaires Application aux Complexes II et III de la chaine respiratoire M. Beurton-Aimar 1 N. Parisey 2 F. Vallée 1 1 UMR 5800 - LaBRI - Université de Bordeaux

Plus en détail

«Pièges», «erreurs» et pathologie des calculs numériques

«Pièges», «erreurs» et pathologie des calculs numériques Session de formation continue ENPC «Pièges», «erreurs» et pathologie des calculs numériques 6-8 octobre 2010 Philippe Mestat (LCPC) «Pièges» pour débutant?. Conditions limites en déplacements : il faut

Plus en détail

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème... TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................

Plus en détail

ANNEXE 1 BTS AGENCEMENT DE L'ENVIRONNEMENT ARCHITECTURAL Programme de mathématiques

ANNEXE 1 BTS AGENCEMENT DE L'ENVIRONNEMENT ARCHITECTURAL Programme de mathématiques ANNEXE BTS AGENCEMENT DE L'ENVIRONNEMENT ARCHITECTURAL Programme de mathématiques L'enseignement des mathématiques dans les sections de techniciens supérieurs Agencement de l'environnement architectural

Plus en détail

Premier projet (Thèse) : Étude des mécanismes dinteraction protéineligand par une approche couplant la simulation moléculaire et la chimie quantique

Premier projet (Thèse) : Étude des mécanismes dinteraction protéineligand par une approche couplant la simulation moléculaire et la chimie quantique Parmi les projets en cours sur la thématique Bioinformatique du Laboratoire de Biochimie et Génétique Moléculaire (LBGM), deux d entre eux seront présentés ici et sont orientés uniquement vers l utilisation

Plus en détail

PhotoPhysique des Protéines Fluorescentes (P3F)

PhotoPhysique des Protéines Fluorescentes (P3F) PhotoPhysique des Protéines Fluorescentes (P3F) BIO (F. Merola, M. Erard, A. Espagne, H. Laguitton-Pasquier) Spectroscopie d émission de fluorescence résolue en temps CTM (I. Demachy, J. Ridard, B. Levy,

Plus en détail

Unité d Enseignement Libre Université de Nice- Sophia Antipolis F. Millour PAGE WEB DU COURS : www.oca.eu/spip.php?article593 accessible via

Unité d Enseignement Libre Université de Nice- Sophia Antipolis F. Millour PAGE WEB DU COURS : www.oca.eu/spip.php?article593 accessible via Les moyens d observations en astronomie & astrophysique Unité d Enseignement Libre Université de Nice- Sophia Antipolis F. Millour PAGE WEB DU COURS : www.oca.eu/spip.php?article593 accessible via www.oca.eu/fmillour

Plus en détail

NumPy et al. Le calcul Scientifique en PYTHON. Konrad HINSEN Centre de Biophysique Moléculaire (Orléans) et Synchrotron Soleil (St Aubin)

NumPy et al. Le calcul Scientifique en PYTHON. Konrad HINSEN Centre de Biophysique Moléculaire (Orléans) et Synchrotron Soleil (St Aubin) NumPy et al. Le calcul Scientifique en PYTHON Konrad HINSEN Centre de Biophysique Moléculaire (Orléans) et Synchrotron Soleil (St Aubin) Python et le logiciel libre Python est un logiciel libre. NumPy

Plus en détail

Enoncé des travaux pratiques. du cours OpenMP

Enoncé des travaux pratiques. du cours OpenMP Enoncé des travaux pratiques Enoncé des travaux pratiques du cours OpenMP Enoncé des travaux pratiques : description Description Les travaux pratiques se dérouleront sur les nœuds vargas (grappes de 35

Plus en détail

Quelques exemples d'utilisation de la modélisation stochastique en imagerie médicale

Quelques exemples d'utilisation de la modélisation stochastique en imagerie médicale Quelques exemples d'utilisation de la modélisation stochastique en imagerie médicale Christine Graffigne Université René Descartes Traitement d'images Sciences pour l'ingénieur, informatique et mathématiques

Plus en détail

La plate-forme de modélisation et simulation

La plate-forme de modélisation et simulation La plate-forme de modélisation et simulation Hélène Raynal U-MIAT, INRA, Toulouse 1 / 25 Plan Eléments de contexte Les spécifications qui ont prévalu à la mise en place de la solution Principaux services

Plus en détail

D U G A Z P A R F A I T M O N O A T O M I Q U E A U X F L U I D E S R E E L S E T A U X P H A S E S C O N D E N S E E S

D U G A Z P A R F A I T M O N O A T O M I Q U E A U X F L U I D E S R E E L S E T A U X P H A S E S C O N D E N S E E S THERMODYNAMIQUE Lycée F.BUISSON PTSI D U G A Z P A R F A I T M O N O A T O M I Q U E A U X F L U I D E S R E E L S E T A U X P H A S E S C O N D E N S E E S Ce chapitre pourrait s appeler du monde moléculaire

Plus en détail

Eléments de Physique Nucléaire

Eléments de Physique Nucléaire Eléments de Physique Nucléaire 1 SOMMAIRE Chapitre I : Caractéristiques générales du Noyau Chapitre II : Énergie de liaison du Noyau Chapitre III : Transformations radioactives Chapitre IV : Réactions

Plus en détail

TD 9 Problème à deux corps

TD 9 Problème à deux corps PH1ME2-C Université Paris 7 - Denis Diderot 2012-2013 TD 9 Problème à deux corps 1. Systèmes de deux particules : centre de masse et particule relative. Application à l étude des étoiles doubles Une étoile

Plus en détail

Analyse et mesure de performances du calcul distribué

Analyse et mesure de performances du calcul distribué Analyse et mesure de performances du calcul distribué Mohsine Eleuldj Département Génie Informatique, EMI eleuldj@emi.ac.ma CruCID Workshop, EMI, Rabat, 5 au 7 juillet 1999 Motivation Types d applications

Plus en détail

Méthodes Monte Carlo Inverse RMC et EPSR

Méthodes Monte Carlo Inverse RMC et EPSR Méthodes Monte Carlo Inverse RMC et EPSR Laurent Cormier Institut de Minéralogie et Physique des Milieux Condensés Université Pierre et Marie Curie CNRS Paris, France Reverse Monte Carlo (RMC) = méthode

Plus en détail

Activités en FIabilité et MAintenance au sein de l équipe FIGAL du Laboratoire Jean Kuntzmann

Activités en FIabilité et MAintenance au sein de l équipe FIGAL du Laboratoire Jean Kuntzmann Activités en FIabilité et MAintenance au sein de l équipe FIGAL du Laboratoire Jean Kuntzmann Laurent Doyen Laboratoire Jean Kuntzmann (LJK) Département probabilités et statistique Equipe FIGAL LJK - Grenoble

Plus en détail

Conception de Médicament

Conception de Médicament Conception de Médicament Approche classique HTS Chimie combinatoire Rational Drug Design Ligand based (QSAR) Structure based (ligand et ou macromolec.) 3DQSAR Docking Virtual screening Needle in a Haystack

Plus en détail

Résonance Magnétique Nucléaire : RMN

Résonance Magnétique Nucléaire : RMN 21 Résonance Magnétique Nucléaire : RMN Salle de TP de Génie Analytique Ce document résume les principaux aspects de la RMN nécessaires à la réalisation des TP de Génie Analytique de 2ème année d IUT de

Plus en détail

Sujet. calculatrice: autorisée durée: 2 heures (10h-12h)

Sujet. calculatrice: autorisée durée: 2 heures (10h-12h) DS SCIENCES PHYSIQUES MATHSPÉ CONCOURS BLANC calculatrice: autorisée durée: 2 heures (10h-12h) Sujet Vaisseau spatial... 2 I.Vaisseau spatial dans un champ newtonien... 2 II.Vitesse de libération...3 A.Option

Plus en détail

Module Mixmod pour OpenTURNS

Module Mixmod pour OpenTURNS Module Mixmod pour OpenTURNS Régis LEBRUN EADS Innovation Works 23 septembre 2013 EADS IW 2013 (EADS Innovation Work) 23 septembre 2013 1 / 21 Outline Plan 1 OpenTURNS et propagation d incertitudes 2 Mixmod

Plus en détail

Chaîne d additions ATTENTION!

Chaîne d additions ATTENTION! Chaîne d additions Épreuve pratique d algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l épreuve: 3 heures 30 minutes Juin 2012 ATTENTION! N oubliez en aucun cas

Plus en détail

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique PGA & SDUEE Année 008 09 Interaction milieux dilués rayonnement Travaux dirigés n. Résonance magnétique : approche classique Première interprétation classique d une expérience de résonance magnétique On

Plus en détail

COMPOSITION DE PHYSIQUE. Quelques aspects de la fusion contrôlée par confinement magnétique

COMPOSITION DE PHYSIQUE. Quelques aspects de la fusion contrôlée par confinement magnétique ÉCOLE POLYTECHNIQUE FILIÈRE MP CONCOURS D ADMISSION 2007 COMPOSITION DE PHYSIQUE (Durée : 4 heures) L utilisation des calculatrices est autorisée pour cette épreuve. Quelques aspects de la fusion contrôlée

Plus en détail

Les appareillages des Spectrométrie optique

Les appareillages des Spectrométrie optique ATELIERS DE BIOPHOTONIQUE Les appareillages des Spectrométrie optique 1. Spectroscopies optiques conventionnelles Spectrophotomètre, Spectrofluorimètre, 2. Analyse Spectrale en Microscopie de fluorescence

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Détermination des structures moléculaires Structures et diffraction.

Détermination des structures moléculaires Structures et diffraction. Détermination des structures moléculaires Structures et diffraction. Pr. Richard Welter, Institut de Biologie Moléculaire des Plantes, welter@unitra.fr CONTENU DES ENSEIGNEMENTS 1) Discussion sur la notion

Plus en détail

Introduction aux Méthodes de Monte Carlo

Introduction aux Méthodes de Monte Carlo Méthodes de Monte Carlo pour la Modélisation et le Calcul Intensif Applications à la Physique Numérique et à la Biologie Séminaire CIMENT GRID Introduction aux Méthodes de Monte Carlo Olivier François

Plus en détail

Laboratoire N 3. Etude des machines asynchrones triphasées à cage d écureuil

Laboratoire N 3. Etude des machines asynchrones triphasées à cage d écureuil Chapitre 3 Laboratoire N 3 Etude des machines asynchrones triphasées à cage d écureuil 1. But du travail L étude des machines asynchrones à cage d écureuil. 2. Les indications pour l exécution du travail

Plus en détail

4 THÉORIE CINÉTIQUE DES GAZ. 4.1 Échelles d observations et fluctuations

4 THÉORIE CINÉTIQUE DES GAZ. 4.1 Échelles d observations et fluctuations 4 THÉORIE CINÉTIQUE DES GAZ 4.1 Échelles d observations et fluctuations On s intéresse à un volume V de gaz très grand : qq m 3 dans les conditions normales de température et de pression. Au sein de ce

Plus en détail

Kick-off ANR Compass

Kick-off ANR Compass Kick-off ANR Compass Contribution MDLS Pierre Kestener CEA-Saclay, DSM, France Maison de la Simulation Meudon, 14 mars 2013 1 / 10 La Maison de la Simulation Laboratoire de recherche pluridisciplinaire

Plus en détail

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S Concours EPIT 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette MW K1200S Durée : 2h. Calculatrices autorisées. Présentation du problème Le problème

Plus en détail

Diplôme de Qualification en Physique Radiologique et Médicale

Diplôme de Qualification en Physique Radiologique et Médicale Diplôme de Qualification en Physique Radiologique et Médicale Règlement du concours de janvier 2010 pour le recrutement de septembre 2010 Sommaire Conditions d inscription au concours... page 1 Date du

Plus en détail

Chapitre 5 : Noyaux, masse et énergie

Chapitre 5 : Noyaux, masse et énergie Chapitre 5 : Noyaux, masse et énergie Connaissances et savoir-faire exigibles : () () (3) () (5) (6) (7) (8) Définir et calculer un défaut de masse et une énergie de liaison. Définir et calculer l énergie

Plus en détail

Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS

Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS Formations EViews FORMATIONS GENERALES INTRODUCTIVES DEB : DECOUVERTE DU LOGICIEL EVIEWS INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS FORMATIONS METHODES ECONOMETRIQUES VAR : MODELES

Plus en détail

Résumé du document «Programmes des classes préparatoires aux Grandes Écoles ; Discipline : Informatique ; Première et seconde années - 2013»

Résumé du document «Programmes des classes préparatoires aux Grandes Écoles ; Discipline : Informatique ; Première et seconde années - 2013» Résumé du document «Programmes des classes préparatoires aux Grandes Écoles ; Discipline : Informatique ; Première et seconde années - 2013» I Objectifs Niveau fondamental : «on se fixe pour objectif la

Plus en détail

2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire

2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire Chapitre VII Forces électromagnétiques VII.a. Force de Lorentz La force à laquelle est soumis, à un instant t, un point matériel de charge q, situé en M et se déplaçant à une vitesse v(t) par rapport à

Plus en détail

Modélisation stochastique des données à partir d essais sur matériaux. Pr. Denys Breysse Université Bordeaux 1

Modélisation stochastique des données à partir d essais sur matériaux. Pr. Denys Breysse Université Bordeaux 1 Modélisation stochastique des données à partir d essais sur matériaux Pr. Denys Breysse Université Bordeaux 1 Hasard cause fictive de ce qui arrive sans raison apparente ou explicable (Petit Robert). Ce

Plus en détail

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Université Paris Diderot Physique L2 2014-2015 Simulations Numériques SN4 Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Objectifs : Simuler

Plus en détail

Théories analytiques du transport des ions en solution - Application aux poreux chargés.

Théories analytiques du transport des ions en solution - Application aux poreux chargés. Atelier MoMAS PARIS 2010 Théories analytiques du transport des ions en solution Application aux poreux chargés. O. Bernard, J.F. Dufrêche, P. Turq. Laboratoire Physicochimie des Electrolytes Colloides

Plus en détail

Mesures à la limite quantique

Mesures à la limite quantique Mesures à la limite quantique ~ 3 ème ème cours ~ A. Heidmann Laboratoire Kastler Brossel Plan du troisième cours Mesures en continu, mesure de position Mesures en continu théorie de la photodétection

Plus en détail

Processus Markoviens Déterministes par Morceaux et Fiabilité Dynamique

Processus Markoviens Déterministes par Morceaux et Fiabilité Dynamique Processus Markoviens Déterministes par Morceaux et Fiabilité Dynamique Karen Gonzalez Benoîte de Saporta et François Dufour IMB, Université Bordeaux Neuvième Colloque Jeunes Probabilistes et Statisticiens

Plus en détail

téléphone sur l'exposition de la tête»

téléphone sur l'exposition de la tête» «Analyse statistique de l'influence de la position du téléphone sur l'exposition de la tête» A.Ghanmi 1,2,3 J.Wiart 1,2, O.Picon 3 1 Orange Labs R&D 2 WHIST LAB (http://whist.institut-telecom.fr), 3 Paris

Plus en détail

Université de Monastir Faculté des Sciences de Monastir. Plan d études

Université de Monastir Faculté des Sciences de Monastir. Plan d études Université de Monastir Faculté des Sciences de Monastir Plan d études Année universitaire 0/0 Licences fondamentales LFM, LFP, LFC, LFI, LFEEA, LFPC Licence de Mathématiques Première Année (L) : année

Plus en détail

Modèle classique Extensions Modèle multi-branches. Théorie de la ruine. Esterina Masiello (ISFA)

Modèle classique Extensions Modèle multi-branches. Théorie de la ruine. Esterina Masiello (ISFA) Esterina Masiello Institut de Science Financière et d Assurances Université Lyon 1 Premières Journées Actuarielles de Strasbourg 6-7 octobre 2010 En résumé... Modèle classique de la théorie de la ruine

Plus en détail

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE CP7 MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE 1 ) Relation d'équivalence entre la masse et l'énergie -énergie de liaison 2 ) Une unité d énergie mieux adaptée 3 ) application 4

Plus en détail

Rapport d activité. Mathieu Souchaud Juin 2007

Rapport d activité. Mathieu Souchaud Juin 2007 Rapport d activité Mathieu Souchaud Juin 2007 Ce document fait la synthèse des réalisations accomplies durant les sept premiers mois de ma mission (de novembre 2006 à juin 2007) au sein de l équipe ScAlApplix

Plus en détail

Informatique en CPGE

Informatique en CPGE Informatique en CPGE L ingénieur doit maîtriser les concepts fondamentaux de l informatique pour : communiquer avec les informaticiens comprendre les questions de complexité algorithmique, de précision

Plus en détail

Caractérisation(s) d écoulements en microfluidique

Caractérisation(s) d écoulements en microfluidique Caractérisation(s) d écoulements en microfluidique Vélocimétrie à l échelle du micron: principe, applications, développements Pierre Joseph pjoseph@lpmcn.univ-lyon1.fr Plan du cours Introduction : principe

Plus en détail

Informatique commune en CPGE PSI-PC-PT-MP-TSI-TPC

Informatique commune en CPGE PSI-PC-PT-MP-TSI-TPC Informatique commune en CPGE PSI-PC-PT-MP-TSI-TPC L ingénieur doit maîtriser les concepts fondamentaux de l informatique pour : communiquer avec les informaticiens comprendre les questions de complexité

Plus en détail

Pourquoi le rayonnement en météorologie?

Pourquoi le rayonnement en météorologie? Rayonnement Atmosphérique: Equation du Transfert Radiatif: modèles simplifiés 1 Pourquoi le rayonnement en météorologie? C est la seule source d énergie du système Terre-Atmosphère L atmosphère ne consomme

Plus en détail

MASTER SC. ET TECHNOLOGIE : MATH. & APPLICATION

MASTER SC. ET TECHNOLOGIE : MATH. & APPLICATION MASTER SC. ET TECHNOLOGIE : MATH. & APPLICATION Résumé de la formation Type de diplôme : MASTER 1 et 2 Domaine ministériel : Sciences Mention : Mathématiques et applications Présentation Le master 1 est

Plus en détail

Intérêt du découpage en sous-bandes pour l analyse spectrale

Intérêt du découpage en sous-bandes pour l analyse spectrale Intérêt du découpage en sous-bandes pour l analyse spectrale David BONACCI Institut National Polytechnique de Toulouse (INP) École Nationale Supérieure d Électrotechnique, d Électronique, d Informatique,

Plus en détail

Réunion de rentrée étudiants M2 Conception, Modélisation et Architecture de Systèmes Industriels Complexes

Réunion de rentrée étudiants M2 Conception, Modélisation et Architecture de Systèmes Industriels Complexes 1 Réunion de rentrée étudiants M2 Conception, Modélisation et Architecture de Systèmes Industriels Complexes Eric Goubault 08/09/2015 Pourquoi COMASIC? 2 notre société technologique repose sur des systèmes

Plus en détail

Chapitre 0-2 Introduction générale au cours de BCPST1

Chapitre 0-2 Introduction générale au cours de BCPST1 Chapitre 0-2 Introduction générale au cours de BCPST Extrait du programme I. Les grandeurs en sciences physiques Définition : une grandeur est une observable du système On peut la mettre en évidence a.

Plus en détail

Atelier : L énergie nucléaire en Astrophysique Correction. Elisabeth Vangioni. Institut d Astrophysique de Paris Fleurance, 8 Août 2005

Atelier : L énergie nucléaire en Astrophysique Correction. Elisabeth Vangioni. Institut d Astrophysique de Paris Fleurance, 8 Août 2005 Atelier : L énergie nucléaire en Astrophysique Correction Elisabeth Vangioni Institut d Astrophysique de Paris Fleurance, 8 Août 2005 I. La source d énergie du Soleil : calcul de son temps de vie. Question

Plus en détail

Plan de Formation 2015 Du réseau :

Plan de Formation 2015 Du réseau : Plan de Formation 2015 Du réseau : 1 Identification du réseau national Nom du réseau Objet (thématiques/technologies) Nom et coordonnées du responsable Nom et coordonnées du référent formation Adresse

Plus en détail

Niveaux 1 2 3 4 Option spécifique - 2 2 3 Option complémentaire - - 2 2

Niveaux 1 2 3 4 Option spécifique - 2 2 3 Option complémentaire - - 2 2 Direction de l'instruction publique, de la culture et du sport Direktion für Erziehung, Kultur und Sport Service de l enseignement secondaire du deuxième degré Amt für Unterricht der Sekundarstufe 2 CANTON

Plus en détail

Applications des codes Monte Carlo «MCNP» et «PENELOPE» en radiothérapie du cancer.

Applications des codes Monte Carlo «MCNP» et «PENELOPE» en radiothérapie du cancer. Applications des codes Monte Carlo «MCNP» et «PENELOPE» en radiothérapie du cancer. E.Franchisseur, B.Serrano, S.Hachem, R.J.Bensadoun, A.Monnier, P.Iacconi, J.Barthe Laboratoire de Physique Electronique

Plus en détail

M1/UE CSy - module P8 1

M1/UE CSy - module P8 1 M1/UE CSy - module P8 1 PROJET DE SIMULATION AVEC MATLAB MODÉLISATION D UNE SUSPENSION ET ÉTUDE DE SON COMPORTEMENT DYNAMIQUE La suspension d une automobile est habituellement assurée par quatre systèmes

Plus en détail

Retour d expérience noeud de stockage BeeGFS

Retour d expérience noeud de stockage BeeGFS Retour d expérience noeud de stockage BeeGFS Philippe Dos Santos / Georges Raseev Fédération de Recherche Lumière Matière 06 novembre 2014 LOGO CNRS LOGO IO Philippe Dos Santos / Georges Raseev (FédérationRetour

Plus en détail

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples. Référentiel CAP Sciences Physiques Page 1/9 SCIENCES PHYSIQUES CERTIFICATS D APTITUDES PROFESSIONNELLES Le référentiel de sciences donne pour les différentes parties du programme de formation la liste

Plus en détail

SIMULATION DES AUTOUR D UN MODELE SIMPLIFIE DE VOITURE AUTOMOBILE

SIMULATION DES AUTOUR D UN MODELE SIMPLIFIE DE VOITURE AUTOMOBILE Simulation SIMULATION AUTOUR D UN MODELE SIMPLIFIE DE VOITURE AUTOMOBILE Michel VISONNEAU et Emmanuel GUILMINEAU Laboratoire de Mécanique des Fluides CNRS UMR 6598, Ecole Centrale de Nantes Nantes, FRANCE

Plus en détail

I- Définition d'un état turbulent ; Transition vers la turbulence expérience de Osborne Reynolds (1842-1912)

I- Définition d'un état turbulent ; Transition vers la turbulence expérience de Osborne Reynolds (1842-1912) I- Définition d'un état turbulent ; Transition vers la turbulence expérience de Osborne Reynolds (1842-1912) R e = UD/ν Re>2000 Re>4000 M1 fluides : turbulence 1 M1 fluides : turbulence 2 I- Définition

Plus en détail

Le principe de moindre action

Le principe de moindre action Le principe de moindre action F. Hérau Laboratoire de Mathématiques Université de Reims Fete de la science novembre 2008 Définition Principe de moindre action : en physique, hypothèse selon laquelle la

Plus en détail

Variations de la circulation océanique dans l'atlantique Nord depuis 1955 : modèle global NEMO ORCA ½ avec rappel aux données in situ

Variations de la circulation océanique dans l'atlantique Nord depuis 1955 : modèle global NEMO ORCA ½ avec rappel aux données in situ Variations de la circulation océanique dans l'atlantique Nord depuis 1955 : modèle global NEMO ORCA ½ avec rappel aux données in situ T. Huck, P. Bellec, R. Dussin, F. Gaillard, J.-M. Molines, A. M. Treguier

Plus en détail

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07 Axe MSA Bilan scientifique et perspectives ENSM.SE L. Carraro - 17 décembre 07 17 décembre 07 2 Plan Compétences acquises domaines scientifiques compétences transverses Domaines ou activités accessibles

Plus en détail

Domaines d application, exemples La démarche de l Automatique Un premier exemple. Automatique. Dynamique et Contrôle des Systèmes

Domaines d application, exemples La démarche de l Automatique Un premier exemple. Automatique. Dynamique et Contrôle des Systèmes Automatique Dynamique et Contrôle des Systèmes NICOLAS PETIT Centre Automatique et Systèmes Unité Mathématiques et Systèmes Mines ParisTech nicolas.petit@mines-paristech.fr 28 novembre 2008 Informations

Plus en détail

Etude expérimentale de l influence des ouvrages de protection sur les avalanches et des pressions d impact

Etude expérimentale de l influence des ouvrages de protection sur les avalanches et des pressions d impact Etude expérimentale de l influence des ouvrages de protection sur les avalanches et des pressions d impact 2009 2012 Paolo Caccamo Université de Grenoble Encadrants : Florence Naaim-Bouvet, Thierry Faug,

Plus en détail

Table des matières. Avant propos. Chapitre I NOTIONS SUR LES SYSTEMES

Table des matières. Avant propos. Chapitre I NOTIONS SUR LES SYSTEMES Table des matières Avant propos Chapitre I NOTIONS SUR LES SYSTEMES 1. Systèmes linéaires 1 2. Systèmes stationnaires 1 3. Systèmes continus 2 4. Systèmes linéaires invariants dans le temps (LIT) 2 4.1

Plus en détail

Nicolas Kielbasiewicz C.D.C.S.P. / I.S.T.I.L./ U.C.B.L. Domaine Scientifique de la Doua 15, boulevard André Latarjet 69622 Villeurbanne cedex

Nicolas Kielbasiewicz C.D.C.S.P. / I.S.T.I.L./ U.C.B.L. Domaine Scientifique de la Doua 15, boulevard André Latarjet 69622 Villeurbanne cedex Nicolas Kielbasiewicz C.D.C.S.P. / I.S.T.I.L./ U.C.B.L. Domaine Scientifique de la Doua 15, boulevard André Latarjet 69622 Villeurbanne cedex 27 ans e-mail : nicolas.kielbasiewicz@cdcsp.univ-lyon1.fr Permis

Plus en détail

Chaleur, température, pression, gaz parfait, diffusion,... v 7

Chaleur, température, pression, gaz parfait, diffusion,... v 7 9 Chaleur, température, pression, gaz parfait, diffusion,... v 7 1 La Température T Instrument de mesure type: le thermomètre à Hg. Calibration: échelle Celsius de température: 0 C l'eau gèle 100 C l'eau

Plus en détail

Annexe 4 Programmes des classes préparatoires aux Grandes Ecoles

Annexe 4 Programmes des classes préparatoires aux Grandes Ecoles Annexe 4 Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Technologie et biologie (TB) Discipline : Informatique Première et seconde années Programme d informatique

Plus en détail

La Physique Nucléaire. La Φν

La Physique Nucléaire. La Φν La Physique Nucléaire La Φν Sophie Péru Qu est ce que le noyau de l atome? Découverte du noyau Les premiers modèles classiques? Le noyau : particule élémentaire ou système complexe? Les caractéristiques

Plus en détail

COURS DE STATISTIQUE APPLIQUÉE

COURS DE STATISTIQUE APPLIQUÉE UNIVERSITE PROTESTANTE AU CONGO CENTRE CONGOLAIS-ALLEMAND DE MICROFINANCE COURS DE STATISTIQUE APPLIQUÉE Professeur Daniel MUKOKO Samba daniel_mukoko@yahoo.fr Quelques références Droesbeke, Jean-Jacques,

Plus en détail

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

STATISTIQUES. UE Modélisation pour la biologie

STATISTIQUES. UE Modélisation pour la biologie STATISTIQUES UE Modélisation pour la biologie 2011 Cadre Général n individus: 1, 2,..., n Y variable à expliquer : Y = (y 1, y 2,..., y n ), y i R Modèle: Y = Xθ + ε X matrice du plan d expériences θ paramètres

Plus en détail

EXAMENS PROPOSES EN STATIQUE ET CINEMATIQUE DES SOLIDES

EXAMENS PROPOSES EN STATIQUE ET CINEMATIQUE DES SOLIDES EXAMENS PROPOSES EN STATIQUE ET CINEMATIQUE DES SOLIDES L1 Page 41 Institut Supérieur des Etudes Technologique de Nabeul Département de Génie Mécanique EXAMEN DE MECANIQUE GENERALE Année universitaire

Plus en détail

Approche hybride De la correction des erreurs à la sélection de variables

Approche hybride De la correction des erreurs à la sélection de variables Approche hybride De la correction des erreurs à la sélection de variables G.M. Saulnier 1, W. Castaing 2 1 Laboratoire EDYTEM (UMR 5204, CNRS, Université de Savoie) 2 TENEVIA (http://www.tenevia.com) Projet

Plus en détail

Physique des fluides quantiques

Physique des fluides quantiques Physique des fluides quantiques Généralités et exemple des embouteillages électroniques M. Albert 1 1 Institut Non-Linéaire de Nice - Nice Rôle de la physique théorique La physique théorique Modèlise le

Plus en détail