Les équations aux dérivées partielles

Dimension: px
Commencer à balayer dès la page:

Download "Les équations aux dérivées partielles"

Transcription

1 Didier Cassereau Laboratoire d Imagerie Biomédicale, UPMC CNRS INSERM, Paris, France ESPCI - Promotion 133

2 Généralisation du problème des équations différentielles plusieurs degrés de liberté en espace (1D, 2D ou 3D) éventuellement un degré de liberté en temps Quelques exemples souvent rencontrés en simulation numérique l équation d onde transitoire 1 2 u c 2 t 2 = 2 u x 2 [ + 2 u y u z 2 ] l équation de diffusion u t = x ( D u ) x l équation de Poisson 2 u x u = ρ(x, y) y2 2/35

3 L équation de Poisson Approche numérique résolution par différences finies généralisation des méthodes d Euler ou RK remplacement des dérivées partielles par développements de Taylor Maillage limité à une portion du plan xy { xi = x 0 + i x 0 i < I y j = y 0 + j y 0 j < J Conditions aux bords du domaine? 3/35

4 L équation de Poisson Développement de Taylor à l ordre 2 2 u u(x + x, y) + u(x x, y) 2u(x, y) x2 x 2 2 u u(x, y + y) + u(x, y y) 2u(x, y) y2 y 2 en notation discrète 1 x 2 (u i+1,j + u i 1,j 2u i,j ) + 1 y 2 (u i,j+1 + u i,j 1 2u i,j ) = ρ i,j 4/35

5 L équation de Poisson Réindexation 2D = 1D { 0 i < I 0 j < J = k = ij + j, 0 k < IJ nouvelle formulation de la solution (ε x = x 2, ε y = y 2 ) ε x (u k+j+1 + u k J 1 ) + ε y (u k+1 + u k 1 ) 2(ε x + ε y )u k = ρ k Attention : relations différentes sur les frontières du domaine conditions aux limites sur la solution ou ses dérivées lié directement au problème physique que l on résoud 5/35

6 L équation de Poisson Condition de Dirichlet : la solution est nulle en dehors du domaine 1 x 2 (u i+1,j + u i 1,j 2u i,j ) + 1 y 2 (u i,j+1 + u i,j 1 2u i,j ) = ρ i,j sur le côté gauche (i = 0) = 1 x 2 (u 1,j 2u 0,j ) + 1 y 2 (u 0,j+1 + u 0,j 1 2u 0,j ) = ρ 0,j sur le côté droit (i = I 1) = 1 x 2 (u I 2,j 2u I 1,j )+ 1 y 2 (u I 1,j+1 +u I 1,j 1 2u I 1,j ) = ρ I 1,j idem en bas (j = 0) et en haut (j = J 1) 6/35

7 L équation de Poisson Condition de Neumann : la dérivée normale est nulle aux bords 1 x 2 (u i+1,j + u i 1,j 2u i,j ) + 1 y 2 (u i,j+1 + u i,j 1 2u i,j ) = ρ i,j sur le côté gauche (i = 0) 1 x 2 (u 1,j u 0,j ) + 1 y 2 (u 0,j+1 + u 0,j 1 2u 0,j ) = ρ 0,j sur le côté droit (i = I 1) 1 x 2 (u I 2,j u I 1,j ) + 1 y 2 (u I 1,j+1 + u I 1,j 1 2u I 1,j ) = ρ I 1,j idem en bas (j = 0) et en haut (j = J 1) 7/35

8 L équation de Poisson - exemple Potentiel électrostatique en présence de lignes de charge V 2 x 2 + V 2 y 2 = ρ ε 0 ρ = densité volumique de charges ε 0 = permissivité électrique du vide condensateur, domaine 0 x 1 u.a., 0 y 1 u.a. ligne de charges + : 0.25 x 0.75 u.a., y = 0.4 u.a. ligne de charges : 0.25 x 0.75 u.a., y = 0.6 u.a. conditions de Dirichlet maillage de l espace avec N = 65 points = inversion d une matrice /35

9 L équation de Poisson - exemple Matrice très creuse (sparse matrix) nombre de termes : (env. 136 Mo) termes non nuls : (rapport 855) Méthodes d inversion pivot de Gauss si on a la place en mémoire Jacobi ou Gauss-Seidel + stockage sparse avec éventuellement sur-relaxation x i,k+1 = (1 ω)x i,k + ω b i a ij x j,k+1 a ii j<i j>i a ij x j,k ω : facteur de relaxation à choisir de manière optimale 9/35

10 L équation de Poisson - résultats points, 136 Mo, 51 secondes de calcul 10/35

11 L équation de Poisson - résultats points, 2.2 Go, 57 minutes 11/35

12 Problème aux valeurs initiales Formulation générale à une dimension (conservation du flux F) u t = x ( F( u) ) Exemple : équation d onde à une dimension Variables intermédiaires r = u x r t = ( ) u t x = u 2 u2 = c2 t2 x 2 u et s = t = ( u x t s t = 2 u t 2 = c2 2 u x 2 = u x ) = s x ( c 2 u x ) = x (c2 r) 12/35

13 Transformation de l équation d onde 1D r t = ( ) u = t x x s t = 2 u t 2 = c2 2 u x 2 = u x ( u t ) = s x ( c 2 u x ) = x (c2 r) = t ( r s ) }{{} u = x ( 0 1 c 2 0 ) ( r s ) } {{ } F( u) 13/35

14 Cas particulier de l équation (x, t) d ordre 1 Forme générale de l équation u u = c t x Résolution par différences finies, maillage de l espace et du temps { xj = x 0 + j x u t n = t 0 + n t n,j = u(t n, x j ) approximation d Euler en temps (plus simple) u t u n+1,j u n,j t approximation du deuxième ordre en espace (plus précis) u x u n,j+1 u n,j 1 2 x 14/35

15 Cas particulier de l équation (x, t) d ordre 1 Relation d itération u n+1,j = u n,j c t 2 x (u n,j+1 u n,j 1 ) Algorithme FTCS (Forward Time Centered Space) schéma explicite (calcul direct au temps n + 1 en fonction de la solution au temps n implémentation très simple reste à définir l état initial u 0,j, j, et les conditions aux bords droit et gauche = Stabilité de l itération? 15/35

16 Stabilité de l itération Cas particulier des solutions stationnaires monochromatiques u(t, x) = e i2πft v(x) v(x) = v 0 e ikx avec k = 2πf /c (nombre d onde) Solution analytique discrétisée en posant χ(k) = e i2πf t u n,j = v 0 e i2πfn t e ikj x = v 0 χ(k) n e ikj x Analyse de la stabilité - approche de Neumann : comportement de l itération pour une solution de la forme u n,j = χ(k) n e ikj x 16/35

17 Stabilité de l itération u n+1,j = u n,j c t 2 x (u n,j+1 u n,j 1 ) u n,j = χ(k) n e ikj x = χ(k) = 1 i c t x sin(k x) = χ(k) = 1 + ( c t x sin(k x) ) 2 > 1 k Méthode intrinsèquement instable numériquement 17/35

18 Algorithme FTCS - première variante On réduit nos ambitions en terme de précision on conserve l approximation d ordre 1 en temps u t u n+1,j u n,j t on se limite à l ordre 1 en espace également = Relation d itération u x u n,j+1 u n,j x u n+1,j = u n,j c t x (u n,j+1 u n,j ) 18/35

19 Algorithme FTCS - première variante Etude de la stabilité χ(k) = 1 + c t (1 cos(k x)) x } {{ } 1 i c t x sin(k x) = χ(k) > 1 k (exception cos(k x) = 1) Méthode intrinsèquement instable numériquement 19/35

20 Algorithme FTCS - deuxième variante La dérivée spatiale est calculée à gauche et non à droite on conserve l approximation d ordre 1 en temps u t u n+1,j u n,j t on se limite à l ordre 1 en espace également = Relation d itération u x u n,j u n,j 1 x u n+1,j = u n,j c t x (u n,j u n,j 1 ) 20/35

21 Algorithme FTCS - deuxième variante Etude de la stabilité χ(k) = 1 c t x (1 cos(k x)) + i c t x sin(k x) = χ(k) 1 avec la condition c t x 1 Condition CFL (Courant-Friedrichs-Lewy) indispensable pour assurer la stabilité numérique (CFL à 1D) c t x 1 21/35

22 Algorithme FTCS - stabilisation de Lax Variante de l algorithme FCTS on conserve l ordre 1 en temps on conserve l ordre 2 en espace on remplace u n,j par (u n,j+1 + u n,j 1 )/2 = Relation d itération u n+1,j = u n,j+1 + u n,j 1 2 c t 2 x (u n,j+1 u n,j 1 ) 22/35

23 Algorithme FTCS - stabilisation de Lax Etude de la stabilité χ(k) = cos(k x)) i c t x sin(k x) = χ(k) = cos(k x) 2 + Condition CFL c t x 1 ( c t x ) 2 sin(k x) 2 En général, χ(k) dépend de k, donc de la fréquence 23/35

24 Les conditions aux bords du domaine Domaine limité en temps on spécifie les conditions initiales on itère sur un nombre fini de pas temporels Domaine limité en espace maillage d une partie seulement de l espace physique conditions aux bord du domaine conditions de Dirichlet : champ nul aux bords du domaine conditions de Neumann : dérivée du champ nulle aux bords du domaine conditions intermédiaires : PML (Perfectly Matched Layer) 24/35

25 Exemple 1 : propagation d une déformation le long d une corde vibrante Problème physique corde vibrante de longueur L, tendue à chaque extrémité (tension T) µ = densité linéaire de masse : µ = m/ x condition de Dirichlet à droite mouvement imposé à gauche, suivi de condition de Dirichlet densité linéaire de masse non constante µ 1 sur la moitié gauche de la corde µ 2 sur la moitié droite de la corde Equation du mouvement 2 u t 2 = c2 2 u x 2, c = T µ 25/35

26 Exemple 1 : propagation d une déformation le long d une corde vibrante Développement de Taylor au deuxième ordre u(t + t) u(t) + tu (t) + t2 2 u (t) = u(t t) u(t) tu (t) + t2 2 u (t) 2 u(t, x) t 2 2 u(t, x) x 2 u(t + t, x) + u(t t, x) 2u(t, x) t 2 u(t, x + x) + u(t, x x) 2u(t, x) x 2 26/35

27 Exemple 1 : propagation d une déformation le long d une corde vibrante Relation d itération maillage spatial avec un pas x, N points maillage temporel avec un pas t u n+1,j = 2u n,j u n 1,j + ( c t x ) 2 [u n,j+1 + u n,j 1 2u n,j ] condition CFL : t = x/c max condition de Dirichlet à droite : u n,j = 0, j N mouvement imposé à gauche : u n,0 = e n ( e(n t)) e(t) fonction temporelle décrivant la vibration imposée 27/35

28 Exemple 1 : propagation d une déformation le long d une corde vibrante En live..../corde -N1000 -S1./corde -N1000 -S2./corde -N4000 -S1./corde -N4000 -S2 28/35

29 Exemple 2 : équation de diffusion Problème physique diffusion de la chaleur à 1D u t = D 2 u x 2 état initial u(t = 0, x) = f (x) donné condition de Dirichlet aux bords droit et gauche maillage spatial avec un pas x maillage temporel avec un pas t 29/35

30 Exemple 2 : équation de diffusion Développement de Taylor u t u n+1,j u n,j t 2 u x 2 u n,j+1 + u n,j 1 2u n,j x 2 = u n+1,j = u n,j + D t x 2 (u n,j+1 + u n,j 1 2u n,j ) Condition de Dirichlet : u n,j = 0, j < 0 (bord gauche) u n,j = 0, j N (bord droit) Schéma explicite FTCS 30/35

31 Exemple 2 : équation de diffusion Analyse de la stabilité numérique : solution particulière de la forme u n,j = χ(k) n e ikj x = χ(k) = 1 4 D t x 2 sin2 ( k x 2 ) = Condition de stabilité : t x2 2D Problème : relation quadratique entre t et x x x/2 : t t/4 31/35

32 Exemple 2 : équation de diffusion Régularisation par approche BTCS - méthode implicite on calcule la dérivée spatiale au temps n + 1 et non au temps n = u n+1,j u n,j t = D u n+1,j+1 + u n+1,j 1 2u n+1,j x 2 schéma implicite, plus de calcul direct au temps n + 1 en fonction du temps n = αu n+1,j 1 + (1 + 2α)u n+1,j αu n+1,j+1 = u n,j 32/35

33 Exemple 2 : équation de diffusion Régularisation par approche BTCS - méthode implicite Conditions de Dirichlet aux bords A = 1 + 2α α 0 0 α 1 + 2α α α α 0 0 α 1 + 2α = u n+1 = A 1 u n La matrice peut être inversée une bonne fois pour toutes 33/35

34 Exemple 2 : équation de diffusion Analyse de la stabilité numérique : solution particulière de la forme u n,j = χ(k) n e ikj x = χ(k) = D t ( k x x 2 sin2 2 ) = Méthode inconditionnellement stable 34/35

35 Exemple 2 : équation de diffusion En live..../diffusion -N100 -T /diffusion_implicite -N100 -T Matlab: draw_diffusion./diffusion -N100 -T /diffusion_implicite -N100 -T Matlab: draw_diffusion 35/35

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique 1 ANALYSE NUMERIQUE ET OPTIMISATION Une introduction à la modélisation mathématique et à la simulation numérique G. ALLAIRE 28 Janvier 2014 CHAPITRE I Analyse numérique: amphis 1 à 12. Optimisation: amphis

Plus en détail

Cours d analyse numérique SMI-S4

Cours d analyse numérique SMI-S4 ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

Simulation numérique d un stockage de déchets nucléaires en site géologique profond

Simulation numérique d un stockage de déchets nucléaires en site géologique profond Simulation numérique d un stockage de déchets nucléaires en site géologique profond Page 1 de 12 G. Allaire, M. Briane, R. Brizzi and Y. Capdeboscq CMAP, UMR-CNRS 7641, Ecole Polytechnique 14 juin 2006

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

1 Introduction et modèle mathématique

1 Introduction et modèle mathématique Optimisation parallèle et mathématiques financières Optimisation parallèle et mathématiques financières Pierre Spiteri 1 IRIT ENSEEIHT, UMR CNRS 5505 2 rue Charles Camichel, B.P. 7122 F-31 071 Toulouse,

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques

SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques Durée 4 h Si, au cours de l épreuve, un candidat repère ce qui lui semble être une erreur d énoncé, d une part il le signale au chef

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Les codes linéaires - Chapitre 6 - Principe Définition d un code linéaire Soient p un nombre premier et s est un entier positif. Il existe un unique corps de taille q

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Manuel de validation Fascicule v4.25 : Thermique transitoire des structures volumiques

Manuel de validation Fascicule v4.25 : Thermique transitoire des structures volumiques Titre : TTLV100 - Choc thermique dans un tuyau avec condit[...] Date : 02/03/2010 Page : 1/10 Manuel de Validation Fascicule V4.25 : Thermique transitoire des structures volumiques Document : V4.25.100

Plus en détail

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Mathématique et Automatique : de la boucle ouverte à la boucle fermée Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Maitine.Bergounioux@labomath.univ-orleans.fr Plan 1. Un peu de

Plus en détail

Retournement Temporel

Retournement Temporel Retournement Temporel Rédigé par: HENG Sokly Encadrés par: Bernard ROUSSELET & Stéphane JUNCA 2 juin 28 Remerciements Je tiens tout d'abord à remercier mes responsables de mémoire, M.Bernard ROUSSELET

Plus en détail

TD1 Signaux, énergie et puissance, signaux aléatoires

TD1 Signaux, énergie et puissance, signaux aléatoires TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver

Plus en détail

T.P. FLUENT. Cours Mécanique des Fluides. 24 février 2006 NAZIH MARZOUQY

T.P. FLUENT. Cours Mécanique des Fluides. 24 février 2006 NAZIH MARZOUQY T.P. FLUENT Cours Mécanique des Fluides 24 février 2006 NAZIH MARZOUQY 2 Table des matières 1 Choc stationnaire dans un tube à choc 7 1.1 Introduction....................................... 7 1.2 Description.......................................

Plus en détail

Eléments de Théorie des Graphes et Programmation Linéaire

Eléments de Théorie des Graphes et Programmation Linéaire INSTITUT NATIONAL POLYTECHNIQUE DE LORRAINE Ecole Nationale Supérieure d Electricité et de Mécanique Eléments de Théorie des Graphes et Programmation Linéaire Didier Maquin Professeur à l INPL Version

Plus en détail

Exercice : la frontière des portefeuilles optimaux sans actif certain

Exercice : la frontière des portefeuilles optimaux sans actif certain Exercice : la frontière des portefeuilles optimaux sans actif certain Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Février 0 On considère un univers de titres constitué

Plus en détail

Formation à la C F D Computational Fluid Dynamics. Formation à la CFD, Ph Parnaudeau

Formation à la C F D Computational Fluid Dynamics. Formation à la CFD, Ph Parnaudeau Formation à la C F D Computational Fluid Dynamics Formation à la CFD, Ph Parnaudeau 1 Qu est-ce que la CFD? La simulation numérique d un écoulement fluide Considérer à présent comme une alternative «raisonnable»

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

Journées Télécom-UPS «Le numérique pour tous» David A. Madore. david.madore@enst.fr. 29 mai 2015

Journées Télécom-UPS «Le numérique pour tous» David A. Madore. david.madore@enst.fr. 29 mai 2015 et et Journées Télécom-UPS «Le numérique pour tous» David A. Madore Télécom ParisTech david.madore@enst.fr 29 mai 2015 1/31 et 2/31 : définition Un réseau de R m est un sous-groupe (additif) discret L

Plus en détail

10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010

10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010 10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010 Le compressed sensing pour l holographie acoustique de champ proche II: Mise en œuvre expérimentale. Antoine Peillot 1, Gilles Chardon 2, François

Plus en détail

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008) Examen optimisation Centrale Marseille (28) et SupGalilee (28) Olivier Latte, Jean-Michel Innocent, Isabelle Terrasse, Emmanuel Audusse, Francois Cuvelier duree 4 h Tout resultat enonce dans le texte peut

Plus en détail

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA MATHS FINANCIERES Mireille.Bossy@sophia.inria.fr Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option

Plus en détail

Saisie des chauffe-eau thermodynamiques à compression électrique

Saisie des chauffe-eau thermodynamiques à compression électrique Fiche d application : Saisie des chauffe-eau thermodynamiques à compression électrique Date Modification Version 01 décembre 2013 Précisions sur les CET grand volume et sur les CET sur air extrait 2.0

Plus en détail

Systèmes de communications numériques 2

Systèmes de communications numériques 2 Systèmes de Communications Numériques Philippe Ciuciu, Christophe Vignat Laboratoire des Signaux et Systèmes cnrs supélec ups supélec, Plateau de Moulon, 9119 Gif-sur-Yvette ciuciu@lss.supelec.fr Université

Plus en détail

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M belayach@fsr.ac.ma 1 1.Le réseau

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

LISACode. Un simulateur opérationnel pour LISA. Antoine PETITEAU LISAFrance - le 16 mai 2006

LISACode. Un simulateur opérationnel pour LISA. Antoine PETITEAU LISAFrance - le 16 mai 2006 LISACode Un simulateur opérationnel pour LISA Antoine PETITEAU LISAFrance - le 16 mai 2006 Plan Rappel sur LISACode. Validation du simulateur. Possibilités du simulateur. Résultats obtenus. Bruit de confusion.

Plus en détail

Contribution à la conception par la simulation en électronique de puissance : application à l onduleur basse tension

Contribution à la conception par la simulation en électronique de puissance : application à l onduleur basse tension Contribution à la conception par la simulation en électronique de puissance : application à l onduleur basse tension Cyril BUTTAY CEGELY VALEO 30 novembre 2004 Cyril BUTTAY Contribution à la conception

Plus en détail

La (les) mesure(s) GPS

La (les) mesure(s) GPS La (les) mesure(s) GPS I. Le principe de la mesure II. Equation de mesure GPS III. Combinaisons de mesures (ionosphère, horloges) IV. Doubles différences et corrélation des mesures V. Doubles différences

Plus en détail

Atelier Transversal AT11. Activité «Fourmis» Pierre Chauvet. pierre.chauvet@uco.fr

Atelier Transversal AT11. Activité «Fourmis» Pierre Chauvet. pierre.chauvet@uco.fr Atelier Transversal AT11 Activité «Fourmis» Pierre Chauvet pierre.chauvet@uco.fr Ant : un algorithme inspiré de l éthologie L éthologie Etude scientifique des comportements animaux, avec une perspective

Plus en détail

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. 1 Ce sujet aborde le phénomène d instabilité dans des systèmes dynamiques

Plus en détail

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge

Plus en détail

Chapitre 5 : Flot maximal dans un graphe

Chapitre 5 : Flot maximal dans un graphe Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d

Plus en détail

Traitement bas-niveau

Traitement bas-niveau Plan Introduction L approche contour (frontière) Introduction Objectifs Les traitements ont pour but d extraire l information utile et pertinente contenue dans l image en regard de l application considérée.

Plus en détail

08/07/2015 www.crouzet.com

08/07/2015 www.crouzet.com 17,5mm - 1 Sortie statique 0,7A MUS2 Ref 88827004 Multifonction ou monofonction Multigamme (7 gammes commutables) Multitension Bornes à vis ou à ressort Visualisation des états par 1 led (version relais)

Plus en détail

Object Removal by Exemplar-Based Inpainting

Object Removal by Exemplar-Based Inpainting Object Removal by Exemplar-Based Inpainting Kévin Polisano A partir d un article de A. Criminisi, P. Pérez & H. K. Toyama 14/02/2013 Kévin Polisano Object Removal by Exemplar-Based Inpainting 14/02/2013

Plus en détail

3ème séance de Mécanique des fluides. Rappels sur les premières séances Aujourd hui : le modèle du fluide parfait. 2 Écoulements potentiels

3ème séance de Mécanique des fluides. Rappels sur les premières séances Aujourd hui : le modèle du fluide parfait. 2 Écoulements potentiels 3ème séance de Mécanique des fluides Rappels sur les premières séances Aujourd hui : le modèle du fluide parfait 1 Généralités 1.1 Introduction 1.2 Équation d Euler 1.3 Premier théorème de Bernoulli 1.4

Plus en détail

Applications en imagerie cérébrale (MEG/EEG)

Applications en imagerie cérébrale (MEG/EEG) EEG : mesure du potentiel électrique Ordre de grandeur : qq µ-volts Capteurs : électrodes MEG : mesure du champ magnétique Ordre de grandeur : 10 13 Tesla Capteurs SQUID couplés à des bobines VI. Applications

Plus en détail

Une comparaison de méthodes de discrimination des masses de véhicules automobiles

Une comparaison de méthodes de discrimination des masses de véhicules automobiles p.1/34 Une comparaison de méthodes de discrimination des masses de véhicules automobiles A. Rakotomamonjy, R. Le Riche et D. Gualandris INSA de Rouen / CNRS 1884 et SMS / PSA Enquêtes en clientèle dans

Plus en détail

Contrôle par commande prédictive d un procédé de cuisson sous infrarouge de peintures en poudre.

Contrôle par commande prédictive d un procédé de cuisson sous infrarouge de peintures en poudre. Contrôle par commande prédictive d un procédé de cuisson sous infrarouge de peintures en poudre. Isabelle Bombard, Bruno da Silva, Pascal Dufour *, Pierre Laurent, Joseph Lieto. Laboratoire d Automatique

Plus en détail

Estimation d erreur de propagation acoustique dans la CFD

Estimation d erreur de propagation acoustique dans la CFD Estimation d erreur de propagation acoustique dans la CFD A. Chelius Onera, 29 avenue de la Division Lelerc, 92322 Châtillon, France alain.chelius@onera.fr 1535 CFA 2014 Poitiers On étudie dans cet article

Plus en détail

Simulation Matlab/Simulink d une machine à induction triphasée. Constitution d un référentiel

Simulation Matlab/Simulink d une machine à induction triphasée. Constitution d un référentiel Simulation Matlab/Simulink une machine à inuction triphasée Constitution un référentiel Capocchi Laurent Laboratoire UMR CNRS 6134 Université e Corse 3 Octobre 7 1 Table es matières 1 Introuction 3 Moélisation

Plus en détail

de calibration Master 2: Calibration de modèles: présentation et simulation d

de calibration Master 2: Calibration de modèles: présentation et simulation d Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe

Plus en détail

Introduction à la méthode des éléments finis

Introduction à la méthode des éléments finis ÉCOLE NATIONALE SUPERIEURE DES MINES DE PARIS Introduction à la méthode des éléments finis Michel KERN 1 2004 2005 S3733 / S3735 1 Inria, Rocquencourt, BP 105, 78153 Le Chesnay, Michel.Kern@inria.fr 2

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Compte rendu des TP matlab

Compte rendu des TP matlab Compte rendu des TP matlab Krell Stella, Minjeaud Sebastian 18 décembre 006 1 TP1, Discrétisation de problèmes elliptiques linéaires 1d Soient > 0, a R, b 0, c, d R et f C([0, 1], R). On cerce à approcer

Plus en détail

Programmation Linéaire - Cours 1

Programmation Linéaire - Cours 1 Programmation Linéaire - Cours 1 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Ouvrages de référence V. Chvátal - Linear Programming, W.H.Freeman, New York, 1983.

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Introduction à l analyse numérique : exemple du cloud computing

Introduction à l analyse numérique : exemple du cloud computing Introduction à l analyse numérique : exemple du cloud computing Tony FEVRIER Aujourd hui! Table des matières 1 Equations aux dérivées partielles et modélisation Equation différentielle et modélisation

Plus en détail

Annexe 6. Notions d ordonnancement.

Annexe 6. Notions d ordonnancement. Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. Sophie.Demassey@mines-nantes.fr Résumé Ce document

Plus en détail

Enjeux mathématiques et Statistiques du Big Data

Enjeux mathématiques et Statistiques du Big Data Enjeux mathématiques et Statistiques du Big Data Mathilde Mougeot LPMA/Université Paris Diderot, mathilde.mougeot@univ-paris-diderot.fr Mathématique en Mouvements, Paris, IHP, 6 Juin 2015 M. Mougeot (Paris

Plus en détail

Les algorithmes de base du graphisme

Les algorithmes de base du graphisme Les algorithmes de base du graphisme Table des matières 1 Traçage 2 1.1 Segments de droites......................... 2 1.1.1 Algorithmes simples.................... 3 1.1.2 Algorithmes de Bresenham (1965).............

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN

LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN Les contenues de ce document sont la propriété exclusive de la société REVER. Ils ne sont transmis qu à titre d information et ne peuvent en aucun cas

Plus en détail

Chapitre 2 Caractéristiques des ondes

Chapitre 2 Caractéristiques des ondes Chapitre Caractéristiques des ondes Manuel pages 31 à 50 Choix pédagogiques Le cours de ce chapitre débute par l étude de la propagation des ondes progressives. La description de ce phénomène est illustrée

Plus en détail

Introduction. Mathématiques Quantiques Discrètes

Introduction. Mathématiques Quantiques Discrètes Mathématiques Quantiques Discrètes Didier Robert Facultés des Sciences et Techniques Laboratoire de Mathématiques Jean Leray, Université de Nantes email: v-nantes.fr Commençons par expliquer le titre.

Plus en détail

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème... TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................

Plus en détail

Echantillonnage Non uniforme

Echantillonnage Non uniforme Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas

Plus en détail

ELEC2753 Electrotechnique examen du 11/06/2012

ELEC2753 Electrotechnique examen du 11/06/2012 ELEC2753 Electrotechnique examen du 11/06/2012 Pour faciliter la correction et la surveillance, merci de répondre aux 3 questions sur des feuilles différentes et d'écrire immédiatement votre nom sur toutes

Plus en détail

Sujet 4: Programmation stochastique propriétés de fonction de recours

Sujet 4: Programmation stochastique propriétés de fonction de recours Sujet 4: Programmation stochastique propriétés de fonction de recours MSE3313: Optimisation Stochastiqe Andrew J. Miller Dernière mise au jour: October 19, 2011 Dans ce sujet... 1 Propriétés de la fonction

Plus en détail

Projet de Traitement du Signal Segmentation d images SAR

Projet de Traitement du Signal Segmentation d images SAR Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,

Plus en détail

Introduction à l informatique temps réel Pierre-Yves Duval (cppm)

Introduction à l informatique temps réel Pierre-Yves Duval (cppm) Introduction à l informatique temps réel Pierre-Yves Duval (cppm) Ecole d informatique temps réel - La Londes les Maures 7-11 Octobre 2002 -Définition et problématique - Illustration par des exemples -Automatisme:

Plus en détail

Plus courts chemins, programmation dynamique

Plus courts chemins, programmation dynamique 1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Initiation à la simulation numérique. Eléments d analyse numérique.

Initiation à la simulation numérique. Eléments d analyse numérique. Initiation à la simulation numérique en mécanique des fluides : Eléments d analyse numérique. Cours ENSTA MF307 6 juin 2003 Frédéric DABBENE et Henri PAILLERE Résumé Nous présentons dans ce rapport des

Plus en détail

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique Objectifs Clustering On ne sait pas ce qu on veut trouver : on laisse l algorithme nous proposer un modèle. On pense qu il existe des similarités entre les exemples. Qui se ressemble s assemble p. /55

Plus en détail

MATLAB : COMMANDES DE BASE. Note : lorsqu applicable, l équivalent en langage C est indiqué entre les délimiteurs /* */.

MATLAB : COMMANDES DE BASE. Note : lorsqu applicable, l équivalent en langage C est indiqué entre les délimiteurs /* */. Page 1 de 9 MATLAB : COMMANDES DE BASE Note : lorsqu applicable, l équivalent en langage C est indiqué entre les délimiteurs /* */. Aide help, help nom_de_commande Fenêtre de travail (Command Window) Ligne

Plus en détail

Optimisation Discrète

Optimisation Discrète Prof F Eisenbrand EPFL - DISOPT Optimisation Discrète Adrian Bock Semestre de printemps 2011 Série 7 7 avril 2011 Exercice 1 i Considérer le programme linéaire max{c T x : Ax b} avec c R n, A R m n et

Plus en détail

Licence STS mention Mathématiques Parcours Ingénieur Télécom Bretagne (ITB)

Licence STS mention Mathématiques Parcours Ingénieur Télécom Bretagne (ITB) Licence STS mention Mathématiques Parcours Ingénieur Télécom Bretagne (ITB) FICHE D IDENTITE DE LA FORMATION Domaine de formation : Sciences, Technologies, Santé Intitulé : Licence Sciences, Technologies,

Plus en détail

Masses de données. 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA

Masses de données. 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA Masses de données 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA Rédacteurs : Mjo Huguet / N. Jozefowiez 1. Introduction : Besoins Informations et Aide

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par

Plus en détail

Equipement. électronique

Equipement. électronique MASTER ISIC Les générateurs de fonctions 1 1. Avant-propos C est avec l oscilloscope, le multimètre et l alimentation stabilisée, l appareil le plus répandu en laboratoire. BUT: Fournir des signau électriques

Plus en détail

MCMC et approximations en champ moyen pour les modèles de Markov

MCMC et approximations en champ moyen pour les modèles de Markov MCMC et approximations en champ moyen pour les modèles de Markov Gersende FORT LTCI CNRS - TELECOM ParisTech En collaboration avec Florence FORBES (Projet MISTIS, INRIA Rhône-Alpes). Basé sur l article:

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Première partie. Introduction à la méthodes des différences finies

Première partie. Introduction à la méthodes des différences finies Première partie Introduction à la méthodes des différences finies 5 7 Introduction Nous allons présenter dans cettte partie les idées de base de la méthode des différences finies qui est sans doute la

Plus en détail

Introduction à la Programmation par Contraintes (PPC) Ruslan Sadykov LIX, École Polytechnique

Introduction à la Programmation par Contraintes (PPC) Ruslan Sadykov LIX, École Polytechnique Introduction à la Programmation par Contraintes (PPC) Ruslan Sadykov LIX, École Polytechnique Contenu Introduction Modélisation Problèmes de satisfaction des contraintes Exemples des modèles PPC simples

Plus en détail

Chapitre 13 Numérisation de l information

Chapitre 13 Numérisation de l information DERNIÈRE IMPRESSION LE 2 septembre 2013 à 17:33 Chapitre 13 Numérisation de l information Table des matières 1 Transmission des informations 2 2 La numérisation 2 2.1 L échantillonage..............................

Plus en détail

Algorithmes pour la planification de mouvements en robotique non-holonome

Algorithmes pour la planification de mouvements en robotique non-holonome Algorithmes pour la planification de mouvements en robotique non-holonome Frédéric Jean Unité de Mathématiques Appliquées ENSTA Le 02 février 2006 Outline 1 2 3 Modélisation Géométrique d un Robot Robot

Plus en détail

Systèmes de communications numériques 2

Systèmes de communications numériques 2 Systèmes de Communications Numériques Philippe Ciuciu, Christophe Vignat Laboratoire des Signaux et Systèmes CNRS SUPÉLEC UPS SUPÉLEC, Plateau de Moulon, 91192 Gif-sur-Yvette ciuciu@lss.supelec.fr Université

Plus en détail

Les Conditions aux limites

Les Conditions aux limites Chapitre 5 Les Conditions aux limites Lorsque nous désirons appliquer les équations de base de l EM à des problèmes d exploration géophysique, il est essentiel, pour pouvoir résoudre les équations différentielles,

Plus en détail

SDLV120 - Absorption d'une onde de compression dans un barreau élastique

SDLV120 - Absorption d'une onde de compression dans un barreau élastique Titre : SDLV120 - Absorption d'une onde de compression dan[...] Date : 09/11/2011 Page : 1/9 SDLV120 - Absorption d'une onde de compression dans un barreau élastique Résumé On teste les éléments paraxiaux

Plus en détail

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté 010-011 CHAPITE IV Oscillations libres des systèmes à plusieurs derés de liberté Introduction : Dans ce chapitre, nous examinons

Plus en détail

Régler les paramètres de mesure en choisissant un intervalle de mesure 10µs et 200 mesures.

Régler les paramètres de mesure en choisissant un intervalle de mesure 10µs et 200 mesures. TP Conversion analogique numérique Les machines numériques qui nous entourent ne peuvent, du fait de leur structure, que gérer des objets s composés de 0 et de. Une des étapes fondamentale de l'interaction

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

Module 7: Chaînes de Markov à temps continu

Module 7: Chaînes de Markov à temps continu Module 7: Chaînes de Markov à temps continu Patrick Thiran 1 Introduction aux chaînes de Markov à temps continu 1.1 (Première) définition Ce module est consacré aux processus à temps continu {X(t), t R

Plus en détail

SIMULATION HYBRIDE EN TEMPOREL D UNE CHAMBRE REVERBERANTE

SIMULATION HYBRIDE EN TEMPOREL D UNE CHAMBRE REVERBERANTE SIMULATION HYBRIDE EN TEMPOREL D UNE CHAMBRE REVERBERANTE Sébastien LALLECHERE - Pierre BONNET - Fatou DIOUF - Françoise PALADIAN LASMEA / UMR6602, 24 avenue des landais, 63177 Aubière pierre.bonnet@lasmea.univ-bpclermont.fr

Plus en détail

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA 75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche

Plus en détail

Renforcement des trois compétences : compréhension orale, expression orale et expression écrite à partir de documents et vidéos.

Renforcement des trois compétences : compréhension orale, expression orale et expression écrite à partir de documents et vidéos. Master Mathématiques et Applications Spécialité : Ingénierie mathématique et modélisation Parcours : Mathématique et Informatique : Statistique, Signal, Santé (MI3S) 2015-2016 RÉSUMÉ DES COURS : (dernière

Plus en détail

ÉdIteur officiel et fournisseur de ServIceS professionnels du LogIcIeL open Source ScILab

ÉdIteur officiel et fournisseur de ServIceS professionnels du LogIcIeL open Source ScILab ÉdIteur officiel et fournisseur de ServIceS professionnels du LogIcIeL open Source ScILab notre compétence d'éditeur à votre service créée en juin 2010, Scilab enterprises propose services et support autour

Plus en détail

Licence à distance Chapitre V : Equations différentielles. Méthodes numériques à un pas.

Licence à distance Chapitre V : Equations différentielles. Méthodes numériques à un pas. Licence à distance Chapitre V : Equations différentielles. Méthodes numériques à un pas. M. Granger Table des matières 1 Rappels sur le cours d équations différentielles 2 1.1 Généralités..........................................

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

Architecture des Systèmes d Information Architecture des Systèmes d Information

Architecture des Systèmes d Information Architecture des Systèmes d Information Plan... Tableaux et tris I3 - Algorithmique et programmation 1 Rappels Nicol Delestre 2 Tableaux à n dimensions 3 Initiation aux tris Tableaux - v2.0.1 1 / 27 Tableaux - v2.0.1 2 / 27 Rappels : tableau

Plus en détail

SYLLABUS SEMESTRE 9 Année 2011-2012

SYLLABUS SEMESTRE 9 Année 2011-2012 SYLLABUS SEMESTRE 9 2011-2012 Parcours GM «Génie Mer» Responsable : Olivier Kimmoun Tel.: 04 91 05 43 21 E-mail : olivier.kimmoun@centrale-marseille.fr TRONC COMMUN GM Nb heures élèves (hors examen) GMR-51-P-ELMA

Plus en détail

QUELQUES ACTIVITES RELATIVES A LA PARTIE A Propagation d une onde ; onde progressive. Comment installer le format de compression divx?

QUELQUES ACTIVITES RELATIVES A LA PARTIE A Propagation d une onde ; onde progressive. Comment installer le format de compression divx? Lycée Bi h t QUELQUES ACTIVITES RELATIVES A LA PARTIE A Propagation d une onde ; onde progressive Il semble nécessaire d utiliser des fichiers images, de grande taille généralement, aussi, nous proposons

Plus en détail

Rencontre sur la thématique du Calcul Haute Performance - 13 juin 2012. Better Match, Faster Innovation

Rencontre sur la thématique du Calcul Haute Performance - 13 juin 2012. Better Match, Faster Innovation Better Match, Faster Innovation Rencontre sur la thématique du Calcul Haute Performance - 13 juin 2012 Meeting on the theme of High Performance Computing TABLE DES MATIÈRES Qu est ce qu un imatch? STI

Plus en détail

ALGORITHMIQUE II NOTION DE COMPLEXITE. SMI AlgoII

ALGORITHMIQUE II NOTION DE COMPLEXITE. SMI AlgoII ALGORITHMIQUE II NOTION DE COMPLEXITE 1 2 Comment choisir entre différents algorithmes pour résoudre un même problème? Plusieurs critères de choix : Exactitude Simplicité Efficacité (but de ce chapitre)

Plus en détail