Probabilités et Statistiques Bac Série S

Dimension: px
Commencer à balayer dès la page:

Download "Probabilités et Statistiques Bac Série S"

Transcription

1 EXERCICE N 1 Pondichéry 16 avril Dans une entreprise, on s intéresse à la probabilité qu un salarié soit absent durant une période d épidémie de grippe. Un salarié malade est absent La première semaine de travail, le salarié n est pas malade. Si la semaine n le salarié n est pas malade, il tombe malade la semaine n+ 1 avec une probabilité égale à 0,04. Si la semaine n le salarié est malade, il reste malade la semaine n+ 1 avec une probabilité égale à 0,24. On désigne, pour tout entier naturel n supérieur ou égal à 1, par E n l évènement «le salarié est absent pour cause de maladie la n-ième semaine». On note p n la probabilité de l évènement E n. On a ainsi : p 1 = 0 et, pour tout entier naturel n supérieur ou égal à 1 : 0 p n < a. Déterminer la valeur de p 3 à l aide d un arbre de probabilité. b. Sachant que le salarié a été absent pour cause de maladie la troisième semaine, déterminer la probabilité qu il ait été aussi absent pour cause de maladie la deuxième semaine. 2. a. Recopier sur la copie et compléter l arbre de probabilité donné ci-dessous... E n+1 p n E n... E n+1... E n E n+1 E n+1 b. Montrer que, pour tout entier naturel n supérieur ou égal à 1, p n+1 = 0,2p n + 0,04. c. Montrer que la suite (u n ) définie pour tout entier naturel n supérieur ou égal à 1 par u n = p n 0,05 est une suite géométrique dont on donnera le premier terme et la raison r. En déduire l expression de u n puis de p n en fonction de n et r. d. En déduire la limite de la suite ( p n ). e. On admet dans cette question que la suite ( p n ) est croissante. On considère l algorithme suivant : Variables K et J sont des entiers naturels, P est un nombre réel Initialisation P prend la valeur 0 J prend la valeur 1 Entrée Saisir la valeur de K Traitement Tant que P< 0,05 10 K P prend la valeur 0,2 P+ 0,04 J prend la valeur J+1 Fin tant que Sortie Afficher J À quoi correspond l affichage final J? Pourquoi est-on sûr que cet algorithme s arrête? 1/26

2 3. Cette entreprise emploie 220 salariés. Pour la suite on admet que la probabilité pour qu un salarié soit malade une semaine donnée durant cette période d épidémie est égale à p = 0,05. On suppose que l état de santé d un salarié ne dépend pas de l état de santé de ses collègues. On désigne par X la variable aléatoire qui donne le nombre de salariés malades une semaine donnée. a. Justifier que la variable aléatoire X suit une loi binomiale dont on donnera les paramètres. Calculer l espérance mathématique µ et l écart type σ de la variable aléatoire X. b. On admet que l on peut approcher la loi de la variable aléatoire X µ σ par la loi normale centrée réduite c est-à-dire de paramètres 0 et 1. On note Z une variable aléatoire suivant la loi normale centrée réduite. Le tableau suivant donne les probabilités de l évènement Z < x pour quelques valeurs du nombre réel x. x 1,55 1,24 0,93 0,62 0,31 0,00 0,31 0,62 0,93 1,24 1,55 P(Z < x) 0,061 0,108 0,177 0,268 0,379 0,500 0,621 0,732 0,823 0,892 0,939 Calculer, au moyen de l approximation proposée, une valeur approchée à 10 2 près de la probabilité de l évènement : «le nombre de salariés absents dans l entreprise au cours d une semaine donnée est supérieur ou égal à 7 et inférieur ou égal à 15». Aide 2/26

3 EXERCICE N 2 Liban 28 mai L entreprise Fructidoux fabrique des compotes qu elle conditionne en petits pots de 50 grammes. Elle souhaite leur attribuer la dénomination «compote allégée». La législation impose alors que la teneur en sucre, c est-à-dire la proportion de sucre dans la compote, soit comprise entre 0,16 et 0,18. On dit dans ce cas que le petit pot de compote est conforme. L entreprise possède deux chaînes de fabrication F 1 et F 2. Les parties A et B peuvent être traitées indépendamment Partie A La chaîne de production F 2 semble plus fiable que la chaîne de production F 1. Elle est cependant moins rapide. Ainsi, dans la production totale, 70 % des petits pots proviennent de la chaîne F 1 et 30 % de la chaîne F 2. La chaîne F 1 produit 5 % de compotes non conformes et la chaîne F 2 en produit 1 %. On prélève au hasard un petit pot dans la production totale. On considère les évènements : E : «Le petit pot provient de la chaîne F 2» C : «Le petit pot est conforme.» 1. Construire un arbre pondéré sur lequel on indiquera les données qui précèdent. 2. Calculer la probabilité de l évènement : «Le petit pot est conforme et provient de la chaîne de production F 1.» 3. Déterminer la probabilité de l évènement C. 4. Déterminer, à 10 3 près, la probabilité de l évènement E sachant que l évènement C est réalisé. Partie B 1. On note X la variable aléatoire qui, à un petit pot pris au hasard dans la production de la chaîne F 1, associe sa teneur en sucre. On suppose que X suit la loi normale d espérance m 1 = 0,17 et d écart-type σ 1 = 0,006. Dans la suite, on pourra utiliser le tableau ci-dessous. α β P(α X β) 0,13 0,15 0, ,14 0,16 0, ,15 0,17 0, ,16 0,18 0, ,17 0,19 0, ,18 0,20 0, ,19 0,21 0,000 4 Donner une valeur approchée à 10 4 près de la probabilité qu un petit pot prélevé au hasard dans la production de la chaîne F 1 soit conforme. 2. On note Y la variable aléatoire qui, à un petit pot pris au hasard dans la production de la chaîne F 2, associe sa teneur en sucre. On suppose que Y suit la loi normale d espérance m 2 = 0,17 et d écart-type σ 2. On suppose de plus que la probabilité qu un petit pot prélevé au hasard dans la production de la chaîne F 2 soit conforme est égale à 0,99. Soit Z la variable aléatoire définie par Z = Y m 2 σ 2. a. Quelle loi la variable aléatoire Z suit-elle? 3/26

4 b. Déterminer, en fonction de σ 2 l intervalle auquel appartient Z lorsque Y appartient à l intervalle [0,16 ; 0,18]. c. En déduire une valeur approchée à 10 3 près de σ 2. On pourra utiliser le tableau donné ci-dessous, dans lequel la variable aléatoire Z suit la loi normale d espérance 0 et d écart-type 1. β P( β Z β) 2, ,985 2, ,986 2, ,987 2, ,988 2, ,989 2, ,990 2, ,991 2, ,992 2, ,993 Aide 4/26

5 EXERCICE N 3 Amérique du Nord 30 mai Les parties A B et C peuvent être traitées indépendamment les unes des autres Une boulangerie industrielle utilise une machine pour fabriquer des pains de campagne pesant en moyenne 400 grammes. Pour être vendus aux clients, ces pains doivent peser au moins 385 grammes. Un pain dont la masse est strictement inférieure à 385 grammes est un pain non-commercialisable, un pain dont la masse est supérieure ou égale à 385 grammes est commercialisable. La masse d un pain fabriqué par la machine peut être modélisée par une variable aléatoire X suivant la loi normale d espérance µ=400 et d écart-type σ=11. Les probabilités seront arrondies au millième le plus proche Partie A On pourra utiliser le tableau suivant dans lequel les valeurs sont arrondies au millième le plus proche. x P(X x) 0,035 0,086 0,182 0,325 0,5 0,675 0,818 0,914 0, Calculer P(390 X 410). 2. Calculer la probabilité p qu un pain choisi au hasard dans la production soit commercialisable. 3. Le fabricant trouve cette probabilité p trop faible. Il décide de modifier ses méthodes de production afin de faire varier la valeur de σ sans modifier celle de µ. Pour quelle valeur de σ la probabilité qu un pain soit commercialisable est-elle égale à 96 %? On arrondira le résultat au dixième. On pourra utiliser le résultat suivant : lorsque Z est une variable aléatoire qui suit la loi normale d espérance 0 et d écart-type 1, on a P(Z 1,751) 0,040. Partie B Les méthodes de production ont été modifiées dans le but d obtenir 96 % de pains commercialisables. Afin d évaluer l efficacité de ces modifications, on effectue un contrôle qualité sur un échantillon de 300 pains fabriqués. 1. Déterminer l intervalle de fluctuation asymptotique au seuil de 95 % de la proportion de pains commercialisables dans un échantillon de taille Parmi les 300 pains de l échantillon, 283 sont commercialisables. Au regard de l intervalle de fluctuation obtenu à la question 1, peut-on décider que l objectif a été atteint? Partie C Le boulanger utilise une balance électronique. Le temps de fonctionnement sans dérèglement, en jours, de cette balance électronique est une variable aléatoire T qui suit une loi exponentielle de paramètre λ. 1. On sait que la probabilité que la balance électronique ne se dérègle pas avant 30 jours est de 0,913. En déduire la valeur de λ arrondie au millième. Dans toute la suite on prendra λ=0, Quelle est la probabilité que la balance électronique fonctionne encore sans dérèglement après 90 jours, sachant qu elle a fonctionné sans dérèglement 60 jours? 3. Le vendeur de cette balance électronique a assuré au boulanger qu il y avait une chance sur deux pour que la balance ne se dérègle pas avant un an. A-t-il raison? Si non, pour combien de jours est-ce vrai? Aide 5/26

6 EXERCICE N 4 Polynésie 7 juin Les 3 parties peuvent être traitées de façon indépendante. Thomas possède un lecteur MP3 sur lequel il a stocké des milliers de morceaux musicaux. L ensemble des morceaux musicaux qu il possède se divise en trois genres distincts : 30 % de musique classique, 45 % de variété, le reste étant du jazz. Thomas a utilisé deux qualités d encodage pour stocker ses morceaux musicaux : un encodage de haute qualité et un encodage standard. On sait que : les 5 des morceaux de musique classique sont encodés en haute qualité. 6 les 5 des morceaux de variété sont encodés en qualité standard. 9 On considérera les évènements suivants : C : «Le morceau écouté est un morceau de musique classique» ; V : «Le morceau écouté est un morceau de variété» ; J : «Le morceau écouté est un morceau de jazz» ; H : «Le morceau écouté est encodé en haute qualité» ; S : «Le morceau écouté est encodé en qualité standard». Partie 1 Thomas décide d écouter un morceau au hasard parmi tous les morceaux stockés sur son MP3 en utilisant la fonction «lecture aléatoire». On pourra s aider d un arbre de probabilités. 1. Quelle est la probabilité qu il s agisse d un morceau de musique classique encodé en haute qualité? 2. On sait que P(H)= a. Les évènements C et H sont-ils indépendants? Partie 2 b. Calculer P(J H) et P J (H). Pendant un long trajet en train, Thomas écoute, en utilisant la fonction «lecture aléatoire» de son MP3, 60 morceaux de musique. 1. Déterminer l intervalle de fluctuation asymptotique au seuil 95 % de la proportion de morceaux de musique classique dans un échantillon de taille Thomas a comptabilisé qu il avait écouté 12 morceaux de musique classique pendant son voyage. Peut-on penser que la fonction «lecture aléatoire» du lecteur MP3 est défectueuse? Partie 3 On considère la variable aléatoire X qui, à chaque chanson stockée sur le lecteur MP3, associe sa durée exprimée en secondes et on établit que X suit la loi normale d espérance 200 et d écart-type 20. On écoute un morceau musical au hasard. 1. Donner une valeur approchée à 10 3 près de P(180 X 220). 2. Donner une valeur approchée à 10 3 près de la probabilité que le morceau écouté dure plus de 4 minutes. Aide 6/26

7 EXERCICE N 5 Centres étrangers 12 juin Les quatre parties A, B, C, D sont indépendantes. Un industriel fabrique des vannes électroniques destinées à des circuits hydrauliques. Partie A La durée de vie d une vanne, exprimée en heures, est une variable aléatoire T qui suit la loi exponentielle de paramètre λ = 0, Quelle est la durée de vie moyenne d une vanne? 2. Calculer la probabilité, à 0,001 près, que la durée de vie d une vanne soit supérieure à heures. Partie B Avec trois vannes identiques V 1, V 2 et V 3, on fabrique le circuit hydraulique ci-dessous. Le circuit est en état de marche si V 1 est en état de marche ou si V 2 et V 3 le sont simultanément. V 1 V 2 V 3 On assimile à une expérience aléatoire le fait que chaque vanne est ou n est pas en état de marche après heures. On note : F 1 l évènement : «la vanne V 1 est en état de marche après heures». F 2 l évènement : «la vanne V 2 est en état de marche après heures». F 3 l évènement : «la vanne V 3 est en état de marche après heures». E : l évènement : «le circuit est en état de marche après heures». On admet que les évènements F 1, F 2 et F 3 sont deux à deux indépendants et ont chacun une probabilité égale à 0,3. 1. L arbre probabiliste ci-après représente une partie de la situation. F 1 F 1 F 2 F 3 Reproduire cet arbre et placer les probabilités sur les branches. 2. Démontrer que P(E)=0, Sachant que le circuit est en état de marche après heures, calculer la probabilité que la vanne V 1 soit en état de marche à ce moment là. Arrondir au millième. Partie C L industriel affirme que seulement 2 % des vannes qu il fabrique sont défectueuses. On suppose que cette affirmation est vraie, et l on note F la variable aléatoire égale à la fréquence de vannes défectueuses dans un échantillon aléatoire de 400 vannes prises dans la production totale. 1. Déterminer l intervalle I de fluctuation asymptotique au seuil de 95 % de la variable F, 2. On choisit 400 vannes au hasard dans la production. On assimile ce choix à un tirage aléatoire de 400 vannes, avec remise, dans la production. Parmi ces 400 vannes, 10 sont défectueuses. Au vu de ce résultat, peut-on remettre en cause l affirmation de l industriel? 7/26

8 Partie D Dans cette partie, les probabilités calculées seront arrondies au millième. L industriel commercialise ses vannes auprès de nombreux clients, La demande mensuelle est une variable aléatoire D qui suit la loi normale d espérance µ = 800 et d écart-type σ = Déterminer P(760 D 840). 2. Déterminer P(D 880). 3. L industriel pense que s il constitue un stock mensuel de 880 vannes, il n aura pas plus de 1 % de chance d être en rupture de stock. A-t-il raison? Aide 8/26

9 EXERCICE N 6 Antilles Guyane 18 juin Partie A Soient n un entier naturel, p un nombre réel compris entre 0 et 1, et X n une variable aléatoire suivant une loi binomiale de paramètres n et p. On note F n = X n n et f une valeur prise par [ ] F n. On rappelle que, pour n assez grand, l intervalle p 1 n ; p+ 1 n contient la fréquence f avec une probabilité au moins égale à 0,95. [ ] En déduire que l intervalle f 1 n ; f + 1 n contient p avec une probabilité au moins égale à 0,95. Partie B On cherche à étudier le nombre d étudiants connaissant la signification du sigle URSSAF. Pour cela, on les interroge en proposant un questionnaire à choix multiples. Chaque étudiant doit choisir parmi trois réponses possibles, notées A, B et C, la bonne réponse étant la A. On note r la probabilité pour qu un étudiant connaisse la bonne réponse. Tout étudiant connaissant la bonne réponse répond A, sinon il répond au hasard (de façon équiprobable). 1. On interroge un étudiant au hasard. On note : A l évènement «l étudiant répond A», B l évènement «l étudiant répond B», C l évènement «l étudiant répond C», R l évènement «l étudiant connait la réponse», R l évènement contraire de R. a. Traduire cette situation à l aide d un arbre de probabilité. b. Montrer que la probabilité de l évènement A est P(A)= 1 (1+2r ). 3 c. Exprimer en fonction de r la probabilité qu une personne ayant choisie A connaisse la bonne réponse. 2. Pour estimer r, on interroge 400 personnes et on note X la variable aléatoire comptant le nombre de bonnes réponses. On admettra qu interroger au hasard 400 étudiants revient à effectuer un tirage avec remise de 400 étudiants dans l ensemble de tous les étudiants. a. Donner la loi de X et ses paramètres n et p en fonction de r. b. Dans un premier sondage, on constate que 240 étudiants répondent A, parmi les 400 interrogés. Donner un intervalle de confiance au seuil de 95 % de l estimation de p. En déduire un intervalle de confiance au seuil de 95 % de r. c. Dans la suite, on suppose que r = 0,4. Compte-tenu du grand nombre d étudiants, on considérera que X suit une loi normale. i. Donner les paramètres de cette loi normale. ii. Donner une valeur approchée de P(X 250) à 10 2 près. Aide 9/26

10 EXERCICE N 7 Asie 19 juin Dans cet exercice, les probabilités seront arrondies au centième. Partie A Un grossiste achète des boîtes de thé vert chez deux fournisseurs. Il achète 80 % de ses boîtes chez le fournisseur A et 20 % chez le fournisseur B. 10 % des boîtes provenant du fournisseur A présentent des traces de pesticides et 20 % de celles provenant du fournisseur B présentent aussi des traces de pesticides. On prélève au hasard une boîte du stock du grossiste et on considère les évènements suivants : évènement A : «la boîte provient du fournisseur A» ; évènement B : «la boîte provient du fournisseur B» ; évènement S : «la boîte présente des traces de pesticides». 1. Traduire l énoncé sous forme d un arbre pondéré. 2. a. Quelle est la probabilité de l évènement B S? b. Justifier que la probabilité que la boîte prélevée ne présente aucune trace de pesticides est égale à 0, On constate que la boîte prélevée présente des traces de pesticides. Partie B Quelle est la probabilité que cette boîte provienne du fournisseur B? Le gérant d un salon de thé achète 10 boîtes chez le grossiste précédent. On suppose que le stock de ce dernier est suffisamment important pour modéliser cette situation par un tirage aléatoire de 10 boîtes avec remise. On considère la variable aléatoire X qui associe à ce prélèvement de 10 boîtes, le nombre de boîtes sans trace de pesticides. 1. Justifier que la variable aléatoire X suit une loi binomiale dont on précisera les paramètres. 2. Calculer la probabilité que les 10 boîtes soient sans trace de pesticides. 3. Calculer la probabilité qu au moins 8 boîtes ne présentent aucune trace de pesticides. Partie C À des fins publicitaires, le grossiste affiche sur ses plaquettes : «88 % de notre thé est garanti sans trace de pesticides». Un inspecteur de la brigade de répression des fraudes souhaite étudier la validité de l affirmation. À cette fin, il prélève 50 boîtes au hasard dans le stock du grossiste et en trouve 12 avec des traces de pesticides. On suppose que, dans le stock du grossiste, la proportion de boîtes sans trace de pesticides est bien égale à 0,88. On note F la variable aléatoire qui, à tout échantillon de 50 boîtes, associe la fréquence des boîtes ne contenant aucune trace de pesticides. 1. Donner l intervalle de fluctuation asymptotique de la variable aléatoire F au seuil de 95 %. 2. L inspecteur de la brigade de répression peut-il décider, au seuil de 95 %, que la publicité est mensongère? Aide 10/26

11 EXERCICE N 8 Métropole 20 juin Une jardinerie vend de jeunes plants d arbres qui proviennent de trois horticulteurs : 35 % des plants proviennent de l horticulteur H 1, 25 % de l horticulteur H 2 et le reste de l horticulteur H 3. Chaque horticulteur livre deux catégories d arbres : des conifères et des arbres à feuilles. La livraison de l horticulteur H 1 comporte 80 % de conifères alors que celle de l horticulteur H 2 n en comporte que 50 % et celle de l horticulteur H 3 seulement 30 %. 1. Le gérant de la jardinerie choisit un arbre au hasard dans son stock. On envisage les événements suivants : H 1 : «l arbre choisi a été acheté chez l horticulteur H 1», H 2 : «l arbre choisi a été acheté chez l horticulteur H 2», H 3 : «l arbre choisi a été acheté chez l horticulteur H 3», C : «l arbre choisi est un conifère», F : «l arbre choisi est un arbre feuillu». a. Construire un arbre pondéré traduisant la situation. b. Calculer la probabilité que l arbre choisi soit un conifère acheté chez H 3. c. Justifier que la probabilité de l évènement C est égale à 0,525. d. L arbre choisi est un conifère. Quelle est la probabilité qu il ait été acheté chez l horticulteur H 1? On arrondira à On choisit au hasard un échantillon de 10 arbres dans le stock de cette jardinerie. On suppose que ce stock est suffisamment important pour que ce choix puisse être assimilé à un tirage avec remise de 10 arbres dans le stock. On appelle X la variable aléatoire qui donne le nombre de conifères de l échantillon choisi. a. Justifier que X suit une loi binomiale dont on précisera les paramètres. b. Quelle est la probabilité que l échantillon prélevé comporte exactement cinq conifères? On arrondira à c. Quelle est la probabilité que cet échantillon comporte au moins deux arbres feuillus? On arrondira à Aide 11/26

12 EXERCICE N 9 Antilles Guyane 11 septembre Une entreprise industrielle fabrique des pièces cylindriques en grande quantité. Pour toute pièce prélevée au hasard, on appelle X la variable aléatoire qui lui associe sa longueur en millimètre et Y la variable aléatoire qui lui associe son diamètre en millimètre. On suppose que X suit la loi normale de moyenne µ 1 = 36 et d écart-type σ 1 = 0,2 et que Y suit la loi normale de moyenne µ 2 = 6 et d écart-type σ 2 = 0, Une pièce est dite conforme pour la longueur si sa longueur est comprise entre µ 1 3σ 1 et µ 1 +3σ 1. Quelle est une valeur approchée à 10 3 près de la probabilité p 1 pour qu une pièce prélevée au hasard soit conforme pour la longueur? 2. Une pièce est dite conforme pour le diamètre si son diamètre est compris entre 5,88 mm et 6,12 mm. Le tableau donné ci-contre a été obtenu à l aide d un tableur. Il indique pour chacune des valeurs de k, la probabilité que Y soit inférieure ou égal à cette valeur. Déterminer à 10 3 près la probabilité p 2 pour qu une pièce prélevée au hasard soit conforme pour le diamètre (on pourra s aider du tableau ci-contre). k p(y k) 5,8 3,16712E 05 5,82 0, ,84 0, ,86 0, ,88 0, ,9 0, ,92 0, ,94 0, ,96 0, ,98 0, ,5 6,02 0, ,04 0, ,06 0, ,08 0, ,1 0, ,12 0, ,14 0, ,16 0, ,18 0, ,2 0, On prélève une pièce au hasard. On appelle L l évènement «la pièce est conforme pour la longueur» et D l évènement «la pièce est conforme pour le diamètre». On suppose que les évènements L et D sont indépendants. a. Une pièce est acceptée si elle est conforme pour la longueur et pour le diamètre. Déterminer la probabilité pour qu une pièce prélevée au hasard ne soit pas acceptée (le résultat sera arrondi à 10 2 ). b. Justifier que la probabilité qu elle soit conforme pour le diamètre sachant qu elle n est pas conforme pour la longueur, est égale à p 2. Aide 12/26

13 EXERCICE N 10 Antilles Guyane 11 septembre Les deux parties sont indépendantes Le robot Tom doit emprunter un pont sans garde-corps de 10 pas de long et de 2 pas de large. Sa démarche est très particulière : Soit il avance d un pas tout droit ; Soit il se déplace en diagonale vers la gauche (déplacement équivalent à un pas vers la gauche et un pas tout droit) ; Soit il se déplace en diagonale vers la droite (déplacement équivalent à un pas vers la droite et un pas tout droit). On suppose que ces trois types de déplacement sont aléatoires et équiprobables. L objectif de cet exercice est d estimer la probabilité p de l évènement S «Tom traverse le pont» c est-à-dire «Tom n est pas tombé dans l eau et se trouve encore sur le pont au bout de 10 déplacements». Partie A : modélisation et simulation On schématise le pont par un rectangle dans le plan muni d un repère orthonormé (O, I, J) comme l indique la figure ci-dessous. On suppose que Tom se trouve au point de coordonnées (0 ; 0) au début de la traversée. On note (x ; y) les coordonnées de la position de Tom après x déplacements. 2 1 départ O 1 1 J I On a écrit l algorithme suivant qui simule la position de Tom au bout de x déplacements : x, y, n sont des entiers Affecter à x la valeur 0 Affecter à y la valeur 0 Tant que y 1 et y 1 et x 9 Affecter à n une valeur choisie au hasard entre 1, 0 et 1 Affecter à y la valeur y+ n Affecter à x la valeur x+ 1 Fin tant que Afficher «la position de Tom est» (x ; y) 1. On donne les couples suivants : ( 1 ; 1) ; (10 ; 0) ; (2 ; 4) ; (10 ; 2). Lesquels ont pu être obtenus avec cet algorithme? Justifier la réponse. 2. Modifier cet algorithme pour qu à la place de «la position de Tom est (x ; y)», il affiche finalement «Tom a réussi la traversée» ou «Tom est tombé». 13/26

14 Partie B Pour tout n entier naturel compris entre 0 et 10, on note : A n l évènement «après n déplacements, Tom se trouve sur un point d ordonnée 1». B n l évènement «après n déplacements, Tom se trouve sur un point d ordonnée 0». C n l évènement «après n déplacements, Tom se trouve sur un point d ordonnée 1». On note a n,b n,c n les probabilités respectives des évènements A n,b n,c n. 1. Justifier que a 0 = 0,b 0 = 1,c 0 = Montrer que pour tout entier naturel n compris entre 0 et 9, on a a n+1 b n+1 On pourra s aider d un arbre pondéré. 3. Calculer les probabilités p (A 1 ), p (B 1 ) et p (C 1 ). = a n+ b n 3 = a n+ b n + c n 3 4. Calculer la probabilité que Tom se trouve sur le pont au bout de deux déplacements. 5. À l aide d un tableur, on a obtenu la feuille de calcul ci-contre qui donne des valeurs approchées de a n, b n, c n pour n compris entre 0 et 10. Donner une valeur approchée à 0,001 près de la probabilité que Tom traverse le pont (on pourra s aider du tableau ci-contre). n a n b n c n , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Aide 14/26

15 EXERCICE N 11 Métropole 12 septembre Dans une usine, on utilise deux machines A et B pour fabriquer des pièces. 1. La machine A assure 40 % de la production et la machine B en assure 60 %. On estime que 10 % des pièces issues de la machine A ont un défaut et que 9 % des pièces issues de la machine B ont un défaut. On choisit une pièce au hasard et on considère les évènements suivants : A : «La pièce est produite par la machine A» B : «La pièce est produite par la machine B» D : «La pièce a un défaut». D, l évènement contraire de l évènement D. a. Traduire la situation à l aide d un arbre pondéré. b. Calculer la probabilité que la pièce choisie présente un défaut et ait été fabriquée par la machine A. c. Démontrer que la probabilité P(D) de l évènement D est égale à 0,094. d. On constate que la pièce choisie a un défaut. Quelle est la probabilité que cette pièce provienne de la machine A? 2. On estime que la machine A est convenablement réglée si 90 % des pièces qu elle fabrique sont conformes. On décide de contrôler cette machine en examinant n pièces choisies au hasard (n entier naturel) dans la production de la machine A. On assimile ces n tirages à des tirages successifs indépendants et avec remise. On note X n le nombre de pièces qui sont conformes dans l échantillon de n pièces, et F n = X n n la proportion correspondante. a. Justifier que la variable aléatoire X n suit une loi binomiale et préciser ses paramètres. b. Dans cette question, on prend n= 150. Déterminer l intervalle de fluctuation asymptotique I au seuil de 95 % de la variable aléatoire F 150. c. Un test qualité permet de dénombrer 21 pièces non conformes sur un échantillon de 150 pièces produites. Cela remet-il en cause le réglage de la machine? Justifier la réponse. Aide 15/26

16 EXERCICE N 12 Nouvelle Calédonie 14 novembre Tous les résultats numériques devront être donnés sous forme décimale et arrondis au dix-millième Une usine fabrique des billes sphériques dont le diamètre est exprimé en millimètres. Une bille est dite hors norme lorsque son diamètre est inférieur à 9 mm ou supérieur à 11 mm. Partie A 1. On appelle X la variable aléatoire qui à chaque bille choisie au hasard dans la production associe son diamètre exprimé en mm. On admet que la variable aléatoire X suit la loi normale d espérance 10 et d écart-type 0,4. Montrer qu une valeur approchée à 0,000 1 près de la probabilité qu une bille soit hors norme est 0, On pourra utiliser la table de valeurs donnée en annexe. 2. On met en place un contrôle de production tel que 98 % des billes hors norme sont écartés et 99 % des billes correctes sont conservées. On choisit une bille au hasard dans la production. On note N l évènement : «la bille choisie est aux normes», A l évènement : «la bille choisie est acceptée à l issue du contrôle». Partie B a. Construire un arbre pondéré qui réunit les données de l énoncé. b. Calculer la probabilité de l évènement A. c. Quelle est la probabilité pour qu une bille acceptée soit hors norme? Ce contrôle de production se révélant trop coûteux pour l entreprise, il est abandonné : dorénavant, toutes les billes produites sont donc conservées, et elles sont conditionnées par sacs de 100 billes. On considère que la probabilité qu une bille soit hors norme est de 0, On admettra que prendre au hasard un sac de 100 billes revient à effectuer un tirage avec remise de 100 billes dans l ensemble des billes fabriquées. On appelle Y la variable aléatoire qui à tout sac de 100 billes associe le nombre de billes hors norme de ce sac. 1. Quelle est la loi suivie par la variable aléatoire Y? 2. Quels sont l espérance et l écart-type de la variable aléatoire Y? 3. Quelle est la probabilité pour qu un sac de 100 billes contienne exactement deux billes hors norme? 4. Quelle est la probabilité pour qu un sac de 100 billes contienne au plus une bille hors norme? Aide 16/26

17 EXERCICE N 13 Amérique du Sud 21 novembre Dans cet exercice, les résultats seront arrondis à 10 4 près. Partie A En utilisant sa base de données, la sécurité sociale estime que la proportion de Français présentant, à la naissance, une malformation cardiaque de type anévrisme est de 10 %. L étude a également permis de prouver que 30 % des Français présentant, à la naissance, une malformation cardiaque de type anévrisme, seront victimes d un accident cardiaque au cours de leur vie alors que cette proportion n atteint plus que 8 % pour ceux qui ne souffrent pas de cette malformation congénitale. On choisit au hasard une personne dans la population française et on considère les évènements : M : «La personne présente, à la naissance, une malformation cardiaque de type anévrisme» C : «La personne est victime d un accident cardiaque au cours de sa vie». 1. a. Montrer que P(M C )= 0,03. b. Calculer P(C ). 2. On choisit au hasard une victime d un accident cardiaque. Quelle est la probabilité qu elle présente une malformation cardiaque de type anévrisme? Partie B La sécurité sociale décide de lancer une enquête de santé publique, sur ce problème de malformation cardiaque de type anévrisme, sur un échantillon de 400 personnes, prises au hasard dans la population française. On note X la variable aléatoire comptabilisant le nombre de personnes de l échantillon présentant une malformation cardiaque de type anévrisme. 1. Définir la loi de la variable aléatoire X. 2. Déterminer P(X = 35). 3. Déterminer la probabilité que 30 personnes de ce groupe, au moins, présentent une malformation cardiaque de type anévrisme. Partie C 1. On considère la variable aléatoire F, définie par F = X, X étant la variable aléatoire de 400 la partie B. Déterminer l intervalle de fluctuation asymptotique de la variable aléatoire F au seuil de 95 %. 2. Dans l échantillon considéré, 60 personnes présentent une malformation cardiaque de type anévrisme. Qu en pensez-vous? Aide 17/26

18 AIDE EXERCICE N 1 Pondichéry 16 avril Sujet 1. a. 0 1 E 1 E 1 0,04 0,96 E 2 E 2 0,24 0,76 0,04 E 3 E 3 E 3 p 3 = P(E 3 )=P(E 2 E 3 )+P(E 2 E 3 ) p 3 = 0,04 0,24+0,96 0,04 = ,96 E 3 Probabilité totale b. P E3 (E 2 )= P(E 2 E 3 ) P(E 3 ) = 0,04 0,24 0,048 0,24 E n+1 p n E n = 0, 2 Probabilité conditionnelle 2. a. 0,76 E n+1 0,04 E n+1 1 p n E n 0,96 E n+1 b. p n+1 = P(E n+1 = P(E n E n+1 )+P(E n E n+1 ) Probabilité totale = p n 0,24+(1 p n ) 0,04 p n+1 = 0,2p n + 0,04 c. { p1 = 0 p n+1 = 0,2p n + 0,04 u n = p n 0,05 u 1 = p 1 0,05 = 0,05 u n+1 = p n+1 0,05 p n = u n + 0,05 u n+1 = p n+1 0,05 = 0,2p n + 0,04 0,05 = 0,2(u n + 0,05)+0,04 0,05 =... u n+1 = 0,2u n Donc (u n ) est une suite géométrique de raison r = 0,2 et de premier terme u 1 = 0,05 Suite géométrique u n = u 1 r n 1 = 0,05 0,2 n 1 p n = u n + 0,05= 0,05(1 0,2 n 1 ) d. lim n + (0,2)n 1 = 0 car 1<0,2<1 donc lim p n = 0,05 n + e. J : rang de (p n ), dont la valeur est égale à 0,05 à 10 K près. L algorithme s arrête car p n a une limite finie. Limite d une suite 18/26

19 3. a. X suit une loi binomiale B(220 ; 0,05). Loi binomiale Épreuve de Bernoulli : succès ou échec. Succès S : «le salarié est absent pour maladie», donc p = 0,05. Évènements indépendants : chacun des 220 salariés a un état de santé indépendant de celui de ses collègues. µ=e(x )=n p= 11 σ= n p (1 p) 3,23 b. X suit une la loi normale N (11 ; 3,23 2 ). Loi normale Z suit la loi normale centrée réduite N (0 ; 1). ( ) 7 11 X P(7 X 15)=P 3,23 3,23 3,23 P(7 X 15)=P( 1,24 Z 1,24) P(7 X 15) /26

20 EXERCICE N 2 Liban 28 mai Sujet Partie A 1. 0,30 0,70 E E 0,99 0,01 0,95 0,05 C C C C 2. P(E C )=0,70 0,95= 0, P(C )=P(E C )+P(E C )=0,30 0,99+0,70 0,95= 0,962. Probabilité totale 4. P C (E)= P(E C ) P(C ) = 0,30 0,99 0,962 0, 309 Probabilité conditionnelle Partie B Loi normale 1. X suit la loi normale N (0,17 ; 0,006 2 ) Alors P(0,16 X 0,18)= 0, a. Y suit une loi normale N (m 2 ; σ 2 2 ) m 2= 0,17 ; σ 2 inconnue Alors Z = Y m 2 σ 2 suit N (0, 1) Loi normale centrée réduite b. 0,16 Y 0,18 0,16 0,17 Y 0,17 0,18 0,17 σ 2 σ 2 σ 2 0,16 Y 0,18 0,01 Z 0,01 σ 2 ( c. P(0,16 Y 0,18)=0,99 P 0,01 Z 0,01 ) = 0,99 ( σ 2 σ 2 P(0,16 Y 0,18)=0,99 P Z 0,01 ) ( P 0,01 Z ( Or P 0,01 σ 2 Donc : 2 P D où : P ) Z ( = P ( Z 0,01 ( Z 0,01 σ 2 σ 2 Z 0,01 σ ) 2 1=0,99 ) = 0,995 σ 2 σ 2 ) = 1 P 0,01 σ 2 = 2,5758 σ 2 0,004 ( Z 0,01 σ 2 σ 2 ) ) = 0,99 20/26

21 EXERCICE N 3 Amérique du Nord 30 mai Sujet Partie A Loi normale µ=400 σ=11 x P(X x) 0,035 0,086 0,182 0,325 0,5 0,675 0,818 0,914 0, P(390 X 410)=P(X 410) P(X 390)=0, P(X 385)=1 P(X 385)=0, P(Y 385)=0,96 P(Y ( 385)=0,04 Y 400 P(Y 385)=0,96 P ) = 0,04 ( σ σ P(Y 385)=0,96 P Z 15 ) = 0,04 σ Or P(Z 1,751) 0, Donc : 1,751 σ 8,6 σ Partie B Intervalle de fluctuation 1. n= 300 p = 0,96 [ I 300 = p 1,96 p(1 p) p(1 p) ]=[0,93 n ; p+ 1,96 n ; 0,99] = 0,94 I 300 0n peut décider que l objectif a été atteint. Partie C Loi exponentielle 1. On sait que P(T 30)=0,913 Or P(T 30)=e 30λ Donc e 30λ = 0,913 λ= ln(0,913) 0, P T 60 (T 90)=P T 60 (T 60+30)= e 30λ = 0, P(T 365)= e λ 365 = 0,33 Le vendeur avait donc tort. P(T t )=0,5 1 e λt 0,5 t ln0,5 λ t /26

22 EXERCICE N 4 Polynésie 7 juin Sujet Partie ,3 C H S 0,45 H V S 0,25 J 5 9?? H S P(C H)=0,3 5 6 = a. P(C H)= 1 4 = 0,25 Partie 2 n= 60 p = 0,3 1. I = P(C ) P(H)=0, = 0,195 On remarque que P(C H) P(C ) P(H). Donc, les évènements C et H ne sont pas indépendants. P(J H) b. P J (H)= Probabilité conditionnelle P(J) [ Or, P(H)=P(C H)+P(V H)+P(J H) D où P(J H)= , , = 1 5 Donc P J (H)= p 1, ,25 = 4 5 p(1 p) p(1 p) ]=[0,184 n ; p+ 1,96 n ; 0,416] Probabilité totale Intervalle de fluctuation = 0,2 I : la fonction "lecture aléatoire" n est pas défectueuse. 60 Partie 3 µ=200 σ=20 1. P(180 X 220)=0, P(X > 4 60)=0,023 Loi normale 22/26

23 EXERCICE N 5 Centres étrangers 12 juin Sujet Partie A λ=0,0002 Loi exponentielle 1. E(T )= 1 λ = p(t > 6000)=e λ 0,301 Partie B 1. 0,3 F 1 0,3 F 2 0,7 F 1 0,3 F 3 2. p(e)=p(f 1 )+p(f 1 F 2 F 3 )=0,3+0,7 0,3 0,3= 0, p E (F 1 )= p (E F 1) p (E) Partie C n= 400 p = 0,02 1. I 400 = [ p 1,96 = 0,3 0,363 0,826 Intervalle de fluctuation p (1 p) p (1 p) ; p+ 1,96 ]=[0,00628 ; 0,03372] n n = 0,025 I 400 On ne peut pas mettre en cause l affirmation de l industriel. Partie D µ=800 σ=40 Loi normale 1. P(760 D 840) 0, P(D 880) 0, P(D > 880) 0,023, soit 2,3 %. L industriel n a pas raison. 23/26

24 EXERCICE N 6 Antilles Guyane 18 juin Sujet Partie [ A f p 1 ; p+ 1 ] n n p 1 n f p+ 1 n p 1 n f p f f p p+ 1 n f p f 1 p f + 1 [ n n p f 1 ; f + 1 ] n n Partie B r R 1 A 1. a. 1/3 A 1 r R 1/3 B 1/3 C b. p(a)= p(r A)+ p(r A)=r 1+(1 r ) 1 3 = 1 (1+2r ) Probabilité totale 3 c. p A (R)= p(r A) p(a) = r (1+2r ) 2. a. X suit une loi binomiale B = 3r 1+2r Épreuve de Bernoulli : succès ou échec. Succès S : «l étudiant a la bonne réponse», Probabilité conditionnelle (400 ; 13 (1+2r ) ). Loi binomiale donc p = 1 (1+2r ). 3 Répétition d évènements identiques et indépendants. b. n = 400 Intervalle de confiance f = = 0,6 [ f 1 ; f + 1 ]=[0,55 ; 0,65] n n 0,55 p 0,65 0,55 1 (1+2r ) 0, ,325 r 0,475 c. i. Loi binomiale : r = 0,4 = p = 1 (1+2r )=0,6 3 n= 400 Loi normale : µ=n p = 240 σ= n p (1 p)= 96 ii. p(x 250)= 0,846 Loi normale 24/26

25 EXERCICE N 7 Asie 19 juin Sujet Partie A 1. 0,8 0,2 ( 2. a. p b. p A B 0,1 0,9 0,2 0,8 S ) B S = 0,2 0,8=0,16 ( ) ( ) ( S = p A S + p B S p(b S) 3. p S (B)= = p(s) Partie B S S S ) = 0,8 0,9 + 0,2 0,8= 0,88 Probabilité totale p(b S) 1 p(s) = 0,2 0,2 1 0,88 = 1 3 Probabilité conditionnelle 1. X suit une loi binomiale B(10 ; 0,88). Loi binomiale Épreuve de Bernoulli : succès ou échec. Succès S : «tirer une boîte sans trace de pesticides», donc p = 0,88. Répétition d évènements identiques et indépendants. 2. p(x = 10) 0,28 3. p(x 8)= p(x = 8)+ p(x = 9)+ p(x = 10) 0,23 + 0,38 + 0,28 0,89 Partie C Intervalle de fluctuation 1. n= 50 p = 0,88 [ I f = p 1,96 p (1 p) p (1 p) ; p+ 1,96 ]=[0,79 ; 0,98] n n ,76 I f 50 L inspecteur peut décider que la publicité est mensongère. 25/26

26 EXERCICE N 8 Métropole 20 juin Sujet salut EXERCICE N 9 Antilles Guyane 11 septembre Sujet salut EXERCICE N 10 Antilles Guyane 11 septembre Sujet salut EXERCICE N 11 Métropole 12 septembre Sujet salut EXERCICE N 12 Nouvelle Calédonie 14 novembre Sujet salut EXERCICE N 13 Amérique du Sud 21 novembre Sujet salut 26/26

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Ressources pour le lycée général et technologique

Ressources pour le lycée général et technologique éduscol Ressources pour le lycée général et technologique Ressources pour la classe de terminale générale et technologique Exercices de mathématiques Classes de terminale S, ES, STI2D, STMG Ces documents

Plus en détail

mathématiques mathématiques mathématiques mathématiques

mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Probabilités conditionnelles Exercices corrigés

Probabilités conditionnelles Exercices corrigés Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Exercices sur le chapitre «Probabilités»

Exercices sur le chapitre «Probabilités» Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de

Plus en détail

mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques SÉRIE ES ANNALES DES SUJETS DE MATHÉMATIQUES SESSION 2013

mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques SÉRIE ES ANNALES DES SUJETS DE MATHÉMATIQUES SESSION 2013 mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

Baccalauréat ES 2013. L intégrale d avril à novembre 2013

Baccalauréat ES 2013. L intégrale d avril à novembre 2013 Baccalauréat ES 2013 L intégrale d avril à novembre 2013 Pour un accès direct cliquez sur les liens bleus Pondichéry 15 avril 2013.......................................................... 3 Amérique du

Plus en détail

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie... 1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................

Plus en détail

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau GEA II Introduction aux probabilités Poly. de révision Lionel Darondeau Table des matières Énoncés 4 Corrigés 10 TD 1. Analyse combinatoire 11 TD 2. Probabilités élémentaires 16 TD 3. Probabilités conditionnelles

Plus en détail

Les devoirs en Première STMG

Les devoirs en Première STMG Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

BACCALAUREAT GENERAL MATHÉMATIQUES

BACCALAUREAT GENERAL MATHÉMATIQUES BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS CONDITIONNELLES A.FORMONS DES COUPLES Pour la fête de l école, les élèves de CE 2 ont préparé une danse qui s exécute par couples : un garçon, une fille. La maîtresse doit faire des essais

Plus en détail

Estimation et tests statistiques, TD 5. Solutions

Estimation et tests statistiques, TD 5. Solutions ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études

Plus en détail

Correction du baccalauréat STMG Polynésie 17 juin 2014

Correction du baccalauréat STMG Polynésie 17 juin 2014 Correction du baccalauréat STMG Polynésie 17 juin 2014 EXERCICE 1 Cet exercice est un Q.C.M. 4 points 1. La valeur d une action cotée en Bourse a baissé de 37,5 %. Le coefficient multiplicateur associé

Plus en détail

C f tracée ci- contre est la représentation graphique d une

C f tracée ci- contre est la représentation graphique d une TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe

Plus en détail

Baccalauréat ES Amérique du Nord 4 juin 2008

Baccalauréat ES Amérique du Nord 4 juin 2008 Baccalauréat ES Amérique du Nord 4 juin 2008 EXERCICE 1 Commun à tous les candidats f est une fonction définie sur ] 2 ; + [ par : 4 points f (x)=3+ 1 x+ 2. On note f sa fonction dérivée et (C ) la représentation

Plus en détail

Probabilités. C. Charignon. I Cours 3

Probabilités. C. Charignon. I Cours 3 Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3

Plus en détail

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,

Plus en détail

MATHEMATIQUES TES 2012-2013 Corrigés des devoirs

MATHEMATIQUES TES 2012-2013 Corrigés des devoirs MATHEMATIQUES TES 2012-2013 Corrigés des devoirs DS1 26/09/2012 page2 DV 09/10/2012 page 6 DS 24/10/2012 page 8 DV 30/11/2012 page 14 DV 14/12/2012 page 16 BAC BLANC 18/01/2013 page 17 DV 05/02/2013 page

Plus en détail

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio Exercices : Martine Quinio Exo7 Probabilité conditionnelle Exercice 1 Dans la salle des profs 60% sont des femmes ; une femme sur trois porte des lunettes et un homme sur deux porte des lunettes : quelle

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Baccalauréat technique de la musique et de la danse Métropole septembre 2008

Baccalauréat technique de la musique et de la danse Métropole septembre 2008 Baccalauréat technique de la musique et de la danse Métropole septembre 008 EXERCICE 5 points Pour chacune des cinq questions à 5, trois affirmations sont proposées dont une seule est exacte. Pour chaque

Plus en détail

Logistique, Transports

Logistique, Transports Baccalauréat Professionnel Logistique, Transports 1. France, juin 2006 1 2. Transport, France, juin 2005 2 3. Transport, France, juin 2004 4 4. Transport eploitation, France, juin 2003 6 5. Transport,

Plus en détail

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher.

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher. Lycée Jean Bart PCSI Année 2013-2014 17 février 2014 Probabilités Probabilités basiques Exercice 1. Vous savez bien qu un octet est une suite de huit chiffres pris dans l ensemble {0; 1}. Par exemple 01001110

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Corrigé du baccalauréat S Pondichéry 12 avril 2007 Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires

Plus en détail

Probabilités (méthodes et objectifs)

Probabilités (méthodes et objectifs) Probabilités (méthodes et objectifs) G. Petitjean Lycée de Toucy 10 juin 2007 G. Petitjean (Lycée de Toucy) Probabilités (méthodes et objectifs) 10 juin 2007 1 / 19 1 Déterminer la loi de probabilité d

Plus en détail

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin

Plus en détail

Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité

Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot 1 Ensemble fondamental loi de probabilité Exercice 1. On dispose de deux boîtes. La première contient

Plus en détail

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12 Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre. Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences

Plus en détail

La simulation probabiliste avec Excel

La simulation probabiliste avec Excel La simulation probabiliste avec Ecel (2 e version) Emmanuel Grenier emmanuel.grenier@isab.fr Relu par Kathy Chapelain et Henry P. Aubert Incontournable lorsqu il s agit de gérer des phénomènes aléatoires

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

Calculs de probabilités conditionelles

Calculs de probabilités conditionelles Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile

Plus en détail

Chapitre 2. Eléments pour comprendre un énoncé

Chapitre 2. Eléments pour comprendre un énoncé Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données

Plus en détail

Terminale SMS - STL 2007-2008

Terminale SMS - STL 2007-2008 Terminale SMS - STL 007-008 Annales Baccalauréat. STL Biochimie, France, sept. 008. SMS, France & La Réunion, sept 008 3 3. SMS, Polynésie, sept 008 4 4. STL Chimie de laboratoire et de procédés industriels,

Plus en détail

Probabilités conditionnelles

Probabilités conditionnelles Probabilités conditionnelles Exercice Dans une usine, on utilise conjointement deux machines M et M 2 pour fabriquer des pièces cylindriques en série. Pour une période donnée, leurs probabilités de tomber

Plus en détail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des

Plus en détail

Lois de probabilité. Anita Burgun

Lois de probabilité. Anita Burgun Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage

Plus en détail

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été numérisé par le CRDP de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Campagne 2013 Ce fichier numérique ne peut être reproduit, représenté, adapté

Plus en détail

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,

Plus en détail

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 septième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

EPREUVES AU CHOIX DU CANDIDAT. Durée : De 09 h 00 à 12 h 00 (Heure de Yaoundé, TU + 1)

EPREUVES AU CHOIX DU CANDIDAT. Durée : De 09 h 00 à 12 h 00 (Heure de Yaoundé, TU + 1) 1 CYCLE MST-A 30 JUIN 2010 10 ème Promotion 2010 / 2012 CONCOURS D ENTREE A L IIA DROIT EPREUVES AU CHOIX DU CANDIDAT Durée : De 09 h 00 à 12 h 00 (Heure de Yaoundé, TU + 1) Le candidat traitera au choix

Plus en détail

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Fiche BAC ES 05 Terminale ES Probabilités conditionnelles Loi binomiale Cette fiche sera complétée au fur et à mesure Exercice n 1. BAC ES. Centres étrangers 2012. [RÉSOLU] Un sondage a été effectué auprès

Plus en détail

Feuille d exercices 2 : Espaces probabilisés

Feuille d exercices 2 : Espaces probabilisés Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un

Plus en détail

BACCALAURÉAT PROFESSIONNEL SUJET

BACCALAURÉAT PROFESSIONNEL SUJET SESSION 203 Métropole - Réunion - Mayotte BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)

Plus en détail

Suites numériques Exercices

Suites numériques Exercices Première L 1. Exercice 9 2 2. Exercice 10 2 3. Exercice 11 2 4. Exercice 12 3 5. Exercice 13 3 6. France, septembre 2001 4 7. Asie juin 2002 5 8. Centres étrangers juin 2002 6 9. Pondichery, juin 2001

Plus en détail

Les probabilités. Chapitre 18. Tester ses connaissances

Les probabilités. Chapitre 18. Tester ses connaissances Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce

Plus en détail

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par

Plus en détail

CALCUL DES PROBABILITES

CALCUL DES PROBABILITES CALCUL DES PROBABILITES Exemple On lance une pièce de monnaie une fois. Ensemble des événements élémentaires: E = pile, face. La chance pour obtenir pile vaut 50 %, pour obtenir face vaut aussi 50 %. Les

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

Mesure de probabilité, indépendance.

Mesure de probabilité, indépendance. MATHEMATIQUES TD N 2 : PROBABILITES ELEMENTAIRES. R&T Saint-Malo - 2nde année - 2011/2012 Mesure de probabilité, indépendance. I. Des boules et des cartes - encore - 1. On tire simultanément 5 cartes d

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N

ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N ENS de Lyon TD 7-8 septembre 0 Introduction aux probabilités Exercice Soit (u n ) n N une suite de nombres réels. On considère σ une bijection de N dans N, de sorte que (u σ(n) ) n N est un réordonnement

Plus en détail

TESTS D'HYPOTHESES Etude d'un exemple

TESTS D'HYPOTHESES Etude d'un exemple TESTS D'HYPOTHESES Etude d'un exemple Un examinateur doit faire passer une épreuve type QCM à des étudiants. Ce QCM est constitué de 20 questions indépendantes. Pour chaque question, il y a trois réponses

Plus en détail

Lecture graphique. Table des matières

Lecture graphique. Table des matières Lecture graphique Table des matières 1 Lecture d une courbe 2 1.1 Définition d une fonction.......................... 2 1.2 Exemple d une courbe........................... 2 1.3 Coût, recette et bénéfice...........................

Plus en détail

Précision d un résultat et calculs d incertitudes

Précision d un résultat et calculs d incertitudes Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................

Plus en détail

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile. Probabilités Définition intuitive Exemple On lance un dé. Quelle est la probabilité d obtenir un multiple de 3? Comme il y a deux multiples de 3 parmi les six issues possibles, on a chances sur 6 d obtenir

Plus en détail

4 Distributions particulières de probabilités

4 Distributions particulières de probabilités 4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Mesures et incertitudes

Mesures et incertitudes En physique et en chimie, toute grandeur, mesurée ou calculée, est entachée d erreur, ce qui ne l empêche pas d être exploitée pour prendre des décisions. Aujourd hui, la notion d erreur a son vocabulaire

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison

Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison Estimation: intervalle de fluctuation et de confiance Mars 2012 IREM: groupe Proba-Stat Estimation Term.1 Intervalle de fluctuation connu : probabilité p, taille de l échantillon n but : estimer une fréquence

Plus en détail

PRÉCIS DE SIMULATION

PRÉCIS DE SIMULATION PRÉCIS DE SIMULATION P. Del Moral Centre INRIA Bordeaux Sud-Ouest & Institut de Mathématiques de Bordeaux Université Bordeaux I, 351, cours de la Libération 33405 Talence, France Table des matières 1

Plus en détail

III- Raisonnement par récurrence

III- Raisonnement par récurrence III- Raisonnement par récurrence Les raisonnements en mathématiques se font en général par une suite de déductions, du style : si alors, ou mieux encore si c est possible, par une suite d équivalences,

Plus en détail

Le chiffre est le signe, le nombre est la valeur.

Le chiffre est le signe, le nombre est la valeur. Extrait de cours de maths de 6e Chapitre 1 : Les nombres et les opérations I) Chiffre et nombre 1.1 La numération décimale En mathématique, un chiffre est un signe utilisé pour l'écriture des nombres.

Plus en détail

Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO.

Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée produite par TFO. Le guide Édition 1988 Rédacteur (version anglaise) : Ron Carr Traduction : Translatec Conseil Ltée

Plus en détail

Fluctuation d une fréquence selon les échantillons - Probabilités

Fluctuation d une fréquence selon les échantillons - Probabilités Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille

Plus en détail

BONUS MALUS. Voici, la façon de calculer la prime : Le montant de la prime à acquitter est égale à : P = PB. C où : P

BONUS MALUS. Voici, la façon de calculer la prime : Le montant de la prime à acquitter est égale à : P = PB. C où : P BONUS MALUS Le propriétaire d un véhicule automobile est tenu d assurer sa voiture auprès d une compagnie d assurances. Pour un véhicule donné, le propriétaire versera annuellement une «prime» à sa compagnie.

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

Indications pour une progression au CM1 et au CM2

Indications pour une progression au CM1 et au CM2 Indications pour une progression au CM1 et au CM2 Objectif 1 Construire et utiliser de nouveaux nombres, plus précis que les entiers naturels pour mesurer les grandeurs continues. Introduction : Découvrir

Plus en détail

P1 : Corrigés des exercices

P1 : Corrigés des exercices P1 : Corrigés des exercices I Exercices du I I.2.a. Poker : Ω est ( l ensemble ) des parties à 5 éléments de l ensemble E des 52 cartes. Cardinal : 5 I.2.b. Bridge : Ω est ( l ensemble ) des parties à

Plus en détail