Rapport de Projet Informatique Simulation Monte-Carlo du modèle XY
|
|
|
- Fabien Lafleur
- il y a 10 ans
- Total affichages :
Transcription
1 Rapport de Projet Informatique Simulation Monte-Carlo du modèle XY Alejandro Daniel Paredes Cabrel sous la direction de : Xavier Leoncini Centre de Physique Théorique de Marseille Fevrier- 29 Objectif Nous allons étudier, à l aide de méthodes de Monte-Carlo, les courbes Energie-Température et Magnétisation-Température du modèle XY qui est une modification du modèle d Ising. L analyse sera restreinte à une région de basse température où nous attendons à observer une transition de phase. Le langage de programmation utilisé est Fortran 9. 2 Modèle d Ising [] Le modèle d Ising a été introduit dans les années 2, afin de modéliser de façon simple certains phénomènes physiques, comme l aimantation, ou les interactions entre particules dans un mélange de deux phases liquides. Sa description est simple : il s agit d un reseau Z 2, avec en chaque site (i, j) de ce reseau un spin S ij égal à +(up) ou (down). n m Fig. Configuration aléatoire (σ) de spins du modèle d Ising. Les points noirs et blancs indiquent que la valeur du spin est et respectivement L énergie E et la magnétisation M associées à une configuration σ donnée peuvent se calculer à partir des expressions : E(σ) = S i,j S i,j <i,j;i,j > M(σ) = i,j S i,j où < i, j > indique que la somme est faite sur les voisins les plus proches de chaque point. [email protected]
2 La probabilité qu on soit dans une certaine configuration σ pour une température β( T ) donnée s obtient à partir la loi de distribution de Boltzman : P (σ) = Z e E(σ)β Z = σ e E(σ)β où σ parcourt l ensemble de toutes les configurations de spins possibles (2 nm configurations au total). 3 Le Modèle XY Dans le modèle XY à la place de prendre une valeur de spin discret (up ou down) nous utiliserons un vecteur unitaire bidimensionel S, alors pour chaque point (particule) du réseau nous definissons ce vecteur S i,j = (Cos(θ i,j ), Sin(θ i,j )), θ i,j [, 2π > chaque S est parfaitement défini par l angle θ i,j. L énergie et la magnétisation pour une configuration donnée dans le modèle XY deviennent : E(σ) = <i,j> S i,j S i,j = <i,j> Cos(θ i,j θ i, j) M(σ) = i,j S i,j et la probabilité P d avoir une configuration σ à une temperature donnée sera comme dans le cas précédent : P (σ) = Z e E(σ)β Z = σ e E(σ)β Si l on connait comment calculer la probabilité d une configuration donnée il est possible, au moins en théorie, de calculer la moyenne statistique de n importe quelle observable, sauf que pour cela il faut connaître toutes les configurations possibles. Par exemple pour un réseau carré dans le modèle d Ising de taille le nombre de configurations possibles 38 que implique deja un calcul assez lourd et pas pratique. Dans le modèle XY le problème est plus sérieux dû au fait que les angles θ i,j qui definissent une configuration prennent des valeurs continues. Pour resoudre cette difficulté nous allons choisir un sous-ensemble de l ensemble total de configurations possibles et faire de calcul avec lui. Maintenant la question légitime que on se pose est : Quel sous-ensemble doit on choisir et comment? La réponse nous est donnée par l algorithme de Metropolis. 4 Algorithme de Metropolis Cet algorithme nous permet d explorer, à partir d une configuration initiale, un sous-ensemble de l ensemble total des configurations possibles avec la condition que le sous-ensemble obtenu est en accord avec la loi de distribution de Boltztman. L algorithme peut être détaillé de la façon suivante : 2
3 . On prend une configuration aleatoire A avec énergie E(A). On perturbe cette configuration et on obtient une configuration voisine B. Voir Fig(2). 2. On calcule E(B). Si E(B) < E(A) on accepte la nouvelle configuration avec une probabilité égale à. 3. Si E(B) > E(A) on accepte la configuation B avec une probabilité p = e β(e(b) E(A)) (a) Configuration A (b) Configuration B Fig. 2 Pour produire une configuration voisine B à partir de A, on choisit au hasard un point de la configuration A, dans notre cas (3,4) et on change le vecteur en ce point pour un autre de direction aleatoire en rouge. 5 Conditions spécifiques du problème Pour l étude nous avons pris un réseau carré de N N particules avec les bords verticaux et horizontaux identifiés, c est à dire notre réseau est un tore. Voir Fig3(a) Comme voisins proches nous avons pris les quatre premiers voisins qui sont à la même distance de chaque point. Voir Fig3(b) N N + N (a) N + (b) Fig. 3 la Fig3(a) montre l identification des lignes (, j) et (N +, j) et les colonnes (j, ) et (j, N + ). La Fig3(b) indique que le voisin proche du point en noir sont les points en rouge 6 Difficulté La première dificulté trouvée le long du projet a été la generation de bonnes configurations aleatoires initiales. Si on prend une configuration aleatoire quelconque l algorithme de Metropolis devra chercher un nombre assez grand de configurations pour que la moyenne calculée converge vers une valeur stable. Comme le but de notre travail est d étudier la region de basse température où nous cherchons une transition de phase, nous attendons de trouver, dans cette region, tous les vecteurs de spin plus ou moins alignés, alors une bonne configuration initiale sera un ensemble de θ i,j aleatoires compris entre et T. Une fois choisies les bonnes configurations initiales nous avons encore un paramètre libre R dans le code qui nous permet de varier le nombre de configurations utilisées dans chaque calcul de valeurs moyennes. Pour fixer ce paramètre on compare les courbes résultantes pour différentes valeurs de R et on prend la valeur de R pour laquelle les courbes se stabilisent. 3
4 Le code n est pas completement optimisé puisque pour calculer l énergie d une configuration voisine il fait le calcul complet à la place d isoler la partie qui n a pas changé et calculer seulment la perturbation. Cette difficulté est traduite par un delai de temps considerable pendant l éxécution du programme. 7 Résultats D abord il faut fixer la valeur du parametre R et cela nous le faissons à partir de la Fig4 où nous voyons que pour la valeur de R= 5 les courbes se stabilisent. Pour la suite de calculs nous allons prendre cette valeur de R Courbes Energie vs pour diferents valeurs de R 2 R= 2, NC[8,4], t=m,865s R= 3, NC[62,458], t=m5,2s R= 4, NC[549,743], t=2m43,59s R= 5, NC[5788,9865], t=29m44,88s R= 6, NC[627,9858], t=297m8,43s.5 Energie (a) Courbes Magnetisation vs pour diferents valeurs du parametre R.4.2 R= 2, NC[8,4], t=m,865s R= 3, NC[62,458],t=m5,2s R= 4, NC[549,743], t=2m43,59s R= 5, NC[5788,9865], t=29m44,88s R= 6, NC[627,92858],t=297m8,43s Magnetisation (b) Fig. 4 Courbes de Energie vs Température (a) et Magnetisation vs Température (b) pour quatre valeurs de R = 3, 4, 5, 6 Maintenant nous voulons savoir quels sont les effets de la taille du réseau sur les courbes d Energie et Magnetisation. Dans la Fig5 nous montrons les courbes pour quatre tailles de resseau 6 6, et et Les courbes de Energie vs ont été deplacées +2 unitées dans l axe des ordonées pour avoir le minimum d énergie à T=O. 4
5 2 Courbes Energie vs differents tailles de reseau N=6 N=32 N=64 N=28 E(T)=.42823*T Energie (a) Courbes Magnetisation vs pour differentes tailles de reseau.2 N=6 N=32 N=64 N=28 Magnetisation (b) Fig. 5 Courbes Energie vs Température (a) et Magnetisation vs Température (b) pour quatre resseaux de tailles diferents N= 6, 32, 64 et 68 8 Conclusions Les seuls résultats d importance sont ceux qui sont obtenus pour une valeur de R supèrieure à 5. La taille du réseau ne modifie pas trop les courbes d Energie et Magnétisation à très basse température, par contre au delà de T= la taille prend d importance. Pour la région de températures compris entre et.4 nous pouvons identifier une dépendance linéaire de l énergie et la température. La dependance linéaire est affichée dans la Fig.5(a) La température de transition de phase d un système bouge vers la droite avec la taille du réseau, mais quand même nous voyons que la transition phase est comprise entre T =. et T =.8 5
6 Références [] Werner K., Four lectures on computational statistical physics, http ://lanl.arxiv.org/abs/9.2496v,29 6
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
Leçon N 4 : Statistiques à deux variables
Leçon N 4 : Statistiques à deux variables En premier lieu, il te faut relire les cours de première sur les statistiques à une variable, il y a tout un langage à se remémorer : étude d un échantillon d
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme
Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle
TP N 57. Déploiement et renouvellement d une constellation de satellites
TP N 57 Déploiement et renouvellement d une constellation de satellites L objet de ce TP est d optimiser la stratégie de déploiement et de renouvellement d une constellation de satellites ainsi que les
1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.
Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur
Texte Agrégation limitée par diffusion interne
Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse
Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA
75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche
Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2
Introduction Page xxi (milieu de page) G = 6, 672 59 1 11 m 3 kg 1 s 2 Erratum de MÉCANIQUE, 6ème édition Page xxv (dernier tiers de page) le terme de Coriolis est supérieur à 1% du poids) Chapitre 1 Page
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
Etude de fonctions: procédure et exemple
Etude de fonctions: procédure et exemple Yves Delhaye 8 juillet 2007 Résumé Dans ce court travail, nous présentons les différentes étapes d une étude de fonction à travers un exemple. Nous nous limitons
Projet de Traitement du Signal Segmentation d images SAR
Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,
EXERCICE 4 (7 points ) (Commun à tous les candidats)
EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat
Annexe commune aux séries ES, L et S : boîtes et quantiles
Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
Angles orientés et fonctions circulaires ( En première S )
Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble
INF 232: Langages et Automates. Travaux Dirigés. Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies
INF 232: Langages et Automates Travaux Dirigés Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies Année Académique 2013-2014 Année Académique 2013-2014 UNIVERSITÉ JOSEPH
Chapitre 3. Mesures stationnaires. et théorèmes de convergence
Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée
Exercices Corrigés Premières notions sur les espaces vectoriels
Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3
Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007
Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................
Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.
Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de
Différents types de matériaux magnétiques
Différents types de matériaux magnétiques Lien entre propriétés microscopiques et macroscopiques Dans un matériau magnétique, chaque atome porte un moment magnétique µ (équivalent microscopique de l aiguille
Programmation linéaire
1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit
Correction du baccalauréat ES/L Métropole 20 juin 2014
Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)
Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens
Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques
Utilisation de l éditeur.
Utilisation de l éditeur. Préambule...2 Configuration du navigateur...3 Débloquez les pop-up...5 Mise en évidence du texte...6 Mise en évidence du texte...6 Mise en page du texte...7 Utilisation de tableaux....7
TP 7 : oscillateur de torsion
TP 7 : oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)
Une réponse (très) partielle à la deuxième question : Calcul des exposants critiques en champ moyen
Une réponse (très) partielle à la deuxième question : Calcul des exposants critiques en champ moyen Manière heuristique d'introduire l'approximation de champ moyen : on néglige les termes de fluctuations
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
21 mars 2012. Simulations et Méthodes de Monte Carlo. DADI Charles-Abner. Objectifs et intérêt de ce T.E.R. Générer l'aléatoire.
de 21 mars 2012 () 21 mars 2012 1 / 6 de 1 2 3 4 5 () 21 mars 2012 2 / 6 1 de 2 3 4 5 () 21 mars 2012 3 / 6 1 2 de 3 4 5 () 21 mars 2012 4 / 6 1 2 de 3 4 de 5 () 21 mars 2012 5 / 6 de 1 2 3 4 5 () 21 mars
LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE
LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M [email protected] 1 1.Le réseau
Optimisation, traitement d image et éclipse de Soleil
Kléber, PCSI1&3 014-015 I. Introduction 1/8 Optimisation, traitement d image et éclipse de Soleil Partie I Introduction Le 0 mars 015 a eu lieu en France une éclipse partielle de Soleil qu il était particulièrement
Les Conditions aux limites
Chapitre 5 Les Conditions aux limites Lorsque nous désirons appliquer les équations de base de l EM à des problèmes d exploration géophysique, il est essentiel, pour pouvoir résoudre les équations différentielles,
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Chapitre 02. La lumière des étoiles. Exercices :
Chapitre 02 La lumière des étoiles. I- Lumière monochromatique et lumière polychromatique. )- Expérience de Newton (642 727). 2)- Expérience avec la lumière émise par un Laser. 3)- Radiation et longueur
Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.
ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle
Manipulateurs Pleinement Parallèles
Séparation des Solutions aux Modèles Géométriques Direct et Inverse pour les Manipulateurs Pleinement Parallèles Chablat Damien, Wenger Philippe Institut de Recherche en Communications et Cybernétique
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté
CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté 010-011 CHAPITE IV Oscillations libres des systèmes à plusieurs derés de liberté Introduction : Dans ce chapitre, nous examinons
LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )
SYNTHESE ( THEME ) FONCTIONS () : NOTIONS de FONCTIONS FONCTION LINEAIRE () : REPRESENTATIONS GRAPHIQUES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)
Terminale S CHIMIE TP n 2b (correction) 1 SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION) Objectifs : Déterminer l évolution de la vitesse de réaction par une méthode physique. Relier l absorbance
EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG
Exploitations pédagogiques du tableur en STG Académie de Créteil 2006 1 EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG Commission inter-irem lycées techniques contact : [email protected] La maquette
Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé
Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue
Pourquoi l apprentissage?
Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage
SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX
SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX 1. EXPERIENCE 1 : APPLICATION DE LA LOI FONDAMENTALE DE LA DYNAMIQUE a) On incline d un angle α la table à digitaliser (deuxième ou troisième cran de la table).
IMAGES NUMÉRIQUES MATRICIELLES EN SCILAB
IMAGES NUMÉRIQUES MATRICIELLES EN SCILAB Ce document, écrit par des animateurs de l IREM de Besançon, a pour objectif de présenter quelques unes des fonctions du logiciel Scilab, celles qui sont spécifiques
INF6304 Interfaces Intelligentes
INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie
Démonstrateur HOMES à la Préfecture de l Isère
Démonstrateur HOMES à la Préfecture de l Isère 1 Un partenariat de 3 ans entre la Préfecture de l Isère et Schneider-Electric Instrumenter le site Innovation Créer une situation de référence Business Partenaires
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
Notion de fonction. Résolution graphique. Fonction affine.
TABLE DES MATIÈRES 1 Notion de fonction. Résolution graphique. Fonction affine. Paul Milan LMA Seconde le 12 décembre 2011 Table des matières 1 Fonction numérique 2 1.1 Introduction.................................
Comment réaliser physiquement un ordinateur quantique. Yves LEROYER
Comment réaliser physiquement un ordinateur quantique Yves LEROYER Enjeu: réaliser physiquement -un système quantique à deux états 0 > ou 1 > -une porte à un qubitconduisant à l état générique α 0 > +
Systèmes de transmission
Systèmes de transmission Conception d une transmission série FABRE Maxime 2012 Introduction La transmission de données désigne le transport de quelque sorte d'information que ce soit, d'un endroit à un
Master IMA - UMPC Paris 6 RDMM - Année 2009-2010 Fiche de TP
Master IMA - UMPC Paris 6 RDMM - Année 2009-200 Fiche de TP Préliminaires. Récupérez l archive du logiciel de TP à partir du lien suivant : http://www.ensta.fr/~manzaner/cours/ima/tp2009.tar 2. Développez
I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...
TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................
Chaînes de Markov au lycée
Journées APMEP Metz Atelier P1-32 du dimanche 28 octobre 2012 Louis-Marie BONNEVAL Chaînes de Markov au lycée Andreï Markov (1856-1922) , série S Problème 1 Bonus et malus en assurance automobile Un contrat
Figure 3.1- Lancement du Gambit
3.1. Introduction Le logiciel Gambit est un mailleur 2D/3D; pré-processeur qui permet de mailler des domaines de géométrie d un problème de CFD (Computational Fluid Dynamics).Il génère des fichiers*.msh
Traitement bas-niveau
Plan Introduction L approche contour (frontière) Introduction Objectifs Les traitements ont pour but d extraire l information utile et pertinente contenue dans l image en regard de l application considérée.
Master Exploration Informatique des données Data Mining & Business Intelligence. Evelyne CHARIFOU Priscillia CASSANDRA
Master Exploration Informatique des données Data Mining & Business Intelligence Groupe 5 Piotr BENSALEM Ahmed BENSI Evelyne CHARIFOU Priscillia CASSANDRA Enseignant Françoise FOGELMAN Nicolas DULIAN SOMMAIRE
Module 16 : Les fonctions de recherche et de référence
Module 16 : Les fonctions de recherche et de référence 16.0 Introduction L une des fonctions les plus importantes d Excel, c est la possibilité de chercher une valeur spécifique dans un grand nombre de
Vis à billes de précision à filets rectifiés
sommaire Calculs : - Capacités de charges / Durée de vie - Vitesse et charges moyennes 26 - Rendement / Puissance motrice - Vitesse critique / Flambage 27 - Précharge / Rigidité 28 Exemples de calcul 29
Python - introduction à la programmation et calcul scientifique
Université de Strasbourg Environnements Informatique Python - introduction à la programmation et calcul scientifique Feuille de TP 1 Avant de commencer Le but de ce TP est de vous montrer les bases de
Table des matières A. Introduction... 4 B. Principes généraux... 5 C. Exemple de formule (à réaliser) :... 7 D. Exercice pour réaliser une facture
Excel 2007 -2- Avertissement Ce document accompagne le cours qui a été conçu spécialement pour les stagiaires des cours de Denis Belot. Le cours a été réalisé en réponse aux diverses questions posées par
Introduction. Mathématiques Quantiques Discrètes
Mathématiques Quantiques Discrètes Didier Robert Facultés des Sciences et Techniques Laboratoire de Mathématiques Jean Leray, Université de Nantes email: v-nantes.fr Commençons par expliquer le titre.
1 Introduction et installation
TP d introduction aux bases de données 1 TP d introduction aux bases de données Le but de ce TP est d apprendre à manipuler des bases de données. Dans le cadre du programme d informatique pour tous, on
Introduction au maillage pour le calcul scientifique
Introduction au maillage pour le calcul scientifique CEA DAM Île-de-France, Bruyères-le-Châtel [email protected] Présentation adaptée du tutorial de Steve Owen, Sandia National Laboratories, Albuquerque,
Reconstruction de bâtiments en 3D à partir de nuages de points LIDAR
Reconstruction de bâtiments en 3D à partir de nuages de points LIDAR Mickaël Bergem 25 juin 2014 Maillages et applications 1 Table des matières Introduction 3 1 La modélisation numérique de milieux urbains
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante
aux différences est appelé équation aux différences d ordre n en forme normale.
MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire
Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point
03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de
La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique
La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation
Colloque des arbitres et des commissaires aux résultats Moulin mer
Colloque des arbitres et des commissaires aux résultats Moulin mer Bernard Simon- janvier 2015 Météorologie Web : Attention aux modèles utilisés dans les prévisions: (maillage / relief pris en compte/
Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite.
Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite. Introduction : Avant de commencer, il est nécessaire de prendre connaissance des trois types de
Géométrie discrète Chapitre V
Géométrie discrète Chapitre V Introduction au traitement d'images Géométrie euclidienne : espace continu Géométrie discrète (GD) : espace discrétisé notamment en grille de pixels GD définition des objets
CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité
1 CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité Une situation fréquente en pratique est de disposer non pas d un résultat mais de plusieurs. Le cas se présente en assurance, par exemple :
Arrêté Royal du 7 juillet 1994 fixant les normes de base en matière de prévention contre l incendie et l explosion : Notice explicative
Arrêté Royal du 7 juillet 1994 fixant les normes de base en matière de prévention contre l incendie et l explosion : Notice explicative A n n e x e 1 Annexe 1 1.2.1 hauteur d un bâtiment La hauteur h d'un
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine
Théories de champ moyen et convection à grande échelle
Chapitre Théories de champ moyen et convection à grande échelle 51 Introduction Au cours de ce travail, nous avons à plusieurs reprises été confrontés au problème de la compréhension et de la modélisation
- MANIP 2 - APPLICATION À LA MESURE DE LA VITESSE DE LA LUMIÈRE
- MANIP 2 - - COÏNCIDENCES ET MESURES DE TEMPS - APPLICATION À LA MESURE DE LA VITESSE DE LA LUMIÈRE L objectif de cette manipulation est d effectuer une mesure de la vitesse de la lumière sur une «base
CHAPITRE 10. Jacobien, changement de coordonnées.
CHAPITRE 10 Jacobien, changement de coordonnées ans ce chapitre, nous allons premièrement rappeler la définition du déterminant d une matrice Nous nous limiterons au cas des matrices d ordre 2 2et3 3,
Suites numériques 3. 1 Convergence et limite d une suite
Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n
Aide - mémoire gnuplot 4.0
Aide - mémoire gnuplot 4.0 Nicolas Kielbasiewicz 20 juin 2008 L objet de cet aide-mémoire est de présenter les commandes de base pour faire rapidement de très jolis graphiques et courbes à l aide du logiciel
Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.
Logique binaire I. L'algèbre de Boole L'algèbre de Boole est la partie des mathématiques, de la logique et de l'électronique qui s'intéresse aux opérations et aux fonctions sur les variables logiques.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
Peut-on imiter le hasard?
168 Nicole Vogel Depuis que statistiques et probabilités ont pris une large place dans les programmes de mathématiques, on nous propose souvent de petites expériences pour tester notre perception du hasard
Opérations de base sur ImageJ
Opérations de base sur ImageJ TPs d hydrodynamique de l ESPCI, J. Bico, M. Reyssat, M. Fermigier ImageJ est un logiciel libre, qui fonctionne aussi bien sous plate-forme Windows, Mac ou Linux. Initialement
2.4 Représentation graphique, tableau de Karnaugh
2 Fonctions binaires 45 2.4 Représentation graphique, tableau de Karnaugh On peut définir complètement une fonction binaire en dressant son tableau de Karnaugh, table de vérité à 2 n cases pour n variables
LE PRODUIT SCALAIRE ( En première S )
LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation
Formats d images. 1 Introduction
Formats d images 1 Introduction Lorsque nous utilisons un ordinateur ou un smartphone l écran constitue un élément principal de l interaction avec la machine. Les images sont donc au cœur de l utilisation
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
http://cermics.enpc.fr/scilab
scilab à l École des Ponts ParisTech http://cermics.enpc.fr/scilab Introduction à Scilab Graphiques, fonctions Scilab, programmation, saisie de données Jean-Philippe Chancelier & Michel De Lara cermics,
Résonance Magnétique Nucléaire : RMN
21 Résonance Magnétique Nucléaire : RMN Salle de TP de Génie Analytique Ce document résume les principaux aspects de la RMN nécessaires à la réalisation des TP de Génie Analytique de 2ème année d IUT de
Algorithme des fourmis appliqué à la détection et au suivi de contours dans une image
IN52-IN54 A2008 Algorithme des fourmis appliqué à la détection et au suivi de contours dans une image Etudiants : Nicolas MONNERET Alexandre HAFFNER Sébastien DE MELO Responsable : Franck GECHTER Sommaire
Ecran : Processeur : OS : Caméra : Communication : Mémoire : Connectique : Audio : Batterie : Autonomie : Dimensions : Poids : DAS :
SMARTPHONE - DUAL-CORE - NOIR 3483072425242 SMARTPHONE - DUAL-CORE - BLEU XXXX SMARTPHONE - DUAL-CORE - BLANC 3483072485246 SMARTPHONE - DUAL-CORE - ROSE 3483073704131 SMARTPHONE - DUAL-CORE - ROUGE XXXX
Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke
www.fundp.ac.be/biostats Module 140 140 ANOVA A UN CRITERE DE CLASSIFICATION FIXE...2 140.1 UTILITE...2 140.2 COMPARAISON DE VARIANCES...2 140.2.1 Calcul de la variance...2 140.2.2 Distributions de référence...3
Modèles à Événements Discrets. Réseaux de Petri Stochastiques
Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés
Probabilités Loi binomiale Exercices corrigés
Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre
Programmation linéaire
Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire
Évaluation de la régression bornée
Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement
