I FONCTION CARBONYLE

Dimension: px
Commencer à balayer dès la page:

Download "I FONCTION CARBONYLE"

Transcription

1 I FTI ABYLE ALDEYDES ET ETES * oms Systématiques: arbonyle Aldéhyde étone ' Acide Aldéhydes: 1) omenclature: * oms ourants: 1) onsidérer l'alcane correspondant 2) emplacer terminaison E par AL 3) toujours en position 1 AlcanE AlcanAL Formaldéhyde MéthanE ( 4 ) MéthanAL 3 3 Acétone EthanE ( 2 6 ) EthanAL Et Et Diéthylecétone PropanE ( 3 8 ) PropanAL 7 6 l hloro-4-butanal Diméthyl-4,6-heptanal

2 1) omenclature: * oms Systématiques: Pentan-2-one hloro-4-méthyl-7-octan-3-one l 1) onsidérer l'alcane correspondant 2) emplacer terminaison E par E 3) Indiquer la Position* du AlcanE étones * onsidérer la haîne la plus Longue Σi la plus petite AlcanE Diméthyl-2,2-cyclopentanone 3 2 emarque: Un aldéhyde (-) ne peut faire partie d'un cycle. Une étone (--') peut faire partie d'un cycle Br Bromo-4-cyclohexanone 2 3

3 120 2) Propriétés Physiques: * Structure Electronique: ' Liaison Π Liaison σ rbitale hybride SP 2 onséquences: * Structure Spatiale: rbitale P Doublets Libres aractère Basique Analogie avec = Fonction arbonyle PLAE Exemple typique: l'ethanal ( 3 -) entre ucléophile 2 Formes limites Liaison Double Polarisée (µ=2,7 D) δ δ µ entre Electrophile onséquences: * Polarisation de =: Eb Elevées * Solubles dans 2 ( 1-5 ) * 1-12 Liquides; > 13 Solides 1,124 A 1,204 A 1,500 A E l = Kcal/mo l

4 * Propriétés Spectroscopiques: 1 M: Spectroscopie Electronique Doublet n 2,0 ppm doublet Π 2 δ = 2,5 ppm δ =9,8 ppm triplet, j=2 z ' 3 2,6 ppm Π * 13 M: n Π * Π Π Π Dans UV ( nm) Dans UV (190 nm) 3 199,6 ppm 5,2 ppm ,8 ppm Π * 31,2 ppm 36,7 ppm n Exemple: nm (ε = 15) ,2 ppm 205,1 ppm 206,6 ppm 3 29,3 ppm 17,5 ppm ,2 ppm 13,5 ppm 190 nm (ε = 1100)

5 3) Méthodes de Préparation Formellement 'Li="' - "Li a) Acide étone - Li " ' - " - Li 'Li rganolithien / 2 / Li ' ' ' Forme ydratée d'une étone b) hlorure d'acide l / 2 'M rganométalliques / 2 " ' - " - M - Ml étone ' l '

6 3) Méthodes de Préparation ydrure métalliques M = a, K (" - ", M ) c) hlorure d'acide Aldéhyde l / 2 M / 2 " - " - M - Ml l d) Ester Aldéhyde Amide Aldéhyde 2 Al / Al / 2 *Di-isobutylAluminium ydride ydrure particulier ne réduit pas l'ester *emarque: n ne veut pas réduire l'ester en alcool (LiAl 4 ), mais on veut remplacer par *emarque: n ne veut pas réduire l'amide en amine (B 2 6 ), mais on veut remplacer 2 par

7 3) Méthodes de Préparation e) rganométalliques MgX : rgnomagnésien 2 u,m : uprate 2 Zn : rganozincique itrile " ' - " ' M 'M rganométalliques / 2 - M / 2 étone Imine ' ydrolyse / 2-3 ' ydrure métalliques a K f)itrile " - " M M ydrure métalliques / 2 - M / 2 ydrolyse Aldéhyde Imine / 2-3

8 3) Méthodes de Préparation Anion Stabilisé en α de Soufre g) Dérivé alogéné 'X S S / 2 étone ' / gl 2 S S ydrolyse emarque: Aldéhyde Proton non acide Propane-1,3-dithiol Protection S S S S Inversion de Polarité = UMPLUG 1,3-dithiane Thioacétal = forme protégée de = Proton acide Base Forte Bilan : Transformation de - (Aldéhyde) en --' (étone) ' S S Li

9 3) Méthodes de Préparation h) Acide β cétonique β ' α Δ Décarboxylation étone ' ' - 2 Enol ' Acylation de Friedel & rafts All 3 = Acide de Lewis l All 3 / 2 étone Aromatique i) Benzène (Arène) l All 3 Aromatisation All 4

10 j) xydation des ALLS btention d'aldeydes éactif de Jones: r 3 2 / 2 S 4 ydratation du r 3 en milieu acide VI r Acide hromique Alcool Primaire Alcool Primaire ' Alcool Secondaire Acide hromique VI r r 3 / Pyridine l r 3 / 2 S 4 Mécanisme: 2 Aldéhyde ' étone Ester hromique VI r emarque: Aldéhyde Facilement xydable en Acide Acide xydation Aldéhyde 2e IV r

11 3) Méthodes de Préparation * Exemple: r 3 / 2 S 4 r 3 / 2 S 4 2 Acétone, 0 Acétone, 0 Alcool Primaire Aldéhyde Acide emarque: L'oxydation se poursuit Pour éaliser une xydation Ménagée n Désactive l'xydant en Utilisant de la Pyridine * Exemple: 2 éactif de orey: r 3 / Pyridine / l = P 2 Protection 2 l 2, al Déprotection 85% emarque: Absence de 2 car suroxidation : - 2 -() 2 -

12 btention de ETES Mécanisme: éactif de Jones: r 3 2 / 2 S 4 ydratation Du r 3 en milieu acide VI r Acide hromique ' Alcool Primaire VI r Acide hromique 2 ' VI r Ester hromique ' étone r IV emarque: étone Difficilement xydable en acide *Exemple: r 3 / 2 S 4 xydation Par Mn 2 : Un xydant Doux Alcool Allylique 2 Mn 2 35% 25, Acétone Aldéhyde α,β conjugué l 3 /25 Mn 2 62%

13 Formation de - et --' par livage xydatif 1 3 1) 3, 2)éducteur 2 1 Alcène 4 zonolyse oupure de la liaison = / 2 g 2 Alcyne Enol étone 3 *Addition MAKWIV de 2 **is Addition de - et ydroboration B 2 B / - Enolate Aldéhyde *Addition Anti-MAKWIV de 2

14 3) Méthodes de Préparation Préparation Industrielle * Le méthanal est un produit très important. Aux USA, 3 Millions de tonnes sont produites par an 3 Méthanol 2 /atalyseur (Ag) Méthanal Formaldéhyde Utilisation du méthanal dans l'eau (le Formol): Fongicide, Desinfectant, Germicide, ésines etc ** L'acétone (Propanone) est utilisée comme solvant Aux USA, 1 Million de tonnes sont produites par an Propène Benzène Acétone Phénol Procédé d'ydpexyde de UMEE ar: umène

15 4) éactivité de la Fonction arbonyle Doublet Basique α δ δ Π entre ucléophile Double Liaison Proton Acide entre Electrophile * YDGEATI *Exemples: 2 Alcène atalyseur Alcane 2 atalyseur étone-aldéhyde Alcool emarque: = réagit plus lentement que =. onséquence: ydrogénation Sélective. 2, u, min. Aldéhyde Alcool Primaire

16 **Exemples: étone 2, aney i 80, 5 min. Alcool Secondaire ***Exemple: ydrogénation Sélective 2, Pt 1 atm., 25 ADDITI IIQUE δ δ δ X Y δ X Y *Addition d'ydrure Métallique M: - M 2 M -M " - " Alcool emarque: éaction EVESIBLE *Addition d'rganométallique M: M - M 2 -M " - " Alcool emarque: éaction EVESIBLE

17 uc *Addition EVESIBLE: Mécanisme En Milieu Basique: uc En Milieu Acide: Anion Alkoxyde Basique 2 uc Protonation uc uc Faiblement Basique pk a = -8 - Addition de 2 : 2 uc uc - Mauvais Partant - emarque: Analogie avec une éaction S2 Pas de Départ d'un Groupe mais la Double Liaison Bascule sur l'xygène emarque: = très faiblement Basique onséquence: = très fortement Acide éanmoins: Faible Quantité de = *atalyse Basique ( - ) ydrate de arbone ydroxyalkoxyde ydrate de arbone

18 **atalyse Acide ( ) ydrate de arbone Explication: onstante d'equilibre K K '= 2 '() 2 emarque: L'ydratation de = est EVESIBLE Mais l'equilibre Dépend de la ature de = ' : étone =, ' = : Aldéhyde = ' = : Formol ' étone Aldéhyde Formaldéhyde Avec: K = '() 2 '= x 2 Difficilement ydratée Moyennement ydraté Facilement ydraté = ' = 3 =, ' = 3 = ' = Acétone Ethanal Formaldéhyde K(L mol -1 ) =

19 aisonnement: Toute éaction d'addition est d'autant plus Favorisée que le arbone du = est Electrophile (déficient en Electron). En d'autres termes, la réaction se fait d'autant plus facilement que le " " est déstabilisé. Vérification: l l l Primaire Secondaire Tertiaire K(Lmol -1 ) Addition de -: Formation d'emiaetal Aldéhyde "- " emarque: éaction eversible, l'equilibre est déplacé vers la Gauche (sauf Exception), les émiacétals ne sont pas Stables. étone ' "- " ' émiacétal

20 *Exception: émiacétals ycliques Ex 1) 2 1 Ex 2) 3 4 ydroxy-5-pentanal un ydroxyaldéhyde 5 émiacétal yclique Stable Explication: éaction Monomoléculaire ou éaction IntramoléculaireFavorisée pour des raisons ETPIQUES Preuves de l'existence de l'equilibre: ab 4 éduction r 3 xydation Diol Lactone

21 - Double Addition de -: Formation d'aetal '' '' Aldéhyde 2 ''- '' 2 ''- ' étone emarque: éaction eversible, peut être déplacée vers l'acétal (Stable) en milieu Acide en présence d'excès d'alcool. '' ' Acétal '' '' - *Mécanisme de Formation: " - 2 '' '' émiacétal " " - " '' '' " Acétal

22 Acétals ycliques = Groupes Protecteurs % *Les Acétals ycliques Sont Stables. **Leur Formation est éversible. ***Leur ydrolyse Produit le = de Départ. Exemple d'utilisation - 3 ( 2 ) 3 Li I - 3 ( 2 ) 3 Alcyne Métallé Iodo-Aldéhyde Protégé 70% emarque: Il faut protéger l'aldéhyde car l'attaque du = par le - peut avoir lieu Déprotection 3 - ( 2 ) 3 90% /2 I /-2 Protection I Protection de DILS VIIAUX Br 75% Br

23 Les Thioacétals - est remplacé par -S. Le atalyseur est remplacé par BF 3, Znl 2... Les Thioacétals sont plus Stables que les Acétals. Déprotection: BF S S 3, 20 3 S S S 30 min, % Thioacétal S 3 /a 3 2 /gl 2 Znl2, 25 S S % S Et--Et Thioacétal yclique emarque: éduction des Thioacétals Application: éduire = SAS éduire = S S S S Facile i aney S S BF 3, 0 i aney Et, Δ Difficile 74%

24 -Addition d'amie *Amines Primaires: Analogie formelle entre -, - et 3 -. ependant 3 - est plus ucléophile que -. 2 emarque: émiaminal = Equivalent Azoté d'émiacétal - 2 Déshydratation émiaminal Imine Mécanisme de Formation d'imine: émiaminal 2 - Exemples: 2 Imonium K Imine emarque 1: - est plus Basique que -. éanmoins, le PEU de - 2 (bon partant) qui se forme réagit pour donner l'imine. emarque 2: Imine (=) = Analogue Azoté de arbonyl (=). emarque 3: 2 Isomères possibles pour les Imines ou Base de Schiff. - ( 2 ) % % 2

25 *Synthèse d'xime: **Synthèse d'ydaze: 3,l ' 2-2 xime ydrazine ' 2 ydrazone 2 ' 2 2 ' 2 2 emarque: Formation de Dérivés ristallisés pour Identification de étones Liquides Dinitro-2,4-phenylydrazine Dinitro-2,4-phenylydrazone de la étone ***Synthèse d'azie: 2x ydrazine ' Azine ' ****Synthèse de SEMIABAZE: 2 2 Semicarbazide -2 2 ' 2 Semicarbazone de l'aldéhyde

26 Application: Désoxygénation de = Via Imine La éduction de Wolff-Kishner ' 2 a Imine (ydrazone) ' 2 ydrocarbone ' Mécanisme: 2 2 ' ' Exemple: ' ' Protonation ' ' 2 ' Anion Stabilisé arbanion emarque: éaction EVESIBLE Dégagement de 2 = Force Motrice 69% 1) 2-2 2) a, Δ

27 **Amine Secondaire: Formation d'eamie Mécanisme de Formation *Exemple ' α ' ' Proton légèrement Acide α - étone Amine Secondaire ' ' Enamines is et Trans - 2 emarque 1: 2 Isomères Possibles emarque 2: éaction EVESIBLE, ydrolyse d'eamie se fait Facilement en milieu Acide ' 2 α-hydroxyamine % Enamine

28 -Addition de ucléophiles arbonés: Ph emarque: éaction très Importante car elle permet de Former des Liaisons -. * Addition d'ylues de Phosphore: La éaction de Wittig Wittig ( ), eidelberg, obel en ) Formation de Sel de Phosphonium: Ph Ph P Triphenylphosphine Phosphore trivalent X Dérivé alogéné 2) Formation d'ylure de Phosphore: Ph Ph Ph P α Sel de Phosphonium Li Lithien = Base Forte emarque: A cause des rbitales 3d, Possibilité d'extension de ouche de Valence: Passage de P tricoordiné au P pentacoordiné. X emarque: La forme ylure est prépondérante par rapport à la forme ylène Ph Ph Ph P X Sel de Phosphonium Ph Ph Ph Ph Ph Ph P P α Ylure Ylène LiX Anion Stabilisé 3) éaction de Wittig: Ph Ph Ph P Ylure de Phosphore ' " ' " Alcène E et Z Ph Ph Ph ' " étone Aldéhyde ('=) P xyde de triphenylphosphane emarque: La STEESELETIVE dépend du type d'ylure (stabilisé, semi stabilisé ou non stabilisé) utilisé, de la nature du cation de la base utilisée (a, Li ) et des conditions opératoire (température, sel auxiliaire)

29 Mécanisme de la éaction de Wittig: Ph Ph Ph P Ph P Ph Ylène Ph Ylure ' " Exemple: P P P P P(Ph) 3 emarque: A cause des rbitales 3d, Possibilité d'extension de ouche de Valence: Passage de P tricoordiné au P pentacoordiné. ' " " ' " Ph ' Bétaïne xaphosphétane Bétaïne emarque:bétaïne et oxaphosphétane sont des intermédiaires. L'oxaphosphétane est plus stable Alcène Z Ph Ph xyde de Triphenylphosphane emarque:la Stéréosélectivité dépend du type d'ylure (stabilisé, semi stabilisé ou non stabilisé) utilisé, de la nature du cation de la base utilisée (a, Li ) et des conditions opératoire (température, sel auxiliaire) P " ' " Alcène Z ' ' " Ph 25 emarque: Il faut protéger le = au niveau de l'ylure. La éaction ne Touche pas au -- et au =. Z E

30 Application: Synthèse de la Vitamine A1 par BASF Br P(Ph) P(Ph) 3 3 Br - - / 3 P(Ph) 3 Vitamine A1 emarque 1: La protection de l'alcool est Indispensable pour Eviter la formation d'émiacétal yclique. emarque 2: Dans la Vitamine A1 toutes les = sont Tans.

31 *Addition d'ylure de Soufre: Formation de Sel de Sulfonium: S ' Thioéther 3 I S I ' Sel de Sulfonium Formation dylure de Soufre: S α ' Sel de Sulfonium I "Li -LiI S ' Anion Stabilisé S ' Ylure de Soufre emarque: Pour arracher le Proton en α du soufre il faut une base forte (Alkyl Lithien) éaction avec la Fonction arbonyle: S S-' 1 2 ' 2 S ' Bétaïne Soufrée xacyclopropane Bilan: Insertion de 2 dans la Liaison = emarque: ontrairement au Ylures du P, au niveau de la Bétaïne Soufrée il n'y pas d'extension de Valence mais il y a l'elémination du thioéther.

32 5) XYDATI et EDUTI *xydation par les Acides Peroxycarboxyliques: Peracide ' Aldéhyde ' " Peracide étone emarque: es Produits sont Instables et se Décomposent. ' Le as des Aldéhydes: Migration de Migration de ' - Bilan: ' ' Aldéhyde Acide emarque: Insertion de dans la Liaison - Acide " Acide ' ' ' Bilan: Le as des étones: Migration de (xydation de Bayer-Villiger) " ' " Migration de ' - Ester Acide Aldéhyde Ester emarque: Insertion de dans la Liaison -" ' " "

33 ' " - " étone Ester Ester emarque 1: Insertion de dans la Liaison ' ou -"? emarque 2: Pour les Aldéhydes, Uniquement la Migration de a lieu. ' u ' " *Exemple 1: Exemple: Secondaire 3 64 h 3 -- l 3 étone Symétrique **Exemple 2: étone disymétrique 3 Lactone = Ester yclique 72% Ethanoate d'éthyle Tertiaire 56% emarque: L'xydation de Bayer-Villiger ne Touche pas au =. Aptitude Migratoire:Tout se passe comme si on passait par un. >Tertiaire>yclohexyle>Secondaire - Phényle>Primaire> 3 (ullaire)

34 EDUTI *éduction de lemmensen: ' ' Exemple: 3 - ( 2 ) 5 3 Zn(g), l Δ Zn(g), l Δ - ' 3 - ( 2 ) 6 3 ctane 62% **éduction Avec ouplage: Transfert MonoElectronique 2x Mg o Benzène Mécanisme possible: 2x ' Mg o - ' ' -Mg() 2 éaction Pinacolique - ' Mg 2 Mg 2 - ' adicaux Anions / 2 emarque 1:* Mécanisme non onnu, il y un transfert d'electron des Métaux sur le =. ** onditions très Dures. emarque 2: La même éaction se fait dans des conditions douces en passant par un Thioacétal yclique puis éduction (i aney). ' ' Pinacol Mg ' ' Exemple: Acétone Le Pinacol

35 2x ouplage Sur le Titane: éaction de Mc Murry ' Til 3 /Li TF ' ' ' ' étone Alcène E et Z emarque: éaction STEESELETIVE Mécanisme Possible: 2x Li - - Li Li Til 3 ' ' ' oordination ouplage Pinacolique Exemple: Pentanal Ti ' ' ' Ti 2 ' ' ' Alcène E et Z Til 3 /K TF Dec-5-ène E et Z 2x Exemple: Til 3 /Li TF 79% *ouplage Mixte: 63% **ouplage Intramoléculaire: - 3 ( 2 ) 3 ( 2 ) 8 ( 2 ) 3-3 Til 3 /Zn/u 75%

36 ELS et EES Utilisation d'amidue ( - ): ' α B ' ' B Li Li Proton Acide pk a = *Préparation: Base Forte Peu ucléophile Utilisation d'ydue ( - ): K TF Enolate Anion Stabilisé K 2 LDA Enolate de Lithium emarque: LDA = Lithium DiisopropylAmidure, 'est une base forte (pka = 35) et Encombrée donc PEU ULEPILE Enolate de la Propanone emarque 1: K = Donneur de - basique mais ULEPILE. emarque 2: ab 4 = Donneur de - ULEPILE onduit à l'all.

37 **éactivité: "X ' -Alkylation ' Enolate = Anion Ambident "X -Alkylation Exemple: Li Li " ' " ' l D /D 2 emarque 1: 2 Possibilités d'alkylation la - et la - Alkylation. emarque 2: Souvent l'attaque Electrophile se fait sur le -. emarque3 : La -Alkylation Permet d'introduire un groupe en α du =. 62% D

38 omplications: *Double Alkylation: α ' ' ' emarque: Si 2 Acide en α: Double Alkylation Exemple: 1) LDA 2) 3 I Exemple: Li 53% 47% Li 1) a 2) 3 I 3 27% 3 38% **égiosélectivité d'alkylation: 1 2 α α' 3 4 1) B - 2) 5 X

39 Analogie entre ELATES et EAMIES Enamine emarque: Possibilité de -Alkylation et -Alkylation. Enolate emarque: Possibilité de -Alkylation et -Alkylation. Exemple: Enamine 3 3 I Alkylation I 2 ydrolyse 3 3 Sel d'iminium Bilan: 'est une autre Façon d'alkyler en α de =.

40 Exemples: 1) 3 -( 2 ) 3 -I - 2 1) 2) 3 2 Br 3) / 2 2) 2 S 4 / 2 44% 67% **atalyse Acide: Enol étone TAUTMEIE ET-ELIQUE *atalyse Basique: Enol B Enolate étone B B

41 Facteurs Modifiant l'equilibe: α étone ou Aldéhyde α Enol emarque: L'Equilibre est Déplacé vers le =. ΔG = 9 Kcal/mol -1 K = mol l -1 Exemples: 3 ΔG = 11 Kcal/mol -1 K = mol l -1 3 as Particuliers: Formation de Liaison exane onséquence de la Tautomérie: Perte de la Stéréochimie K 10% Acétyleacétone β Dicétone 90% emarque: Stabilisation de la Forme Enol par Liaison Intramoléculaire 95% 10% K Et étone Enolate (Plan) Plus Stable (Stérique) ptiquement Pur

42 Exemple: acémisation Et S Me - Et Me Enolate Plan = AIAL - Et Me emarque 1: Passage par un Enolate Plan donc Perte de la Stéréochimie. emarque 2: acémisation en Quelques Minutes. emarque 3: Difficile de onserver l'activité ptique en α de =. alogénation des Aldéhydes et étones: *atalyse Acide: Mécanisme 3 Br Br Br Br - Br Exemples: Br 2, 3 2 2, 70 Br 44% l 2, l 4 emarque: égiosélectivité de la Formation de l'enol L'EL le plus Stable est l'el le plus Substitué (Analogie avec les ALEES). 85% l

43 X Moins Basique Enolisation Difficile X emarque: En catalyse Acide, l'alogénation alentit l'enolisation. onséquence: Le Produit monohalogéné ne sera pas attaqué tant que l'aldéhyde ou la étone de départ n'est pas Totalement onsommé. Dihalogénation: l 2 Excés 94% Ph 3 Ph 3 2, 60 l l **atalyse Basique: as Particulier des Méthylcétones: La éaction aloforme 3 - Br Br 3 Br - Br Bromoforme arboxylate emarque 1: Br 3 - est un anion stabilisé Br - - Br Br Br Br Br 2 Br 2 Br - Br Br Br emarque 2: emplacement de 3 par

44 ALDLISATI: *Aldéhydes: Mécanisme de la ondensation Aldolique Aldéhyde Ethanal Enolate emarque1: Faible [ ] d'enolate à l'equilibre. emarque2: Aldol elativement Stable à Basse Température. emarque3: A aute Température l'aldol est Deshydraté. 3 Aldol (50-60%) Mécanisme: α - Aldol Enolate Bilan: 2x 3 ondensation Aldolique 3 rotonaldéhyde

45 Exemples: a/ 2 K 2 3 / 2 Δ 5 85% Aldol = β-hydroxyaldéhyde Aldéhyde α,β-insaturé 80% Aldolisation roisée: emarque: éaction intéressante car elle donne: Des omposés arbonylés β-ydroxylés et des α,β-insaturés etc... 3 emarque 1: éaction Spécifique (Mélange) emarque 2: éaction Intéressante si l'un des composés ne possède pas de en α.

46 **étones Acétone Base 6% emarque: Equilibre Largement Déplacé vers la étone. Aldol éaction ETALDLIQUE: B étone Enolate B B - emarque: La éaction avec les Aldéhydes est EXTEMIQUE alors que la éaction avec les étones est Légèrement EDTEMIQUE. emarque: L'Equilibre peut être Déplacé si l'on Elimine a, Δ étone α,β-insaturée emarque: éaction Intramoléculaire Déplace L'Equilibre a/ %

47 Exemple: K/ 2 Δ % emarque: La ondensation Aldolique Intramoléculaire onduit à la Formation du ycle (5,6) le Moins Tendu. Exemple: on - / 2 5 ui 3 on ui on Exemple: 5 7 on ui 83% ui on

48 La Préparation et la himie des Aldéhydes et étones α,β-insaturés *Préparation: 1) l 2 /Acide l a % 2) l Ph 3 P l Ph 3 P a Ph 3 P Ph 3 P Ph 3 P Sel de Phosphonium Ylure Stabilisé emarque: ylure de phosphore stabilisé est peu réactif, Il ne réagit pas bien avec les étones mais avec les Aldéhydes, intrinsequement plus réactifs, il effectue une réaction de Wittig. Exemple: Ph 3 P

49 3) xydation d'alcools Allyliques Mn 2 Exemple: Vitamine A Mn 2 80% étinal 4) Isomérisation: emarque: Stabilisation par ésonance des Aldéhydes et étones α,β-insaturés. onséquence: Les omposés onjugués se éarrangent pour Donner des Dérivés α,β-insaturés. Exemple: ou - 2 yclohexène-3-one yclohexène-2-one

50 Exemple: ou - / 2 **atalyse Basique: on onjuguée Mécanisme: Aldéhyde *atalyse Acide Enol onjuguée Aldéhyde 2 - Enolate

51 éactivité: emarque: éactivité de type = éactivité de type = *éduction Exemples: 2 /Pt 2 2 /Pt 2 /FeS 4 95% Zn(- 3 ) 2 30 min. **Additions Exemples: Br 2 l 4 alogénation Br 60% Br Trans Addition 2 / - 2 xime

52 ADDITI 1,4: (= et =): emarque: Addition 1,2: A B A B B Addition 1,2 sur = A Addition 1,2 sur = emarque: Addition 1,4: B A B B B Enol étone A B Addition 1,4 emarque Si A =, Il y a une Addition 1,4 mais le ésultat apparaît comme une Addition 1,2. *Addition de : Ph Ph Ph Ph Ph étone Ph Enol

53 **Addition de 2 : 2 /a() 2-5 Anti Markownicov ***Addition de : 3 3 K 3 ****Addition d'amine: *****Addition d'rganométallique: Addition 1,2: 1) 3 Li/Et--Et 2), - 3 emarque: Les Lithiens Donnent une Addition 1,2 par l'attaque nucléophile directe sur le =. Addition 1,4: 1) (3) 2 uli/tf, -78 2), - 3 emarque: Les uprates Donnent une Addition 1,4 sur le =. Le Mécanisme est peu onnu et ompliqué.

54 Exemple: 1) ( 2 ) 2 uli 2) / 2 Dialkylation: 1) 2 uli 2) 'X ' 1) Exemple: ( ) 2 uli 3 2) 3 I 3 ( 2 ) 3 3 ( 2 ) 3 3 Application Synthétique: Synthèse de Prostaglandine (G. Stork) Liu( 5 11 ) 2 ' PGF 2α / 2 Addition 1, ( 2 ) 3 2 ' ) 2 =, -50 2) / 2 ondensation Aldolique emarque: Attaque sur la Face la - encombrée Liu( ( 2 ) 4 ") ' / 2 Addition 1,4 ( 2 ) 4 " 5 11 '

55 éaction de Michael: Exemples: ydrogène acide Base 27% Ph EtK Et, EtEt 64% Ph Mécanisme: Enolate 1) Base 2) / 2 = α,β Insaturé Addition 1,4 Enol étone Annéllation de obinson: 'est une séquence: Addition de Michael-ondensation Aldolique Michel 2 ondensation Aldolique

56 Exemple: α Eta/Et EtEt, -10 Michael ondensation Aldolique Δ, - 2 Application Synthétique: Synthèse de Stéroïdes a a Michael Base - 2 ondensation Aldolique Base 3 3 Base % ondensation Aldolique Michael Enolate Stabilisé

57 Acides arboxylique emarques: Trois types de éactivité 1) éactvité de type Alccol () 2) éactivité de type arbonyle (=) 3) éactivité de Type Acide () 1) omenclature: a) n remplace le E d'alcane par ÏQUE le carbone de l'acide est numéroté en 1. b) Si il y a d'autres fonctions, on considère la châine la plus longue et on intercalle le nom de la fonction entre Acide et ALAÏQUE. Exemples: δ Electrophile Basique Acide 3 2 Acide bromo-2-propanoïque Acide propénoïque 1 (Acide Acrylique) Br Structure om IUPA om ourant Acide Méthanoïque Acide Formique 3 Acide Ethanoïque Acide Acétique oms Usuels: 3 2 Acide Propanoïque Acide Propionique 3 -( 2 ) 2 - Acide Butanoïque Acide Butyrique 3 -( 2 ) 3 - Acide Butanoïque Acide Valérique 3 -( 2 ) 4 - Acide exanoïque Acide aproïque

58 Les Diacides: AIDE ALAE DIÏQUE Acide éthanedioïque Acide xalique Acide propanedioïque Acide Malonique Acide butanedioïque Acide Succinique Acide pentanedioïque Acide Glutarique 2) Propriétés Physiques: Possibilité de Formation de Liaison : Formation de Dimère Poids moléculaires faibles: Soluble dans l'eau Points d'ebulition et de Fusion Elevés Structure: A A A Acide Méthanoïque A

59 M: M 1 : M 13 : emarque: emarque: Echangeable (δ entre ppm) ésonance: Acidité: K a K a de l'ordre de 10-4 à 10-5, pk a de l'ordre de 4 à 5 Stabilisation de la harge Moins par résonance emarque: de - (Acide) est nettement plus Acide(4-5) que de - (Alcool) (16-18)

60 Basicité: emarques: 1) Protonation Difficile 2) Pas de Protonation de 3) Méthodes de Préparation: A) ydrolyse de hlorure d'acide: X 2 X B) éarrengement Benzylique: - α ydroxyacide Exemple: 1) - 2) 25 80%

61 ) Synthèse Malonique: ' - ' 2 D) Alcanoylation de Friedel et rafts - 2 Δ Equivalent d' Enol All 3 Groupe Activant emarque: All 3 Site d'attaque All 3 All 3 Aromatisation Acylation

62 E) xydation: KMn 4 / - / 2 F) éduction de Kolbe: - - éactivité: Attaque ucléophile δ δ δ Proton Acide δ Groupe Partant Spécifique de Mécanisme d'addition-elémination: uc - - Addition Elémination uc Intermédiaire Tetraèdrique uc

63 emarque: u est en même temps une base. Par conséquentil y a une compétition entre l'attaque du = et la déprotonation. Si on utilise un excès de u, il y aura d'abord la déprotonation de puis l'attaque de - qui sera difficile car centre chargé -. Pour contourner cette complication, on utilise souvent des dérivés (L) qui eux subissent facilement des réactions de type S En Milieu Acide: L L = l, Br,, 2 uc L u L uc L -L - uc uc En Milieu Basique: uc B - uc B uc L L - L uc uc L - B L B - btention de Dérivés (alogénure d'acyle et Anhydride: alogénure d'acyle: -X, X=l, Br - Sl 2, Pl 5, PBr 3 X

64 l S l -l S l l S l l S l -S 2 -l l Exemple: Sl 2 85% eflux l Mécanisme de Bromation par PBr 3 Br 2 P -Br Br Activation Br P Br Addition Br Elémination PBr 2 -PBr 2 Br Br - Exemple: PBr 3 90% Br

65 emarque: Une autre façon l l Phosgène l l Instabel Anhydride d'acide: Formation: ' l -l Anhydride ' Autre Possibilité: Exemple: l 85% a ' l -al ' Anhydride Mixte emarque: Formation de ycle à 5 et à 6 atomes Anhydride yclique (succinique)

66 btention d'esters éaction avec les Alccols: Mécanisme: *atalyse Acide: Acide ' Addition ' ' ' Intermédiaire Téraèdrique Elimination Ester - ' - 2 ' emarque: Formation de Lactone ou Esterification Intramoléculaire. Exemples: 2 S 4 / 2 90% 2 Lactone (Ester yclique) 95% 2

67 ' emarque: Autre Façon de Préparer des Esters X a 100 ' Br 2 ( 2 ) 9 K 2 3 DMS, % - Br btention d'amides: emarque: Si on chauffe on déplace l'equilibre vers la gauche et 3 joue le rôle du ucléophile. Acide 3 4 Base Sel d'ammonium 3 Mécaisme: Amide emarque: emplacement de par 2. Exemple: %

68 Formation d'imide: Formation de Lactame: Acide Succinique % 2 2 Succinimide Equivalent Azoté d'anhydride Exemples: 2 Aminoacide Δ 86 % Lactame Equivalent Azoté de Lactone éaction avec les rganolithiens: emarque 1 : n ne peut pas utiliser l'acide. emarque 2 : L'Attaque de l'anion est difficile. Exemple: a arboxylate 3 Li TF a Li Bilan emplacement de - par étone 3 Exemple: 1) 2 Eq. 3 Li 2) 2 / 3 55 %

69 éaction avec LiAl 4 : Acide 1) LiAl 4 / TF 2) 2 / Alcool Mécanisme Possible: LiAl 4 Al 3 Li Al 2 Li Li 2 / " - " LiAl 4 éactivité du arbone en α de : emarque 1 : omme tout composé dutype =, le proton en a est acide. emarque 2 : L'Enolate se forme dans un solvant APTIQUE polaire (exemple : MPA) en présence d'une base forte (exemple: LDA). α 1 Eq. Base Acide arboxylique α 1 Eq. Base Anion arboxylate α Dianion Enolate Exemple: 2 Eq. LDA/MPA Li 25, 30 min. Li Li Dianion Enolate Stabilisé Li

70 éactivité du Dianion Enolate: Bromation desacides arboxyliques: ' ' La éaction de USDIEKE: '-X Alkylation Br 2 -'- 2 Br Ag Br 2 Br 2 AgBr uverture d'epoxyde ' " Br Br Mécanisme: Br ypobrimite Br ondensation du type Aldolique ' " -Br Br 2 emarque: L'Enolate est fortement Basique, Seul dans le cas des -X primaires l'alkylation se fait. Dans les autres cas il y a Elimination.

71 Les Dérivés d'acides arboxyliques: X alogénure d'acyle Ester ' Amide Anhydride ' éaction avec les ucléophiles Mécanisme d'addition - Elimination Bilan: emplacement de X - par u -. X *alogénure d'acyle uc - Addition X uc Elimination X - uc Acide ' Ester - X 'MgX ' 2 atalyseur LiAl() 3 ' Anhydride Aldéhyde emarque: En présence de LiAl 4, la fonction = est réduite en Alcool (- X LiAl 4 donne - 2 ). Amide 1 2 ' étone Aldéhyde

72 Les Anhydrides éaction avec les ucléophiles uc - uc Mécanisme: uc Exemples: % 2 73 % Les Anhydrides ycliques: % 3 2 Eq. 3 85% 2 4 Les Esters: éaction avec 2 : Mécanisme en atalyse Basique ' - ' '

73 éaction Avec Les Alcools: ' ou - " " ' Transesterification Pour déplacer l'equilibre, on utilise un large excès de " Exemples: Lactone Br 80% Ester Br emarque: la éaction avec les Lactone (Ester yclique) onduit à l'uverture du ycle. éaction Avec Les Amines ' ' " 2 " Ester Amine Amide Alcool éaction Avec Les Grignards MgBr MgBr "MgBr / 2 ' "MgBr ' " " " " emarque: "MgBr ' " " Ester Formique Alcool Secondaire " " Alcool Tertiaire

74 emarque: arbonate d'alkyle 3MgBr 1) TF, 25 2) / 2 ' ' 2- ' Alcool Tertiaire Une Bonne Méthode de Préparation d'alcool Tertiaire. éduction des Esters: 1) LiAl ' 4 / TF 2) / 2 Ester Alcool Primaire Exemple: 1) LiAl 4 / TF 2) / 2 90% Al' 2 " ' 2 Al " emarque: Si l'on veut s'arrêter à l'aldéhyde, on désactive le éducteur (' 2 Al). " émiacétal

75 Exemple: Et Al Toluène, % Et Formation d'enolate: α ' LDA/TF -78 α ' α ' α α Alkylation Br ondensation Aldolique éactivité de l'enolate: α α uverture d'epoxyde Lactone emarque: L'Enolate d'un Ester (pka 25) est plus Basique que celui d'un Aldéhyde ou d'une étone (pka 20). omplication: éaction d'elimination.

76 ondensation de laisen: Mécanisme: Eta Ester β étonique / 2 En éalité il s'agit d'une ondensation Aldolique pka = 11 Les Amides: 2 ' Primaire Secondaire Tertiaire 2 ou - éaction Avec 2 : 2

77 atalyse Acide: 2 Amide Acide atalyse Basique: 2 Amide arboxylate éaction Avec les Alcools: Exemple: Amide Et l 85% Ester emarque: Même Mécanisme que pour 2, n remplace -- par --. éaction Avec les ydrures: Mécanisme Possible: Al LiAl 2 4 ' 2 ' 2 Amide ' ' ' 2 " - " (LiAl 4 ) Amine

78 Exemples: 1) LiAl 4 / Et--Et 2) / 2 80% 1) LiAl 4 / Et--Et 2) / 2 85% emarque: Avec des ydrures Particuliers, n Peut Transformer un Amide en ALDEYDE. Et--Et Al 92% Mécanisme Possible: Al" 2 Al" 2 ' 2 ' 2 2 ' ' émiaminale Formation d'enolate: α pka = 30 Base 2 pka = 15 α Anion Amidate α

79 emarque: plus Acide que en a du =, par conséquent il se forme l'anion AMIDATE. Par contre, dans le cas d'amide Tertiaire on peut former l'anion Enolate. ' Base Forte " " Anion Enolate L'Anion Enolate et l'anion Amidate sont ucléophile. ' Application Synthétique: a/ I 66% Br 62% a 2 / 3

80 Aminoacides 2 Basique Acide α S 2 = 2 Acide Aspartique (Asp) 2 = 2 2 Asparagine (Asn) 2 = 2 Sérine (Ser) 2 = () 3 Thréonine (Thr) 2 = 2 S ystéine (ys) = 2 2 Acide Glutamique (Glu) 2 = Glutamine (Gln) 2 = ( 2 ) 4 2 Lysine (Lys) = ( 2 ) 3 () 2 Arginine (Arg) = 2 Imidazole istidine (is)

81 Aminoacides 2 Basique Acide α 3 ( 3 ) 2 2 ( 3 ) 2 ( 3 ) = Glycine (Gly) 2 = 3 Alanine (Ala) 2 = ( 3 ) 2 Valine (Val) 2 = 2 ( 3 ) 2 Leucine (Leu) 2 = ( 3 ) 2 3 IsoLeucine (Ile) S 3 = 2 2 S 3 Méthionine (Met) Proline (Pro) 2 2 = 2 Indole Tryptophane (Trp) 2 2 = 2 Ph Phénylalanine (Phe) 2 2 = 2 Ph Tyrosine (Tyr)

82 > = 6 2 apolaire ionisé polaire non chargé = Glycine (Gly) = 3 Alanine (Ala) = ( 3 ) 2 Valine (Val) = 2 2 S 3 Méthionine (Met) Proline (Pro) = 2 ( 3 ) 2 Leucine (Leu) = ( 3 ) 2 3 IsoLeucine (Ile) = 2 Ph Phénylalanine (Phe) = 2 Ph Tyrosine (Tyr) = 2 Indole Tryptophane (Trp) α = 2 Acide Aspartique (Asp) = 2 2 Acide Glutamique (Glu) = ( 2 ) 4 2 Lysine (Lys) = 2 Imidazole istidine (is) = 2 Sérine (Ser) = 2 S ystéine (ys) = 2 2 Asparagine (Asn) = () 3 Thréonine (Thr) = Glutamine (Gln) = ( 2 ) 3 () 2 Arginine (Arg) Gly Ala Pro-Met Val Tyr Lle Leu Solubilité en g.l -1 dans l'eau à 25 Phe oéfficient d'hydrophobicité 6 8 par rapport à la glycine (25 ) Trp Asn Leu is Glu Phe Ile Val Ala Gly 250

LES FONCTIONS CHIMIQUES LES ALCOOLS

LES FONCTIONS CHIMIQUES LES ALCOOLS atem BEN RMDANE LES FNTINS IMIQUES LES ALLS LASSIFIATIN DES ALLS: Un alcool est dit primaire si le carbone fonctionnel portant la fonction est lié à un seul carbone Un alcool est dit secondaire si le carbone

Plus en détail

Résume de Cours de Chimie Organique (Prof. M. W. Hosseini) Notions acquises Définitions et conventions : Ordre de grandeur de longueur d'une liaison

Résume de Cours de Chimie Organique (Prof. M. W. Hosseini) Notions acquises Définitions et conventions : Ordre de grandeur de longueur d'une liaison ésume de ours de himie rganique (Prof. M. W. osseini) Notions acquises Définitions et conventions : Liaison : mise en commun de 2 éléctrons (.. ) Déplacement de deux électrons Déplacement d'un électron

Plus en détail

Chapitre 1 Les acides aminés : Structures. Professeur Michel SEVE

Chapitre 1 Les acides aminés : Structures. Professeur Michel SEVE UE1 : Biomolécules (1) : Acides aminés et protéines Chapitre 1 Les acides aminés : Structures Professeur Michel SEVE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés.

Plus en détail

Ressources pour le lycée général et technologique

Ressources pour le lycée général et technologique éduscl Physique-chimie Exemple d activités de classe essources pour le lycée général et technologique Préambule Synthèse d un édulcorant Extrait du programme d enseignement spécifique de physique-chimie

Plus en détail

TUTORAT UE BCM 2013-2014 Chimie Organique Colle n 2 Semaine du 14/04/2014

TUTORAT UE BCM 2013-2014 Chimie Organique Colle n 2 Semaine du 14/04/2014 TUTRAT UE BCM 2013-2014 Chimie rganique Colle n 2 Semaine du 14/04/2014 Chimie rganique Sujet lu et approuvé par M. le P r Pierre-Antoine BNNET Colle préparée par l équipe des tuteurs de BCM (ATP) QCM

Plus en détail

PC Brizeux AD N 2 Altmayer- Henzien 2015-2016. Approche documentaire N 2 Synthèse peptidique

PC Brizeux AD N 2 Altmayer- Henzien 2015-2016. Approche documentaire N 2 Synthèse peptidique P Brizeux AD N 2 Altmayer- Henzien 2015-2016 Approche documentaire N 2 Synthèse peptidique bjectif : Le but de cette approche documentaire est d analyser les stratégies de synthèse in vitro et in vivo

Plus en détail

COURS DE CHIMIE ORGANIQUE. Deuxième partie OR3

COURS DE CHIMIE ORGANIQUE. Deuxième partie OR3 CU DE CIMIE GAIQUE Deuxième partie 3 I- Généralités 1- omenclature Il existe trois classes d'amines : LE AMIE amines primaires amines secondaires amines tertiaires 3 C C 2 ˇ thanamine 2 3 C 3 C -mˇ thylˇ

Plus en détail

Fiche professeur. Synthèse d un édulcorant bien connu : l aspartame

Fiche professeur. Synthèse d un édulcorant bien connu : l aspartame Fiche professeur Synthèse d un édulcorant bien connu : l aspartame Thème : AGI, défis du XXIe siècle. Synthétiser des molécules, fabriquer de nouveaux matériaux // sélectivité en chimie organique Type

Plus en détail

Les groupes fonctionnels

Les groupes fonctionnels CIMIE 2 e 2008/2009 : Chimie organique - 11- Chapitre 3 Les groupes fonctionnels Les fonctions, ou groupes fonctionnels sont des groupes d'atomes qui se substituent à un ou plusieurs atomes d'hydrogène

Plus en détail

Chapitre 1 Acides aminés Protéines Méthodes d étude

Chapitre 1 Acides aminés Protéines Méthodes d étude Chapitre 1 Acides aminés Protéines Méthodes d étude Q1 - Parmi la liste des acides aminés cités ci-dessous, précisez ceux dont la chaîne latérale peut participer dans une structure peptidique, et à ph

Plus en détail

1 - Test à la ninhydrine caractéristique des acides aminés

1 - Test à la ninhydrine caractéristique des acides aminés 1 - Test à la ninhydrine caractéristique des acides aminés C'est le test caractéristique de la présence d'acide aminé. 1. Les acides aminés Les acides aminés (ou acides α-aminés) possèdent une fonction

Plus en détail

DOCUMENTS de COURS CHIMIE ORGANIQUE LICENCE DE SCIENCES ET TECHNOLOGIE MENTION SCIENCES DE LA VIE U.E. LV 275

DOCUMENTS de COURS CHIMIE ORGANIQUE LICENCE DE SCIENCES ET TECHNOLOGIE MENTION SCIENCES DE LA VIE U.E. LV 275 DUMETS de US de IMIE GAIQUE LIEE DE SIEES ET TELGIE METI SIEES DE LA VIE Année L 2 2 ème semestre U.E. LV 275 " IMIE PU LA PEPAATI AUX US B " éalisés et mis en ligne par hristian BELLE LV 275 IMIE PU LA

Plus en détail

CH 14. Acides aminés Peptides et protéines

CH 14. Acides aminés Peptides et protéines C 14. Acides aminés Peptides et protéines C 14. ACIDES AMINES, PEPTIDES ET PRTEINES 1. Acides aminés naturels Les protéines sont des assemblages macromoléculaires biologiques formés par enchaînement d'acides

Plus en détail

Effets électroniques-acidité/basicité

Effets électroniques-acidité/basicité Université du Maine Faculté des Sciences Retour Révisions de cours Effets électroniquesacidité/basicité Il est très important dans un cours de himie organique de connaitre ces notions qui vont intervenir

Plus en détail

Réactions de Substitution Nuclé

Réactions de Substitution Nuclé Réactions de Substitution clé ucléophile I. INTRODUTION La substitution nucléophile résulte de l attaque nucléophile sur un substrat par une espèce riche en électrons (molécule neutre ou anion) et du départ

Plus en détail

CHIMIE VOLUME HORAIRE TOTAL = 120 HEURES 1. CHIMIE GENERALE VOLUME HORAIRE TOTAL = 45 HEURES

CHIMIE VOLUME HORAIRE TOTAL = 120 HEURES 1. CHIMIE GENERALE VOLUME HORAIRE TOTAL = 45 HEURES 7 CHIMIE VOLUME HORAIRE TOTAL = 120 HEURES COURS = 72 heures. TRAVAUX PRATIQUES = 24 heures TRAVAUX DIRIGES = 24 heures. 1. CHIMIE GENERALE VOLUME HORAIRE TOTAL = 45 HEURES COURS = 27 heures. TRAVAUX PRATIQUES

Plus en détail

1- Comment nommer une molécule en chimie organique? La nomenclature

1- Comment nommer une molécule en chimie organique? La nomenclature T ale S COURS Chimie 4 NOM et REPRESNTATION des MOLECULES Compétences Associer un groupe caractéristique à une fonction dans le cas des alcool, aldéhyde, cétone acide carboxylique, ester, amine, amide

Plus en détail

CHIMIE ORGANIQUE-UE1

CHIMIE ORGANIQUE-UE1 IMIE RGANIQUE-UE1 100% 1re année Santé IMIE RGANIQUE-UE1 PAES Élise Marche Professeur de physique-chimie à l ENSPB à Paris 4 e édition Dunod, Paris, 2013 Dunod, Paris, 2005 pour la 1 re édition ISBN 978-2-10-059839-7

Plus en détail

Partie 1. Addition nucléophile suivie d élimination (A N + E) 1.1. Réactivité électrophile des acides carboxyliques et groupes dérivés

Partie 1. Addition nucléophile suivie d élimination (A N + E) 1.1. Réactivité électrophile des acides carboxyliques et groupes dérivés Molécules et matériaux organiques Partie 1. Addition nucléophile suivie d élimination (A N + E) 1.1. Réactivité électrophile des acides carboxyliques et groupes dérivés bjectifs du chapitre Notions à connaître

Plus en détail

PHYSIOLOGIE CELLULAIRE

PHYSIOLOGIE CELLULAIRE PHYSIOLOGIE CELLULAIRE Licence STAPS 1ère année Stéphane TANGUY Département STAPS Université d Avignon et des pays de Vaucluse PHYSIOLOGIE CELLULAIRE CELLULE molécules atomes CHIMIE TISSU ORGANISME ORGANE

Plus en détail

Chapitre C8 : Les groupes caractéristiques en chimie organique

Chapitre C8 : Les groupes caractéristiques en chimie organique hapitre 8 : Les groupes caractéristiques en chimie organique Nous avons vu lors des chapitres précédents, qu'un molécule organique était toujours constitué d'un squelette carboné et éventuelle d'un groupe

Plus en détail

prérequis 1. ÉLÉMENTS USUELS DE LA CHIMIE ORGANIQUE

prérequis 1. ÉLÉMENTS USUELS DE LA CHIMIE ORGANIQUE chapitre i prérequis 1. ÉLÉMENTS USUELS DE LA CHIMIE ORGANIQUE La chimie organique a pour objet l'étude des composés du carbone. Restreinte à l'origine aux composés du carbone que l'on pouvait extraire

Plus en détail

1- Les oses naturels : a) comportent toujours une fonction carbonyle. b) sont tous dextrogyres. 1pt

1- Les oses naturels : a) comportent toujours une fonction carbonyle. b) sont tous dextrogyres. 1pt Université AbouBekr Belkaid Tlemcen Année 2013/2014 Faculté SV-STU Département de Biologie 2 ème année LMD Module de Biochimie Générale (Corrigé Type) 1- Les oses naturels : a) comportent toujours une

Plus en détail

PQAQQEQS ********** ECUE 1 : CHIMIE ET CLASSES THERAPEUTIQUES. Répondre Sur la grille de réponses au feutre noir CE CAHIER COMPREND 5 PAGES

PQAQQEQS ********** ECUE 1 : CHIMIE ET CLASSES THERAPEUTIQUES. Répondre Sur la grille de réponses au feutre noir CE CAHIER COMPREND 5 PAGES \ UNH/ERS>4TE PRKS-ES? CRQTFJL FCULTE m-2 MEDECINE UNIVERSIT}; PRIS-EST CRETEIL NNEE UNIVERSITIRE 2012-2013 PQQQEQS ' ECUE 1 : CHIMIE ET CLSSES THERPEUTIQUES. DUREE : 0 h 30 E. ********** CETTE EPREUVE

Plus en détail

Notions et contenus : Composé polyfonctionnel : réactif chimiosélectif, protection de fonctions.

Notions et contenus : Composé polyfonctionnel : réactif chimiosélectif, protection de fonctions. Thème : AGI - Défis du XXI ème siècle (Sous-thème : Synthétiser des molécules, fabriquer de nouveaux matériaux) Type de ressources : au choix (ou mélange) parmi : Documents illustrant les notions de chimiosélectivité

Plus en détail

Mécanisme A N + E sur acides carboxyliques et groupes dérivés

Mécanisme A N + E sur acides carboxyliques et groupes dérivés Chimie organique 3 : Mécanisme A E sur acides carboxyliques et groupes dérivés Exercices d entraînement 1. Décarboxylation (*) 1. Quelles fonctions chimiques contient la molécule A dessinée ci-dessous?

Plus en détail

école polytechnique concours d admission 2005 Composition de Chimie, Filière PC Rapport de MM. Franck ARTZNER et Narcis AVARVARI, correcteurs.

école polytechnique concours d admission 2005 Composition de Chimie, Filière PC Rapport de MM. Franck ARTZNER et Narcis AVARVARI, correcteurs. école polytechnique concours d admission 2005 Composition de Chimie, Filière PC Rapport de MM. Franck ARTZNER et Narcis AVARVARI, correcteurs. L épreuve de chimie comportait deux problèmes indépendants.

Plus en détail

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN Objectifs : Exploiter un spectre infrarouge pour déterminer des groupes caractéristiques Relier un spectre

Plus en détail

BACCALAURÉAT PROFESSIONNEL SUJET

BACCALAURÉAT PROFESSIONNEL SUJET SESSION 2011 France métropolitaine BACCALAURÉAT PROFESSIONNEL ÉPREUVE N 5 SCIENCES APPLIQUÉES ET TECHNOLOIE Option : Conduite et gestion de l élevage canin et félin Durée : 2 heures Matériel(s) et document(s)

Plus en détail

Classification : a) Les acides aminés à chaîne aliphatique : Glycine Alanine Valine Leucine Isoleucine

Classification : a) Les acides aminés à chaîne aliphatique : Glycine Alanine Valine Leucine Isoleucine LES PROTEINES Objectifs : - Indiquer la structure des acides aminés et leurs propriétés. - Indiquer la structure de la liaison peptidique. - Différencier structure 1, 2, 3 et 4 des protéines. - Citer les

Plus en détail

COR 301. Chimie Organique II. La Chimie du Carbonyle et des Substitutions

COR 301. Chimie Organique II. La Chimie du Carbonyle et des Substitutions C 301 Chimie rganique II La Chimie du Carbonyle et des Substitutions PFESSEU GUILLAUME BÉLAGE Tiré des notes de cours du Professeur aude Spino Université de Sherbrooke 2008 C301 Chimie rganique II Table

Plus en détail

Architecture moléculaire

Architecture moléculaire hapitre 4 : UE1 : himie himie physique Architecture moléculaire Pierre-Alexis GAUARD Agrégé de chimie, Docteur ès sciences Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits

Plus en détail

1) Représentation des molécules organiques : hybridation, orbitales, liaisons

1) Représentation des molécules organiques : hybridation, orbitales, liaisons 1) eprésentation des molécules organiques : hybridation, orbitales, liaisons 2) Chiralité. Isoméries. Stéréochimie, Analyse conformationelle 3) Les effets électroniques. Mésoméries. Formalisme d écriture

Plus en détail

Kalihinol C. Tournez la page S.V.P.

Kalihinol C. Tournez la page S.V.P. L utilisation des calculatrices est autorisée. Chaque partie est indépendante et dans chaque partie de nombreuses questions sont indépendantes. La stéréochimie des liaisons formées au cours des différentes

Plus en détail

Formules brutes. Propriétés et effets

Formules brutes. Propriétés et effets ATIVITÉ 2NDE TÈME : SPRT/MATÉRIAUX ET MLÉULES DANS LE SPRT GRUPES ARATÉRISTIQUES Dans le domaine du sport, de nombreuses molécules sont mise en jeu, que ce soit au niveau du corps humain, ou dans les matériaux

Plus en détail

AP séance 2 ACTIVITE : INTRODUCTION A LA NOMENCLATURE

AP séance 2 ACTIVITE : INTRODUCTION A LA NOMENCLATURE I) REPRESENTATION DES MOLEULES AP séance 2 ATIVITE : INTRODUTION A LA NOMENLATURE Une molécule organique comporte un squelette carboné et éventuellement un ou des groupes caractéristiques La formule brute

Plus en détail

Biochimie-réactions cellulaires L2 Biologie-parcours BC et BCB-S3

Biochimie-réactions cellulaires L2 Biologie-parcours BC et BCB-S3 Biochimie-réactions cellulaires L2 Biologie-parcours BC et BCB-S3 Responsables de l UE: James Sturgis (AMU)-Marie-Jeanne Papandréou (P1) Organisation de l UE: 3 parties - COURS 28h 1 ère partie: Protéines

Plus en détail

Les milieux biologiques tamponnés et leur intérêt

Les milieux biologiques tamponnés et leur intérêt Les milieux biologiques tamponnés et leur intérêt 1 Position de la séquence Thème n 1: les systèmes vivants présentent une organisation particulière de la matière. 1.5 Les molécules des organismes vivants

Plus en détail

Métabolisme des acides aminés. Plan du cours

Métabolisme des acides aminés. Plan du cours Métabolisme des acides aminés Plan du cours rigine des amino-acides : Alimentation Transamination onversion atabolisme des amino-acides : réactions générales Décarboxylation Désamination, Transamination

Plus en détail

CHIMIE Durée : 3 heures

CHIMIE Durée : 3 heures SESSIN 009 CNCURS GE CHIMIE Durée : 3 heures Les calculatrices programmables et alphanumériques sont autorisées. L usage de tout ouvrage de référence et de tout document est strictement interdit. Si, au

Plus en détail

ACIDES BASES. Chap.5 SPIESS

ACIDES BASES. Chap.5 SPIESS ACIDES BASES «Je ne crois pas que l on me conteste que l acide n ait des pointes Il ne faut que le goûter pour tomber dans ce sentiment car il fait des picotements sur la langue.» Notion d activité et

Plus en détail

Quelques aspects de la chimie du miel

Quelques aspects de la chimie du miel oncours B ENSA B 0206 HIMIE Durée : 3 heures L usage de la calculatrice est autorisé pour cette épreuve. Si, au cours de l épreuve, un candidat repère ce qui lui semble être une erreur d énoncé, il le

Plus en détail

Correction de l épreuve de Biochimie du 3 ème trimestre. Devoir de synthèse

Correction de l épreuve de Biochimie du 3 ème trimestre. Devoir de synthèse INSTITUT PREPARATIRE AUX ETUDES D INGENIEURS DE SFAX DEPARTEMENT DE PREPARATIN AUX NURS DE BILGIE A.U. : 2011-2012 orrection de l épreuve de Biochimie du 3 ème trimestre Devoir de synthèse Exercice 1 (12

Plus en détail

Synthèse des acides alpha aminés UE :6 Chimie organique et bio-inorganique partie 2. Heure : de 8h00 à 10h00 PLAN DU COURS

Synthèse des acides alpha aminés UE :6 Chimie organique et bio-inorganique partie 2. Heure : de 8h00 à 10h00 PLAN DU COURS UE :6 Chimie organique et bio-inorganique partie 2 Semaine : n 7 (du 19/10/15 au 23/10/15) Date : 23/10/2015 Heure : de 8h00 à 10h00 Binôme : n 33 Professeur : Pr. Flipo Correcteur : n 32 Remarques du

Plus en détail

COMPOSITION DE CHIMIE. Premier problème Préparation des aimants samarium-cobalt

COMPOSITION DE CHIMIE. Premier problème Préparation des aimants samarium-cobalt ÉCLE PLYTECHNIQUE ÉCLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES CNCURS D ADMISSIN 2005 FILIÈRE PC CMPSITIN DE CHIMIE (Durée : 4 heures) L utilisation des calculatrices n est pas autorisée. L épreuve

Plus en détail

BCPST 2, Lycée JB Say, Paris PHYSIQUE-CHIMIE CAHIER DE TEXTE 2012/2013

BCPST 2, Lycée JB Say, Paris PHYSIQUE-CHIMIE CAHIER DE TEXTE 2012/2013 PHYSIQUE-CHIMIE CAHIER DE TEXTE 2012/2013 1 Semaine 1 : du Mardi 4 au Vendredi 7 Septembre 2012 Jeudi 06/09 (2h de cours en classe entière) Accueil rentrée : présentation générale (0h40) Cours (1h20) :

Plus en détail

CHIMIE DES MATÉRIAUX ORGANIQUES GÉNÉRALITÉS

CHIMIE DES MATÉRIAUX ORGANIQUES GÉNÉRALITÉS IMIE DES MATÉRIAUX RGANIQUES GÉNÉRALITÉS I-Formules brutes; formules planes 1) btention des formules brutes Par un ensemble de techniques expérimentales, on peut extraire des mélanges naturels hétérogènes

Plus en détail

Mettre au point un protocole Respecter les règles de sécurité Analyser un résultat expérimental

Mettre au point un protocole Respecter les règles de sécurité Analyser un résultat expérimental Compétences travaillées : Extraire une information utile Mettre au point un protocole Respecter les règles de sécurité Analyser un résultat expérimental E1. Construire le modèle moléculaire de la molécule

Plus en détail

EXERCICES 1 CHIMIE ORGANIQUE. Alcane : C n H 2n+2. MOLECULE SATUREE Csp 3 par défaut noir ou bleu. Cycloalcane : C n H 2n Saturées : C sp 3

EXERCICES 1 CHIMIE ORGANIQUE. Alcane : C n H 2n+2. MOLECULE SATUREE Csp 3 par défaut noir ou bleu. Cycloalcane : C n H 2n Saturées : C sp 3 IMIE RGANIQUE 1 BAELIER 1- IDENTIFIATIN D YBRIDATINS / DE FNTINS, DE FAMILLES IMIQUES EXERIES 1 2- ANALYSE ENTESIMALE FRMULE EMPIRIQUE FRMULE BRUTE MASSE MLEULAIRE V 2008 // 1 1 2 DE ULEUR DES YBRIDATINS

Plus en détail

I- SUIVI SPECTROPHOTOMÉTRIQUE D UNE CINÉTIQUE DE RÉACTION

I- SUIVI SPECTROPHOTOMÉTRIQUE D UNE CINÉTIQUE DE RÉACTION CORRECTION DS n 8 Cinétique et chimie organique I- SUIVI SPECTROPOTOMÉTRIQUE D UNE CINÉTIQUE DE RÉACTION On se propose d étudier la cinétique de la réaction totale entre les ions dichromate Cr 2 O 7 2-

Plus en détail

II. QU'EST-CE QU'UNE REACTION SELECTIVE? 1) Les composés polyfonctionnels

II. QU'EST-CE QU'UNE REACTION SELECTIVE? 1) Les composés polyfonctionnels Chapitre 19 : STRATEGIE DE SYNTHESE ET SELECTIVITE EN CHIMIE ORGANIQUE Synthétiser des molécules, fabriquer de nouveaux matériaux Notions et contenus Compétences exigibles Stratégie de la synthèse organique

Plus en détail

CHIMIE ORGANIQUE. chapitre 3. Alcènes

CHIMIE ORGANIQUE. chapitre 3. Alcènes CME RGANQUE chapitre 3 Alcènes Les alcènes sont des molécules comportant une double liaison C=C. Cette double liaison est réactive, et permet des réactions variées en synthèse organique. C est pourquoi

Plus en détail

CHAPITRE 6 LIAISONS CHIMIQUES : CONCEPTS GÉNÉRAUX QUESTIONS

CHAPITRE 6 LIAISONS CHIMIQUES : CONCEPTS GÉNÉRAUX QUESTIONS APITRE 6 LIAISS IMIQUES : EPTS GÉÉRAUX QUESTIS 11. P 2 5 est le seul composé qui ne contient que des liaisons covalentes. omposés comportant des liaisons ioniques : ( 4 ) 2 S 4, a 3 (P 4 ) 2, K 2 et Kl.

Plus en détail

Terminale S Chapitre 4 Observer : ondes et matière. Analyse spectrale

Terminale S Chapitre 4 Observer : ondes et matière. Analyse spectrale Analyse spectrale 1 Spectroscopie UV-visible 1.1 Présentation des spectres UV-visible La spectroscopie est l étude quantitative des interactions entre la lumière et la matière. Lorsque la lumière traverse

Plus en détail

Corrigés de chimie. Voici les corrigés des derniers exercices de chimie non corrigé (TD dérivés d acide et TD diagrammes E-pH).

Corrigés de chimie. Voici les corrigés des derniers exercices de chimie non corrigé (TD dérivés d acide et TD diagrammes E-pH). Corrigés de chimie Voici les corrigés des derniers exercices de chimie non corrigé (TD dérivés d acide et TD diagrammes E-pH). TD chimie organique dérivés d acide Exercice n 4 : synthèse de l aspartame.

Plus en détail

Examen INTRA (8 pages, 6 questions) Local : D1 2120 Seuls les modèles moléculaires sont permis.

Examen INTRA (8 pages, 6 questions) Local : D1 2120 Seuls les modèles moléculaires sont permis. NM : Matricule : CR 401 : CHIMIE RGANIQUE IV Date : Mardi, 27 février 2007 Professeur Guillaume Bélanger Heure : 8h30 à 10h20 Examen INTRA (8 pages, 6 questions) Local : D1 2120 Seuls les modèles moléculaires

Plus en détail

Chapitre 15 : Les molécules, formules et groupes caractéristiques

Chapitre 15 : Les molécules, formules et groupes caractéristiques Chapitre 15 : Les molécules, formules et groupes caractéristiques I. Formation des molécules I.1. Formule brute d une molécule Une molécule est un assemblage d atomes liés par des forces électrostatiques.

Plus en détail

TP 11: Réaction d estérification - Correction

TP 11: Réaction d estérification - Correction TP 11: Réaction d estérification - Correction Objectifs : Le but de ce TP est de mettre en évidence les principales caractéristiques de l'estérification et de l'hydrolyse (réaction inverse). I ) Principe

Plus en détail

CHM 2520 Chimie organique II

CHM 2520 Chimie organique II M 2520 M 2520 himie organique II RMN et IR l étude de l interaction entre la matière et l absorbance, l émission ou la transmission de. utilisée pour déterminer la (e.g. en synthèse organique) infrarouge

Plus en détail

CH 1. Liaisons-Isoméries. Formations de liaisons Structures moléculaires

CH 1. Liaisons-Isoméries. Formations de liaisons Structures moléculaires 1. Liaisons-Isoméries Formations de liaisons Structures moléculaires 1. LIAISNS-ISMERIES 1. Rappel : atomes et électrons Quelques éléments importants du tableau de Mendeleev n M n' numéro atomique masse

Plus en détail

BANQUE D EPREUVES G2E. CHIMIE Durée : 3 heures

BANQUE D EPREUVES G2E. CHIMIE Durée : 3 heures SESSION 23 BANQUE D EPREUVES G2E CHIMIE Durée : 3 heures Les calculatrices ne sont pas autorisées pour cette épreuve. L usage de tout ouvrage de référence et de tout document est strictement interdit.

Plus en détail

Chapitre 3 : Liaisons chimiques. GCI 190 - Chimie Hiver 2009

Chapitre 3 : Liaisons chimiques. GCI 190 - Chimie Hiver 2009 Chapitre 3 : Liaisons chimiques GCI 190 - Chimie Hiver 2009 Contenu 1. Liaisons ioniques 2. Liaisons covalentes 3. Liaisons métalliques 4. Liaisons moléculaires 5. Structure de Lewis 6. Électronégativité

Plus en détail

Marine PEUCHMAUR. Chapitre 4 : Isomérie. Chimie Chimie Organique

Marine PEUCHMAUR. Chapitre 4 : Isomérie. Chimie Chimie Organique himie himie Organique hapitre 4 : Isomérie Marine PEUMAUR Année universitaire 200/20 Université Joseph Fourier de Grenoble - Tous droits réservés. . Isomérie plane 2. Stéréoisomérie de configuration (chiralité)

Plus en détail

Stratégie de synthèse et sélectivité en chimie organique

Stratégie de synthèse et sélectivité en chimie organique Stratégie de synthèse et sélectivité en chimie organique hapitre 19 Activités 1 Synthèse d un solide : la 3-carbéthoxycoumarine (p. 488-489) Matériel et produits Paillasse professeur Une balance ; une

Plus en détail

Expérience # 2. Synthèse de l Aspirine et du Tylenol

Expérience # 2. Synthèse de l Aspirine et du Tylenol Expérience # 2 Synthèse de l aspirine et du Tylenol 1. But Le but de l expérience consistera à effectuer la synthèse chimique de l aspirine et du Tylenol. Nous pourrons alors en profiter pour se familiariser

Plus en détail

DU GÈNE À LA PROTÉINE

DU GÈNE À LA PROTÉINE 1 DU GÈNE À LA PROTÉINE 1. Le génome et la notion de gène: Génome: ensemble du matériel génétique d'un individu. = patrimoine héréditaire Gène: région d'un brin d'adn dont la séquence code l'information

Plus en détail

LES SUBSTITUTIONS NUCLÉOPHILES EN SÉRIE ALIPHATIQUE S N 1 ET S N 2

LES SUBSTITUTIONS NUCLÉOPHILES EN SÉRIE ALIPHATIQUE S N 1 ET S N 2 Pr atem BEN ROMDANE LES SUBSTITUTIONS NUCLÉOPILES EN SÉRIE ALIPATIQUE S N 1 ET S N 2 3 - LE MÉCANISME S N 2 a - Constatations expérimentales Cinétique : l'étude des réactions de substitution nucléophile

Plus en détail

Algorithmes pour la comparaison de structures moléculaires tridimensionnelles

Algorithmes pour la comparaison de structures moléculaires tridimensionnelles U N I V E R S I T É P A R I S V I I THÈSE DE DOCTORAT Spécialité : Informatique présentée par VINCENT ESCALIER Pour l obtention du titre de Docteur d Université Algorithmes pour la comparaison de structures

Plus en détail

COLLECTION SAWD. Notes de cours Lycée Seydina Limamou Laye

COLLECTION SAWD. Notes de cours Lycée Seydina Limamou Laye LLETIN SAWD WAHAB DIP TEMINALES S2 & S1 Notes de cours Lycée Seydina Limamou Laye () Wahab Diop e document a été télécharger sur le site: http://physiquechimie.sharepoint.com Les alcools 1 Table des matières

Plus en détail

Exercice 1 : Synthèse d un alcaloïde

Exercice 1 : Synthèse d un alcaloïde xercice 1 : Synthèse d un alcaloïde ette synthèse part d un composé indolique portant une fonction acide et dont la fonction amine est protégée sous la forme d un amide. 1 La première partie de la synthèse

Plus en détail

CHAPITRE 2 LES COMPOSÉS CHIMIQUES ET LES LIAISONS

CHAPITRE 2 LES COMPOSÉS CHIMIQUES ET LES LIAISONS CHAPITRE 2 LES COMPOSÉS CHIMIQUES ET LES LIAISONS 2.1 - La formation de liaisons ioniques et covalentes 2.2 - Les noms et les formules des composés ioniques et moléculaires 2.3 - Une comparaison des propriétés

Plus en détail

Problème No 1 (85 points)

Problème No 1 (85 points) FACULTÉ DES SCIENCES DÉPARTEMENT DE CHIMIE CHM 302 Techniques de chimie organique et inorganique Chargés de cours: Jasmin Douville et Dana Winter Date: Jeudi 27 novembre 2008 Locaux: D7-2018, D7-2023 Heure:

Plus en détail

Effets inductifs et mésomères

Effets inductifs et mésomères CHIMIE RGANIQUE (Stage de pré-rentrée UE1) Effets inductifs et mésomères bjectifs: Découvrir les effets électroniques inductifs et mésomères. Aborder l ordre de priorité des groupes fonctionnels donneurs

Plus en détail

Partie A DONNEES. j : couche β = α-1

Partie A DONNEES. j : couche β = α-1 Les calculatrices sont autorisées N.B. : Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant

Plus en détail

FICHES DE COURS DE CHIMIE

FICHES DE COURS DE CHIMIE FICES DE CUS DE CIMIE P.C.E.M. 1 ère année Dr. Pascal BEZU Tables des Matières TEMCIMIE : 1 E ET 2 ÈME PINCIPE 3 ÉQUILIBES CIMIQUES 5 XYD-ÉDUCTIN 7 ACIDES - BASES 8 ATMISTIQUE 11 MLÉCULES : LIAISNS & GÉMÉTIE

Plus en détail

Représentation de molécules organiques et nomenclature

Représentation de molécules organiques et nomenclature Terminale S - AP SPC 1 Représentation de molécules organiques et nomenclature bjectifs : Savoir écrire une molécule organique en utilisant différents type de représentation. Savoir nommer alcanes, alcènes,

Plus en détail

PCSI Chimie Organique Cours Travaux Dirigés Partie 1

PCSI Chimie Organique Cours Travaux Dirigés Partie 1 PSI himie Organique ours Travaux Dirigés Partie 1 STRUTURE ET FORME DES MOLÉULES ORGANIQUES ISOMÉRIE IMIQUE 1) Représentation simplifiées d une molécule organique 2) Notion d insaturation 3) Isomérie de

Plus en détail

DE L ATOME A LA MOLECULE ORGANIQUE

DE L ATOME A LA MOLECULE ORGANIQUE DE L ATOME A LA MOLECULE ORGANIQUE I L atome de carbone dans la molécule 1) L atome de carbone C(Z=6) : [He] 2s 2 2p 2 V=2 à l état fondamental V=4 à son état excité 99,99 % des atomes de carbone de la

Plus en détail

Les différentes structures des protéines

Les différentes structures des protéines Les différentes structures des protéines tructure primaire tructure secondaire -Ala-Glu-Val-Thr-Asp-Pro-Gly- -AEVTDPG- Hélice Feuillet tructure tertiaire tructure quaternaire Domaine. Lacombe 1 Les différentes

Plus en détail

TP N 3 : SPECTROSCOPIES UV-VISIBLE ET IR

TP N 3 : SPECTROSCOPIES UV-VISIBLE ET IR TP N 3 : SPECTROSCOPIES UV-VISIBLE ET IR S'approprier Analyser Réaliser Valider Communiquer Avec les progrès des techniques, l analyse qualitative organique est de moins en moins en utilisée car elle nécessite

Plus en détail

Chapitre 6 Les protéines : Propriétés physicochimiques. Professeur Michel SEVE

Chapitre 6 Les protéines : Propriétés physicochimiques. Professeur Michel SEVE UE1 : Biomolécules (1) : Acides aminés et protéines Chapitre 6 Les protéines : Propriétés physicochimiques et classification Professeur Michel SEVE Année universitaire 2010/2011 Université Joseph Fourier

Plus en détail

DS PHYSIQUE-CHIME N 4 2014-15. EXERCICE 1 L acide formique et les fourmis 5 points

DS PHYSIQUE-CHIME N 4 2014-15. EXERCICE 1 L acide formique et les fourmis 5 points DS PHYSIQUE-CHIME N 4 2014-15 EXERCICE 1 L acide formique et les fourmis 5 points Depuis très longtemps les scientifiques s intéressent à l acide formique de formule HCOOH. En 1671, le naturaliste anglais

Plus en détail

Chimie Organique I. Réaction de Réformatsky 1. Assistante : Ouizem Souad. Abegg Daniel. Laboratoire 140. 20 férvrier 2008

Chimie Organique I. Réaction de Réformatsky 1. Assistante : Ouizem Souad. Abegg Daniel. Laboratoire 140. 20 férvrier 2008 Chimie rganique I Réaction de Réformatsky 1 Assistante : uizem Souad Abegg Daniel Laboratoire 140 20 férvrier 2008 1 Page 27 du polycopié de chimie organique (3ème semestre) 2007/2008 Table des matières

Plus en détail

1 2 3 4 5 6 6 5 4 3 2 1 Numérotation correcte CH 3 CH 2 CH 3

1 2 3 4 5 6 6 5 4 3 2 1 Numérotation correcte CH 3 CH 2 CH 3 NMENCLATURE EN CHIMIE RGANIQUE La nomenclature permet de : a) Trouver le nom d une molécule connaissant la structure. b) Trouver la structure d une molécule connaissant le nom.. Hydrocarbures (HC) saturés

Plus en détail

Mode de fixation des différents complexes. Gd-DTPA (charge : -2)

Mode de fixation des différents complexes. Gd-DTPA (charge : -2) Les sites de fixation des différents complexes La protéine X fait partie des protéines qui lient la choline (choline binding proteins - ChBP). Le motif fixant la choline (choline binding motive : cbm)

Plus en détail

Analyse spectrale. Comment exploiter un spectre RMN du proton?

Analyse spectrale. Comment exploiter un spectre RMN du proton? Analyse spectrale. Comment exploiter un spectre RMN du proton? Thème : Observer Type de ressources : - Des pistes d activités - Des spectres RMN illustrant les notions du programme Notions et contenus

Plus en détail

PARTIE B CHIMIE INORGANIQUE. Du gaz de Lacq à l'acide sulfurique

PARTIE B CHIMIE INORGANIQUE. Du gaz de Lacq à l'acide sulfurique PARTIE B CHIMIE INORGANIQUE Du gaz de Lacq à l'acide sulfurique Le sujet de chimie inorganique comporte quatre parties indépendantes consacrées à différentes étapes mises en jeu lors de la synthèse industrielle

Plus en détail

La synthèse peptidique des peptides

La synthèse peptidique des peptides La synthèse peptidique des peptides Les peptides sont les longues chaînes moléculaires qui composent les protéines. Les peptides synthétiques sont utilisés soit en tant que médicaments (tels qu'ils sont

Plus en détail

Le tableau ci-dessous indique, chez l'homme, les teneurs en acides aminés essentiels conseillées par l'organisation mondiale de la santé (OMS)

Le tableau ci-dessous indique, chez l'homme, les teneurs en acides aminés essentiels conseillées par l'organisation mondiale de la santé (OMS) Document 1 Les protéines comptent parmi les éléments constitutifs essentiels de la matière vivante. L'organisme ne peut disposer de réserves de protéines, celles-ci faisant partie intégrante des tissus

Plus en détail

Observer TP Analyse spectrale ANALYSE SPECTRALE

Observer TP Analyse spectrale ANALYSE SPECTRALE OBJECTIFS ANALYSE SPECTRALE Préparation d une solution par dilution, réalisation d un spectre uv- visible et interprétation Utilisation des spectres IR I ) SPECTRE UV-VISIBLE Cette spectroscopie fait intervenir

Plus en détail

Définition. Types d isomérie

Définition. Types d isomérie ISOMERIE Définition Généralités Relation entre molécules de même composition chimique qui ont la même formule brute, mais des formules développées différentes Isomères diffèrent par certaines propriétés

Plus en détail

LES SUCRES. Exemple : Représentation du glycéraldéhyde (2, 3 dihydroxypropanal)

LES SUCRES. Exemple : Représentation du glycéraldéhyde (2, 3 dihydroxypropanal) LES SUCRES I ) Compléments de Stéréochimie 1) Représentation de Fischer Pour les sucres et les acides aminés, on utilise une autre représentation des molécules dans l'espace : la représentation de Fischer.

Plus en détail

Éléments de chimie organique Résumé

Éléments de chimie organique Résumé Éléments de chimie organique Résumé Note : e résumé indique quelques éléments qui ont été étudiés en classe. Il est largement insuffisant pour compléter votre étude. Il vous permettra de mieux structurer

Plus en détail

Répétée. Réparée le BELLEGUIC DS 2 BICREL BRUERE DS 2

Répétée. Réparée le BELLEGUIC DS 2 BICREL BRUERE DS 2 BELLEGUIC BICREL BRUERE Erreur Commise le Z et non A pour avoir le nombre d électrons DS 1 Si OA nd alors l = 2 Vocabulaire : AX3E1 pyramidale et non trigonale, AX6 bipyr à base carrée Représenter les

Plus en détail

Erreur Commise le. Formule de l acide éthanoïque DS 5 Définition du Ka

Erreur Commise le. Formule de l acide éthanoïque DS 5 Définition du Ka Arenal Coloigner Erreur Commise Réparée N hypervant Col DS 24/09 Ectron de vance : oubli des ns et ne prend que s np DS Rep. De la géométrie tétraèdrique fausse DS 2 Confond géométrie de référence et geo

Plus en détail

A- Formation de la liaison peptidique

A- Formation de la liaison peptidique A- Formation de la liaison peptidique Un peptide : combinaison de 2 ou plusieurs AA par des liaisons amides particulières = liaisons peptidiques Liaison peptidique Nt O Ct Chaîne peptidique :( réaction

Plus en détail

Les interactions de faible énergie Pierre-Alexis GAUCHARD

Les interactions de faible énergie Pierre-Alexis GAUCHARD Chapitre 5 : Les interactions de faible énergie Pierre-Alexis GAUCHARD UE1 : Chimie Chimie physique Agrégé de chimie, Docteur ès sciences Année universitaire 2011/2012 Université Joseph Fourier de Grenoble

Plus en détail

Nomenclature des molécules organiques

Nomenclature des molécules organiques Chimie organique omenclature des molécules organiques L objectif de ce document est de reprendre l ensemble des règles relatives à la nomenclature des molécules organiques. Leur connaissance est primordiale

Plus en détail

ph et pka Pourquoi est-ce utile?

ph et pka Pourquoi est-ce utile? p et pka 1 Pourquoi est-ce utile? Beaucoup de réactions se font en conditions acides ou basiques, et le chimiste doit être en mesure de pouvoir choisir le bon acide ou la bonne base. Par exemple lors de

Plus en détail