Formation d un ester à partir d un acide et d un alcool

Dimension: px
Commencer à balayer dès la page:

Download "Formation d un ester à partir d un acide et d un alcool"

Transcription

1 CHAPITRE 10 RÉACTINS D ESTÉRIFICATIN ET D HYDRLYSE 1 Formatio d u ester à partir d u acide et d u alcool 1. Nomeclature Acide : R C H Alcool : R H Groupe caractéristique ester : C Formule géérale d u ester : R C R Formule semi-développée d u ester : R C. Formatio d u ester Réactio : U acide carboxylique réagit avec u alcool pour doer u ester et de l eau : c est ue réactio d estérificatio. La réactio est : lete ; sas dégagemet de chaleur ; limitée : o atteit pas l avacemet maximal. Équatio de la réactio : R CH + R H R C R + H acide carboxylique + alcool ester + eau Redemet : η e. max C est le rapport etre la quatité de matière effectivemet obteue et la quatité maximale que l o obtiedrait si la réactio était totale. Quad les réactifs sot e proportio stœchiométrique : η 67 % pour u alcool primaire ; η 60 % pour u alcool secodaire ; η 5,0 % pour u alcool tertiaire. 1 Primaire Secodaire Tertiaire R CH H ou CH 3 H R' R CH H R' R' R C H R"

2 cours savoir-faire exercices corrigés La réactio de l acide éthaoïque sur u alcool A saturé o cyclique doe u ester B de masse molaire 10 g.mol Détermier les formules brutes de l ester B et de l alcool A.. Sachat que l alcool A est u alcool primaire, doer l équatio de la réactio d estérificatio aisi réalisée. 3. Sachat que les réactifs sot e proportio stœchiométriques, quel devrait être le redemet de la réactio? corrigé commeté exemple d applicatio 1. Coseil : partir de la formule géérale de l ester et idetifier R (qui proviet de l acide) et R (qui proviet de l alcool). L acide éthaoïque a pour formule CH 3 CH. L ester a pour formule R C R. R proviet de l acide : CH 3. L alcool est saturé et o cyclique de formule R H. R est doc u radical alkyle de la forme C H +1 (o pred l alcae C H + et o elève 1 H). L ester s écrit alors : CH 3 C C H +1. Sa masse molaire M 1 ( + ) + (16.) + ( + 4) 10 g.mol (10 60)/14 3. L ester a doc pour formule : CH 3 C C 3 H 7 ou C 5 H 10 et se omme éthaoate de propyle. L alcool a pour formule : C 3 H 7 H ou C 3 H 8. Coseil : lister les isomères et garder l alcool primaire. À cette formule correspodet deux isomères saturés o cycliques : CH 3 CH CH H : alcool primaire, propaol ; (CH 3 ) CH H : alcool secodaire, propa--ol. La réactio d estérificatio est doc : CH 3 CH + CH 3 CH CH H CH 3 C CH CH CH 3 + H 3. Coseil : cosidérer la classe de l alcool. L alcool est u alcool primaire. peut doc s attedre à u redemet : η 67 %. 13

3 CHAPITRE 10 RÉACTINS D ESTÉRIFICATIN ET D HYDRLYSE Hydrolyse d u ester 1. Hydrolyse Réactio : U ester réagit avec de l eau pour doer u acide carboxylique et u alcool : c est ue réactio d hydrolyse. La réactio est : lete ; sas dégagemet de chaleur ; limitée : o atteit pas l avacemet maximal. Équatio de la réactio : R C R + H R CH + R H ester + eau acide carboxylique + alcool Redemet : η e max Quad les réactifs sot e proportio stœchiométrique : η 33 % pour u ester d alcool primaire ; η 40 % pour u ester d alcool secodaire ; η 95 % pour u ester d alcool tertiaire.. État d équilibre résultat de l estérificatio ou de l hydrolyse Les réactios d estérificatio et d hydrolyse sot iverses l ue de l autre. Elles e sot pas idépedates l ue de l autre et coduiset à u état d équilibre représeté par l équatio : R CH + R H R C R + H acide carboxylique alcool ester eau exemple d applicatio Le propaoate d éthyle résulte de la réactio d u alcool avec u acide. 1. Doer la formule semi-développée de l ester formé. Doer les formules semi-développées de l acide carboxylique et de l alcool correspodats.. hydrolyse 5,1 g d ester. Écrire l équatio-bila de la réactio. Quelle est la quatité d eau miimum que l o doit utiliser e supposat que la réactio est totale et que le réactif limitat est l ester? Das ces coditios, à quel redemet peut-o raisoablemet s attedre? 14

4 cours savoir-faire exercices corrigés 3. Quel devrait être l avacemet maximal de la réactio? E déduire la quatité de matière d acide réellemet obteue si le redemet est de 33 %. corrigé commeté 1. Coseil : cosulter la fiche savoir-faire. Idetifier R pour l acide et R pour l alcool. Le propaoate d éthyle est u ester de la forme R C R. R est lié au terme propaoate, R au terme éthyle. R viet de l alcool R H : éthaol CH 3 CH H ( carboe). R viet de l acide R CH et doc de l acide propaoïque CH 3 CH CH (3 carboe). propaoate d éthyle : CH 3 CH C CH CH 3 CH 3 CH C CH CH 3 éthaol : CH 3 CH H acide propaoïque : CH 3 CH C. Idicatio : utiliser le tableau d avacemet de la réactio. CH 3 CH C CH CH 3 + H CH 3 CH CH + CH 3 CH H Équatio ester + eau acide + alcool État Avacemet (mol) Quatités de matière (mol) Iitial x i E cours x 1 x x x x Fial x max 0 0 x max x max H La quatité miimale d eau que l o doit utiliser est celle qui correspod aux quatités stœchiométriques 1 m/m 5,1/ mol Das les proportios stœchiométriques et avec u ester d alcool primaire, o peut s attedre à u redemet de 33 %. 3. Idicatio : tout le réactif limitat est cosommé. x max mol La quatité de matière d acide que l o devrait obteir si la réactio était totale est : max 5.10 mol. - e r η... η & e max 16510,. mol. max

5 CHAPITRE 10 RÉACTINS D ESTÉRIFICATIN ET D HYDRLYSE 3 État d équilibre das les réactios d estérificatio et d hydrolyse 1. Estérificatio Tableau d avacemet du système Taux d avacemet : τ x e < 1 Quotiet de réactio et costate d équilibre Quotiet de réactio 7esterA7eauA ester Q r 7acideA7alcool A acide Avec X 7 A et V volume total du mélage V Costate d équilibre ester, eq l eau, eq l K Qreq, l l l. Hydrolyse Tableau d avacemet du système x Taux d avacemet : τ h 1 1 eau alcool acide, eq alcool, eq Quotiet de réactio et costate d équilibre Quotiet de réactio 7acideA7alcoolA acide Q r 7esterA7eauA ester Costate d équilibre acide eq l K Qreq, l l 16 Équatio R CH + R H R C R + H État du système Avacemet (mol) Quatités de matière (mol) Iitial x i E cours x 1 x x x x Fial x f 1 x f x f x f x f Équatio R C R + H R CH + R H État du système Avacemet (mol) Quatités de matière (mol) Iitial x i E cours x 1 x x x x Fial x f 1 x f x f x f x f, alcool, eq l ester, eq eau, eq l alcool eau

6 cours savoir-faire exercices corrigés étudie l estérificatio du buta-1-ol par l acide éthaoïque. 1. Écrire l équatio de la réactio et doer le om de l ester formé.. L estérificatio est effectuée à partir d u mélage équimolaire de 5,0.10 mol de chaque réactif. Au bout d ue heure, il reste,.10 mol d acide éthaoïque das le mélage. Sachat que la costate d équilibre est K 4, e déduire le taux d avacemet fial de la réactio. 3. Détermier le redemet maximal de la préparatio de l ester aisi sythétisé. Pouvait-o s attedre à ce résultat? corrigé commeté exemple d applicatio 1. Coseil : cosulter la fiche savoir-faire CH 3 CH + CH 3 (CH ) 3 H CH 3 C (CH ) 3 CH 3 + H L ester est de la forme R C R. R est lié à l acide et R à l alcool. L acide est l acide éthaoïque : l ester est doc u éthaoate de R. R est le radical butyle. L ester est doc l éthaoate de butyle.. Coseil : l état fial représete l état d équilibre. Costruire le tableau d avacemet de la réactio et calculer K. Équatio CH 3 CH + CH 3 (CH ) 3 H CH 3 C (CH ) 3 CH 3 + H État Avacemet Quatités de matière (mol) du système (mol) Iitial x 1 0 5,0.10 5, E cours x 5,0.10 x 5,0.10 x x x Fial x f 5,0.10 x f 5,0.10 x f x f x f CH 3C ( CH) 3CH3 H xf K Qreq, l 4 CH CH CH ( CH ) H b50, xfl x f 4 (5,0.10 x f ) 3x f 0,4 x f + 0,01 0 Compte teu des quatités iitiales de réactifs, 0 x f 5,0.10. La résolutio de l équatio coduit doc à la solutio x f 3,33.10 mol. - xf 333,. 10 Le taux d avacemet à l équilibre est alors : τe 067, 67%. 1-50,. 10 L alcool utilisé est u alcool primaire. 3. Idicatio : le redemet de la préparatio est égal au taux d avacemet maximum si tout l ester formé peut être extrait, ce qui est jamais réalisé. η τ e η 67 % L alcool utilisé est u alcool primaire : le redemet attedu était doc bie de 67 %. 17

7 CHAPITRE 10 RÉACTINS D ESTÉRIFICATIN ET D HYDRLYSE 4 Cotrôle des réactios d estérificatio et hydrolyse 1. Cotrôle de la vitesse de réactio Température L état d équilibre est atteit plus rapidemet quad la température est plus élevée et il y a pas d actio sur le taux d avacemet à l équilibre. Catalyseur Le catalyseur augmete la vitesse d ue réactio chimique et se retrouve ichagé à l issue de la trasformatio.. Cotrôle de l état fial du système Le système évolue spotaémet vers u état d équilibre : la valeur du quotiet de réactio Q r ted vers la costate d équilibre K, quel que soit l état iitial du système. Estérificatio Hydrolyse estereau acide Q r Q r Q r acide alcool alcool ester eau Excès acide ou alcool ester ou eau d u réactif Q r < K Q r < K Élimiatio d u produit de la réactio ester ou eau Q r < K acide ou alcool Q r < K Q r 3 ses spotaé de la trasformatio vers la droite ses direct Q r K exemple d applicatio chauffe u mélage équimolaire d acide éthaoïque et d éthaol. La costate d équilibre pour les alcools primaires est K Calculer le quotiet de réactio Q r à l état iitial. E déduire le ses d évolutio spotaé du système.. Calculer l avacemet de la réactio à l équilibre. E déduire la valeur du taux d avacemet τ à l équilibre. 18

8 cours savoir-faire exercices corrigés 3. Le mélage iitial est maiteat costitué de 3 moles d acide éthaoïque et d ue mole d alcool. Calculer l avacemet de la réactio à l équilibre. E déduire la valeur du taux d avacemet τ à l équilibre. Coclure? corrigé commeté 1. Idicatio : costruire le tableau d avacemet de la réactio. Équatio État du système Avacemet (mol) CH 3 CH + C H 5 H CH 3 C C H 5 + H Quatités de matière (mol) Iitial x i E cours x 1 x 1 x x x Fial x éq 1 x éq 1 x éq x éq x éq ester. eau À l état iitial : Q r 0 alcool. acide K 4 Q r < K le système évolue spotaémet das le ses direct jusqu à l état d équilibre.. Coseil : calculer Q r,éq à partir du tableau d avacemet préalablemet costruit. ester, eq l. eau, eq l xeq l Qreq, l K 4 alcool, eq l. acide, eq l `1 - xeq l j 3 x éq 8 x éq Cette équatio admet deux solutios. Si la réactio était totale : 1 x éq 0 x éq 1 mole. La solutio de l équatio est doc obligatoiremet 1 mol. La solutio reteue est doc x éq 0,67 mol. xeq l Taux d avacemet : τe 0671, / 67%. CH3 CH, i 3. Idicatio : repredre le tableau d avacemet avec les ouvelles coditios iitiales. Le système évolue vers u ouvel état d équilibre. Équatio État du système Avacemet (mol) CH 3 CH + C H 5 H CH 3 C C H 5 + H Quatités de matière (mol) Iitial x i E cours x 3 x 1 x x x Fial x éq 3 x éq 1 x éq x éq x éq ester, eq l. eau, eq l xeq l Qreq, l. K 4 alcool, eq l acide, eq l `1- xeq l j`3- xeq l j 3 x éq 16 x éq Cette équatio admet deux solutios. Le réactif limitat est l alcool : la solutio de l équatio est doc obligatoiremet 1 mol. La solutio reteue est doc x éq 0,90 mol. xeq l Taux d avacemet : τe 0901, / 90%. CH3 CH, i Lorsque la cocetratio d u réactif à l état iitial augmete, le taux d avacemet de la réactio augmete. 19

Problème I- Acide éthanoïque (ph et conductimétrie) Enoncé

Problème I- Acide éthanoïque (ph et conductimétrie) Enoncé - Acide éthaoïque (ph et coductimétrie) Eocé 1- L acide éthaoïque (H 3 OOH) est u oxydat e solutio aqueuse das le couple H 3 OOH/H 3 H OH (acide éthaoïque/éthaol). Écrire la demi-équatio d oxydoréductio

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

Intérêt simple CHAPITRE. Sommaire

Intérêt simple CHAPITRE. Sommaire HAPTRE térêt simple Sommaire A B D E F G H J K L Notio d itérêt Formule fodametale de l itérêt simple Durée de placemet exprimée e mois Durée de placemet exprimée e jours alculs sur la formule fodametale

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures)

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures) ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D ÉCONOMIE APPLIQUÉE ENSEA ABIDJAN AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie B Optio Écoomie MATHÉMATIQUES (Durée de l épreuve : 4 heures)

Plus en détail

TP 11: Réaction d estérification - Correction

TP 11: Réaction d estérification - Correction TP 11: Réaction d estérification - Correction Objectifs : Le but de ce TP est de mettre en évidence les principales caractéristiques de l'estérification et de l'hydrolyse (réaction inverse). I ) Principe

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

Fluctuation et estimation

Fluctuation et estimation Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle

Plus en détail

Devoir sciences physique 1 S février 2013. Ex 1 : Réactions nucléaires : (4pt) justifier chaque réponse par l'écriture des équations de conservation.

Devoir sciences physique 1 S février 2013. Ex 1 : Réactions nucléaires : (4pt) justifier chaque réponse par l'écriture des équations de conservation. Devoir scieces physique S février 0 Ex : Réactios ucléaires : (pt) justifier chaque répose par l'écriture des équatios de coservatio. 7 W est radioactif α. Il se désitègre e: 7 76 Hf ; 7 Ta ; 75 Re ; 7

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Chap. 5 : Les intérêts (Les calculs financiers)

Chap. 5 : Les intérêts (Les calculs financiers) Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie

Plus en détail

Chapitre 3 Détermination de la taille de l'échantillon

Chapitre 3 Détermination de la taille de l'échantillon Chapitre 3 Détermiatio de la taille de l'échatillo Lorsqu o prélève u échatillo pour estimer u paramètre, o court toujours le risque de découvrir u peu trop tard que l'échatillo prélevé est trop petit

Plus en détail

b) la diminution de pression créée dans la bouche permet à la pression atmosphérique de pousser le liquide à monter dans la paille ;

b) la diminution de pression créée dans la bouche permet à la pression atmosphérique de pousser le liquide à monter dans la paille ; CHAITRE 4 LES GAZ QUESTIONS. a) uisque, das le coteat, et sot costats, la pressio est proportioelle à la température T. L augmetatio de T peut ameer à ue valeur dépassat la résistace des parois du coteat

Plus en détail

Correction des exercices sur la nature ondulatoire de la lumière

Correction des exercices sur la nature ondulatoire de la lumière CORRECTION EXERCICES TS /5 CHAPITRE 3 Correctio des exercices sur la ature odulatoire de la lumière Correctio exercice : idice d u verre et réfractio. La radiatio = 530 m est verte et la radiatio = 680

Plus en détail

Chapitre 3 : Transistor bipolaire à jonction

Chapitre 3 : Transistor bipolaire à jonction Chapitre 3 : Trasistor bipolaire à joctio ELEN075 : Electroique Aalogique ELEN075 : Electroique Aalogique / Trasistor bipolaire U aperçu du chapitre 1. Itroductio 2. Trasistor p e mode actif ormal 3. Courats

Plus en détail

MATHÉMATIQUES Corrigé

MATHÉMATIQUES Corrigé Exame de ovembre 009 Exame du premier trimestre Le 30 ovembre 009 Classes de ère STG Durée 3 heures MATHÉMATIQUES Corrigé Note aux cadidats L emploi des calculatrices est autorisé (circulaire 99 86 du

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

Il y a donc 2 atomes d azote par chaîne de masse molaire moyenne : M

Il y a donc 2 atomes d azote par chaîne de masse molaire moyenne : M ETALE IMIE P 2007 I.A.1) a) Amorçage : 2(g) La régiosélectivité s iterprète par la stabilisatio de ce radical par résoace avec le cycle aromatique, résoace absete de : roissace : 2-1 2 L'uité de répétitio

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

Moment d'une force Théorème du moment cinétique. Johann Collot collot@in2p3.fr http://lpsc.in2p3.fr/atlas_new/teachingitem.htm Mécanique L1 et IUT1

Moment d'une force Théorème du moment cinétique. Johann Collot collot@in2p3.fr http://lpsc.in2p3.fr/atlas_new/teachingitem.htm Mécanique L1 et IUT1 Momet d'ue force Théorème du momet ciétique Théorème du momet ciétique référetiel iertiel repère fixe /réf. o poit o fixe / repère m M V dt = d P OM dt = OM d P d OM P = d OM P OM d P = V dt m V OM d P

Plus en détail

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3... Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice - Loi d u dé truqué - L2/ECS -. X pred ses valeurs das {,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque P X est

Plus en détail

Teneur en mg/1. maximale. minimale 0,1. 4 Al. Mo 0,5. 50 Ba Ça 0,05 0,1 0,05 0,05 0,01 0,5 PRINCIPE

Teneur en mg/1. maximale. minimale 0,1. 4 Al. Mo 0,5. 50 Ba Ça 0,05 0,1 0,05 0,05 0,01 0,5 PRINCIPE CETAMA ANALYSE DE L 1 EAU- DOS AGE D'ELEMENTS PAR ABSORPTION ATOMIQUE N 47 OCTOBRE 1 97 OBJET ET DOMAINE D'APPLICATION Le préset documet a pour objet la descriptio schématique d'ue méthode de dosage des

Plus en détail

FLUCTUATION ET ESTIMATION

FLUCTUATION ET ESTIMATION 1 FLUCTUATION ET ESTIMATION Le mathématicie d'origie russe Jerzy Neyma (1894 ; 1981), ci-cotre, pose les fodemets d'ue approche ouvelle des statistiques. Avec l'aglais Ego Pearso, il développe la théorie

Plus en détail

Le meilleur scénario pour votre investissement

Le meilleur scénario pour votre investissement ivestir Best Strategy 2012 Le meilleur scéario pour votre ivestissemet U ivestissemet diversifié U coupo uique de 0% à 50% brut* à l échéace Ue courte durée : 4 as et demi Votre capital garati à l échéace

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

B) CHAÎNES DE SOLIDES

B) CHAÎNES DE SOLIDES Chaîes de solides B) CHAÎNES DE SOLIDES Objectifs Cette théorie a pour but d'aalyser les comportemets statique et ciématique d'u mécaisme à partir d'u modèle défii par le schéma ciématique du mécaisme.

Plus en détail

STATISTIQUE : ESTIMATION

STATISTIQUE : ESTIMATION STATISTIQUE : ESTIMATION Préparatio à l Agrégatio Bordeaux Aée 202-203 Jea-Jacques Ruch Table des Matières Chapitre I. Estimatio poctuelle 5. Défiitios 5 2. Critères de comparaiso d estimateurs 6 3. Exemples

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Féelo aite-marie Préparatio ciece-po/prépa HEC Foctios Versio du juillet 05 Eercice d degré : racies et coefficiets O rappelle que si l équatio a + b + c = 0 ( a 0 ) adet deu racies α et β (évetuelleet

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

La classification de données quantitatives avec SPAD

La classification de données quantitatives avec SPAD La classificatio de doées quatitatives avec SPAD SPAD effectue toujours ue ACP de la matrice des doées quatitatives X " p avat de faire la classificatio des idividus. Les méthodes de classificatio s appliquet

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Calcul et raisoemet Remise à Niveau Mathématiques Première partie : Calcul et raisoemet Exercices Page sur 9 RAN Calcul et raisoemet Ex - Rev 04 Mathématiques RAN - Calcul et raisoemet

Plus en détail

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 MÉTHODES NUMÉRIQUES POUR LE PRICING D OPTIONS DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 Table des matières 1 Notatios et équatio de Black-Scholes 2 11 Notatios 2 12 Équatio de Black-Scholes

Plus en détail

Devoir de statistiques: CORRIGE

Devoir de statistiques: CORRIGE CPP - la prépa des INP ( ème aée). Bordeaux, 6/04/04. Devoir de statistiques: CORRIGE durée h Doées: O rappelle que si Z suit ue loi N (0, ), o a P(Z.96) 0, 975 et P(Z.65) 0, 95. Exercice. θ et O cosidère

Plus en détail

EXERCICES D OPTIQUE GEOMETRIQUE ENONCES

EXERCICES D OPTIQUE GEOMETRIQUE ENONCES EXERCICES D PTIQUE GEMETRIQUE ENNCES Exercice 1 : Vitre Motrer que la lumière est pas déviée par u passage à travers ue vitre. Pour ue vitre d épaisseur 1 cm, que vaut le décalage latéral maximal? Si la

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Fiace d Etreprise, Gestio des systèmes d iformatio. SESSION 2012 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et fiace d etreprise

Plus en détail

14 Chapitre 14. Théorème du point fixe

14 Chapitre 14. Théorème du point fixe Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de

Plus en détail

Mathématiques. Cours. BTS Informatique de gestion 2 e année. Denis Jaudon. Directrice de publication : Valérie Brard-Trigo

Mathématiques. Cours. BTS Informatique de gestion 2 e année. Denis Jaudon. Directrice de publication : Valérie Brard-Trigo BTS Iformatique de gestio e aée Deis Jaudo Mathématiques Cours Directrice de publicatio : Valérie Brard-Trigo Les cours du Ced sot strictemet réservés à l usage privé de leurs destiataires et e sot pas

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules est à dispositio olie et sera doé aux cadidats lors des exames oraux

Plus en détail

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont :

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont : Estimatio Objectifs Estimer poctuellemet ue proportio, ue moyee ou u écart type d ue populatio à l aide de la calculatrice ou d u logiciel, à partir d u échatillo Détermier u itervalle de cofiace à u iveau

Plus en détail

Travaux dirigés G33 Dimensionnement 2 séances Enseignant : Anthony Busson.

Travaux dirigés G33 Dimensionnement 2 séances Enseignant : Anthony Busson. Travaux dirigés G33 Dimesioemet 2 séaces Eseigat : Athoy Busso. Exercice 1 : O cosidère u web switch et 3 serveurs web. Le web switch reçoit les requêtes http proveat des cliets et les répartit de maière

Plus en détail

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules sera mis à dispositio des cadidats, si écessaire. Etat au 1er mars

Plus en détail

Séquence 9. Sommaire. 1. Pré-requis 2. Intervalles de fluctuation 3. Estimation 4. Synthèse de la séquence 5. Exercices de synthèse

Séquence 9. Sommaire. 1. Pré-requis 2. Intervalles de fluctuation 3. Estimation 4. Synthèse de la séquence 5. Exercices de synthèse Séquece 9 Itervalles de fluctuatio, estimatio Objectifs de la séquece Das le chapitre 2, o étudie des itervalles de fluctuatio des variables aléatoires X F =, fréqueces des variables aléatoires biomiales

Plus en détail

REQUÊTES. Il est possible de créer des formulaires ou des états à partir de requête.

REQUÊTES. Il est possible de créer des formulaires ou des états à partir de requête. Cliclasolutio Aée 2006/2007 REQUÊTES Utilité des requêtes QUESTIONNER LA BASE DE DONNÉES La foctio classique d'ue requête est de répodre à ue questio sur la base de doées. "Quels sot les cliets habitat

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher

Plus en détail

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6 Corrigés TD Chapitre : Variables aléatoires sur u uivers fii Exercice : Soit X la VAR défiie par le tableau suivat : x i - - 0 p 6 4 6 4 6 i O ote Y = X ) Détermier la loi cooite de X et Y ) Détermier

Plus en détail

TP R : méthodes statistiques élémentaires

TP R : méthodes statistiques élémentaires M2 IFMA et MPE TP R : méthodes statistiques élémetaires À la fi de la séace vous déposerez vos scripts R das la boîte de dépôt de votre espace Sakai : http://australe.upmc.fr/portal. 1 Importatio des doées

Plus en détail

Organisme de recherche et d information sur la logistique et le transport LES PREVISIONS DES CONSOMMATIONS

Organisme de recherche et d information sur la logistique et le transport LES PREVISIONS DES CONSOMMATIONS LES PREVISIONS DES CONSOMMATIONS Les logiciels utilisés pour la gestio des stocks itègret de ombreuses foctios de calcul. L ue des plus importates est l exécutio des prévisios des cosommatios futures d

Plus en détail

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles BTS Mécaique et Automatismes Idustriels Statistiques iféretielles, Aée scolaire 2005 2006 Statistiques iféretielles 1. Itroductio vocabulaire Pour étudier ue populatio statistique, o a recours à deux méthodes

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

Fiche standardisée pour plan tarifaire mobile à prépayement

Fiche standardisée pour plan tarifaire mobile à prépayement Fiche stadardisée pour pla tarifaire mobile à prépayemet Opérateur Mobile Vikigs Pla tarifaire 10 Date de derière mise à jour 27/05/2015 Date de limite de validité Ne s applique pas Valeur de recharge

Plus en détail

Ce type de compresseur est aussi appelée compresseur volumetrique.

Ce type de compresseur est aussi appelée compresseur volumetrique. Chapitre 4 Compresseurs Buts 1. Savoir que das ce cas if faut se redre compte qu il y a des effets thermique 2. Savoir qu il y a ue limite á l augmetatio de la pressio de gaz 3. Savoir quelles istabilités

Plus en détail

TS Intervalle de fluctuation et estimation Cours

TS Intervalle de fluctuation et estimation Cours Aée 2013/2014 TS Itervalle de fluctuatio et estimatio Cours est u etier aturel o ul et p est u réel de l itervalle 0 ; 1. I Itervalle de fluctuatio Cotexte : Das ue populatio, la proportio d idividus présetat

Plus en détail

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f.

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f. Chapitre 14 Itervalle de fluctuatio des fréqueces. Estimatio Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Itervalle de fluctuatio Estimatio Itervalle de cofiace (*). Niveau

Plus en détail

Application «Calculs» Application «Graphiques» Application «Tableur et listes» FR

Application «Calculs» Application «Graphiques» Application «Tableur et listes» FR TI Nspire Documet de Formatio T3 Walloie TI-Nspire Le tout e u des mathématiques Suites umériques La loi de Verhulst Applicatio «Calculs» Applicatio «Graphiques» Applicatio «Tableur et listes» FR Formatios

Plus en détail

Centre Régional des Métiers de l Éducation et de la Formation MARRAKECH

Centre Régional des Métiers de l Éducation et de la Formation MARRAKECH R O Y A U M E D U M A R O C Miistère de l Educatio Natioale et de la Formatio Professioelle Cetre Régioal des Métiers de l Éducatio et de la Formatio Académie Régioale de l Éducatio et de la Formatio Marrakech-Tesift

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

le billet vert Autocall EUR/USD investir n Profiter d une possible appréciation du dollar américain

le billet vert Autocall EUR/USD investir n Profiter d une possible appréciation du dollar américain ivestir Autocall EUR/USD Feu vert pour le billet vert Profiter d ue possible appréciatio du dollar américai U coupo uique évetuel de 8% brut la 1 re aée à 40% brut la 5 e aée U capital garati à 100% à

Plus en détail

PROJET DE MONTE CARLO SUJET 1: LE PRICING

PROJET DE MONTE CARLO SUJET 1: LE PRICING LE Age KHOURI Nadie M MMD PROJE DE MONE ARLO SUJE : LE PRIING Selim ZOUGHLAMI QUESION : Supposos d abord que X est u mouvemet browie W t G([ 0, ]) Alors W0 G( 0 ) suit ue loi N(0,0) et doc W 0ps 0 Esuite,

Plus en détail

HEC. Gilles Mauffrey. METHODES QUANTITATIVES AVEC EXCEL Programmation linéaire, programmation dynamique, simulation, statistique élémentaire

HEC. Gilles Mauffrey. METHODES QUANTITATIVES AVEC EXCEL Programmation linéaire, programmation dynamique, simulation, statistique élémentaire HEC Gilles Mauffrey METHODES QUANTITATIVES AVEC EXCEL Programmatio liéaire, programmatio dyamique, simulatio, statistique élémetaire La Modélisatio LA MODELISATION Modèle et typologie des modèles. La otio

Plus en détail

Suivi d une réaction lente par chromatographie

Suivi d une réaction lente par chromatographie TS Activité Chapitre 8 Cinétique chimique Suivi d une réaction lente par chromatographie Objectifs : Analyser un protocole expérimental de synthèse chimique Analyser un chromatogramme pour mettre en évidence

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

On obtient la formule de Pascal en prenant le cardinal :

On obtient la formule de Pascal en prenant le cardinal : Colles du 3 ovembre 014 Solutio de la questio de cours 1. (i) Soit E u esemble de cardial. L esemble (E) peut alors être partitioé comme suit : (E) (E), où (E) est l esemble des parties de E de cardial.

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

Mathématiques. Terminale S Corrigés des exercices. Rédaction : Laurent Beroul Isabelle Tenaud Sébastien Cario. Coordination : Sébastien Cario

Mathématiques. Terminale S Corrigés des exercices. Rédaction : Laurent Beroul Isabelle Tenaud Sébastien Cario. Coordination : Sébastien Cario Mathématiques Termiale S Corrigés des eercices Rédactio : Lauret Beroul Isabelle Teaud Sébastie Cario Coordiatio : Sébastie Cario Ce cours est la propriété du Ced Les images et tetes itégrés à ce cours

Plus en détail

Correction CCP maths 1 MP

Correction CCP maths 1 MP mai 4 Avertissemet : Il subsiste certaiemet quelques coquilles... Exercice : ue itégrale double Correctio CCP maths MP Pour calculer cette itégrale, o effectue le chagemet de variable e coordoées polaires

Plus en détail

Exercices sur le thème II : Les savons

Exercices sur le thème II : Les savons Fiche d'exercices Elève pour la classe de Terminale SMS page 1 Exercices sur le thème : Les savons EXERCICE 1. 1. L oléine, composé le plus important de l huile d olive, est le triglycéride de l acide

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

Questions Chapitre 2 L approche statistique de la réalité 1

Questions Chapitre 2 L approche statistique de la réalité 1 Questios Chapitre 2 L approche statistique de la réalité 1 Expliquer la otio de variable et défiir les différets types de variables Décrire les échelles de classificatio et trasformer les doées pour passer

Plus en détail

Chapitre 16 : Espaces vectoriels

Chapitre 16 : Espaces vectoriels PCSI Préparatio des Khôlles -4 Chapitre 6 : Espaces vectoriels Exercice type Soit E=R[X] et F ={P E, P(X)=XP (X)+P()}, motrer que F est u sous-espace vectoriel de E. : O a bie F E. Si P =est le polyôme

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

ASSOCIATION POUR LA CERTIFICATION DES MATERIAUX ISOLANTS

ASSOCIATION POUR LA CERTIFICATION DES MATERIAUX ISOLANTS Idice de Révisio Date de mise e applicatio B 01/09/2014 Cahier Techique 1 ASSOCIATION POUR LA CERTIFICATION DES MATERIAUX ISOLANTS 4, aveue du Recteur-Poicarré, 75782 Paris Cedex 16 Tel. 33.(0)1.64.68.84.97

Plus en détail

Correction HEC III 2007

Correction HEC III 2007 HEC III 7 Voie Écoomique Correctio Page Correctio HEC III 7 Voie écoomique La correctio comporte 9 pages. Eercice. Par dé itio est ue valeur propre de t si et seulemet si est ue valeur propre de T: Et

Plus en détail

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé :

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé : http://maths-scieces.fr OPÉRATIONS FINANIÈRES A INTÉRÊTS OMPOSÉS I) Itérêts et valeur acquise Défiitio U capital est placé à itérêts composés lorsque le motat des itérêts produits à la fi de chaque période

Plus en détail

Développement d une fonction en série entière. Exemples et applications

Développement d une fonction en série entière. Exemples et applications Développemet d ue foctio e série etière Exemples et applicatios Das ce chapitre, K désigera R ou C B(; R) désigera la boule ouverte de cetre et de rayo R > 1 Gééralités Défiitio 1 Soit f ue applicatio

Plus en détail

Véhicule hybride et impact environnemental

Véhicule hybride et impact environnemental Physique-Chimie Programme de première S Véhicule hybride et impact environnemental Thème : Agir Convertir l'énergie et économiser les ressources Type de ressources : activité documentaire : résolution

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

Modélisation de la formation et de la réduction des NO x dans un moteur à charge stratifiée avec le modèle multi zone

Modélisation de la formation et de la réduction des NO x dans un moteur à charge stratifiée avec le modèle multi zone Revue des Eergies Reouvelables CISM 08 Oum El Bouaghi (008) 3 - Modélisatio de la formatio et de la réductio des NO x das u moteur à charge stratifiée avec le modèle multi zoe A. Chelghoum, M. Kadja, T.

Plus en détail

2 ième partie : MATHÉMATIQUES FINANCIÈRES

2 ième partie : MATHÉMATIQUES FINANCIÈRES 2 ième partie : MATHÉMATIQUES FINANCIÈRES 1. Défiitios L'itérêt est l'idemité que doe au propriétaire d'ue somme d'arget celui qui e a joui pedat u certai temps. Divers élémets itervieet das le calcul

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Eocés 1 Déombremet Exercice 1 [ 01529 ] [correctio] Soiet E et F deux esembles fiis de cardiaux resectifs et. Combie y a-t-il d ijectios de E das F?

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires

Plus en détail

en 2014, je deviens rge guide pratique tous métiers travaux d amélioration énergétique énergies renouvelables

en 2014, je deviens rge guide pratique tous métiers travaux d amélioration énergétique énergies renouvelables e 2014, je devies rge tous métiers travaux d amélioratio éergétique éergies reouvelables e 2014, je devies rge rge, c est quoi? Vous avez sas doute déjà etedu parler de la metio RGE. Ce sige de qualité

Plus en détail

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces

Plus en détail

Concours de l Iscae. Épreuve Commune de Mathématiques (2015)

Concours de l Iscae. Épreuve Commune de Mathématiques (2015) Mohiieddie Beayad Cocours de l Iscae Épreuve Commue de Mathématiques (5) Voici l éocé de l épreuve commue de Mathématiques du cocours d etrée à l ISCAE de l aée 5, aisi que l itégralité du corrigé. Les

Plus en détail

Chapitre 1: Calcul des intérêts

Chapitre 1: Calcul des intérêts Chapitre 1: Calcul des itérêts Ce chapitre vise à familiariser le lecteur avec les otios suivates : Itérêt Taux d itérêt omial Taux d itérêt périodique Valeur acquise Valeur actuelle Capitalisatio Le lecteur

Plus en détail

GRAPHES. 0 1 1 0 0 1 1 0 0 0 Les graphes ci-dessous peuvent-ils être associés à A? Exercice n 6. Ecrivez la matrice associé à chaque graphe :

GRAPHES. 0 1 1 0 0 1 1 0 0 0 Les graphes ci-dessous peuvent-ils être associés à A? Exercice n 6. Ecrivez la matrice associé à chaque graphe : Exercice. Détermier le degré de chacu des sommets du graphe suivat : GRAPHES Exercice 6. Ecrivez la matrice associé à chaque graphe : Exercice. Trois pays evoiet chacu à ue coférece deux espios ; chaque

Plus en détail

Devoir de Sciences Physiques nà5

Devoir de Sciences Physiques nà5 Exercice I : sur le zinc Devoir de Sciences Physiques nà5 L épreuve dure 1h50. L usage de la calculatrice est autorisé. Les précipitations sont naturellement acides en raison du dioxyde de carbone présent

Plus en détail