Solutions particulières d une équation différentielle...

Dimension: px
Commencer à balayer dès la page:

Download "Solutions particulières d une équation différentielle..."

Transcription

1 Solutios particulières d ue équatio différetielle......du premier ordre à coefficiets costats O cherche ue solutio particulière de y + ay = f, où a est ue costate réelle et f ue foctio, appelée le secod membre. Pour cela o peut devier ue solutio particulière évidete, utiliser le pricipe de superpositio, ou la méthode la variatio de la costate. Ue autre méthode cosiste à étudier la forme de la foctio f. Si f est de la forme f (x) = k = costate O cherche ue solutio particulière y P y P (x) = A = costate. Si f est de la forme f (x) = P(x), où P est u polyôme de degré Si a = 0, alors o cherche ue solutio particulière y P y P (x) = Q(x), Si a = 0, alors o cherche ue solutio particulière y P y P (x) = xq(x), Si f est de la forme f (x) = αe kx, où α et k sot des costates Si k = a, alors o cherche ue solutio particulière y P y P (x) = Ae kx, 1

2 où A est ue costate à détermier. Si k = a, alors o cherche ue solutio particulière y P où A est ue costate à détermier. y P (x) = Axe kx, Si f est de la forme f (x) = α cos(ωx) + β si(ωx), où α, β et ω sot des costates O cherche ue solutio particulière y P y P (x) = Acos(ωx) + Bsi(ωx), Si f est de la forme f (x) = P(x)e kx, où P est u polyôme de degré Si k = a, alors o cherche ue solutio particulière y P y P (x) = Q(x)e kx, Si k = a, alors o cherche ue solutio particulière y P y P (x) = xq(x)e kx, Si f est de la forme f (x) = (α cos(ωx) + β si(ωx))e kx, où α, β, ω et k sot des costates O cherche ue solutio particulière y P y P (x) = (Acos(ωx) + Bsi(ωx))e kx, 2

3 ...du secod ordre à coefficiets costats O cherche ue solutio particulière de ay + by + cy = f, où a,b et c sot des costates réelles et f ue foctio, le secod membre. Pour résoudre l équatio homogèe associée ( f = 0), o passe par l équatio caractéristique (EC) : ar 2 + br + c = 0. C est u polyôme e r dot o ote r 1 et r 2 les racies. Si le discrimiat de (EC) est strictemet positif alors r 1 et r 2 sot réelles distictes ; si est ul, alors r 1 et r 2 sot réelles et égales ; et si est strictemet égatif, alors r 1 et r 2 sot complexes et cojuguées (c est-à-dire, r 1 = r 2 ). Pour trouver ue solutio particulière à (E), o peut de ouveau devier ue solutio particulière évidete ou utiliser le pricipe de superpositio. Ue autre méthode cosiste à étudier la forme de la foctio f. Si f est de la forme f (x) = k = costate O cherche ue solutio particulière y P y P (x) = A = costate. Si f est de la forme f (x) = P(x), où P est u polyôme de degré Si c = 0, alors o cherche ue solutio particulière y P y P (x) = Q(x), Si c = 0 et b = 0, alors o cherche ue solutio particulière y P y P (x) = xq(x), Si c = 0 et b = 0, alors o cherche ue solutio particulière y P y P (x) = x 2 Q(x), 3

4 Si f est de la forme f (x) = αe kx, où α et k sot des costates Si k est pas racie de (EC) (c est-à-dire, k r 1 et k r 2 ), alors o cherche ue solutio particulière y P où A est ue costate à détermier. y P (x) = Ae kx, Si k est racie simple de (EC) (c est-à-dire, r 1 r 2 et k = r 1 ou k = r 2 ), alors o cherche ue solutio particulière y P où A est ue costate à détermier. y P (x) = Axe kx, Si k est racie double de (EC) (c est-à-dire, k = r 1 = r 2 ), alors o cherche ue solutio particulière y P où A est ue costate à détermier. y P (x) = Ax 2 e kx, Si f est de la forme f (x) = α cos(ωx) + β si(ωx), où α, β et ω sot des costates Si iω est pas racie de l équatio caractéristique, o cherche ue solutio particulière y P y P (x) = Acos(ωx) + Bsi(ωx), Si iω est racie de l équatio caractéristique, o cherche ue solutio particulière y P y P (x) = x(acos(ωx) + Bsi(ωx)), 4

5 Si f est de la forme f (x) = P(x)e kx, où P est u polyôme de degré Si k est pas racie de (EC), alors o cherche ue solutio particulière y P y P (x) = Q(x)e kx, Si k est racie simple de (EC), alors o cherche ue solutio particulière y P y P (x) = xq(x)e kx, Si k est racie double de (EC), alors o cherche ue solutio particulière y P y P (x) = x 2 Q(x)e kx, où Q est u polyôme de même degré que P. Si f est de la forme f (x) = (α cos(ωx) + β si(ωx))e kx, où α, β, ω et k sot des costates Si k + iω est pas racie de l équatio caractéristique, o cherche ue solutio particulière y P y P (x) = (Acos(ωx) + Bsi(ωx))e kx, Si k + iω est racie de l équatio caractéristique, o cherche ue solutio particulière y P y P (x) = x(acos(ωx) + Bsi(ωx))e kx, Remarque : Pour détermier les costates A et B, et le polyôme Q, o ijecte la solutio particulière de la forme choisie das (E) 5

Fiche Diagonalisation des Matrices 2x2

Fiche Diagonalisation des Matrices 2x2 Fiche Diagoalisatio des Matrices x MOSE 1003 4 Septembre 014 Table des matières Motivatio, puissaces d ue matrice 1 Diagoalisatio Vérificatio avec Scilab 3 Puissace 4 Motivatio, puissaces d ue matrice

Plus en détail

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition.

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition. Termiale S Chapitre 7 «Foctios logarithmes» Page sur 2 I) Défiitio et propriétés algébriques : ) La foctio : Défiitio : La foctio logarithme épérie, otée, est la foctio défiie sur ;+ qui, à tout réel >

Plus en détail

Chapitre 1 Calculs algébriques dans... 3. Chapitre 2 Logique... 27. Chapitre 3 Fonctions numériques... 41. Chapitre 4 Calcul intégral...

Chapitre 1 Calculs algébriques dans... 3. Chapitre 2 Logique... 27. Chapitre 3 Fonctions numériques... 41. Chapitre 4 Calcul intégral... Avt-propos Cet ouvrge est coçu pour permettre u étudits des clsses préprtoires ECE d order leur première ée ds les meilleures coditios e fcilitt l trsitio vec l eseigemet secodire Aisi, l ojectif est i

Plus en détail

On obtient la formule de Pascal en prenant le cardinal :

On obtient la formule de Pascal en prenant le cardinal : Colles du 3 ovembre 014 Solutio de la questio de cours 1. (i) Soit E u esemble de cardial. L esemble (E) peut alors être partitioé comme suit : (E) (E), où (E) est l esemble des parties de E de cardial.

Plus en détail

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014 Termiales S Devoir maiso -A faire pour le jeudi 6 ovembre 0 eercice : probabilités coditioelles et suite Alice débute au jeu de fléchettes. Elle effectue des lacers successifs d ue fléchette. Lorsqu elle

Plus en détail

1 Équations diérentielles linéaires du premier ordre

1 Équations diérentielles linéaires du premier ordre TD : EQUA DIFF Le 8 mai 00 Uiversité Paris - MASS -L Équatios diéretielles liéaires du premier ordre Résumé C'est ue équatio de la forme E : y + axy bx L'équatio homogèe associée est E : y + axy 0 O a

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propriété P() dépedat de l idice Si les propositios ()

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher

Plus en détail

Fiche 6 : Nombres complexes

Fiche 6 : Nombres complexes Nº : 3006 Fiche 6 : Nombres complexes Pla de la fiche I - Esemble des ombres complexes II - Nombre complexe cojugué III - Module et argumet IV - Les différetes écritures d u ombre complexe o ul V - Equatio

Plus en détail

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014 TS Devoir Commu de Mathématiques N Ludi7//04 La présetatio, la rédactio et la rigueur des résultats etrerot pour ue part sigificative das l évaluatio de la copie Le sujet est composé de 4 eercices idépedats

Plus en détail

A) Forme algèbrique d un nombre complexe.

A) Forme algèbrique d un nombre complexe. A) Forme algèbrique d u ombre complexe. Théorème Il existe u esemble, oté,de ombres appelés ombres complexes, tel que : cotiet ; est mui d ue additio et d ue multiplicatio pour lesquelles les règles de

Plus en détail

TS Exercices sur les fonctions puissances et racines n-ièmes

TS Exercices sur les fonctions puissances et racines n-ièmes TS Eercices sur les octios puissaces et racies -ièmes Calculer sas utiliser la calculatrice e détaillat les étapes de calcul 4 4 A ; B 6 ; C 8 ) Développer et ) E déduire la valeur eacte de A 0 4 0 4 4

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math. ; 9) U n = 2! ! U n.

Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math. ; 9) U n = 2! ! U n. Lycée secodaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math Exercice Das chacu des cas suivats, calculer la limite de la suite ( U ) lorsque + ) U = 3 + ; ) U = si π =

Plus en détail

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 9 OFFICE DU BACCALAUREAT BP 5005-DAKAR-Fa-Séégal Serveur Vocal: 68 05 59 Téléfax (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 09 G 18bis AR Durée:

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k.

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k. PHEC Correctio feuille d exercices 00-006 correctio de l exercice t. 8t R + ; + t 6 l( + t) 6 t : Pour cela, o itroduit les foctios f : t 7 l( + t) t et g : t 7 t l( + t) + t dé ies sur [0; +[ et o étudie

Plus en détail

Feuille d exercices: Calcul matriciel.

Feuille d exercices: Calcul matriciel. Feuille d exercices : Calcul matriciel : Exercice 2 3 ) Soit A = 0 0, motrer que A est la matrice das la 2 6 base caoique de R 3 d ue projectio dot o precisera le oyau et l image 2) Doer la matrice das

Plus en détail

MATHÉMATIQUES I. degré inférieur ou égal à q et IC q, p [ X ] celui constitué des éléments de IC q [ X ] divisibles par X p.

MATHÉMATIQUES I. degré inférieur ou égal à q et IC q, p [ X ] celui constitué des éléments de IC q [ X ] divisibles par X p. MATHÉMATIQUES I Objectifs O se roose, das ce qui suit, de détermier l esemble des solutios d ue équatio différetielle liéaire à coefficiets costats lorsqu elle est homogèe, uis lorsque celle-ci admet u

Plus en détail

Equations dierentielles

Equations dierentielles Equations dierentielles Université Mohammed I Faculté des Sciences Département de Mathématiques Oujda. Plan 1 Introduction 2 3 Résponsable du cours : Pr. NAJIB TSOULI. 1 Introduction 2 3 Introduction Une

Plus en détail

Définition un nombre complexe est un nombre de la forme x + i y, où x et y sont deux nombres réels et i est un nombre imaginaire vérifiant i 2 = 1.

Définition un nombre complexe est un nombre de la forme x + i y, où x et y sont deux nombres réels et i est un nombre imaginaire vérifiant i 2 = 1. Nombres complexes TS 1. Nombre complexe Représetatio Défiitio u ombre complexe est u ombre de la forme x + i y, où x et y sot deux ombres réels et i est u ombre imagiaire vérifiat i = 1. L esemble des

Plus en détail

PUISSANCES D'EXPOSANTS REELS, FONCTIONS PUISSANCES, CROISSANCES COMPAREES

PUISSANCES D'EXPOSANTS REELS, FONCTIONS PUISSANCES, CROISSANCES COMPAREES PUISSANCES D'EXPOSANTS REELS, FONCTIONS PUISSANCES, CROISSANCES COMPAREES ) PUISSANCES D'EXPOSANTS REELS A ) La otatio a Si est u etier aturel, la otatio a a u ses pour tout réel a Das le cas où est u

Plus en détail

c) représentation graphique T est la tangente à C exp au point A d abscisse 0. Une équation de T est de la forme : y = x + 1.

c) représentation graphique T est la tangente à C exp au point A d abscisse 0. Une équation de T est de la forme : y = x + 1. Chapitre VI : Foctio expoetielle I. La foctio expoetielle a) Défiitio La foctio expoetielle, otée exp, est la foctio défiie sur! par exp(x) = e x, e x état l uique ombre réel strictemet positif dot le

Plus en détail

IV. La fonction logarithme népérien

IV. La fonction logarithme népérien 04_fct _LDOC /5 IV La foctio logarithme épérie / Défiitio et premières propriétés a) Défiitio La foctio logarithme épérie, otée l est l uique foctio défiie sur ]0; [ dot la dérivée est et qui s aule e

Plus en détail

Suites. Suites arithmétiques. Suites géométriques

Suites. Suites arithmétiques. Suites géométriques CHAPITRE Suites Suites arithmétiques Suites géométriques ACTIVITÉS Activité a) 8 + 7 coureurs b) x 9 + 0 d où x 78 L équipe a reçu les dossards umérotés de 9 à 78 x + d où x 6 0 0 + aées (page 8) a) itervalles,

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Valeurs absolues. Partie etière. Iégalités Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr * très facile ** facile *** difficulté moyee **** difficile ***** très

Plus en détail

i. En déduire une mesure de l angle ( BD, PΩ ).

i. En déduire une mesure de l angle ( BD, PΩ ). Polyésie septembre EXERCICE Pour chacue des propositios suivates, idiquer si elle est vraie ou fausse et doer ue démostratio de la répose choisie Ue répose o démotrée e rapporte aucu poit O cosidère la

Plus en détail

Chapitre 16 : Espaces vectoriels

Chapitre 16 : Espaces vectoriels PCSI Préparatio des Khôlles -4 Chapitre 6 : Espaces vectoriels Exercice type Soit E=R[X] et F ={P E, P(X)=XP (X)+P()}, motrer que F est u sous-espace vectoriel de E. : O a bie F E. Si P =est le polyôme

Plus en détail

pour 1. b) si ( ) converge, alors 567 =l avec l réel,

pour 1. b) si ( ) converge, alors 567 =l avec l réel, Exercices aales corrigés : Suites Sujet atioal septembre 007 ( bac blac 008) La suite u est défiie par : = et = pour tout etier aturel a O a représeté das u repère orthoormé direct du pla doé ci-dessous,

Plus en détail

Exo7. Sujets de l année Devoir à la maison. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit M la matrice réelle 3 3 suivante :

Exo7. Sujets de l année Devoir à la maison. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit M la matrice réelle 3 3 suivante : Eocés et correctios : Sadra Delauay Exo7 Sujets de l aée 24-25 1 Devoir à la maiso Exercice 1 Soit M la matrice réelle 3 3 suivate : 1 Détermier les valeurs propres de M 2 Motrer que M est diagoalisable

Plus en détail

Exo7. Fractions rationnelles. 1 Fractions rationnelles. 2 Décompositions en éléments simples. Corrections de Léa Blanc-Centi.

Exo7. Fractions rationnelles. 1 Fractions rationnelles. 2 Décompositions en éléments simples. Corrections de Léa Blanc-Centi. Exo7 Fractios ratioelles Correctios de Léa Blac-Ceti. Fractios ratioelles Exercice Existe-t-il ue fractio ratioelle F telle que ( F() ) = ( + ) 3? Idicatio Correctio Vidéo [006964] Exercice Soit F = P

Plus en détail

REDUCTION DES ENDOMORPHISMES ET DES MATRICES Exercices

REDUCTION DES ENDOMORPHISMES ET DES MATRICES Exercices REDUCTION DES ENDOMORPHISMES ET DES MATRICES Exercices EXERCICE 1 : Soit E u espace vectoriel et u L(E) tel que u u +u = 0 Motrer que Sp (u) {0, 1, } EXERCICE : 1) Soit A ue matrice carrée telle que A

Plus en détail

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme.

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme. 1S DS o 1 Durée : h Exercice 1 ( 7 poits ) 1. La suite (u ) est défiie pour tout etier aturel par u = 3 + est-elle arithmétique? Pour tout etier aturel, o a : u +1 = ( + 1) 3( + 1) + = + + 1 3 3 + = La

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de

Plus en détail

DM de Mathématiques, Suites récurrentes linéaires - Correction

DM de Mathématiques, Suites récurrentes linéaires - Correction DM de Mathématiques, Suites récurretes liéaires - Correctio IR aée 008-009 A redre pour le 8 décembre 008 Exercice : Echauemet O s'itéresse à la suite récurrete liéaire déie par : u 0 = u = u + = u + u

Plus en détail

b-on a: Or le pgcd(n+1,3)=1 ou pgcd(n+1,3)=3 Donc d=n+1 ou d=3(n+1)

b-on a: Or le pgcd(n+1,3)=1 ou pgcd(n+1,3)=3 Donc d=n+1 ou d=3(n+1) Exercices d arithmétiques corrigés Exercice N 1 : 1-Etablir que pour tout (a,b,q) 3,pgcd(a,b) = pgcd(b,a-bq) 2-Motrer que pour tout, pgcd(5 3 -,+2) = pgcd(+2,38) 3-Détermier l esemble des etiers relatifs

Plus en détail

Chapitre 5 : Suites classiques

Chapitre 5 : Suites classiques Chapitre 5 : Suites classiques Objectifs : Révisios sur les suites arithmétiques et géométriques. Révisio du théorème de croissace comparée. Savoir exprimer e foctio de les termes d ue suite récurrete

Plus en détail

EQUATIONS DIFFERENTIELLES

EQUATIONS DIFFERENTIELLES ENIHP Equatios différetielles p. I Défiitio et otatio EQUATIONS DIFFERENTIELLES Défiitio : O appelle dérivée secode de f (x) la dérivée de f (x), elle même dérivée de f(x). O défiit aisi la dérivée d ordre

Plus en détail

Ensembles et nombres réels

Ensembles et nombres réels Pierre-Louis CAYREL 008-009 Licece Itroductio aux Mathématiques Géérales Uiversité de Paris 8 Esembles et ombres réels Esembles Exercice O pose A = {(x, y) R ; y > x } et B = {(x, y) R ; y < x } Représeter

Plus en détail

Concours PT2004 Maths I-B. partie A

Concours PT2004 Maths I-B. partie A ocours PT2 Maths I-B Même si le suet e l a pas posé o utilisera : 8 2 M r (R) = I r partie a b x y ax + bz. Si = 2 S c d 2 et B = 2 S z t 2 o a B = cx + dz ay + bt cy + dt Les coe ciets de B sot sommes

Plus en détail

Corrigé. Exercice 1 : (5 points)

Corrigé. Exercice 1 : (5 points) Corrigé Exercice : (5 poits) Pour les questios. et. o doera les résultats sous forme de fractios et sous forme décimale par défaut à 0 3 près. U efat joue avec 0 billes, 3 rouges et 7 vertes. Il met 0

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

DÉRIVÉES DE FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako

DÉRIVÉES DE FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako DÉRIVÉES DE FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Techique Bamako I- Foctio dérivable e u poit : Nombre dérivé d ue foctio e u poit : a Défiitio : O dit qu ue foctio f est dérivable

Plus en détail

Corrigé : EM Lyon 2005

Corrigé : EM Lyon 2005 Corrigé : EM Lyo 5 Optio écoomique Eercice :. Par défiitio de E, la famille (I,J,K) est ue famille géératrice de E. Cette famille est-elle libre? O cherche tous les réels a, b et c tels que : ai +bj +ck

Plus en détail

B(z B ) A(z A ) Les nombres complexes

B(z B ) A(z A ) Les nombres complexes 1 Les ombres complexes I) Forme algébrique d u ombre complexe. Théorème Il existe u esemble, oté c,de ombres appelés ombres complexes, tel que : ccotiet r ; c est mui d ue additio et d ue multiplicatio

Plus en détail

STAGE DE MISE A NIVEAU EN MATHEMATIQUES

STAGE DE MISE A NIVEAU EN MATHEMATIQUES STAGE DE MISE A NIVEAU EN MATHEMATIQUES Les foctios racie carrée, valeur absolue ou partie etière Eercice Détermier la limite de + + quad ted vers Eercice Vérifier que ( 5) = 6 5 A-t-o l'égalité 6 5 =

Plus en détail

n² n b) Quel est le nombre de termes de la somme définissant u n? Quel est le plus petit de ces termes? Quel est le plus grand?

n² n b) Quel est le nombre de termes de la somme définissant u n? Quel est le plus petit de ces termes? Quel est le plus grand? Exercice : Détermier la limite de chaque suite (u ). a) u = si π b) u = () c) u = + d) 0,5 + cos(π) Exercice 2 : la costate d Apéry Pour tout etier, u = 3 + + 2 3 +. + 3 ) Doer u miorat de cette suite.

Plus en détail

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u Exercice 1 (6 poits) Commu à tous les cadidats O cosidère la foctio f défiie et dérivable sur l itervalle [ 0 ; + [ par : f (x) = 5 l ( x ± 3 ) x. 1. a. O appelle f ' la foctio dérivée de la foctio f sur

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

Chapitre 2 Nombres Complexes Exercices

Chapitre 2 Nombres Complexes Exercices Chapitre Nombres Complexes Exercices I. Ciril, F. De Lepie, F. Duffaud, C. Peschard Exercice 1 Mettre chacu des ombres complexes suivats sous la forme a + ib, a R et b R. 1 i, 1 1 + i i, 1 + i 1 i, + 5i

Plus en détail

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés.

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés. 1 Exercice 1 ( poits) L espace est mui d u repère orthoormal (O ; i, j, k ). Les poits A, B et C ot pour coordoées respectives A (1 ; ; ), B ( ; 6 ; 5), C( ; ; 3). 1 a) Démotrer que les poits A, B et C

Plus en détail

Chapitre 2. Rappels sur les suites arithmétiques et les suites géométriques

Chapitre 2. Rappels sur les suites arithmétiques et les suites géométriques Chapitre Rappels sur les suites arithmétiques et les suites géométriques Nous allos ici rappeler les différets résultats sur les suites de ombres réels qui sot des suites arithmétiques ou des suites géométriques

Plus en détail

Equations différentielles.

Equations différentielles. Equatios différetielles. Chap. 3 : cours complet.. Equatios différetielles liéaires scalaires d ordre. Défiitio. : équatio différetielle liéaire scalaire d ordre, équatio homogèe associée, solutio d ue

Plus en détail

La transformée en Z inverse

La transformée en Z inverse La trasformée e Z iverse La questio posée... Exercice... Recherche d'origiaux par décompotio e élémets mples, cas cocrets... 4 Situatio o... 5 Situatio Exemple... ) Trasformatio de l égalité à l aide de

Plus en détail

Seconde année - Semestre 3 PROBABILITÉS

Seconde année - Semestre 3 PROBABILITÉS 1 UNIVERSITÉ DE CERGY Aée 2012-2013 LICENCE d ÉCONOMIE et GESTION Secode aée - Semestre 3 PROBABILITÉS Feuille d exercices N 3 : Variables aléatoires - Lois discrètes 1. Calculez 3 2 + 2 5 Exercice I (

Plus en détail

Bac blanc TS Non spécialité maths L usage de la calculatrice est autorisé

Bac blanc TS Non spécialité maths L usage de la calculatrice est autorisé Bac blac TS No spécialité maths L usage de la calculatrice est autorisé EXERCICE : (5 poits) Le pla complee est rapporté au repère orthoormal direct (O ; u, v ) O cosidère le poit I d affie i et le poit

Plus en détail

Fiche 2 : Les fonctions

Fiche 2 : Les fonctions Nº : 300 Fiche : Les foctios Calculer des limites O commece par aalyser f (). Peut o directemet appliquer l u des théorèmes du cours (limites et opératios, théorèmes de comparaiso)? Das la égative, il

Plus en détail

Racine nième Corrigés d exercices

Racine nième Corrigés d exercices Racie ième Corrigés d eercices Page 9 : N 8, 8, 8, 86, 88, 89, 9, 9, 9, 97 Page 6 : N, Page 6 : N Page 67 : N 8 Page 6 : N N 8 page 9 6 6 6 6 6 ( ) = = = = = = = = ( ) = = = = = = ( ) 8 = 8 = = = = = =

Plus en détail

) sur l axe des abscisses ( on tracera les droites d équations y = x et y = x + 1 )

) sur l axe des abscisses ( on tracera les droites d équations y = x et y = x + 1 ) Exercice Suites umériques u O cosidère la suite ( u ) défiie pour tout par u = et u = + u + O admettra que pour tout etier aturel, u >. a) Calculer u et u b) Cette suite est-elle arithmétique? Est-elle

Plus en détail

Corrigé de l'épreuve de maths 2 - e3a - MP

Corrigé de l'épreuve de maths 2 - e3a - MP Corrigé de l'épreuve de maths 2 - e3a - MP - 207 Partie I L'applicatio ϕ est liéaire et P R [X], ϕ(p R [X] doc ϕ iduit sur R [X] u edomorphisme 2 ϕ( = et i, ϕ(x i = X i ix i O e déduit la matrice de ϕ

Plus en détail

et arctanx + arctan 1 x = sgn(x)π 2. 3. Application à la statue de la liberté : haute de 46 mètres avec un piédestal de 47 mètres.

et arctanx + arctan 1 x = sgn(x)π 2. 3. Application à la statue de la liberté : haute de 46 mètres avec un piédestal de 47 mètres. Eo7 Foctios circulaires et hyperboliques iverses Correctios de Léa Blac-Ceti. Foctios circulaires iverses Eercice Vérifier arcsi + arccos π et arcta + arcta sgπ. Idicatio Correctio Vidéo [00075] Eercice

Plus en détail

TS Exercices sur les limites de suites (1)

TS Exercices sur les limites de suites (1) TS Exercices sur les limites de suites () Soit u ue suite géométrique de premier terme u 0 et de raiso q. Das chacu des cas suivats, doer la limite de la suite u. ) u0 ; q ) u 0 ; q ) 0 4 ) u0 6 ; q )

Plus en détail

Suites géométriques ; limites des suites géométriques ; variations d une fonction numérique.

Suites géométriques ; limites des suites géométriques ; variations d une fonction numérique. Suites 6 AU CŒUR DE LA TOILE Objectif Notios utilisées Traduire, à l aide d ue suite, u processus géométrique itératif et redre compte de so évolutio. Mettre e place les premiers pricipes d étude d ue

Plus en détail

Racines n-ièmes d un nombre complexe. Racines de l unité. Applications.

Racines n-ièmes d un nombre complexe. Racines de l unité. Applications. DOCUMENT 14 Racies -ièmes d u ombre complexe. Racies de l uité. Applicatios. Das u documet précédet, o a itroduit le corps des ombres complexes afi que tout ombre réel ait ue racie carrée. O va voir ici

Plus en détail

SUITES. I. Suites géométriques. 1) Définition

SUITES. I. Suites géométriques. 1) Définition SUITES I Suites géométriues ) Défiitio Exemple : Cosidéros ue suite umériue (u ) où le rapport etre u terme et so précédet reste costat et égale à 2 Si le premier terme est égal à 5, les premiers termes

Plus en détail

Séries d exercices Aritmetiques

Séries d exercices Aritmetiques Séries d exercices Aritmetiques ème Maths Maths au lycee Ali AKIR Site Web : http://maths-akirmidiblogscom/ EXERCICE N )Quel est le reste de la divisio par 7 du ombre ) Quel est le reste de la divisio

Plus en détail

ESSCA(Management - Finances)

ESSCA(Management - Finances) parteaire de PREPAVOGT Yaoudé, 3 mai 04 BP : 765 Yaoudé Tél : 0 63 7 / 96 6 46 86 E-mail : prepavogt@yahoofr wwwprepavogtorg ESSCA(Maagemet - Fiaces) CONCOURS D ADMISSION RAISONNEMENT LOGIQUE ET MATHEMATIQUE

Plus en détail

Problème I- Acide éthanoïque (ph et conductimétrie) Enoncé

Problème I- Acide éthanoïque (ph et conductimétrie) Enoncé - Acide éthaoïque (ph et coductimétrie) Eocé 1- L acide éthaoïque (H 3 OOH) est u oxydat e solutio aqueuse das le couple H 3 OOH/H 3 H OH (acide éthaoïque/éthaol). Écrire la demi-équatio d oxydoréductio

Plus en détail

x + (2 α) y = 0 3 L donc P

x + (2 α) y = 0 3 L donc P 1 Corrigé ESC 009 par Pierre Veuillez Exercice 1 O cosidère les matrices A, B, D, P, E de M (R) suivates : ( ) 5 1 4 ( ) A B 3 3 1 3 0 7 D P 3 3 ( ) { x (1 α) x y 0 1) a: (A αi) 0 y x + ( α) y 0 ( 1 )

Plus en détail

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012 Corrigés d eercices / Versio de décembre 0 Les eercices du livre corrigés das ce documet sot les suivats : Page 9 : N, 6 Page 9 : N Page 9 : N 7, 9 Page 98 : N 9,,, 6, 7, 9 Page 99 : N 4, 47, 49, Page

Plus en détail

MPSI Nombres complexes

MPSI Nombres complexes MPSI Nombres complexes Exercice 1: Résoudre das C l équatio 4 + 6 3 + 9 2 + 100 = 0 Exercice 2: 1 Motrer que si π 5 = 5 5 2 Détermier l esemble des poits M d affixe tels que = 2 i Exercice 3: Soit ABC

Plus en détail

On admet que l ensemble des nombres des réels est inclus dans un ensemble plus grand constitué de nombres complexes.

On admet que l ensemble des nombres des réels est inclus dans un ensemble plus grand constitué de nombres complexes. Chapitre 1 Nombres complexes Le buts du chapitres sot : Cosolider les aquis de termiale, Savoir maipuler les ombres complexes, e particulier la factorisatio par l agle de moitié. Avoir des otios sur le

Plus en détail

COURS MPSI A 7. POLYNÔMES R. FERRÉOL 13/14

COURS MPSI A 7. POLYNÔMES R. FERRÉOL 13/14 Das tout ce cours, K désigerouc. I) DÉFINITIONS 1) Foctios polyômes. DEF : ue applicatio f d ue partie I de K das K est ditepolyomiale (ou appelée uefoctiopolyôme) si N (a 0,a 1,...,a ) K +1 / x I f(x)=

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

Correction CCP maths 1 MP

Correction CCP maths 1 MP mai 4 Avertissemet : Il subsiste certaiemet quelques coquilles... Exercice : ue itégrale double Correctio CCP maths MP Pour calculer cette itégrale, o effectue le chagemet de variable e coordoées polaires

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Féelo aite-marie Préparatio ciece-po/prépa HEC Foctios Versio du juillet 05 Eercice d degré : racies et coefficiets O rappelle que si l équatio a + b + c = 0 ( a 0 ) adet deu racies α et β (évetuelleet

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

Corrigé. D08M On dénit la suite de polynômes (T n) n N de R[X] par : BCPST2 16/12/2014 T 2 = 2XT 1 T 0 = 2X 2 1 T 3 = 2XT 2 T 1 = 4X 3 3X

Corrigé. D08M On dénit la suite de polynômes (T n) n N de R[X] par : BCPST2 16/12/2014 T 2 = 2XT 1 T 0 = 2X 2 1 T 3 = 2XT 2 T 1 = 4X 3 3X Corrigé BCPST 6//4 D8M O déit la suite de polyômes T N de RX] par : T, T X et N, T + XT + T Pour tout de N, T s'appelle le -ième polyôme de Tchebychev. Calculer les polyômes T et T 3. T XT T X T 3 XT T

Plus en détail

Détermination des champs électriques et magnétiques. statiques par la méthode de séparation de variables

Détermination des champs électriques et magnétiques. statiques par la méthode de séparation de variables Détermiatio es champs électriques et magétiques statiques par la méthoe e séparatio e variables Chapitre III Détermiatio es champs électriques et magétiques statiques par la méthoe e séparatio e variables

Plus en détail

des nombres complexes

des nombres complexes Esmbl ds ombrs complxs I. Form algébriqu d u ombr complx. Théorèm Il xist u smbl, oté,d ombrs applés ombrs complxs, tl qu : cotit ; st mui d u additio t d u multiplicatio pour lsqulls ls règls d calcul

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que [http://mp.cpgedupuydelome.fr] édité le 6 octobre 05 Eocés Suites umériques Covergece de suites Exercice [ 047 ] [Correctio] Soiet u ) et v ) deux suites réelles covergeat vers l et l avec l < l. Motrer

Plus en détail

N hésitez pas à demander l aide pédagogique par voie d Internet.

N hésitez pas à demander l aide pédagogique par voie d Internet. Uité de mise à iveau UMN0 Cette première uité de mise à iveau a pour ut de vous remettre das le ai du calcul littéral e faisat appel à des coaissaces idispesales pour aorder le cycle complet des UMN. Nous

Plus en détail

Correction du devoir surveillé de mathématiques n o 5

Correction du devoir surveillé de mathématiques n o 5 Correctio du devoir surveillé de mathématiques o 5 Exercice 1 1. Soit g la foctio défiie sur R par g(x) = (x 1)e x. (a) Détermier les ites de g e et +. Limite e. O a ue forme idétermiée. E développat,

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propositio P() dépedat de l etier () la propositio est

Plus en détail

Sylvain ETIENNE 2003/2004 PLC1, groupe 1 Exposé 64

Sylvain ETIENNE 2003/2004 PLC1, groupe 1 Exposé 64 Sylvai ETIENNE 3/4 IMAGE D UN INTERVALLE PAR UNE FONCTION CONTINUE, IMAGE D UN SEGMENT. CONTINUITE DE LA FONCTION RECIPROQUE D UNE FONCTION CONTINUE STRICTEMENT MONOTONE SUR UN INTERVALLE. Niveau : Complémetaire.

Plus en détail

Exercices. Limites de suites. Limite d une suite Dans les exercices suivants, déterminer la limite de la suite (u n ) en précisant le théorème

Exercices. Limites de suites. Limite d une suite Dans les exercices suivants, déterminer la limite de la suite (u n ) en précisant le théorème Exercices Limites de suites Exercice Limite d ue suite Das les exercices suivats, détermier la limite de la suite (u ) e précisat le théorème utilisé. ) u = + + + + ) u = cos(), N 3) u = + cos 4 3 4) u

Plus en détail

Fonctions réelles d une variable réelle dérivables (exclu études de fonctions)

Fonctions réelles d une variable réelle dérivables (exclu études de fonctions) Eo7 Foctios réelles d ue variable réelle dérivables (eclu études de foctios) Eercices de Jea-Louis Rouget Retrouver aussi cette fice sur wwwmats-fracefr * très facile ** facile *** difficulté moyee ****

Plus en détail

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p ermiale S - Bac blac de mathématiques Mars 6 Les calculatrices sot autorisées mais celles-ci e doivet être i échagées i prêtées durat l épreuve. Les quatre exercices serot rédigés sur ue feuille double

Plus en détail

Septembre 2011 CPI 317. Exercices. Agnès Bachelot

Septembre 2011 CPI 317. Exercices. Agnès Bachelot Septembre 2 CPI 37 Exercices Agès Bachelot Table des matières - Séries Numériques.......................................... 3 - Séries à termes positifs.................................... 3-2 Séries quelcoques......................................

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

ÉQUATIONS DIFFÉRENTIELLES

ÉQUATIONS DIFFÉRENTIELLES ÉQUATIONS DIFFÉRENTIELLES K désigne les corps R ou C. 1 Généralités sur les équations différentielles 1.1 Notion d équation différentielle Définition 1.1 On appelle équation différentielle une équation

Plus en détail

Centre Régional des Métiers de l Éducation et de la Formation MARRAKECH

Centre Régional des Métiers de l Éducation et de la Formation MARRAKECH R O Y A U M E D U M A R O C Miistère de l Educatio Natioale et de la Formatio Professioelle Cetre Régioal des Métiers de l Éducatio et de la Formatio Académie Régioale de l Éducatio et de la Formatio Marrakech-Tesift

Plus en détail

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série.

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série. Les calculatrices sot autorisées **** NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio Si u cadidat est ameé à repérer ce qui peut lui sembler

Plus en détail

Exercices de Khôlles de Mathématiques, second trimestre

Exercices de Khôlles de Mathématiques, second trimestre Exercices de Khôlles de Mathématiques, secod trimestre Lycée Louis-Le-Grad, Paris, Frace Igor Kortchemski HX 2-2005/2006 Exercices particulièremet itéressats : - Exercices 2., 2.2 - Exercice 3. - Exercice

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Cours 4 SUITES DE NOMBRES RÉELS

Cours 4 SUITES DE NOMBRES RÉELS Cours 4 SUITES DE NOMBRES RÉELS A/ GÉNÉRALITÉS 1. Défiir ue suite de ombres réels Ue suite u de ombres réels, est ue foctio défiie sur N qui, à chaque etier aturel, associe u ombre oté u. Ce ombre u s

Plus en détail

[A.B] ij =.. (0.5 pt.)

[A.B] ij =.. (0.5 pt.) mx xp Mai 4 ( heures et miutes). a) Soiet A et B avec m,,p IN.Si i {,,...,m} et j {,,...,p}, compléter : [A.B] ij.. (. pt.) b) Démotrer (e justifiat toutes les étapes) que le produit matriciel distribue

Plus en détail