Séries numériques. Chap. 02 : cours complet.

Dimension: px
Commencer à balayer dès la page:

Download "Séries numériques. Chap. 02 : cours complet."

Transcription

1 Séris méris Cha : cors comlt Séris d réls t d comlxs Défiitio : séri d réls o d comlxs Défiitio : séri corgt o dirgt Rmar : iflc ds rmirs trms d séri sr la corgc Théorèm : coditio écssair d corgc Théorèm : critèr d dirgc grossièr Théorèm 3 : séri géométri comlx Défiitio 3 : séri télscoi Théorèm 4 : corgc d séri télscoi Théorèm 5 : combiaiso liéair d séris corgts Théorèm 6 : éialc d corgc cas d rodit ar scalair o l Théorèm 7 : cas d trois séris liés ar somm Théorèm 8 : li tr corgc d séri comlx t cll d ss artis réll t imagiair Séris d réls ositifs Théorèm : rmir critèr d corgc or ls séris à trms réls ositifs Théorèm : règl ds majorats 3 Séris rélls d sig lco séris comlxs Défiitio 3 : séri réll o comlx absolmt corgt Théorèm 3 : li tr corgc t absol corgc Défiitio 3 : séri smi-corgt Théorèm 3 : règl ds éialts Théorèm 33 : séris d Rima Théorèm 34 : règl ds «grads O» ds «tits o» Théorèm 35 : règl ds Théorèm 36 : règl d d Almbrt Théorèm 37 : xotill comlx 4 Séris rélls altrés Défiitio 4 : séri altré Théorèm 4 : critèr sécial ds séris altrés 5 Comlémts Théorèm 5 : Défiitio 5 : Théorèm 5 : Théorèm 53 : Théorèm 54 : (hors rogramm séris d Brtrad rodit d Cachy d dx séris corgc d rodit d Cachy d dx séris absolmt corgts costat d Elr forml d Stirlig Chaitr : Séris méris Cors comlt - -

2 Séris méris Cha : cors comlt Séris d réls t d comlxs Défiitio : séri d réls o d comlxs Soit ( sit d réls o d comlxs O all séri d trm gééral la sit (S défii ar : La sit (S st assi alé sit ds somms artills d la séri O la ot cor S Défiitio : séri corgt o dirgt Soit ( sit d réls o d comlxs O dit la séri d trm gééral corg si t slmt si la sit (S st corgt Sa limit s ot alors : S lim S t st alé «somm d la séri» Si séri st as corgt o dit ll dirg E cas d corgc o all rst d ordr d la séri la atité : R S S sit (S td rs Chaitr : Séris méris Cors comlt - - t la Rmar : Ls rmirs trms itrit as or la corgc d séri Tos ls critèrs d corgc rstt doc alabls si ls coditios dmadés sot rmlis «à artir d crtai rag» E cas d corgc la alr ds rmirs trms rach ifl sr la somm d la séri Théorèm : coditio écssair d corgc Si la séri réll o comlx corg alors la sit ( td rs à l ifii Démostratio : Si la séri corg alors la sit (S d ss somms artills ar défiitio corg doc la sit (S S - td rs Or : S S - t la sit ( td rs Théorèm : critèr d dirgc grossièr Si la sit réll o comlx ( td as rs alors la séri dirg Démostratio : C st la cotraosé d l imlicatio récédt Théorèm 3 : séri géométri comlx Soit : z Alors z corg si t slmt si : z < t das c cas o a : z Démostratio : Por : z la séri géométri dirg is so trm gééral td as rs z Por : z z o a : z t ctt sit corg si t slmt si : z < z D ls das c cas la somm d la séri at : z z lim z z z

3 Défiitio 3 : séri télscoi U séri réll o comlx st dit télscoi lors so trm gééral t s mttr sos la form : a a où (a st sit d réls o d comlxs Théorèm 4 : corgc d séri télscoi U séri télscoi réll o comlx ac : a a corg si t slmt si (a st sit corgt Das c cas o a : ( lim a a Démostratio : Soit (S la sit ds somms artills d la séri Alors : S a a t l éialc aisi la alr d la limit décol Théorèm 5 : combiaiso liéair d séris corgts Soit t ds séris rélls o comlxs corgts t : ( o O os : w Alors w st séri corgt t o a : w Démostratio : E otat (U (V (W ls sits d somms artills ds séris t w o a : W U V t l résltat s dédit d résltat idti sr ls sits Théorèm 6 : éialc d corgc cas d rodit ar scalair o l Soit séri réll o comlx scalair rél o comlx o l Alors corg si t slmt si t das c cas : Démostratio : Si corg alors assi comm cas articlir d théorèm récédt Si corg alors assi la mltiliat ar Théorèm 7 : cas d trois séris liés ar somm Soit t ds séris rélls o comlxs t : w Alors si dx ds trois séris w corgt la troisièm corg assi Si l dirg a mois l ds dx atrs dirg Démostratio : Si t corgt alors w assi comm somm d dx séris corgts Si (ar xml t w corgt alors assi comm différc La drièr affirmatio st la cotraosé d la récédt Théorèm 8 : li tr corgc d séri comlx t cll d ss artis réll t imagiair Soit z séri comlx ac : z a ib où : (a b Alors z corg si t slmt si a t b corgt t alors : a i Démostratio : E alat (A (B t (Z ls sits d somms artills associés o a : Chaitr : Séris méris Cors comlt z b

4 Z A ib t l résltat décol d mêm résltat sr ls sits comlxs Séris d réls ositifs Défiitio 3 : séri réll o comlx absolmt corgt O dit la séri st absolmt corgt si t slmt si la séri corg Théorèm : rmir critèr d corgc or ls séris à trms réls ositifs Soit séri à trms réls ositifs Ell corg si t slmt si la sit (S d ss somms artills st majoré Démostratio : La sit (S st croissat is : S S Doc la sit (S corg si t slmt si ll st majoré Défiitio 3 : séri smi-corgt O dit séri réll o comlx st smi-corgt lors ll st corgt sas êtr absolmt corgt Théorèm : règl ds majorats Soit t dx séris à trms réls ositifs tlls : corg Alors corg t : Démostratio : otos : U t : V O a alors : V U Or la séri (à trms ositifs corg doc la sit d ss somms artills (mêm commçat à st majoré ar rél M t : V M La sit (V st alors croissat t majoré ar M doc corgt E assat à la limit das l iégalité sr ls somms artills o dédit la drièr iégalité 3 Séris rélls d sig lco séris comlxs Théorèm 3 : li tr corgc t absol corgc U séri réll o comlx absolmt corgt st corgt Pas d réciro Das c cas o a : Démostratio : Cas d séri réll O t osr : ( t o a alors : ( Doc la séri ( st corgt t comm différc d séris corgts assi D ls : t assat à la limit o a bi : Chaitr : Séris méris Cors comlt Cas d séri comlx O os : a ib ac : (a b O costat alors : a t : b Doc ls séris rélls a t b sot absolmt corgts doc corgts (c o it jst d démotrr t fialmt corg assi

5 E tilisat à oa l iégalité triaglair o trmi ac : à la limit o a tojors : t assat Théorèm 3 : règl ds éialts Soit t dx séris rélls dot ls trms d l gardt sig costat à artir d crtai rag t tlls : ~ Alors : ( corg ( corg Démostratio : O sait doc ( t ( ot ds trms d mêm sig à artir d crtai rag t doc itt à ls chagr lr oosé o t sosr lls rstt ositis à artir d crtai rag O t cor écrir : ( ε( ac : lim ε ( 3 3 Doc or : ε ε( t : ( ε( is : Par comaraiso d séris à trms ositifs o dédit doc l éialc d corgc ds dx séris Théorèm 33 : séris d Rima Soit : Chaitr : Séris méris Cors comlt La séri ac corg si t slmt si : > Démostratio : Soit : ac rél ( La séri st télscoi d somm artill : S ( slmt si : D ls : ~ or : Soit maitat : Alors : ~ où o os : t ll corg si t Comm ls séris cosidérés gardt sig costat o dédit corg si t slmt si corg soit : > o cor : > Efi or : o a or ls somms artills : S S Doc la sit (S t corgr is (S S td as rs t (S td rs Théorèm 34 : règl ds «grads O» ds «tits o» Soit t ds séris comlxs tlls soit absolmt corgt Si : O( alors st assi absolmt corg Si d mêm : o( alors st assi absolmt corg Démostratio : Das l rmir cas o sait : M M Doc ar comaraiso d séris à trms ositifs si corg corg assi

6 Das l scod cas o sait : ε où ε st sit i td rs Doc : ε t : c i os ramè a rmir cas Théorèm 35 : règl ds Soit séri réll o comlx Si ( td rs ac : > alors st absolmt corgt Démostratio : Il sffit d rmarr ls hyothèss s réécrit : absolmt corgt o t st Théorèm 36 : règl d d Almbrt Soit séri réll o comlx o ll à artir d crtai rag tll : lim k Si : k < alors corg absolmt k > alors dirg grossièrmt (mêm si : k k o t a riori ri dir Démostratio : Cas : k < Soit : k < k < t osos : ε k k > Alors : Das c cas : k ε t : k k ε doc : k ( k C( k ar séri géométri corgt st absolmt corgt Cas : < k (étllmt ifii Comm récédmmt soit : < k < k Alors adatat la démostratio récédt : gééral d la séri td alors rs doc la séri dirg grossièrmt t la séri état majoré à artir d crtai rag ( k Théorèm 37 : xotill comlx Soit : z z La séri st absolmt corgt! O ot alors : x(z z t ctt foctio coïcid ac l xotill réll sr! t l trm Démostratio : Por z l la séri st éidmmt corgt Por : z * la séri st absolmt corgt tilisat la règl d d Almbrt Soit maitat x rél o l (car das l cas où : x l égalité : x x st immédiat! Alors la forml d Taylor sr [x] (o [x] si : x < garatit : x x c x ]x[ (o ]x[ x c x! (! Or comm c x rst das l itrall ]x[ (o ]x[ la atité idédat d (ar xml : M max( x c x st majoré ar rél M Chaitr : Séris méris Cors comlt - 6 -

7 Doc : x x x M t :! (! x t d (! soit bi l résltat ol x lim x d fait ds croissacs comarés d! 4 Séris rélls altrés Défiitio 4 : séri altré O dit la séri d réls st altré si t slmt si ((- gard sig costat D maièr éialt si t slmt si l sig d chag à cha Théorèm 4 : critèr sécial ds séris altrés Soit séri altré tll : ( st sit décroissat lim Alors corg t sa somm st d sig D ls : R Démostratio : Qitt à rmlacr tot la sit ( ar (- o t sosr : Das c cas tos ls trms sot ositifs t égatifs Alos (S la sit ds somms artills associé à la séri Ls sits (S t (S sot adjacts E fft : S ( S t : S ( S 3 3 Pis : S S sit i td bi rs car xtrait d sit i td rs Doc (S t (S corgt rs la mêm limit L t fialmt (S assi D ls : S S L S S S Doc das c cas L st ositif soit d sig d t arait été égatif si o aait sosé égatif Efi : R L S S S t : R S L S S 5 Comlémts Théorèm 5 : (hors rogramm séris d Brtrad Soit : ( La séri corg si t slmt si : > o : ( > (l( Démostratio : Cas : > Soit : < < Alors : (l( t (l( td rs car : > Chaitr : Séris méris Cors comlt (l( Doc : o c i garatit la corgc d la séri d Brtrad das c (l( cas Cas : > La séri st à trms ositifs doc ll corg si t slmt si la sit d ss somms artills st majoré

8 Or : 3 t [ ] (l( t(l( t dt (l( t(l( t t : dt Pis : 3 3 (l( t(l( t (l( t (l( La sit ds somms artills état majoré la séri d Brtrad st doc corgt Cas : dt D la mêm faço : t [ ] t : t(l( t (l( t(l( t (l( dt Pis : l(l( l(l( t la sit ds somms artills t(l( t (l( td rs doc la séri d Brtrad dirg Cas : < O mior alors écriat : t l trm gééral d la séri st mioré (l( (l( ar l trm gééral d séri ositi dirgt doc la séri d Brtrad dirg Cas : < Pis : t : lim l trm gééral st là cor (l( (l( (l( mioré à artir d crtai rag ar l trm gééral d séri ositi dirgt t la séri d Brtrad dirg Défiitio 5 : rodit d Cachy d dx séris Soit t dx séris rélls o comlxs O all rodit d Cachy d cs dx séris la séri w défii ar : w k k k Théorèm 5 : corgc d rodit d Cachy d dx séris absolmt corgts L rodit d Cachy d dx séris rélls o comlxs t absolmt corgts st séri w absolmt corgt t o a : Démostratio : Por : w w Chaitr : Séris méris Cors comlt La drièr somm ort fait sr tos ls cols : ( ac : Or l smbl d cs cols st icls das {( } Comm d ls ls trms l o ajot rmlaçat l rmir smbl d idics ar l scod sot tos ositifs o a doc : w La sit ds somms artills d la séri à trms ositifs w état majoré la séri w corg t w st absolmt corgt Pis : w t l smbl ds cols cocrés ar ctt drièr somm cotit : E {( } doc st la réio d E t d smbl E

9 Chaitr : Séris méris Cors comlt Doc : ( ( E E w Efi : ( E t : Doc : ( ( E E cs majoratios état jstifiés ar l fait ls séris majorats sot tots corgts Or l rodit i aaraît à la fi st l rodit d dx rsts d ordr d séris corgts t doc c rodit td rs ad td rs t la alr absol d la somm majoré assi Fialmt : ( lim lim E w d où : w Théorèm 53 : costat d Elr La somm artill H d la séri harmoi admt délomt asymtoti i s écrit : ( l( o γ où γ at iro : γ 577 t st alé costat d Elr Démostratio : O os : l( t : Alors la séri st télscoi D ls : l o o La séri st alors absolmt corgt t ar cosét la sit ( corg Si o ot ctt limit γ o t alors écrir : γ ε( où ε st sit i td rs O dédit bi l délomt asymtoti d H aocé Théorèm 54 : forml d Stirlig E o a : ~! π Démostratio : Soit or : *! t : l( l( La séri st télscoi t corg si t slmt la sit (l( corg Or : * l l( l l O tilis alors délomt limité à l ordr t : * o La séri st doc à trms égatifs à artir d crtai rag t so trm gééral st éialt à cli d séri d Rima corgt (o t assi la oir comm la somm d dx séris corgts o absolmt corgts Doc corg rs limit L Par cosét (l( corg rs [L l( ] t ( corg rs rél strictmt ositif K égal à l xotill d la limit récédt d fait d la cotiité d l xotill sr O dédit : ~ K is : K! ~ La alr d K fi t êtr obt assat ar ls itégrals d Wallis

10 O t osr or cla : O motr : I O dédit fialmt : K π ~ is : I π π si ( t dt (! π I! Chaitr : Séris méris Cors comlt - -

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

Séries réelles ou complexes

Séries réelles ou complexes 6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

Suites et séries de fonctions

Suites et séries de fonctions [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

14 Chapitre 14. Théorème du point fixe

14 Chapitre 14. Théorème du point fixe Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de

Plus en détail

Exponentielle exercices corrigés

Exponentielle exercices corrigés Trmial S Foctio potill Ercics corrigés Fsic 996, rcic Fsic 996, rcic 3 3 Fsic 996, rcic 4 4 Fsic, rcic 6 3 5 Fsic, rcic 4 3 6 Baqu 4 4 7 Epo + air, Amériqu du Nord 5 5 8 Basiqu, N Calédoi, ov 4 7 9 Basiqus

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

Des prestations textiles personnalisées pour l hôtellerie et la restauration

Des prestations textiles personnalisées pour l hôtellerie et la restauration Ds prstatios txtils prsoalisés por l hôtllri t la rstaratio ti i R E R A R-GZ 992 por l trti profssiol d li Sivi d l hyiè t d la qalité ds txtils R_Hotl_Gastro_Iformatio_FRANZOESISCH.idd 1 1 19.04.2010

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9 Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **

Plus en détail

Processus et martingales en temps continu

Processus et martingales en temps continu Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions Déombremet ECE3 Lycée Carot 12 ovembre 2010 Itroductio La combiatoire, sciece du déombremet, sert comme so om l'idique à compter. Il e s'agit bie etedu pas de reveir au stade du CP et d'appredre à compter

Plus en détail

Intérêt simple CHAPITRE. Sommaire

Intérêt simple CHAPITRE. Sommaire HAPTRE térêt simple Sommaire A B D E F G H J K L Notio d itérêt Formule fodametale de l itérêt simple Durée de placemet exprimée e mois Durée de placemet exprimée e jours alculs sur la formule fodametale

Plus en détail

STATISTIQUE AVANCÉE : MÉTHODES

STATISTIQUE AVANCÉE : MÉTHODES STATISTIQUE AVANCÉE : MÉTHODES NON-PAAMÉTIQUES Ecole Cetrale de Paris Arak S. DALALYAN Table des matières 1 Itroductio 5 2 Modèle de desité 7 2.1 Estimatio par istogrammes............................

Plus en détail

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces

Plus en détail

Des résultats d irrationalité pour deux fonctions particulières

Des résultats d irrationalité pour deux fonctions particulières Collect. Math. 5, 00, 0 c 00 Uiversitat de Barceloa Des résultats d irratioalité pour deux foctios particulières Richard Choulet 7, Rue du 4 Août, 40 Aveay, Frace E-mail: richardchoulet@waadoo.fr Received

Plus en détail

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3... Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

La spirale de Théodore bis, et la suite «somme=produit».

La spirale de Théodore bis, et la suite «somme=produit». Etde d e vrite de l spirle de Théodore, dot issce à e site dot les sommes prtielles sot égles x prodits prtiels. Mots clés : spirle de Théodore, théorème de Pythgore, site, série, polyôme. L spirle de

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice

Plus en détail

4 Approximation des fonctions

4 Approximation des fonctions 4 Approximatio des foctios Ue foctio f arbitraire défiie sur u itervalle I et à valeur das IR peut être représetée par so graphe, ou de maière équivalete par la doée de l esemble de ses valeurs f(t) pour

Plus en détail

Apprentissage: cours 3a Méthodes par moyennage local

Apprentissage: cours 3a Méthodes par moyennage local Appretissage: cours 3a Méthodes par moyeage local Guillaume Oboziski 1 er mars 2012 Réferece : chap. 6 of [Hastie et al., 2009] ad chap. 6 of [Devroye et al., 1996]. Algorithmes par moyeage local O cosidère

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation 1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus

Plus en détail

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3 1 Groupe orthogoal d'u espace vectoriel euclidie de dimesio, de dimesio Voir le chapitre 19 pour l'étude des espaces euclidies et des isométries. État doé u espace euclidie E de dimesio 1, o rappelle que

Plus en détail

Processus géométrique généralisé et applications en fiabilité

Processus géométrique généralisé et applications en fiabilité Processus géométrique gééralisé et applicatios e fiabilité Lauret Bordes 1 & Sophie Mercier 2 1,2 Uiversité de Pau et des Pays de l Adour Laboratoire de Mathématiques et de leurs Applicatios - Pau UMR

Plus en détail

Le marché du café peut être segmenté en fonction de deux modes de production principaux : la torréfaction et la fabrication de café soluble.

Le marché du café peut être segmenté en fonction de deux modes de production principaux : la torréfaction et la fabrication de café soluble. II LE MARCHE DU CAFE 1 L attractivité La segmetatio selo le mode de productio Le marché du café peut être segmeté e foctio de deux modes de productio pricipaux : la torréfactio et la fabricatio de café

Plus en détail

www.laplacedelimmobilier-pro.com

www.laplacedelimmobilier-pro.com www.laplacedelimmobilier-pro.com La Place de L Immobilier Pro est ue base de doées accessible par iteret, créée par la société HBS Research, dot la vocatio est d accroître la performace des professioels

Plus en détail

Module 3 : Inversion de matrices

Module 3 : Inversion de matrices Math Stat Module : Iversio de matrices M Module : Iversio de matrices Uité. Défiitio O e défiira l iverse d ue matrice que si est carrée. O appelle iverse de la matrice carrée toute matrice B telle que

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

Chapitre 3 : Transistor bipolaire à jonction

Chapitre 3 : Transistor bipolaire à jonction Chapitre 3 : Trasistor bipolaire à joctio ELEN075 : Electroique Aalogique ELEN075 : Electroique Aalogique / Trasistor bipolaire U aperçu du chapitre 1. Itroductio 2. Trasistor p e mode actif ormal 3. Courats

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

LES PROBABILITÉS POUR LES OPTIONS B, C ET D

LES PROBABILITÉS POUR LES OPTIONS B, C ET D LES PROBABILITÉS POUR LES OPTIONS B, C ET D PRÉPARATION À L AGRÉGATION EXTERNE DE MATHÉMATIQUES DE L UNIVERSITÉ RENNES 1 1 ANNÉE 2009/2010 1. ESPACE PROBABILISÉ - VARIABLE ALÉATOIRE 1.1 ESPACE PROBABILISÉ

Plus en détail

a g c d n d e s e s m b

a g c d n d e s e s m b PPrrooppoossiittiioo 22001111JJPP 22770055 000011 uu 0088 fféévvrriirr 22001111 VVlliiiittéé jjuussqquu uu 3300//0044//22001111 tim c ir tv é p g c h u i rè s G A Z iv lu s IC.G R é c lo y m ip s 9 r7

Plus en détail

Approximation de la solution d une équation différentielle ordinaire avec impulsions qui dépendent de l état

Approximation de la solution d une équation différentielle ordinaire avec impulsions qui dépendent de l état Approximatio de la solutio d ue équatio différetielle ordiaire avec impulsios qui dépedet de l état F. Dubeau A. Ouasafi A. Sakat CRM-276 Jauary 21 Départemet de mathématiques et d iformatique, Uiversité

Plus en détail

Régulation analogique industrielle ESTF- G.Thermique

Régulation analogique industrielle ESTF- G.Thermique Chapitre 5 Stabilité, Rapidité, Précisio et Réglage Stabilité. Défiitio Coditio de stabilité. Critères de stabilité.. Critères algébriques.. Critère graphique ou de revers das le pla de Nyquist Rapidité

Plus en détail

Étudier si une famille est une base

Étudier si une famille est une base Base raisonnée d exercices de mathématiqes (Braise) Méthodes et techniqes des exercices Étdier si ne famille est ne base Soit E n K-espace vectoriel. Comment décider si ne famille donnée de vecters de

Plus en détail

Tarifs. Vos prestations pendant la rencontre. Nos réceptions privatives. Comprend également VIPLOGE VIPPRÉSIDENTIEL. avant-goût.

Tarifs. Vos prestations pendant la rencontre. Nos réceptions privatives. Comprend également VIPLOGE VIPPRÉSIDENTIEL. avant-goût. ava-goû 18 logs d 16 placs chac, iss à disposiio por os ls achs à doicil d chapioa. La forl Idéal por rcvoir vos clis iviés afi d paragr o d covivialié das spac privilégié. Doés d grads bais virés, os

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

c. Calcul pour une évolution d une proportion entre deux années non consécutives

c. Calcul pour une évolution d une proportion entre deux années non consécutives Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

MUTUELLE D&O MUTUELLE D&O. Copilote de votre santé. Seniors. AGECFA-Voyageurs CARCEPT CARCEPT-Prévoyance CRC CRIS CRPB-AFB

MUTUELLE D&O MUTUELLE D&O. Copilote de votre santé. Seniors. AGECFA-Voyageurs CARCEPT CARCEPT-Prévoyance CRC CRIS CRPB-AFB MUTUELLE D&O pour toute souscriptio (Offre soumise à coditios) MUTUELLE D&O Copilote de votre saté Seiors AGECFA-Voyageurs CARCEPT CARCEPT-Prévoyace CRC CRIS CRPB-AFB DOMISSIMO-Assuraces DOMISSIMO-Services

Plus en détail

STATISTIQUE : TESTS D HYPOTHESES

STATISTIQUE : TESTS D HYPOTHESES STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie

Plus en détail

f n (x) = x n e x. T k

f n (x) = x n e x. T k EXERCICE 3 (7 points) Commun à tous ls candidats Pour tout ntir naturl n supériur ou égal à, on désign par f n la fonction défini sur R par : f n (x) = x n x. On not C n sa courb rprésntativ dans un rpèr

Plus en détail

Contribution à une Approche Simplifiée pour la simulation numérique du formage incrémental

Contribution à une Approche Simplifiée pour la simulation numérique du formage incrémental è Cogrès Fraçais d Mécaiq orda, a 0 août 0 Cotribtio à Approch Siplifié por la silatio ériq d forag icrétal Y.YU a, b, A.DELAMÉZIÈRE a, b, M.NOUARI a, b, L. EN AYED a, b a. Uivrsité d Lorrai, LEMA, UMR

Plus en détail

Cours de Statistiques inférentielles

Cours de Statistiques inférentielles Licece 2-S4 SI-MASS Aée 2015 Cours de Statistiques iféretielles Pierre DUSART 2 Chapitre 1 Lois statistiques 1.1 Itroductio Nous allos voir que si ue variable aléatoire suit ue certaie loi, alors ses réalisatios

Plus en détail

D er m at o ses f r éq u en tes. D er m at o ses p l u s r ar es

D er m at o ses f r éq u en tes. D er m at o ses p l u s r ar es 1 D er m ato ses f r éq u en tes M o ti f s d e c o n su l tati o n : D er m at o ses f r éq u en tes D er m at o ses p l u s r ar es 2 D er m ato ses f r éq u en tes: D er m at i te at o p i q u e E r

Plus en détail

TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 )

TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 ) RAIRO Operatios Research RAIRO Oper. Res. 34 (2000) 99-129 TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 ) Commuiqué par Berard LEMAIRE Résumé. L étude

Plus en détail

Baccalauréat S Nouvelle - Calédonie Mars 2009

Baccalauréat S Nouvelle - Calédonie Mars 2009 Bcclurét S Nouvelle - Clédoie Mrs 009 Exercice Commu à tous les cdidts (5 poits) r r Le pl est rpporté à u repère orthoorml direct ( O, u, v) d uité grphique cm O cosidère les poits et B d ffixes respectives

Plus en détail

MUTUELLE D&O MUTUELLE D&O. Copilote de votre santé. AGECFA-Voyageurs CARCEPT CARCEPT-Prévoyance CRC CRIS CRPB-AFB

MUTUELLE D&O MUTUELLE D&O. Copilote de votre santé. AGECFA-Voyageurs CARCEPT CARCEPT-Prévoyance CRC CRIS CRPB-AFB MUTUELLE D&O MUTUELLE D&O Copilote de votre saté AGECFA-Voyageurs CARCEPT CARCEPT-Prévoyace CRC CRIS CRPB-AFB DOMISSIMO-Assuraces DOMISSIMO-Services FONGECFA-Trasport IPRIAC MUTUELLE D&O OREPA-Prévoyace

Plus en détail

2 ième partie : MATHÉMATIQUES FINANCIÈRES

2 ième partie : MATHÉMATIQUES FINANCIÈRES 2 ième partie : MATHÉMATIQUES FINANCIÈRES 1. Défiitios L'itérêt est l'idemité que doe au propriétaire d'ue somme d'arget celui qui e a joui pedat u certai temps. Divers élémets itervieet das le calcul

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

Solutions particulières d une équation différentielle...

Solutions particulières d une équation différentielle... Solutios particulières d ue équatio différetielle......du premier ordre à coefficiets costats O cherche ue solutio particulière de y + ay = f, où a est ue costate réelle et f ue foctio, appelée le secod

Plus en détail

Chap. 5 : Les intérêts (Les calculs financiers)

Chap. 5 : Les intérêts (Les calculs financiers) Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement.

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement. Choix d ives i s s eme e cer iude 1 Chapire 1 Choix d ivesissemes e ceriude. Défiiio L es décisios d ivesissemes fo parie des décisios sraégiques de l erepris e. Le choix ere différes projes d ivesisseme

Plus en détail

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009 M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted

Plus en détail

Cours : Le choix des investissements grâce à l actualisation : La VAN (Valeur Actualisée Nette) et le TIR (Taux Interne de Rendement)

Cours : Le choix des investissements grâce à l actualisation : La VAN (Valeur Actualisée Nette) et le TIR (Taux Interne de Rendement) Cours : Le choix des ivestissemets grâce à l actualisatio : La VAN (Valeur Actualisée Nette) et le TIR (Taux Itere de Redemet) 1 La VAN, la Valeur Actualisée (ou Actuelle) Nette e aveir certai 11 La comparaiso

Plus en détail

FILTRAGE. ANALOGIQUE et NUMERIQUE. (Vol. 8)

FILTRAGE. ANALOGIQUE et NUMERIQUE. (Vol. 8) Dpt GEII IUT Bordaux I FILTRAGE AALOGIQUE t UMERIQUE (Vol. 8) G. Couturir Tl : 5 56 84 57 58 mail : couturir@lc.iuta.u-bordaux.fr Sommair I-Itroductio p. II-Filtrag aalogiqu p. 4 II-- Filtrs pass-bas d'ordr

Plus en détail

Chaînes de Markov. Arthur Charpentier

Chaînes de Markov. Arthur Charpentier Chaîes de Markov Arthur Charpetier École Natioale de la Statistique et d Aalyse de l Iformatio - otes de cours à usage exclusif des étudiats de l ENSAI - - e pas diffuser, e pas citer - Quelques motivatios.

Plus en détail

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C. 16 Suites de foctios Suf précisio cotrire, I est u itervlle réel o réduit à u poit et les foctios cosidérées sot défiies sur I à vleurs réelles ou complexes. 16.1 Covergece simple et covergece uiforme

Plus en détail

DETERMINANTS. a b et a'

DETERMINANTS. a b et a' 2003 - Gérard Lavau - http://perso.waadoo.fr/lavau/idex.htm Vous avez toute liberté pour télécharger, imprimer, photocopier ce cours et le diffuser gratuitemet. Toute diffusio à titre oéreux ou utilisatio

Plus en détail

Jusqu à 20 % de rabais! www.gvb.ch he et Une couverture étanche et us assurons parasismique? Nous assurons cunes! votre maison sans lacunes

Jusqu à 20 % de rabais! www.gvb.ch he et Une couverture étanche et us assurons parasismique? Nous assurons cunes! votre maison sans lacunes d ra Jq à 20 % www.gvb.ch! bai ch t ta é r t r v o c U r o a o N? iq pa ra i c! la a o i a v o tr Arz votr aio chz o. Coplètt. Avc o arac coplétair, vo covrz votr bi itégralt. Si l toit d bâtit prét défat

Plus en détail

Probabilités et statistique pour le CAPES

Probabilités et statistique pour le CAPES Probabilités et statistique pour le CAPES Béatrice de Tilière Frédérique Petit 2 3 jui 205. Uiversité Pierre et Marie Curie 2. Uiversité Pierre et Marie Curie 2 Table des matières Modélisatio de phéomèes

Plus en détail

Exercice 1 :(15 points)

Exercice 1 :(15 points) TE/pé TL Elémnts d corrction du D. n 2 du Vndrdi 2 0ctobr 2012 sans documnt, avc calculatric 1h1min Ercic 1 :(1 points) À l occasion d un fstival culturl, un agnc d voyags propos trois typs d transport

Plus en détail

Formation d un ester à partir d un acide et d un alcool

Formation d un ester à partir d un acide et d un alcool CHAPITRE 10 RÉACTINS D ESTÉRIFICATIN ET D HYDRLYSE 1 Formatio d u ester à partir d u acide et d u alcool 1. Nomeclature Acide : R C H Alcool : R H Groupe caractéristique ester : C Formule géérale d u ester

Plus en détail

Demande de soutien à l'enregistrement national de l'orge CH9622-7. Culture : Orge à deux rangs Type : Orge de printemps (Hordeum vulgare l.

Demande de soutien à l'enregistrement national de l'orge CH9622-7. Culture : Orge à deux rangs Type : Orge de printemps (Hordeum vulgare l. Dmad d souti à l'rgistrmt atioal d l'org CH9622-7 Cultur : Org à dux rags Typ : Org d pritmps (Hordum vulgar l.) Sélctiours : T.M. Choo 1 t R. A. Marti 2 1 Ctr d rchrchs d l Est sur ls céréals t ls oléagiux,

Plus en détail

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe 1/5 Trois objectifs poursuivis par le gouveremet : > améliorer la compétitivité fiscale de la Frace > péreiser les activités de R&D > faire de la Frace u territoire attractif pour l iovatio Les icitatios

Plus en détail

DÉMÉNAGE AU. 1216rue Édouard-Dufour Plessisville VÊTEMENTS & ÉQUIPEMENTS SPORTIFS. s associe à 819 621-0055. - Page 9.

DÉMÉNAGE AU. 1216rue Édouard-Dufour Plessisville VÊTEMENTS & ÉQUIPEMENTS SPORTIFS. s associe à 819 621-0055. - Page 9. La botiq q vos aimz s associ à z i d n tt a s o v q q ti o la b E R U T R E OUV DREDI 6 MAI LE VEN VÊTEMENTS & ÉQUIPEMENTS SPORTIFS 1 iêàj> Ã>Ì Ê`i {Ê > ÊÓä ÊUÊxÊ«>}ià 3870751 DÉMÉNAGE AU 1216r Édoard-Dfor

Plus en détail

REVUE. prix? 11 AVRIL 20144 DES MARCHÉS. apaiser nos craintes S&P 500. Sur le risque, et le secteur L'énergie a continué. des titres miniers.

REVUE. prix? 11 AVRIL 20144 DES MARCHÉS. apaiser nos craintes S&P 500. Sur le risque, et le secteur L'énergie a continué. des titres miniers. REVUE HEBDOMADAIRE DES MARCHÉS 11 AVRIL 20144 INFORMATIONN LA PLUS RÉCENTE SUR LES MARCHÉS PAR L'ÉQUIPEE DE RICHARDSON GMP Profitr ds bas prix? E pag 2 : Aalys d la faiblss réct ds marchés TSX COMPOSÉ

Plus en détail

Université de Bordeaux - Master MIMSE - 2ème année. Scoring. Marie Chavent http://www.math.u-bordeaux.fr/ machaven/ 2014-2015

Université de Bordeaux - Master MIMSE - 2ème année. Scoring. Marie Chavent http://www.math.u-bordeaux.fr/ machaven/ 2014-2015 Uiversité de Bordeaux - Master MIMSE - 2ème aée Scorig Marie Chavet http://www.math.u-bordeaux.fr/ machave/ 2014-2015 1 Itroductio L idée géérale est d affecter ue ote (u score) global à u idividu à partir

Plus en détail

Le meilleur scénario pour votre investissement

Le meilleur scénario pour votre investissement ivestir Best Strategy 2012 Le meilleur scéario pour votre ivestissemet U ivestissemet diversifié U coupo uique de 0% à 50% brut* à l échéace Ue courte durée : 4 as et demi Votre capital garati à l échéace

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Clemenceau. Régime sinusoïdal forcé. Impédances Lois fondamentales - Puissance. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O.

Clemenceau. Régime sinusoïdal forcé. Impédances Lois fondamentales - Puissance. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O. ycé Clnca PCS - Physq ycé Clnca PCS (O.Granr) ég snsoïdal forcé pédancs os fondantals - Pssanc ycé Clnca PCS - Physq ntérêt ds corants snsoïdax : Expl d tnsons snsoïdals : tnson d sctr (50 H 0 V) s lgns

Plus en détail

Partie 1 Automatique 1 et 2 (Asservissements Linéaires Continus)

Partie 1 Automatique 1 et 2 (Asservissements Linéaires Continus) Réublique Algériee Démocratique et Poulaire Miistère de l'eseigemet Suérieur et de la Recherche Scietifique Uiversité Djillali Liabès Sidi Bel-Abbès Faculté de Techologie Déartemet d'electrotechique Partie

Plus en détail

www.toyota-forklifts.fr SOLUTIONS DE FINANCEMENT 100 % Toyota Material Handling France

www.toyota-forklifts.fr SOLUTIONS DE FINANCEMENT 100 % Toyota Material Handling France www.toyota-forklifts.fr SOLUTIONS DE FINANCEMENT 100 % Toyota Material Hadlig Frace SOLUTIONS DE FINANCEMENT TOYOTA MATERIAL HANDLING Parce qu avat tout ous sommes Toyota NOS SOLUTIONS DE FINANCEMENT Coçues

Plus en détail

PROMENADE ALÉATOIRE : Chaînes de Markov et martingales

PROMENADE ALÉATOIRE : Chaînes de Markov et martingales PROMENADE ALÉATOIRE : Chaîes de Markov et martigales Thierry Bodieau École Polytechique Paris Départemet de Mathématiques Appliquées thierry.bodieau@polytechique.edu Novembre 2013 2 Table des matières

Plus en détail

Opérations bancaires avec l étranger *

Opérations bancaires avec l étranger * Opératios bacaires avec l étrager * Coditios bacaires au 1 er juillet 2011 Etreprises et orgaismes d itérêt gééral Opératios à destiatio de l étrager Viremets émis vers l étrager : viremet e euros iférieur

Plus en détail

trouve jamais dans les concepts généraux que ce qu on y met

trouve jamais dans les concepts généraux que ce qu on y met ,QIRUPDWLTXHQRUPHHWWHPSV,VDEHOOH%R\GHQV Présetatio par Marie-Ae Chabi Réuio PIN 15 javier 2004 /HVEDVHVGHGRQQpHVHPSLULTXHV Collectio fiie et structurée de doées codifiées, textuelles ou multimédia, destiées

Plus en détail

Le théorème de Thalès et sa réciproque

Le théorème de Thalès et sa réciproque Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre

Plus en détail

Les Rendez-Vous de la Qualité d Arts et Métiers ParisTech

Les Rendez-Vous de la Qualité d Arts et Métiers ParisTech Les Rendez-Vous de la Qualité d Arts et Métiers ParisTech «La place du Manager Qualité dans les Organisations; Aujourd hui et Demain» [3mars 2009 ] - [Version n 1] Direction de l Organisation - LHD Allianz

Plus en détail

La Cible Sommaire F oc us F o n d a t e u r : J e a n L e B I S S O N N A I S

La Cible Sommaire F oc us F o n d a t e u r : J e a n L e B I S S O N N A I S La Cible Sommaire F oc us F o n d a t e u r : J e a n L e B I S S O N N A I S D i r e c t e u r d e l a p u b l i c a t i o n : M a r t i n e M I N Y R é d a c t e u r e n c h e f : S e r g e C H A N T

Plus en détail

La tarification hospitalière : de l enveloppe globale à la concurrence par comparaison

La tarification hospitalière : de l enveloppe globale à la concurrence par comparaison ANNALES D ÉCONOMIE ET DE STATISTIQUE. N 58 2000 La tarificatio hospitalière : de l eveloppe globale à la cocurrece par comparaiso Michel MOUGEOT * RÉSUMÉ. Cet article cosidère différetes politiques de

Plus en détail

Estimation des incertitudes sur les erreurs de mesure.

Estimation des incertitudes sur les erreurs de mesure. Estmto des certtdes sr les errers de mesre. I. Itrodcto : E sceces epérmetles, l este ps de mesres ectes. Celle-c e pevet être q etchées d errers pls o mos mporttes selo le protocole chos, l qlté des strmets

Plus en détail

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4 UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»

Plus en détail

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil. Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la

Plus en détail

Intégrales dépendant d un paramètre

Intégrales dépendant d un paramètre [hp://mp.cpgedupuydelome.fr] édié le 3 avril 5 Eocés Iégrales dépeda d u paramère Covergece domiée Exercice [ 9 ] [correcio] Calculer les limies des suies do les ermes gééraux so les suivas : a) u = π/4

Plus en détail

Statistique Numérique et Analyse des Données

Statistique Numérique et Analyse des Données Statistique Numérique et Aalyse des Doées Arak DALALYAN Septembre 2011 Table des matières 1 Élémets de statistique descriptive 9 1.1 Répartitio d ue série umérique uidimesioelle.............. 9 1.2 Statistiques

Plus en détail