II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009

Dimension: px
Commencer à balayer dès la page:

Download "II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009"

Transcription

1 M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted vers l'ii, la variace de ted vers ue limite ie.. Hypothèses cocerat le terme d'erreur a. L'espérace de i ; E ( i ) est ulle pour tout i (E ( i i ) 0) b. La variace V ( i ) E ( i E ( i )) est costate pour tout i; soit V ( i ) : Cette hypothèse de variace costate est l'hypothèse d'homoscédasticité ; o parle alors de série homoscédastique (par oppositio à hétéroscédastique). c. Abscece d'autocorrélatio des erreurs : Cov ( i ; j ) 0 pour i 6 j: Le terme d'erreur 'est pas autocorrélé : la valeur du terme d'erreur i 'est pas corrélé à celle de j : d. Chaque i suit ue loi ormale, cette hypothèse état justiée par le Théorème cetral limite, les i résultat de l'iuece combiée d'u grad ombre de variables idépedates o itégrées das le modèle de régréssio. e. E coclusio : les erreurs suivet ue loi ormale : i, N (0; ) et sot idépedates car o sait que deux variables ormales de covariace ulle sot idépedates. Les erreurs sot ormalemet et idépedammet distribuées, o ote : i, N id (0; ) : II LES PROPRIETES DES ESTIMATEURS MCO. Rappel : ba x i y i xi i y i Y i Y. Ils sot liéaires : x i y i a. ba et ba 0 Y ba, où les variables x i et y i sot cetrées : : O rappelle que : x i y i 0: x i Y i Y x i Y i Y x i x i Y i car x i 0 ; e posat w i x i ; o obtiet alemet : ba w i Y i : Cette expressio motre que l'estimateur ba est liéaire, car il s'exprime liéairemet e foctio des Y i (les valeurs des i sot traitées comme des costates). b. Propriétés des w i w i x i, de x i 0; o déduit : w i 0: De plus w i x i et de même w i i w i x i + w i x i + w i w i x i : 3. Ils sot sas biais a. Calcul préalable ba w i Y i w i (a 0 + a i + i ) a 0 w i + a page w i i + w i i a + w i i ; UFR4

2 LA REGRESSION : HYPOTHESES ET TESTS soit ba a + w i i b. Il reste à predre l'espérace de ba : E (ba ) E a + w i i E (a ) + E w i i a + E ailleurs, les w i ; comme les i e sot pas stochastiques et peuvet être traités comme des costates et o a : E (ba ) a + w i E ( i ) a ; car E ( i ) 0 pour tout i: c. O démotre de même que ba 0 est sas biais. Le lecteur fatigué peut sauter cette démostratio... ba 0 Y ba Y i w i Y i w i Y i soit : w i (a 0 + a i + i ) a 0 + w i i et e preat l'espérace : E (ba 0 ) E a 0 + w i i a 0 + w i E ( i ) a 0. CQFD. 4. Ils sot BUE (best ubiased estimator) : sas biais et de variace miimale a. Les estimateurs MCO sot efcaces, c'est-à dire sas biais et de variace miimale. Nous admettros cette propriété b. Calcul des variaces w i i ; par i. O démotre que : V (ba ) Pour amateurs : V a + w i i V w i i E 4 3 w i i 5 soit : E w + w + ::: + w + w w + ::::: + w w ; l'espérace est liéaire, E i et E ( i j ) 0 pour tout i 6 j; ce qui permet de coclure : V (ba ) wi car w i : ii. De même o démotre que : V (ba 0 ) i iii. Covergece O déduit des expressios précédetes que si ted vers l'ii, V (ba ) et V (ba 0 ) tedet vers 0; les estimateurs ba et ba 0 sot covergets. 5. Théorème de Gauss-Markov Si les hypothèses de la MCO sot vériées, les estimateurs ba et ba 0 sot BLUE (Best Liear Ubiased Estimator). III DISTRIBUTION DES ESTIMATEURS. Rappel loi ormale D'après l'expressio ba a + w i i ; ba est ue combiaiso liéaire des variables ormales idépedates i et suit doc ue UFR4

3 M LA REGRESSION : HYPOTHESES ET TESTS 8 >< loi ormale ; il e est de même pour ba 0 : O peut doc e déduire que : >: ba a ba, N (0; ) ba 0 a 0 ba0, N (0; ). Estimateurs des écart-type Comme ous l'avos vu plus haut (4b), les variaces des estimateurs ba et ba 0 dépedet de ; malheureusemet, la variace du terme d'erreur est icoue, mais u estimateur sas biais de cette variace est : S e i ; soit SCR ; la moyee des carrés résiduels. Aussi ous obtiedros des estimateurs des écart-type de ba et ba 0 e remplaçat ; par S das l'expressio de leurs variaces : Sba S et S ba 0 i 3. Vers la loi de Studet a. La somme des carrés de variables aléatoires idépedates et suivat ue loi ormale cetrée réduite suit ue loi du Khi, avec degrés de liberté. Ce résultat prouve que e déduit que e i b. La loi de Studet i. O démotre que : ii. Preuve (pour amateurs) i suit ue loi du Khi avec ( S :,, mais esuite e remplaçat les i par les e i ; o perd deux ddl et o ) degrés de liberté. ba a S ba et ba 0 a 0 S ba0 suivet ue loi de Studet avec ( ) degrés de liberté. (a). Rappel : si suit la loi ormale stadard et si Y suit la loi du Khi avec degrés de liberté, la variable T Studet à degrés de liberté. : p Y suit la loi de (b). v u t ba a (ba ) e i ( ) ba a mais v ba u t e i ( ) suit la loi de Studet à ( ba a ba p S ba a ba q S ba ba ) degrés de liberté, ba a S ba car S S ba ba ; CQFD. IV INTERVALLES DE CONFIANCE. Rappel : Nous savos qu'u itervalle de coace est du type : estimatio poctuelle (valeur critique)(erreur stadard de l'estimatio), les valeurs critiques t ; et t ; du t état lues das la table du t au seuil de sigicatio et avec u ddl de :. Résultats a. Pour ba, o obtiet : I ba t ; S ba ; ba + t ; S ba ; avec P ba t ; S ba a ba + t ; S ba ; les valeurs critiques t et t état lues das la table de Studet. page 3 UFR4

4 4 LA REGRESSION : HYPOTHESES ET TESTS Pour ba 0 ( la costate), o obtiet : I ba 0 t ; S ba0 ; ba 0 + t ; S ba0 3. Exemple : a. Repreos l'exemple de la cosommatio ( Y ) et du reveu () du polycopié d'itroductio à la régressio Y b. Solutio détaillée avec Excel O a obteu ba ' 0:7 et ba 0 ' 0:3939 ; détermios l'itervalle de coace à 95% pour a : Nous avos l'estimatio poctuelle ba ' 0:7; précisos la valeur t ; ; pour 0:05 et u ddl 8; doc ici t 0:05 ;8 :306; il reste à calculer v e S ba S i et doc à calculer S u : L'utilitaire d'aalyse d'excel doe tous ces résultats, mais ous allos les t e i vérier ici : o trouve : S 80:955 ' 00: 43 9; et pour l'erreur type de ba, v S ba S 0:5 00: :05 5: O a alors pour l'itervalle de coace : u t I ba t ; S ba ; ba + t ; S ba [0:7 :306 0:05 5 ; 0:7 + :306 0:05 5] soit eviro : [0:584 ; 0:838 3] ; la marge d'erreur est :306 0:05 5 ' 0:7 ; o peut dire que 95% des échatillos de taille 0 de cette populatio doerot pour ba ue valeur située à au maximum 0:7 de la vraie valeur icoue de a ; il 'est pas déraisoable de peser que otre échatillo fasse partie de ces 95% de "bos échatillos" ; sous cette hypothèse, o peut dire que a appartiet à l'itervalle [0:584 ; 0:838 3] : 4 UFR4

5 M LA REGRESSION : HYPOTHESES ET TESTS c. Solutio TGV : utilitaire d'aalyse d'excel V TESTS DE SIGNIFICATION. Test sur a a. Repreos l'équatio Y a 0 + a + ; la valeur de a est la variatio attedue de Y cosécutive à ue variatio de ue uité de ; il est clair qu'ue valeur ulle de a sigie que 'a pas d'iuece sur Y; Y ayat alors pour valeur attedue a 0 ; valeur dot il e peut s'écarter que par u terme d'erreur o ul ; par cotre ue valeur de a différete de zéro traduit ue iuece de sur Y: Nous allos doc tester si iuece Y e testat l'hypothèse ulle a 0 cotre l'hypothèse alterative a 6 0 : H0 : a 0 ( 'iuece pas Y ) : Sous l'hypothèse H H : a ; t ba ba ; appelé le ratio de Studet, suit ue distributio de S ba ba Studet avec ( ) degrés de liberté ; ici 0:7 : 9 ; il reste à choisir u seuil de sigicatio, par exemple S ba 0:05 5 0:05 et à comparer ce quotiet avec la valeur lue das la table de Studet, de t ; soit ici : t 0:05 ; 8 :306. La valeur du ba quotiet est supérieure au t de la table, o e déduit doc que l'o rejette l'hypothèse H 0 et doc ba sufsammet différet S ba de zéro pour afrmer que a est sigicativemet différet de zéro. Cette coclusio est cohérete avec l'itervalle de coace [0:584 ; 0:838 3] ; qui e cotiet pas 0: b. Règle de décisio O déi le t de Studet calculé du coefciet ba ; déi par t ba ba S ba : Si jt ba j t ; ; o e rejette pas H 0 ; au seuil de 00% ; la variable 'est pas sigicative et 'a pas d'iuece sur Y: Si jt ba j > t ; ; o rejette H 0 ; au seuil de 00% ; la variable est sigicative et a ue iuece sur Y: Cas particulier importat : si l'o xe le seuil de sigicatio à 5% et si le ombre de ddl est supérieur ou égal à 0; l'hypothèse ulle a 0 peut être rejetée si jt ba j > :. Flash- Back Aalyse de la variace : F page 5 UFR4

6 6 LA REGRESSION : HYPOTHESES ET TESTS a. Rappel Source de variatio ddl Somme des carrés Moyee des carrés (variaces) Régressio SCE P b Yi Y SCE Résiduelle SCR P (Y i b Yi ) SCR ( ) Totale SCT P Y i Y b. Statistique F SCE F SCR ( ) ba P x i. O démotre et ous l'admettros que si les résidus sot ormalemet distribués, sous e i l'hypothèse ulle H 0 : a 0; la variable aléatoire F suit la loi de Fisher avec pour degrés de liberté et : Ce résultat viet du fait que le rapport F de deux lois de Khi idépedates et respectivemet divisées par leurs degrés de liberté chacue divisée par so degré de liberté et ; suit la loi de Fisher-Sedecor F (; ): Le ratio F fourit u test d'hypothèse permettat de tester l'hypothèse ulle H 0 : a 0: c. Régle de décisio : O choisit u seuil de sigicatio, puis : Si F F (; ) ; o e rejette pas H 0 ; la variable 'est pas sigicative. Si F > F (; ) ; o rejette H 0 ; la variable est sigicative et cotribue à l'esplicatio de Y: d. Exemple : Repreos otre exemple reveu cosommatio, l'utilitaire d'aalyse ous doe das le tableau ci-dessus (itervalle de coace 3b) : F 66:5 avec 8 ; preos le seuil de 5%; et comparos cette valeur calculée du F avec la valeur critique de F doée par la table : F (;8) 5:3 (a 5%). O rejette clairemet H 0 ; la variable est sigicative. 3. Test sur a 0 O rappelle que : V () i E (), doc que : i +E () ; doc : S ca 0 i S 00: : 84 doc S ca 0 ' 97:84 0:5 ba 0 9: 890 ; 0:3939 S 9: 890 3: ba0 ; pour u iveau de coace de 5%; la table de la loi de Studet doe pour u ddl de 8, e test bilatéral, t 0:05;8 ' :306; t 3: se trouve das la zoe d'acceptatio de H 0 ; o e peut rejeter H 0 ; l'hypothèse d'ue ordoée à l'origie ulle. O dira que la statistique est o sigicative. Cette coclusio est cohérete avec l'itervalle de coace à 95%; pour ba 0 ; à savoir, [ :4; 3:0] qui cotiet 0: VI PREVISIONS. Estimatio poctuelle Supposos que ous ayos établi à partir d'u échatillo, l'équatio de régressio de l'échatillo Y b ba 0 + ba et qu'ue ouvelle valeur 0 de se présete, alors Y b 0 ba 0 + ba 0 est u estimateur de E (Y 0 ) ; repreos l'exemple précédet cosommatio reveu, et supposos que l'o désire estimer la cosommatio d'ue ouvelle famille de reveu 0 300: E utilisat otre équatio, otre estimatio sera : Y0 b 0: : : 75. O démotre que Y b 0 est u estimateur BLUE. L'estimatio obteue diffère de la vraie valeur Y 0 a 0 + a ; l'erreur de prédictio est alors Y 0 Y0 b (a 0 ba 0 ) + (a ba ) Cette erreur est la coséquece des erreurs d'échatilloage (a 0 ba 0 ) et (a ba ) das l'estimatio des paramètres icous et de l'erreur 0 associée à la ouvelle valeur 0 : Si l'o ote f (a 0 ba 0 ) + (a ba ) ;l 0 erreur d'estimatio associée à ue ouvelle valeur 0 de ; cette erreur déped de l'échatillo ; par ailleurs f est ue combiaiso liéaire de variables ormales et est doc elle même de distributio ormale. De plus E (f) (a 0 E ( ba 0 )) + (a E ( ba )) 0 + E ( + ) 0; l'estimateur Y b 0 est o biaisé.. Itervalle de coace a. La variace de l'erreur de prévisio 6 UFR4

7 M LA REGRESSION : HYPOTHESES ET TESTS La variace de f est doée par : f (0 ) C A ; où est la moyee de l'échatillo de taille d'origie. état icou, ous obtiedros (résultat admis) u estimateur sas biais de l'erreur de prédictio : Sf S (0 ) ; alors f S f suit ue loi de Studet avec u ddl de ( ) : O peut doc obteir pour E (Y 0 ) u itervalle de coace. b. Remarques sur l'erreur de prévisio La variace de l'erreur de prévisio coditioe l'amplitude de l'itervalle de coace. Cette variace sera d'autat plus faible que la partie aléatoire de la relatio liat Y à sera faible (S ) Elle est d'autat plus faible que, la taille de l'échatillo d'origie est grade. Elle est d'autat plus faible que la variabilité de est grade. Elle est d'autat plus faible que la ouvelle valeur 0 est proche de : c. Exemple Repreos0 l'exemple reveu-cosommatio avec Y b 0 0: : : 75. Par ailleurs, S f S + + (0 ) C A 00: l'itervalle de coace à 95% pour la prévisio : I (300 70) [3:75 :306 : 7 ; 3:75 + :306 : 7] [84: 44 ; 43: 06]. ' 6: 6 et S f h by0 t ; S f ; b Y 0 + t ; S f i soit ici : ' p 6: 6 ' : 7 O e déduit d. Bade de coace O otera que même sas ouvelle valeur de ; o peut détermier pour chaque valeur de u itervalle de coace et mettre e évidece ue bade de coace. Exemple : O cosidère u échatillo de 5 familles, représetat leur cosommatio totale (e cetaie de dollars) et Y leur cosommatio cosacrée à la ourriture. Nous avos détermié la droite de régréssio de Y e et la bade de coace (avec l'effet trompette) C A page 7 UFR4

8 8 LA REGRESSION : HYPOTHESES ET TESTS VIIRETOUR SUR LE TERME D'ERREUR. Homoscédasticité et hétéroscédasticité Images extraites de l'ouvrage : Ecoometrie, de Damodar N.Gujarati (de boeck Editios). Homoscédasticité Hétéroscédasticité Das le schéma de gauche, la variace coditioelle de u i (le terme d'erreur) pour i est costate, ous l'avos otée das ce cours ; o e déduit que quelle que soit i ; la variace des valeurs de Y est la même. Das le schéma de droite, il est clair que la variace coditioelle de Y varie avec ; ceci est dû au fait que la variace du terme d'erreur 'est pas costate ; o parle d'hétéroscédasticité.. Corrélatio des erreurs : statistique de Durbi et Watso 8 UFR4

9 M LA REGRESSION : HYPOTHESES ET TESTS Ue des hypothèses de la méthode MCO, est l'idépedace des erreurs ; ous devos pouvoir vérier si cette hypothèse est satisfaite et remédier au problème si tel 'est pas le cas. Les termes d'erreur peuvet être corrélés du fait d'ue erreur de spécicatio du modèle ; il arrive que l'o soit icertai sur la spécicatio de l'équatio de régréssio : liéaire ou o liéaire? Si après avoir établi ue équatio de régressio et détermié les résidus, o observe ue tedace, avec des séries de résidus positifs et des séries de résidus égatifs, o doit s'itérroger sur ue évetuelle erreur de spécicatio. U cas fréquet est celui où les erreurs i sot distribuées suivat u processus autorégressif du premier ordre, c'est-à-dire lorsque l'o a ue relatio du type : i i + u i, cas sur lequel ous reviedros. Durbi et Watso ot mis au poit u test permettat de déceler cette liaiso ; ce test est basé sur la statistique suivate : dw P i (e i e i ) P e i Exercice : Repreos l'exemple des 5 familles utilisé das le paragraphe précédet (Fichier Mtd_dw.xls sur le site). a. Tracer le uage de poits das u repère. b. Estimer les paramètres du modèle de régressio liéaire, état la variable explicative et Y la variable expliquée. Tracer la droite de régressio de Y e das le même repère. Détermier le coéfciet de détermiatio. c. Détermier les résidus et calculer la statistique de Durbi-Watso et vérier que dw ' :09: d. O pose? l et Y? l Y: i. Estimer les paramètres du modèle de régressio liéaire,? état la variable explicative et Y? la variable expliquée. Calculer le coefciet de détermiatio ii. Déduire du modèle précédet, l'estimatio obteue, b Y f (). Représeter das u ouveau repère, la courbe de régressio et le uage. iii. Calculer les résidus et la statistique de Durbi-Watso. e. Coclusio Il est clair que si les résidus sot corrélés, et que le graphique met e évidece des séries de résidus positifs et égatifs, alors le umérateur de dw aura tedace à être petit, du fait de la proximité de e i et de e i, et dw sera proche de zéro ; ceci est le cas du modèle liéaire qui 'est pas ue boe spécicatio du modèle ici ; par cotre si le modèle est bie spécié, ous motreros plus tard que dw pred des valeurs proches de :O voit que le modèle Y 9:404 0:3637 costitue ue meilleur spécicatio du modèle. f. Règle : ue valeur de dw plus proche de 0 que de laisse présager ue mauvaise spécicatio de l'équatio de régressio. Nous reviedros sur cette statistique. page 9 UFR4

Test de validité et d'hypothèse

Test de validité et d'hypothèse Test de validité et d'hypothèse 1 Vocabulaire Problème: Il s'agit à partir de l'étude d'u ou plusieurs échatillos de predre des décisios cocerat l'esemble de la populatio. O est alors ameé à émettre des

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

Correction HEC III 2007

Correction HEC III 2007 HEC III 7 Voie Écoomique Correctio Page Correctio HEC III 7 Voie écoomique La correctio comporte 9 pages. Eercice. Par dé itio est ue valeur propre de t si et seulemet si est ue valeur propre de T: Et

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher

Plus en détail

La classification de données quantitatives avec SPAD

La classification de données quantitatives avec SPAD La classificatio de doées quatitatives avec SPAD SPAD effectue toujours ue ACP de la matrice des doées quatitatives X " p avat de faire la classificatio des idividus. Les méthodes de classificatio s appliquet

Plus en détail

Devoir de statistiques: CORRIGE

Devoir de statistiques: CORRIGE CPP - la prépa des INP ( ème aée). Bordeaux, 6/04/04. Devoir de statistiques: CORRIGE durée h Doées: O rappelle que si Z suit ue loi N (0, ), o a P(Z.96) 0, 975 et P(Z.65) 0, 95. Exercice. θ et O cosidère

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

Correction des exercices sur la nature ondulatoire de la lumière

Correction des exercices sur la nature ondulatoire de la lumière CORRECTION EXERCICES TS /5 CHAPITRE 3 Correctio des exercices sur la ature odulatoire de la lumière Correctio exercice : idice d u verre et réfractio. La radiatio = 530 m est verte et la radiatio = 680

Plus en détail

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f.

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f. Chapitre 14 Itervalle de fluctuatio des fréqueces. Estimatio Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Itervalle de fluctuatio Estimatio Itervalle de cofiace (*). Niveau

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

STATISTIQUE : ESTIMATION

STATISTIQUE : ESTIMATION STATISTIQUE : ESTIMATION Préparatio à l Agrégatio Bordeaux Aée 202-203 Jea-Jacques Ruch Table des Matières Chapitre I. Estimatio poctuelle 5. Défiitios 5 2. Critères de comparaiso d estimateurs 6 3. Exemples

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

Chapitre 3 Détermination de la taille de l'échantillon

Chapitre 3 Détermination de la taille de l'échantillon Chapitre 3 Détermiatio de la taille de l'échatillo Lorsqu o prélève u échatillo pour estimer u paramètre, o court toujours le risque de découvrir u peu trop tard que l'échatillo prélevé est trop petit

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

PROJET DE MONTE CARLO SUJET 1: LE PRICING

PROJET DE MONTE CARLO SUJET 1: LE PRICING LE Age KHOURI Nadie M MMD PROJE DE MONE ARLO SUJE : LE PRIING Selim ZOUGHLAMI QUESION : Supposos d abord que X est u mouvemet browie W t G([ 0, ]) Alors W0 G( 0 ) suit ue loi N(0,0) et doc W 0ps 0 Esuite,

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

Formulaire de statistiques

Formulaire de statistiques Formulaire de statistiques E. Depiereux G. Vicke B. De Hertogh Javier 009 Formulaire de statistiques I. Statistiques descriptives : Moyee arithmétique : (populatio: m x = µ) (échatillo = x = M x ) 1 i

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

TP R : méthodes statistiques élémentaires

TP R : méthodes statistiques élémentaires M2 IFMA et MPE TP R : méthodes statistiques élémetaires À la fi de la séace vous déposerez vos scripts R das la boîte de dépôt de votre espace Sakai : http://australe.upmc.fr/portal. 1 Importatio des doées

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

STATISTIQUE : TESTS D HYPOTHESES

STATISTIQUE : TESTS D HYPOTHESES STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie

Plus en détail

TS Intervalle de fluctuation et estimation Cours

TS Intervalle de fluctuation et estimation Cours Aée 2013/2014 TS Itervalle de fluctuatio et estimatio Cours est u etier aturel o ul et p est u réel de l itervalle 0 ; 1. I Itervalle de fluctuatio Cotexte : Das ue populatio, la proportio d idividus présetat

Plus en détail

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont :

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont : Estimatio Objectifs Estimer poctuellemet ue proportio, ue moyee ou u écart type d ue populatio à l aide de la calculatrice ou d u logiciel, à partir d u échatillo Détermier u itervalle de cofiace à u iveau

Plus en détail

Introduction to Econometrics

Introduction to Econometrics MPRA Muich Persoal RePEc Archive Itroductio to Ecoometrics Moussa Keita September 015 Olie at https://mpra.ub.ui-mueche.de/66840/ MPRA Paper No. 66840, posted. September 015 04:1 UTC INTRODUCTION A L ECONOMETRIE

Plus en détail

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 9 OFFICE DU BACCALAUREAT BP 5005-DAKAR-Fa-Séégal Serveur Vocal: 68 05 59 Téléfax (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 09 G 18bis AR Durée:

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

PROBABILITES à la STATISTIQUE - APPLICATIONS - Jean-Marie MARION

PROBABILITES à la STATISTIQUE - APPLICATIONS - Jean-Marie MARION Des PROBABILITES à la STATISTIQUE - APPLICATIONS - Jea-Marie MARION 1 STATISTIQUE DESCRIPTIVE (décrire ue populatio à l aide de caractéristiques et graphiques) STATISTIQUE INFERENTIELLE (étedre des résultats

Plus en détail

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6 Corrigés TD Chapitre : Variables aléatoires sur u uivers fii Exercice : Soit X la VAR défiie par le tableau suivat : x i - - 0 p 6 4 6 4 6 i O ote Y = X ) Détermier la loi cooite de X et Y ) Détermier

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

Chapitre 13. Statistiques et probabilités. Sommaire

Chapitre 13. Statistiques et probabilités. Sommaire 13 Chapitre Chapitre 13 Statistiques et probabilités Les statistiques et les probabilités occupet ue place importate das l eseigemet de certaies classes préparatoires Les pricipales foctios écessaires

Plus en détail

APPLICATION DE LA STATISTIQUE AU TRAITEMENT DES DONNÉES AU LABORATOIRE D'ANALYSES ET EN FABRICATION

APPLICATION DE LA STATISTIQUE AU TRAITEMENT DES DONNÉES AU LABORATOIRE D'ANALYSES ET EN FABRICATION Philippe TRIBOULET (Lycée Niepce Chalo sur Saôe) 03/03/007 PPLICTION DE L STTISTIQUE U TRITEMENT DES DONNÉES U LBORTOIRE D'NLYSES ET EN FBRICTION I/ INTRODUCTION L'utilisatio de la statistique pour le

Plus en détail

Séquence 9. Sommaire. 1. Pré-requis 2. Intervalles de fluctuation 3. Estimation 4. Synthèse de la séquence 5. Exercices de synthèse

Séquence 9. Sommaire. 1. Pré-requis 2. Intervalles de fluctuation 3. Estimation 4. Synthèse de la séquence 5. Exercices de synthèse Séquece 9 Itervalles de fluctuatio, estimatio Objectifs de la séquece Das le chapitre 2, o étudie des itervalles de fluctuatio des variables aléatoires X F =, fréqueces des variables aléatoires biomiales

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

Correction CCP maths 1 MP

Correction CCP maths 1 MP mai 4 Avertissemet : Il subsiste certaiemet quelques coquilles... Exercice : ue itégrale double Correctio CCP maths MP Pour calculer cette itégrale, o effectue le chagemet de variable e coordoées polaires

Plus en détail

I. (2 points) III. (2 points)

I. (2 points) III. (2 points) ère S Cotrôle du vedredi 7 mars 05 (0 mi) Préom : Nom : Note : / 0 II ( poits) Soit ABC u triagle isocèle e A tel que AB AC 8 cm et BC 5 cm O ote I le milieu de [AC] Calculer BI (valeur exacte) I ( poits)

Plus en détail

14 Chapitre 14. Théorème du point fixe

14 Chapitre 14. Théorème du point fixe Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de

Plus en détail

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3 1 Groupe orthogoal d'u espace vectoriel euclidie de dimesio, de dimesio Voir le chapitre 19 pour l'étude des espaces euclidies et des isométries. État doé u espace euclidie E de dimesio 1, o rappelle que

Plus en détail

Séquence 8. Suites arithmétiques et géométriques. Sommaire

Séquence 8. Suites arithmétiques et géométriques. Sommaire Séquece 8 Suites arithmétiques et géométriques Sommaire Pré-requis Suites arithmétiques Suites géométriques Sythèse du cours Exercices d approfodissemet Séquece 8 MA Ced - Académie e lige Pré-requis A

Plus en détail

Séquence 1. Les suites numériques. Sommaire. 1. Pré-requis 2. Le raisonnement par récurrence 3. Notions de limites 4. Synthèse

Séquence 1. Les suites numériques. Sommaire. 1. Pré-requis 2. Le raisonnement par récurrence 3. Notions de limites 4. Synthèse Séquece Les suites umériques Sommaire Pré-requis Le raisoemet par récurrece 3 Notios de limites 4 Sythèse Das cette séquece, il s agit d ue part d approfodir la otio de suites umériques permettat la modélisatio

Plus en détail

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles BTS Mécaique et Automatismes Idustriels Statistiques iféretielles, Aée scolaire 2005 2006 Statistiques iféretielles 1. Itroductio vocabulaire Pour étudier ue populatio statistique, o a recours à deux méthodes

Plus en détail

Détermination des champs électriques et magnétiques. statiques par la méthode de séparation de variables

Détermination des champs électriques et magnétiques. statiques par la méthode de séparation de variables Détermiatio es champs électriques et magétiques statiques par la méthoe e séparatio e variables Chapitre III Détermiatio es champs électriques et magétiques statiques par la méthoe e séparatio e variables

Plus en détail

Exercices - Lois discrètes usuelles : corrigé

Exercices - Lois discrètes usuelles : corrigé www.almohadiss.com Exercice - Avio - L2/Prépa Hec - O ote X la variable aléatoire du ombre de moteurs de A qui tombet e pae, et Y la variable aléatoire du ombre de moteurs de B qui tombet e pae. X suit

Plus en détail

Fluctuation et estimation

Fluctuation et estimation Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice - Loi d u dé truqué - L2/ECS -. X pred ses valeurs das {,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque P X est

Plus en détail

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9 Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Féelo aite-marie Préparatio ciece-po/prépa HEC Foctios Versio du juillet 05 Eercice d degré : racies et coefficiets O rappelle que si l équatio a + b + c = 0 ( a 0 ) adet deu racies α et β (évetuelleet

Plus en détail

Promenades aléatoires : vers les chaînes de Markov

Promenades aléatoires : vers les chaînes de Markov AME Dossier : Matrices et suites 545 romeades aléatoires : vers les chaîes de Markov ierre Griho (*) Cet article propose ue mise e perspective de la otio de promeade ou de marche aléatoire itroduite das

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

Mathématiques. Terminale S Corrigés des exercices. Rédaction : Laurent Beroul Isabelle Tenaud Sébastien Cario. Coordination : Sébastien Cario

Mathématiques. Terminale S Corrigés des exercices. Rédaction : Laurent Beroul Isabelle Tenaud Sébastien Cario. Coordination : Sébastien Cario Mathématiques Termiale S Corrigés des eercices Rédactio : Lauret Beroul Isabelle Teaud Sébastie Cario Coordiatio : Sébastie Cario Ce cours est la propriété du Ced Les images et tetes itégrés à ce cours

Plus en détail

La Méthode de Monte Carlo

La Méthode de Monte Carlo La Méthode de Mote Carlo Etiee Pardoux UMR 6632 Laboratoire d Aalyse, Topologie, Probabilités et EA 3781 Evolutio Biologique Uiversité de Provece Etiee Pardoux (LATP) Marseille, 13/09/2006 1 / 33 Cotets

Plus en détail

ÉCHANTILLONNAGE ESTIMATION

ÉCHANTILLONNAGE ESTIMATION Chapitre 16 ÉCHANTILLONNAGE ESTIMATION Vous vous ferez estimer e supportat les ijustices. Cicéro 1 ÉCHANTILLONNAGE 1.1 Itroductio O cosidère ue populatio (par exemple la populatio fraçaise) et u certai

Plus en détail

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 MÉTHODES NUMÉRIQUES POUR LE PRICING D OPTIONS DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 Table des matières 1 Notatios et équatio de Black-Scholes 2 11 Notatios 2 12 Équatio de Black-Scholes

Plus en détail

Cours de Statistiques inférentielles

Cours de Statistiques inférentielles Licece 2-S4 SI-MASS Aée 2015 Cours de Statistiques iféretielles Pierre DUSART 2 Chapitre 1 Lois statistiques 1.1 Itroductio Nous allos voir que si ue variable aléatoire suit ue certaie loi, alors ses réalisatios

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

Apprentissage: cours 3a Méthodes par moyennage local

Apprentissage: cours 3a Méthodes par moyennage local Appretissage: cours 3a Méthodes par moyeage local Guillaume Oboziski 1 er mars 2012 Réferece : chap. 6 of [Hastie et al., 2009] ad chap. 6 of [Devroye et al., 1996]. Algorithmes par moyeage local O cosidère

Plus en détail

CORRECTION DU BAC BLANC 2

CORRECTION DU BAC BLANC 2 CORRCTION DU BAC BLANC 2 XRCIC 1 (6 poits) Baccalauréat ST Mercatique Podichéry - 2010 Deux tableaux sot doés e aexe : le premier doe l évolutio du prix du mètre carré das l immobilier résidetiel acie

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

B) CHAÎNES DE SOLIDES

B) CHAÎNES DE SOLIDES Chaîes de solides B) CHAÎNES DE SOLIDES Objectifs Cette théorie a pour but d'aalyser les comportemets statique et ciématique d'u mécaisme à partir d'u modèle défii par le schéma ciématique du mécaisme.

Plus en détail

Travaux dirigés G33 Dimensionnement 2 séances Enseignant : Anthony Busson.

Travaux dirigés G33 Dimensionnement 2 séances Enseignant : Anthony Busson. Travaux dirigés G33 Dimesioemet 2 séaces Eseigat : Athoy Busso. Exercice 1 : O cosidère u web switch et 3 serveurs web. Le web switch reçoit les requêtes http proveat des cliets et les répartit de maière

Plus en détail

Application «Calculs» Application «Graphiques» Application «Tableur et listes» FR

Application «Calculs» Application «Graphiques» Application «Tableur et listes» FR TI Nspire Documet de Formatio T3 Walloie TI-Nspire Le tout e u des mathématiques Suites umériques La loi de Verhulst Applicatio «Calculs» Applicatio «Graphiques» Applicatio «Tableur et listes» FR Formatios

Plus en détail

c. Calcul pour une évolution d une proportion entre deux années non consécutives

c. Calcul pour une évolution d une proportion entre deux années non consécutives Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages

Plus en détail

Statistique descriptive bidimensionnelle

Statistique descriptive bidimensionnelle 1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets

Plus en détail

FLUCTUATION ET ESTIMATION

FLUCTUATION ET ESTIMATION 1 FLUCTUATION ET ESTIMATION Le mathématicie d'origie russe Jerzy Neyma (1894 ; 1981), ci-cotre, pose les fodemets d'ue approche ouvelle des statistiques. Avec l'aglais Ego Pearso, il développe la théorie

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Calcul et raisoemet Remise à Niveau Mathématiques Première partie : Calcul et raisoemet Exercices Page sur 9 RAN Calcul et raisoemet Ex - Rev 04 Mathématiques RAN - Calcul et raisoemet

Plus en détail

Questions Chapitre 2 L approche statistique de la réalité 1

Questions Chapitre 2 L approche statistique de la réalité 1 Questios Chapitre 2 L approche statistique de la réalité 1 Expliquer la otio de variable et défiir les différets types de variables Décrire les échelles de classificatio et trasformer les doées pour passer

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

Correction du devoir surveillé de mathématiques n o 5

Correction du devoir surveillé de mathématiques n o 5 Correctio du devoir surveillé de mathématiques o 5 Exercice 1 1. Soit g la foctio défiie sur R par g(x) = (x 1)e x. (a) Détermier les ites de g e et +. Limite e. O a ue forme idétermiée. E développat,

Plus en détail

BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2015

BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2015 CONCOURS COMMUNS POLYTECHNIQUES FILIÈRE MP BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 5 avec corrigés V. Bellecave, J.-L. Artigue, P. Berger, J.-P. Bourgade, S. Calmet, A. Calvez, D. Cleet, J. Esteba,

Plus en détail

Organisme de recherche et d information sur la logistique et le transport LES PREVISIONS DES CONSOMMATIONS

Organisme de recherche et d information sur la logistique et le transport LES PREVISIONS DES CONSOMMATIONS LES PREVISIONS DES CONSOMMATIONS Les logiciels utilisés pour la gestio des stocks itègret de ombreuses foctios de calcul. L ue des plus importates est l exécutio des prévisios des cosommatios futures d

Plus en détail

Probabilités et Statistique

Probabilités et Statistique Probabilités et Statistique Jea-Michel JOLION Départemet Géie Idustriel 3ème Aée Versio électroique : http://rfv.isa-lyo.fr/ jolio/stat/poly.html May 26, 2006 INSA Lyo - Bât. J. Vere - 69621 Villeurbae

Plus en détail

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités.

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités. PROBABILITÉS I. PROBABILITÉS ( RAPPELS) a. Expérieces aléatoires et modèles Le lacer d ue pièce de moaie, le lacer d u dé sot des expérieces aléatoires, car avat de les effectuer, o e peut pas prévoir

Plus en détail

Cours 5 : ESTIMATION PONCTUELLE

Cours 5 : ESTIMATION PONCTUELLE Cours 5 : ESTIMATION PONCTUELLE A- Gééralités B- Précisio d u estimateur C- Exhaustivité D- iformatio E-estimateur sas biais de variace miimale, estimateur efficace F- Quelques méthode s d estimatio A-

Plus en détail

CONCOURS EXTERNE POUR l ACCÈS AU GRADE D INSPECTEUR DES FINANCES PUBLIQUES AFFECTÉ AU TRAITEMENT DE L INFORMATION EN QUALITÉ D ANALYSTE

CONCOURS EXTERNE POUR l ACCÈS AU GRADE D INSPECTEUR DES FINANCES PUBLIQUES AFFECTÉ AU TRAITEMENT DE L INFORMATION EN QUALITÉ D ANALYSTE J. 3 398 CONCOURS EXTERNE POUR l ACCÈS AU GRADE D INSPECTEUR DES FINANCES PUBLIQUES AFFECTÉ AU TRAITEMENT DE L INFORMATION EN QUALITÉ D ANALYSTE ANNÉE 04 ÉPREUVE ÉCRITE D ADMISSIBILITÉ N 3 Durée : 3 heures

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

Problème I- Acide éthanoïque (ph et conductimétrie) Enoncé

Problème I- Acide éthanoïque (ph et conductimétrie) Enoncé - Acide éthaoïque (ph et coductimétrie) Eocé 1- L acide éthaoïque (H 3 OOH) est u oxydat e solutio aqueuse das le couple H 3 OOH/H 3 H OH (acide éthaoïque/éthaol). Écrire la demi-équatio d oxydoréductio

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que [http://mp.cpgedupuydelome.fr] édité le 6 octobre 05 Eocés Suites umériques Covergece de suites Exercice [ 047 ] [Correctio] Soiet u ) et v ) deux suites réelles covergeat vers l et l avec l < l. Motrer

Plus en détail

Utilisation du bootstrap pour les problèmes statistiques liés à l estimation des paramètres

Utilisation du bootstrap pour les problèmes statistiques liés à l estimation des paramètres B A S E Biotechol Agro Soc Eviro 00 6 (3) 43 53 Utilisatio du bootstrap pour les problèmes statistiques liés à l estimatio des paramètres Rudy Palm Uité de Statistique et Iformatique Faculté uiversitaire

Plus en détail

LSM 3.053 Informatique - Statistique : TP n 1 et 2

LSM 3.053 Informatique - Statistique : TP n 1 et 2 LSM.05 Iformatique - Statistique : TP et Ce TP couple les otios de statistiques descriptives abordées e cours avec l'utilisatio avatageuse du tableur Excel. Le tableur est utilisé pour effectué les calculs

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

Cours VII. Tests de randomisation - Tests de contingence P. Coquillard 2015

Cours VII. Tests de randomisation - Tests de contingence P. Coquillard 2015 1 TESTS DE RANDOMISATION Cours VII. Tests de radomisatio - Tests de cotigece P. Couillard 2015 Das ue majorité de cas e biologie o cosidèrera certaies hyothèses comme des alteratives à l hyothèse ulle.

Plus en détail