Chap. 5 : Les intérêts (Les calculs financiers)

Dimension: px
Commencer à balayer dès la page:

Download "Chap. 5 : Les intérêts (Les calculs financiers)"

Transcription

1 Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie date (l échéace). Pour le prêteur, les itérêts correspodet à la Pour l empruteur, les itérêts représetet le du prêt (ou du placemet). de l emprut. Les itérêts sot proportioels au capital prêté et à la durée du prêt. O distigue les itérêts simples et les itérêts composés. I- Les itérêts simples A) Défiitio et calcul des itérêts simples Les itérêts simples sot calculés pour chaque période sur le capital iitial (i.e. capital empruté à l origie) et e produiset pas eux-mêmes d itérêts. 1) Formule géérale des itérêts simples (I) Avec : I = C i C : Capital iitial (empruté / prêté ou placé) i : Taux d itérêt par période (exprimé e pourcetage) : durée de l emprut ou du placemet (ombre de périodes) Le taux i et la durée doivet être exprimés das la même uité de temps (si représete u ombre de mois, i doit être u taux mesuel ; si représete u ombre d aées, i doit être u taux auel ; ). Toutefois, les taux d itérêt (i) état gééralemet des taux auels, la formule deviet : I = C i 12 avec exprimé e mois I = C i 360 avec exprimé e jours 1 / 8

2 Exemple : Calcul des itérêts pour u placemet (ou u emprut) de d ue durée de 90 jours au taux auel de 5 %. I =... 2) La otio de valeur acquise (ou valeur future) La valeur acquise par u capital (C) est égale au capital (C) augmeté des itérêts (I) : aleur acquise = C + I = C + (C i ) = C [1 + (i )] (Itérêts simples) Exemple (suite) : aleur acquise =... B) L utilisatio des itérêts simples Les itérêts simples sot gééralemet utilisés pour des opératios fiacières à court terme i.e. pour des placemets ou des crédits d ue durée iférieure à 1 a, otammet : - Escompte des effets de commerce ; - Découverts des comptes courats bacaires ; - Affacturage. Covetio de calcul e Frace : I = C i 360 Les baques retieet au déomiateur 360 jours (aée commerciale) mais la durée du crédit () est calculée e ombre de jours exact (évetuellemet majoré de jours de baque). Les itérêts peuvet être : - Précomptés i.e. payés d avace e début de période (terme à échoir) et doc déduits du motat empruté. C est le cas de l escompte. - Postcomptés i.e. payés e fi de période à l échéace (terme échu) et doc rajoutés au motat remboursé. C est le cas du découvert. Exemple : Le 15/3/N, remise à l escompte d ue LCR. Nomial : ; Echéace : 30/4/N Taux d escompte : 12 % Durée du crédit :... Escompte :... aleur ette (hors commissios) :... 2 / 8

3 II- Les itérêts composés A) Défiitio et calcul des itérêts composés Les itérêts composés sot calculés pour chaque période sur le capital iitial majoré des itérêts des périodes précédetes : les itérêts sot capitalisés (ajoutés au capital) et produiset eux-mêmes des itérêts. E règle géérale, la capitalisatio des itérêts est auelle (les itérêts sot icorporés au capital à la fi de chaque aée). Cotrairemet aux itérêts simples, les itérêts composés de chaque période e sot pas costats. Exemple : C = i = 5 % par a = 4 as Périodes Capital e début de période (base) Itérêts simples Itérêts de la période Capital e début de période (base) Itérêts composés Itérêts de la période aleur acquise ou valeur future (F) et total des itérêts (I) : - Itérêts simples : F = C + I = C + (C i ) = C [1 + (i )] =... I = C i (ou = F C) = % 4 =... - Itérêts composés : F = C + I = C (1 + i) =... I = F C =... Gééralisatio (itérêts composés) : Périodes Capital e début de aleur acquise par le Itérêts de la période période capital e fi de période 1 C C i C (1 + i) 2 C (1 + i) C (1 + i) i C (1 + i) 2 3 C (1 + i) 2 C (1 + i) 2 i C (1 + i) 3 C (1 + i) -1 C (1 + i) -1 i C (1 + i) Le taux i et la durée doivet être exprimés das la même uité de temps (si est u ombre d aées, i doit être u taux auel ; si est u ombre de mois, i doit être u taux mesuel ) 3 / 8

4 B) L utilisatio des itérêts composés Les itérêts composés sot utilisés pour les opératios fiacières à moye et log terme i.e. pour les placemets et les empruts d ue durée supérieure à 1 a. III- La capitalisatio et l actualisatio A) La capitalisatio La capitalisatio est l opératio (fiacière) qui cosiste à détermier la valeur acquise ou valeur future d u capital 0 placé pedat périodes à u taux d itérêt i (les itérêts état e pricipe composés). La valeur acquise (ou future) état égale au capital augmeté des itérêts dispoibles e fi de période Durée du placemet = Le taux i et la durée doivet être exprimés das la même uité de temps. Les sommes 0 et sot dites équivaletes au taux de i % par période (disposer de 0 aujourd hui est équivalet à disposer de das périodes du fait de la possibilité de placer 0 pour obteir das périodes). Exemple 1 : ersemet uique aleur acquise ( ) par u capital de ( 0 ) placé à itérêts composés au taux de 6 % (i) par a pedat 4 as () : =... Exemple 2 : ersemets successifs (costats de début de période) aleur acquise par u versemet de au début de chaque aée placé à itérêts composés au taux de 6 % par a pedat 4 as / 8

5 Il faut capitaliser les quatre versemets et additioer les résultats obteus : =... =... NB : Formule directe pour obteir la somme des flux capitalisés (somme des termes d ue suite géométrique de raiso 1,06) : =... B) L actualisatio L actualisatio est l opératio qui cosiste à détermier la valeur actuelle ( 0 ) d ue somme future ( ) obteue par u placemet pedat périodes à u taux d itérêt i (les itérêts état composés). O recherche aisi la valeur 0 du capital qu il faut placer aujourd hui pedat périodes à u taux d itérêt i pour obteir la somme doée : c est l opératio iverse de la capitalisatio! Durée du placemet 0 = Le taux d itérêt i qui permet de calculer la valeur actuelle est appelé taux d actualisatio. NB : Seule la capitalisatio correspod à ue opératio fiacière réelle (u placemet sur u marché fiacier), l actualisatio est ue techique de calcul fiacier qui permet de comparer des sommes dispoibles à des périodes différetes. Exemple 1 : ersemet uique aleur actuelle ( 0 ) du capital qu il faut placer aujourd hui pedat 4 as à itérêts composés au taux de 5 % pour obteir (das 4 as) ue valeur acquise ( ) de : 0 =... Exemple 2 : ersemets successifs (costats de fi de période) U commerçat propose de payer u bie e 4 mesualités de payables e fi de mois. Avec u taux d actualisatio mesuel de 1 %, quel est le prix au comptat équivalet aux 4 mesualités? 5 / 8

6 Il faut actualiser les 4 versemets et additioer les résultats obteus : 0 =... =... NB : Formule directe pour obteir la somme des flux actualisés (somme des termes d ue suite géométrique de raiso 1,01-1 = 1 / 1,01) : 0 =... Pour le commerçat, il est équivalet d ecaisser immédiatemet ou d ecaisser 4 mesualités de 1 000, la valeur acquise e fi de période état la même das les deux cas : Au comptat : 4 =... A crédit : 4 =... C) Calcul du taux d itérêt ou de la durée d u placemet La formule de la valeur acquise permet de calculer le taux d itérêt i (lorsqu o coaît 0, et ) ou la durée du placemet (lorsqu o coaît 0, et i). 1) Calcul du taux d itérêt = 0 (1 + i) => (1 + i) = 0 => (1 + i) = 0 1 => i = Exemple : Calcul du taux d itérêt qui permet à u capital de placé à itérêts composés d obteir au bout de 5 as ue valeur acquise de ,10 : i =... 6 / 8

7 2) Calcul de la durée d u placemet = 0 (1 + i) => (1 + i) = => l(1 + i) = l 0 0 => l(1 + i) = l 0 => = l 0 l 1 ( + i) Exemple : Calcul de la durée du placemet à itérêts composés au taux de 6 % qui permet à u capital de d obteir ue valeur acquise de ,16 : =... I- Les taux d itérêt proportioels et les taux d itérêt équivalets U taux d itérêt peut être exprimé e taux auel, e taux semestriel, trimestriel, mesuel ou jouralier Il existe deux types de relatios etre ces taux périodiques : ils peuvet être, les us par rapport aux autres, proportioels ou équivalets. A) Les taux d itérêt proportioels Les taux périodiques sot proportioels lorsque, appliqués au même capital et sur la même durée globale, ils doet la même valeur acquise (ou le même itérêt) calculée à itérêts simples (les itérêts e sot pas capitalisés et doc e produiset pas d itérêts). E appelat : i a : Taux d itérêt auel i t : Taux d itérêt trimestriel i m : Taux d itérêt mesuel C : Capital placé : Durée du placemet e aées La relatio etre les taux proportioels est la suivate : aleur acquise = C + I = C + (C i a ) = C + (C i t 4 ) = C + (C i m 12 ) Soit, après simplificatio : i a = i t 4 = i m 12 Les taux sot proportioels quad leur rapport est égal au rapport des périodes auxquelles ils s appliquet. 7 / 8

8 Exemple : Les taux : i a = 12 % ; i t = ; i m = sot des taux proportioels. B) Les taux d itérêt équivalets Les taux périodiques sot équivalets lorsque, appliqués au même capital et sur la même durée globale, ils doet la même valeur acquise (ou le même itérêt) calculée à itérêts composés (les itérêts sot capitalisés et doc produiset des itérêts). La relatio etre les taux équivalets est la suivate : aleur acquise = C + I = C (1 + i a ) = C (1 + i t ) 4 = C (1 + i m ) 12 Soit, après simplificatio : Exemple : (1 + i a ) = (1 + i t ) 4 = (1 + i m ) 12 Les taux : i a = 12 % ; i t = ; i m = sot des taux équivalets. Exemple de sythèse : Taux mesuel (i m ) Taux trimestriel (i t ) Taux auel (i a ) i m = 1 % Taux proportioels i t = 3 % i a = 12 % i m = 1 % Taux équivalets i t = 3 % i a = 12 % Cf. Fiche coseil p.39 Cf. Exos «Outils mathématiques de gestio» p. 43 (Itérêts simples) et p. 44 (Itérêts composés) 8 / 8

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé :

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé : http://maths-scieces.fr OPÉRATIONS FINANIÈRES A INTÉRÊTS OMPOSÉS I) Itérêts et valeur acquise Défiitio U capital est placé à itérêts composés lorsque le motat des itérêts produits à la fi de chaque période

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation 1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus

Plus en détail

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3... Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1

Plus en détail

Intérêt simple CHAPITRE. Sommaire

Intérêt simple CHAPITRE. Sommaire HAPTRE térêt simple Sommaire A B D E F G H J K L Notio d itérêt Formule fodametale de l itérêt simple Durée de placemet exprimée e mois Durée de placemet exprimée e jours alculs sur la formule fodametale

Plus en détail

Chapitre 1: Calcul des intérêts

Chapitre 1: Calcul des intérêts Chapitre 1: Calcul des itérêts Ce chapitre vise à familiariser le lecteur avec les otios suivates : Itérêt Taux d itérêt omial Taux d itérêt périodique Valeur acquise Valeur actuelle Capitalisatio Le lecteur

Plus en détail

2 ième partie : MATHÉMATIQUES FINANCIÈRES

2 ième partie : MATHÉMATIQUES FINANCIÈRES 2 ième partie : MATHÉMATIQUES FINANCIÈRES 1. Défiitios L'itérêt est l'idemité que doe au propriétaire d'ue somme d'arget celui qui e a joui pedat u certai temps. Divers élémets itervieet das le calcul

Plus en détail

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4 UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»

Plus en détail

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces

Plus en détail

2 Mathématiques financières

2 Mathématiques financières 2 Mathématiques fiacières 2.1 Cours et TD Les créaciers prêtet des capitaux cotre ue rémuératio : les itérêts, ce que l o rembourse e plus du capital empruté. Nous percevos égalemet des itérêts lorsque

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

Gestion du Risque de Change

Gestion du Risque de Change A / Pratiques de cotatio Gestio du Risque de Chage - Moaies «i» : FRF, DEM «pré i» : GBP «out» : USD EONIA : Europea over ight idex average TEC : taux à échage costat Toute cotatio compred deux prix :

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

Comment utiliser ce que vous POSSÉDEZ pour réduire ce que vous DEVEZ

Comment utiliser ce que vous POSSÉDEZ pour réduire ce que vous DEVEZ Commet utiliser ce que vous POSSÉDEZ pour réduire ce que vous DEVEZ Survol du compte Mauvie U La majorité des Caadies gèret leurs fiaces comme suit : 1. Ils déposet leur reveu et autres actifs à court

Plus en détail

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules est à dispositio olie et sera doé aux cadidats lors des exames oraux

Plus en détail

MATHÉMATIQUES Corrigé

MATHÉMATIQUES Corrigé Exame de ovembre 009 Exame du premier trimestre Le 30 ovembre 009 Classes de ère STG Durée 3 heures MATHÉMATIQUES Corrigé Note aux cadidats L emploi des calculatrices est autorisé (circulaire 99 86 du

Plus en détail

Mathématiques financières

Mathématiques financières Uiversité Paris 7 Maîtrise MIM/MASS 2003/2004 31MIM052 E.TEMAM Mathématiques fiacières Email : temam@math.jussieu.fr I. Les marchés fiaciers... 3 A. Les produits fiaciers... 3 1. Les actios... 3 2. Les

Plus en détail

L Évaluation d entreprise

L Évaluation d entreprise JOB : mp DIV : 10571 ch10 p. 1 folio : 303 --- 29/8/07 --- 15H31 [ L Évaluatio d etreprise q L évaluatio se pratique à de multiples occasios : cessio de l etreprise, émissio d actios ouvelles, fusio, itroductio

Plus en détail

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules sera mis à dispositio des cadidats, si écessaire. Etat au 1er mars

Plus en détail

Mathématiques financières

Mathématiques financières Uiversité Paris 7 Master ère aée 25/26 E. Temam Mathématiques fiacières Partie I Email : temam@math.jussieu.fr I. Les marchés fiaciers... 3 A. Vocabulaire des marchés fiaciers... 3 B. Les produits fiaciers...

Plus en détail

Mathématique financière Sous le thème Les annuités variables : cas Des annuités en suite géométrique

Mathématique financière Sous le thème Les annuités variables : cas Des annuités en suite géométrique Les auités variables : cas e suites géométriques 1 Mathématique fiacière Sous le thème Les auités variables : cas Des auités e suite géométrique Préseter par : TAYEBI par : AHLAM ecadré MERYEM BENJELOUN

Plus en détail

L hebdo Finance de la MACS

L hebdo Finance de la MACS - DU 2 AU 9 OCTOBRE 2006 - Numéro DÉFINITION DE LA SEMAINE : Stock otio Idice boursier DOSSIER DE LA SEMAINE : Simulatio d u rêt immobilier 2 LES COURS DU JOUR Le jeudi 2 octobre 7 L hebdo Fiace de la

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR Semestre : 4 Module : Méthodes Quattatves III Elémet : Mathématques Facères Esegat : Mme BENOMAR Elémets du cours Itérêts smples, précompte, escompte et compte courat Itérêts composés Autés Amortssemets

Plus en détail

Séquence 8. Suites arithmétiques et géométriques. Sommaire

Séquence 8. Suites arithmétiques et géométriques. Sommaire Séquece 8 Suites arithmétiques et géométriques Sommaire Pré-requis Suites arithmétiques Suites géométriques Sythèse du cours Exercices d approfodissemet Séquece 8 MA Ced - Académie e lige Pré-requis A

Plus en détail

Cours : Le choix des investissements grâce à l actualisation : La VAN (Valeur Actualisée Nette) et le TIR (Taux Interne de Rendement)

Cours : Le choix des investissements grâce à l actualisation : La VAN (Valeur Actualisée Nette) et le TIR (Taux Interne de Rendement) Cours : Le choix des ivestissemets grâce à l actualisatio : La VAN (Valeur Actualisée Nette) et le TIR (Taux Itere de Redemet) 1 La VAN, la Valeur Actualisée (ou Actuelle) Nette e aveir certai 11 La comparaiso

Plus en détail

Augmentation de la demande du produit «P» Prévision d accroître la capacité de production (nécessité d investir) Investissement

Augmentation de la demande du produit «P» Prévision d accroître la capacité de production (nécessité d investir) Investissement Augmetatio de la demade du produit «P» Prévisio d accroître la capacité de productio (écessité d ivestir) Ivestissemet Etude de retabilité du produit «P» Jugemet de l opportuité et de la retabilité du

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Fiace d Etreprise, Gestio des systèmes d iformatio. SESSION 2012 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et fiace d etreprise

Plus en détail

COMITE DE NORMALISATION OBLIGATAIRE "C.N.O." Association régie par la loi du 1er juillet 1901

COMITE DE NORMALISATION OBLIGATAIRE C.N.O. Association régie par la loi du 1er juillet 1901 COMITE DE NORMALISATION OBLIGATAIRE "C.N.O." Associatio régie par la loi du 1er juillet 1901 Le 17 Mars 2005 Règles de calcul des coupos des empruts d Etat sur le marché de gros Après décisio de so A.G.

Plus en détail

Séquence 1. Suites numériques

Séquence 1. Suites numériques Séquece Suites umériques Objectifs de la séquece Recoaître des situatios faisat iterveir des suites géométriques ou des suites arithmético-géométriques. Modéliser ces situatios par des suites géométriques

Plus en détail

Fiche standardisée pour plan tarifaire mobile à prépayement

Fiche standardisée pour plan tarifaire mobile à prépayement Fiche stadardisée pour pla tarifaire mobile à prépayemet Opérateur Mobile Vikigs Pla tarifaire 10 Date de derière mise à jour 27/05/2015 Date de limite de validité Ne s applique pas Valeur de recharge

Plus en détail

Le meilleur scénario pour votre investissement

Le meilleur scénario pour votre investissement ivestir Best Strategy 2012 Le meilleur scéario pour votre ivestissemet U ivestissemet diversifié U coupo uique de 0% à 50% brut* à l échéace Ue courte durée : 4 as et demi Votre capital garati à l échéace

Plus en détail

UNIVERSITÉ DE SFAX École Supérieure de Commerce

UNIVERSITÉ DE SFAX École Supérieure de Commerce UNIVERSITÉ DE SFAX École Supérieure de Commerce Aée Uiversitaire 2003 / 2004 Auditoire : Troisième Aée Études Supérieures Commerciales & Scieces Comptables DÉCISIONS FINANCIÈRES Note de cours N 3 Première

Plus en détail

Analyse mathématique II

Analyse mathématique II UNIVERSITÉ IBN ZOHR Faculté des Scieces Juridiques Écoomiques et Sociales Corrigés des QCM Aalyse mathématique II FILIÈRE SCIENCES ÉCONOMIQUES ET GESTION PREMIERE ANNÉE Sessio ormale 03/04 40 questios

Plus en détail

Chapitre 1 : Les notions de base

Chapitre 1 : Les notions de base Chapitre : Les otios de base Itroductio I Comparer des gradeurs A) Les pourcetages B) Taux de variatio, coefficiet multiplicateur, idice C) Importace du ses de la comparaiso ) Raisoemet sur les taux de

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

le billet vert Autocall EUR/USD investir n Profiter d une possible appréciation du dollar américain

le billet vert Autocall EUR/USD investir n Profiter d une possible appréciation du dollar américain ivestir Autocall EUR/USD Feu vert pour le billet vert Profiter d ue possible appréciatio du dollar américai U coupo uique évetuel de 8% brut la 1 re aée à 40% brut la 5 e aée U capital garati à 100% à

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Calcul et raisoemet Remise à Niveau Mathématiques Première partie : Calcul et raisoemet Exercices Page sur 9 RAN Calcul et raisoemet Ex - Rev 04 Mathématiques RAN - Calcul et raisoemet

Plus en détail

École de technologie supérieure

École de technologie supérieure École de techologie supérieure Mat 165-04 Algèbre liéaire et aalyse vectorielle A-015 Michel Beaudi michel.beaudi@etsmtl.ca Liste d exercices à faire e T.P./Caledrier des évaluatios Itroductio au cours

Plus en détail

Suites. q et k IN et n IN : u. Démonstration : A l aide du schéma ci-dessous on peut établir la formule explicite du terme général en fonction de n :

Suites. q et k IN et n IN : u. Démonstration : A l aide du schéma ci-dessous on peut établir la formule explicite du terme général en fonction de n : Suites A) Suites géométriues Défiitio et formules Défiitio : forme récursive Ue suite est géométriue lorsue, à partir du terme iitial, l o passe d'u terme de la suite au terme suivat e multipliat toujours

Plus en détail

Compte Sélect Banque Manuvie Guide du débutant

Compte Sélect Banque Manuvie Guide du débutant GUIDE DU DÉBUTANT Compte Sélect Baque Mauvie Guide du débutat Besoi d aide? Preez quelques miutes pour lire attetivemet votre Guide du cliet. Le préset Guide du débutat vous facilitera l utilisatio de

Plus en détail

Suites arithmétiques et Géométriques. Exemple 1. La suite des nombres 1, 3, 5, 7, 11, 13. ou la suite des nombres 100, 110, 121, 133.1, 146.41...

Suites arithmétiques et Géométriques. Exemple 1. La suite des nombres 1, 3, 5, 7, 11, 13. ou la suite des nombres 100, 110, 121, 133.1, 146.41... Sites arithmétiqes et Géométriqes Nos allos cosidérer des sites de ombres réels Exemple La site des ombres,, 5, 7,, o la site des ombres,,,, 464 Défiitio/Notatio : La site est e gééral oté ( ) (o ( v )

Plus en détail

Questions pour un champion en ligne

Questions pour un champion en ligne Questios pour u champio e lige Le jeu télévisé QPUC préseté sur FR3 et aimé par Julie Lepers existe aussi e variate «e lige». U jeu «e lige» se déroule aisi : Six iterautes disputet ue première mache dite

Plus en détail

Rappels. A-Oukhai Suites géométriques 2 e Science

Rappels. A-Oukhai Suites géométriques 2 e Science A-Oukhai Suites géométriques e Sciece Rappels Pour motrer que u est ue suite géométrique : Soit o exprime u +1 e foctio de u et o doit trouver ue relatio de la forme u +1 qu où q est u réel qui e déped

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

6 Marché monétaire et financier

6 Marché monétaire et financier 6 Marché moétaire et fiacier NOTES EXPLICATIVES Le taux d escompte caadie est le taux auquel la Baque du Caada coset des avaces à très court terme aux istitutios fiacières et pour certaies trasactios sur

Plus en détail

Chapitre 8 wicky-math.fr.nf Suites. Exercices : Suites. 4.u n = n u n = cos n π ) 6.u n =n 2 n + 1. u n+1 = u n 1.

Chapitre 8 wicky-math.fr.nf Suites. Exercices : Suites. 4.u n = n u n = cos n π ) 6.u n =n 2 n + 1. u n+1 = u n 1. 1 Défiir ue suite Exercices : Suites Exercice 1. Pour chacue des suites suivates, trouver la foctio f à valeurs réelles telle que, pour tout, u =f), puis calculer les termes deu 0 àu 5 1.u = + 5.u = 1

Plus en détail

relatif à la transmission d ordres par fax et téléphone

relatif à la transmission d ordres par fax et téléphone Règlemet Télé-Equity relatif à la trasmissio d ordres par fax et téléphoe (Cliets de détail) 02541 Pour des raisos d efficacité et de rapidité, le Cliet peut trasmettre ses ordres par fax et/ou téléphoe

Plus en détail

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures)

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures) ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D ÉCONOMIE APPLIQUÉE ENSEA ABIDJAN AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie B Optio Écoomie MATHÉMATIQUES (Durée de l épreuve : 4 heures)

Plus en détail

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme.

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme. 1S DS o 1 Durée : h Exercice 1 ( 7 poits ) 1. La suite (u ) est défiie pour tout etier aturel par u = 3 + est-elle arithmétique? Pour tout etier aturel, o a : u +1 = ( + 1) 3( + 1) + = + + 1 3 3 + = La

Plus en détail

Les solutions mi-hypothécaires, mi-bancaires de Manuvie. Guide du conseiller

Les solutions mi-hypothécaires, mi-bancaires de Manuvie. Guide du conseiller Les solutios mi-hypothécaires, mi-bacaires de Mauvie Guide du coseiller 1 2 Table des matières Itroductio... 5 La Baque Mauvie...5 Le compte Mauvie U...5 Le compte Sélect Baque Mauvie...5 1. Les solutios

Plus en détail

Rappels sur les calculs financiers. Bibliographie indicative. Bodie, Merton & Thibierge, 2002, Finance, Pearson education.

Rappels sur les calculs financiers. Bibliographie indicative. Bodie, Merton & Thibierge, 2002, Finance, Pearson education. Uiversité de Nice-Sophia Atipolis Istitut Uiversitaire de Techologie Nice-Côte d Azur Départemet Gestio des Etreprises et des Admiistratios Gestio Fiacière Les objectifs pricipaux Maîtriser les cocepts

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

Correction des exercices sur la nature ondulatoire de la lumière

Correction des exercices sur la nature ondulatoire de la lumière CORRECTION EXERCICES TS /5 CHAPITRE 3 Correctio des exercices sur la ature odulatoire de la lumière Correctio exercice : idice d u verre et réfractio. La radiatio = 530 m est verte et la radiatio = 680

Plus en détail

COMMUNIQUÉ DROIT DE LA FAMILLE ET DES PERSONNES Juin 1997

COMMUNIQUÉ DROIT DE LA FAMILLE ET DES PERSONNES Juin 1997 COMMUNIQUÉ DROIT DE LA FAMILLE ET DES PERSONNES Jui 1997 RÉFORME MAJEURE DANS LE DOMAINE DE LA FIXATION ET DU TRAITEMENT FISCAL DES PENSIONS ALIMENTAIRES Le mode de fixatio et la fiscalité des pesios alimetaires

Plus en détail

Travaux dirigés G33 Dimensionnement 2 séances Enseignant : Anthony Busson.

Travaux dirigés G33 Dimensionnement 2 séances Enseignant : Anthony Busson. Travaux dirigés G33 Dimesioemet 2 séaces Eseigat : Athoy Busso. Exercice 1 : O cosidère u web switch et 3 serveurs web. Le web switch reçoit les requêtes http proveat des cliets et les répartit de maière

Plus en détail

1. OPC sans terme fixe et sans protection de capital

1. OPC sans terme fixe et sans protection de capital Associatio Belge des Orgaismes de Placemet Collectif Belgische Vereigig va de Istellige voor Collectieve Beleggig Aveue Marixlaa 8 (III+4) 000 BRUSSEL/BRUXELLES el. (3-) 547 74 06/09/0 Fax (3-) 547 74

Plus en détail

La décision d investissement

La décision d investissement Chapitre 2 La décisio d ivestissemet De toutes les décisios à log terme prises par l etreprise, l ivestissemet est certaiemet la plus importate. L etreprise doit o seulemet ivestir pour assurer le reouvellemet

Plus en détail

A LA DÉCOUVERTE DES DIFFÉRENTES MOYENNES

A LA DÉCOUVERTE DES DIFFÉRENTES MOYENNES A LA DÉCOUVERTE DES DIFFÉRENTES MOYENNES Les 5 activités ci-dessous coceret les différetes moyees (arithmétique, géométrique, harmoique et quadratique) utilisées, certaies fois sas le savoir, das la vie

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe 1/5 Trois objectifs poursuivis par le gouveremet : > améliorer la compétitivité fiscale de la Frace > péreiser les activités de R&D > faire de la Frace u territoire attractif pour l iovatio Les icitatios

Plus en détail

CHAPITRE 1 MARCHÉS FINANCIERS ET CARACTÉRISTIQUES DES PRODUITS DE TAUX D INTÉRÊT

CHAPITRE 1 MARCHÉS FINANCIERS ET CARACTÉRISTIQUES DES PRODUITS DE TAUX D INTÉRÊT CHAPITRE 1 MARCHÉS FINANCIERS ET CARACTÉRISTIQUES DES PRODUITS DE TAUX D INTÉRÊT TESTEZ VOS CONNAISSANCES Qu'et-ce qu'u marché fiacier et quel et o rôle? Qu'et-ce qu'ue ititutio fiacière? Quelle ot le

Plus en détail

II. Les intérêts composés

II. Les intérêts composés P6C03 Les calculs financiers Les intérêts représentent le loyer de l argent et correspondent à la rémunération du prêteur. I. Les intérêts simples Les intérêts simples sont utilisés pour des opérations

Plus en détail

Codes détecteurs et correcteurs d erreurs

Codes détecteurs et correcteurs d erreurs Codes détecteurs et correcteurs d erreurs Lorsque des doées umériques sot stockées ou trasmises, des perturbatios (par exemple électromagétiques) peuvet les edommager. Les codes détecteurs et correcteurs

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

Proposés par Hugues SILA, professeur de mathématiques des lycées

Proposés par Hugues SILA, professeur de mathématiques des lycées Téléchargé gratuitemet sur le site http://sila.e-mosite.com tél : 00237 675 277 432 Travaux dirigés de mathématiques Classe : 1 ères C, D, TI aée Scolaire 2014/2015 Proposés par Hugues SILA, professeur

Plus en détail

n Le choix entre plusieurs possibilités d investissement. n Des versements libres. n Une épargne disponible.

n Le choix entre plusieurs possibilités d investissement. n Des versements libres. n Une épargne disponible. L UN DES MEILLEURS CONTRATS D ASSURANCE-VIE DU MARCHÉ ACTÉPARGNE Actéparge : l u des meilleurs cot Actéparge, la solutio persoalisée LES FRANÇAIS ET L ASSURANCE-VIE Optimisatio fiacière Gestio souple Régime

Plus en détail

PROBABILITES à la STATISTIQUE - APPLICATIONS - Jean-Marie MARION

PROBABILITES à la STATISTIQUE - APPLICATIONS - Jean-Marie MARION Des PROBABILITES à la STATISTIQUE - APPLICATIONS - Jea-Marie MARION 1 STATISTIQUE DESCRIPTIVE (décrire ue populatio à l aide de caractéristiques et graphiques) STATISTIQUE INFERENTIELLE (étedre des résultats

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

CORRECTION DU BAC BLANC 2

CORRECTION DU BAC BLANC 2 CORRCTION DU BAC BLANC 2 XRCIC 1 (6 poits) Baccalauréat ST Mercatique Podichéry - 2010 Deux tableaux sot doés e aexe : le premier doe l évolutio du prix du mètre carré das l immobilier résidetiel acie

Plus en détail

S-PENSION. Constituez-vous un capital retraite complémentaire pour demain tout en bénéficiant d avantages fiscaux dès aujourd hui.

S-PENSION. Constituez-vous un capital retraite complémentaire pour demain tout en bénéficiant d avantages fiscaux dès aujourd hui. S-PENSION Costituez-vous u capital retraite complémetaire pour demai tout e bééficiat d avatages fiscaux dès aujourd hui. Sommaire 1. Il est temps de predre l iitiative 4 2. Profitez dès aujourd hui des

Plus en détail

MOYENNES. Moyenne arithmétique simple x de n éléments n

MOYENNES. Moyenne arithmétique simple x de n éléments n MOYENNES. Moyees : premières formules Moyee arithmétique simple de élémets + +... + +,,...,, Moyee arithmétique podérée de élémets,,...,, muis des coefficiets p, p,..., p, p p + p +... + p + p p+ p+...

Plus en détail

Formation d un ester à partir d un acide et d un alcool

Formation d un ester à partir d un acide et d un alcool CHAPITRE 10 RÉACTINS D ESTÉRIFICATIN ET D HYDRLYSE 1 Formatio d u ester à partir d u acide et d u alcool 1. Nomeclature Acide : R C H Alcool : R H Groupe caractéristique ester : C Formule géérale d u ester

Plus en détail

Les emprunts indivis. Auteur : Philippe GILLET

Les emprunts indivis. Auteur : Philippe GILLET Les emruts dvs Auteur : Phle GILLET Emrut dvs et emrut oblgatare Emrut dvs Emrut oblgatare Souscrt ar ue ou luseurs baques Pluseurs souscrteurs Dvsé e arts : oblgatos Oblgatos cotées Grad ombre de souscrteurs

Plus en détail

ANNEXE 10 - Différentes composantes du Loyer hors le Loyer Financier L1

ANNEXE 10 - Différentes composantes du Loyer hors le Loyer Financier L1 ANNEXE - Différetes composates du oyer hors le oyer Fiacier Coformémet à l article 2 du Cotrat, le oyer est détermié comme suit : oyer = + 2 + 3 + 4 e loyer sera payé au Titulaire, trimestriellemet à terme

Plus en détail

EPREUVES AU CHOIX DU CANDIDAT. Durée : De 09 h 00 à 12 h 00 (Heure de Yaoundé, TU + 1)

EPREUVES AU CHOIX DU CANDIDAT. Durée : De 09 h 00 à 12 h 00 (Heure de Yaoundé, TU + 1) CYCLE DESS-A 02 JUILLET 200 20 ème Promotio 200 / 202 CONCOURS D ENTREE A L IIA EPREUVES AU CHOIX DU CANDIDAT Durée : De 09 h 00 à 2 h 00 (Heure de Yaoudé, TU + ) Le cadidat traitera au choix l ue des

Plus en détail

Les nouveaux relevés de compte

Les nouveaux relevés de compte Ifo CR Les ouveaux relevés de compte Les relevés de compte actuels du Crédit Agricole de Champage-Bourgoge sot issus de la migratio iformatique sur le GIE AMT e 2001 : petit format (mais A4 pour les Professioels),

Plus en détail

Problème I- Acide éthanoïque (ph et conductimétrie) Enoncé

Problème I- Acide éthanoïque (ph et conductimétrie) Enoncé - Acide éthaoïque (ph et coductimétrie) Eocé 1- L acide éthaoïque (H 3 OOH) est u oxydat e solutio aqueuse das le couple H 3 OOH/H 3 H OH (acide éthaoïque/éthaol). Écrire la demi-équatio d oxydoréductio

Plus en détail

La Méthode de Monte Carlo

La Méthode de Monte Carlo La Méthode de Mote Carlo Etiee Pardoux UMR 6632 Laboratoire d Aalyse, Topologie, Probabilités et EA 3781 Evolutio Biologique Uiversité de Provece Etiee Pardoux (LATP) Marseille, 13/09/2006 1 / 33 Cotets

Plus en détail

Promenades aléatoires : vers les chaînes de Markov

Promenades aléatoires : vers les chaînes de Markov AME Dossier : Matrices et suites 545 romeades aléatoires : vers les chaîes de Markov ierre Griho (*) Cet article propose ue mise e perspective de la otio de promeade ou de marche aléatoire itroduite das

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

S5 Info-MIAGE 2013-2014 Mathématiques Financières Intérêts simples. Université de Picardie Jules Verne Année 2013-2014 UFR des Sciences

S5 Info-MIAGE 2013-2014 Mathématiques Financières Intérêts simples. Université de Picardie Jules Verne Année 2013-2014 UFR des Sciences Université de Picardie Jules Verne Année 2013-2014 UFR des Sciences I - Définitions Licence mention Informatique parcours MIAGE - Semestre 5 Mathématiques Financières LES INTERETS SIMPLES Capital ou principal

Plus en détail

Opérations bancaires avec l étranger *

Opérations bancaires avec l étranger * Opératios bacaires avec l étrager * Coditios bacaires au 1 er juillet 2011 Etreprises et orgaismes d itérêt gééral Opératios à destiatio de l étrager Viremets émis vers l étrager : viremet e euros iférieur

Plus en détail

Un accès direct à vos comptes 24h/24 VOTRE NUMÉRO CLIENT. www.bnpparibas.net. Centre de Relations Clients 0 820 820 001 (0,12 /min)

Un accès direct à vos comptes 24h/24 VOTRE NUMÉRO CLIENT. www.bnpparibas.net. Centre de Relations Clients 0 820 820 001 (0,12 /min) * selo coditios cotractuelles e vigueur. U accès direct à vos comptes 24h/24 VOTRE NUMÉRO CLIENT + VOTRE CODE SECRET * : www.bpparibas.et Cetre de Relatios Cliets 0 820 820 001 (0,12 /mi) Appli Mes Comptes

Plus en détail

Mathématiques B30. Suites et séries Module de l élève

Mathématiques B30. Suites et séries Module de l élève Mathématiques B30 Suites et séries Module de l élève 00 Mathématiques B30 Suites et séries Module de l élève Bureau de la miorité de lague officielle 00 Liste des objectifs du programme d'études de Mathématiques

Plus en détail

Partie I : Gestion de portefeuilles actions Chapitre 2 Evaluation actuarielle des actions

Partie I : Gestion de portefeuilles actions Chapitre 2 Evaluation actuarielle des actions Patie I : Gestio de potefeuilles actios Chapite 2 Evaluatio actuaielle des actios Gestio de Potefeuille La valeu omiale d ue actio est éale au capital social divisé pa le ombe de tites. Pou les sociétés

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil. Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

Votre compte Manuvie Un peut continuer à travailler... même lorsque vous ne le pouvez pas L ASSURANCE CRÉDIT MANUVIE UN

Votre compte Manuvie Un peut continuer à travailler... même lorsque vous ne le pouvez pas L ASSURANCE CRÉDIT MANUVIE UN Votre compte Mauvie U peut cotiuer à travailler... même lorsque vous e le pouvez pas L ASSURANCE CRÉDIT MANUVIE UN Sas reveu, auriez-vous ecore ue maiso? Si vous avez des dettes à rembourser, ue blessure

Plus en détail

I. (2 points) III. (2 points)

I. (2 points) III. (2 points) ère S Cotrôle du vedredi 7 mars 05 (0 mi) Préom : Nom : Note : / 0 II ( poits) Soit ABC u triagle isocèle e A tel que AB AC 8 cm et BC 5 cm O ote I le milieu de [AC] Calculer BI (valeur exacte) I ( poits)

Plus en détail

Exercices de révision

Exercices de révision Exercices de révisio Exercice U ivesisseur souscri à l émissio d u bille de résorerie do les caracérisiques so les suivaes : - Nomial : 5 M - Taux facial : 3,2% - Durée de vie : 9 mois L ivesisseur doi

Plus en détail

Conditions Tarifaires

Conditions Tarifaires Coditios Tarifaires Avril 2015 www.alliazbaque.fr Avec vous de A à Z Sommaire 1 Sommaire Les présetes Coditios Tarifaires sot applicables à compter du 1er avril 2015 aux particuliers exclusivemet. Elles

Plus en détail

Commission de réforme des pensions Note sur la neutralité actuarielle. Annexe III

Commission de réforme des pensions Note sur la neutralité actuarielle. Annexe III Commissio de réforme des pesios 00-040 Note sur la eutralité actuarielle Aexe III. Das le cadre de la mise e place otammet d ue «pesio à mi-temps», la questio de la correctio actuarielle à apporter aux

Plus en détail

PROJET DE MONTE CARLO SUJET 1: LE PRICING

PROJET DE MONTE CARLO SUJET 1: LE PRICING LE Age KHOURI Nadie M MMD PROJE DE MONE ARLO SUJE : LE PRIING Selim ZOUGHLAMI QUESION : Supposos d abord que X est u mouvemet browie W t G([ 0, ]) Alors W0 G( 0 ) suit ue loi N(0,0) et doc W 0ps 0 Esuite,

Plus en détail