LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.

Dimension: px
Commencer à balayer dès la page:

Download "LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil."

Transcription

1 Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la Lue et du Soleil doivet être aligés : Si la Terre est située etre le Soleil et la Lue, il aura éclipse de Lue ; cette derière présete la phase de Pleie Lue ; la Lue etre das le côe d ombre de la Terre. Si la Lue est située etre le Soleil et la Terre, il aura éclipse de Soleil ; ue telle éclipse e peut se produire que lors de la phase de Nouvelle Lue ; la Terre est atteite par le côe d ombre de la Lue. Schémas d éclipses de Soleil : la Lue est située etre le Soleil et la Terre. IMCCE Schéma d ue éclipse de Lue : la Terre est située etre le Soleil et la Lue. CLEA E réalité les coditios pour que se réalise ue éclipse sot plus compliquées que e le laisset supposer les schémas précédets. Les coditios d ue éclipse ) O a vu, das ce qui précède, que pour qu ue éclipse se reproduise, il est écessaire que ce soit lors d ue même phase : soit la phase de Pleie Lue (pour ue éclipse de Lue), soit celle de Nouvelle Lue (pour ue éclipse de Soleil). Cette coditio sur la phase est cepedat pas suffisate.

2 2) O sait que la Terre orbite autour du Soleil das u pla appelé écliptique qu elle parcourt e u a. Sa trajectoire est très proche d u cercle. De même, la Lue orbite autour de la Terre sur ue trajectoire relativemet elliptique, qui est pas coteue das l écliptique. C est aisi que le pla de l orbite luaire est iclié par rapport à l écliptique (d eviro 5 ). L orbite luaire traverse le pla de l écliptique e deu poits appelés œud ascedat et œud descedat. L aligemet des cetres du Soleil, de la Terre et de la Lue e peut se produire qu au voisiage des œuds. Or la lige des œuds de l orbite luaire est pas toujours aligée avec le Soleil (voir schéma ci-dessous). Coclusio Pour qu il ait éclipse, il est doc écessaire que : la Lue présete ue phase de Pleie Lue, ou ue phase de Nouvelle Lue, la Lue soit au voisiage de l u de ses œuds. Chacu des phéomèes précédets se caractérise par ue période spécifique : l itervalle de temps qui sépare deu phases idetiques porte le om de révolutio sodique. La révolutio sodique de la Lue a ue durée de 29, jours. l itervalle de temps qui sépare deu passages de la Lue au même œud porte le om de révolutio dracoitique. La révolutio dracoitique a ue durée de 27, jours. CLEA O a figuré sur ce schéma le pla de l orbite de la Terre autour du Soleil (e beige), et pour quatre positios de la Terre, le pla orbital de la Lue (e bleu) aisi que la positio de celle-ci sur so orbite (poits gris). La lige des œuds est figurée e vert. E, il a éclipse de Lue : la Lue passe das l ombre de la Terre, E 2 il a pas d éclipse (l ombre de la Terre passe «au-dessus» de la Lue), E 3, il a éclipse de Soleil : la Lue passe etre le Soleil et la Terre et projette so ombre sur cette derière, E 4 il a pas d éclipse (l ombre de la Terre passe «au-dessous» de la Lue). O ote égalemet que la lige des œuds (e vert) garde ue directio fie das l espace et qu elle passe par le Soleil à eviro 6 mois d itervalle. Le retour d ue éclipse Après ue éclipse doée, pour qu ue ouvelle éclipse de même ature et se produisat das les mêmes coditios ait lieu, il est écessaire qu u itervalle de temps qui permettet à la fois le retour d ue même phase et u passage au même œud, se produise. Mathématiquemet, cela se traduit par ue durée qui sera le plus petit multiple commu à la période sodique et à la période dracoitique. E d autres termes, cet itervalle de temps d (eprimé e jours) doit satisfaire à la fois au deu coditios suivates : d = 29, et d = 27, m, où et m sot des etiers. 2

3 Remarque Cette recherche s apparete à celle d u PPCM. La différece proviet de ce que le PPCM est défii das l esemble des etiers, alors que das le cas qui ous occupe ici, les périodes sodiques et dracoitiques sot des réels quelcoques. E raiso de cette différece, la méthode de recherche du plus petit multiple commu au deu périodes e pourra s effectuer par ue décompositio e produits de facteurs premiers, comme das le cas du PPCM. Calcul d ue valeur de d O remarque que si = 242, alors d = 27, = 6 585, et que si m = 223, alors d = 29, = 6 585, O costate que la partie etière est commue à ces deu résultats, ce qui est égalemet vrai pour la première décimale. U calcul précis de d se fait e résolvat l équatio au icoues etières m et (décompositio de réels e fractios cotiues ) : S m = D, où S représete la période sodique, et D la période dracoitique. Iterprétatio de la partie commue de d 6 585,3 est ue valeur approchée eprimée e jours : il a doc jours 0,3 jour qui vot séparer deu éclipses de même ature et se produisat das les mêmes coditios. Or la valeur e jours (solaires moes) de l aée est : 365,2596. Cherchos combie il a d aées coteues das 6 585,3 jours : 6 585,3 8, ,2596 Ceci sigifie que la durée de 6 585,3 jours représete légèremet plus que 8 as. Précisos u peu. O a : = Il a doc, a priori, u ecédet de 6 585, = 5, 3 jours. Comme das l espace de 8 as o pourra recotrer 3, 4 ou 5 aées bissetiles, il coviet de rajouter 3, 4 ou 5 jours à O obtiet e défiitive : 6 585,3 ( ) = 2,3 jours 6 585,3 ( ) =,3 jours 6 585,3 ( ) = 0,3 jours Doc l écart de temps séparat deu éclipses de même ature et de coditios idetiques est : 8 as plus 0, ou 2 jours et 0,3 jour, c est-à-dire eviro 8 heures. Ce derier résultat s iterprète e disat que la Terre aura touré d eviro 8 heures de plus, soit 20, doc que l éclipse e se reproduira pas au même edroit sur la Terre (cette remarque vaut essetiellemet pour les éclipses de Soleil). La méthode de détermiatio emploée ici, et qui s apparete à ue recherche de PPCM, doe ue très boe valeur approchée ; pour obteir ue valeur plus précise de d, o fait iterveir d autres coditios et ue autre méthode de calcul (décompositio d u réel e fractios cotiues). Le saros O désige par saros cette période de 8 as et 0 jours (évetuellemet ou 2, pour teir compte des aées bissetiles) au bout de laquelle les éclipses se reproduiset das le même ordre, au mêmes luaisos avec des caractères très semblables. O igore e réalité (et cotrairemet à ce que l o e dit très souvet) si les Acies coaissaiet ou o le saros. Ce terme a été emploé pour la première fois par Edmud Halle ( ) qui iterpréta mal u tete acie (la Souda). Chez les Chaldées, le mot saros désige l Uivers, ou bie u ombre période de 222 mois luaires, c est-à-dire 8 as et 6 mois, avec ue aée de 2 mois luaires. Le tete acie emploait le mot saros pour ue durée qui avait rie à voir avec les éclipses. Valeur précise du saros La valeur eacte du saros est de 8 as, 0 ou ou 2 jours et 8 heures. Eemple de table prédictive d éclipses Bie que l erreur de Halle ait été maites fois déocée par d autres astroomes (Ideler e 825, Taer e 893, Schiaparelli e 908, Bigouda e 9 et Paekoek e 97) le mot saros cotiue de os jours à désiger la période de 8 as et 0, ou 2 jours attachée au retour des éclipses. Voir e fi de documet 3

4 Suites des prochaies éclipses de soleil et de Lue (saros allat de 2000 à 2025) 4

5 Décompositio d u réel e fractios cotiues Observatoire de Paris La décompositio d'u réel e fractios cotiues permet d'obteir ue approimatio d'u réel positif r sous la forme d'u quotiet de deu etiers. La méthode cosiste à décomposer le réel e partie etière et e partie décimale : r = a 0 u, u état iférieur à, o pred so iverse et o cotiue comme précédemmet e itérat avec les restes successifs : = a u2 u = a u u E remplaçat les u i par leurs epressios, le réel se présete sous la forme de fractios emboîtées qui défiisset la fractio cotiue : r = a0 a a2 a3 a4 a L 5 O obtiet des approimatios successives de r au moe de rapports d'etiers e troquat le développemet de la fractio à des ordres plus ou mois élevés que l'o appelle les réduites d'ordre : P = ( a0; a, a2, a3, a4, a5, K, a ) Q O passe de l'ordre et à l'ordre par la relatio de récurrece du secod ordre suivate : P Q a = a Ces formules de récurrece furet découvertes par le mathématicie Idie Bhascara II au début du XIII e siècle, soit 5 siècles avat que le mathématicie Aglais Joh Wallis e les redécouvre e Europe. La réduite d ordre d u réel r est ue meilleure approimatio de ce réel e ce ses qu il a pas de ombre ratioel plus proche de r et de déomiateur strictemet iférieur à Q. Si 0 < Q < Q, alors, pour tout etier P, o a : P P r > r. Q Q Eemple Représetatio du ombre π O a π = 3, K Sa forme réduite d'ordre 4 s'écrit : (3; 7, 5,, 293) Les approimatios successives sot : 3, 22/7, 333/06, 355/3, 04348/3325. P Q P Q 5

6 Recherche de la période du saros Calcul du saros Méthode des fractios cotiues Le saros est ue période qui doit être multiple de : la période de révolutio sodique de la Lue, soit : L = 29, jours la période de révolutio dracoitique de la Lue, soit : G = 27, jours. Notos que la période sodique porte ecore le om plus courat de luaiso (retour d ue phase de même ature). L Pour cela o cherche deu etiers et tels que G = L, ou ecore =. G L Or le quotiet approché de L par G est :, G La méthode des fractios cotiues permet de trouver ue «meilleure approimatio» ratioelle de, e ce ses qu il e a pas de plus précise avec u déomiateur iférieur ou égal. 29, = 27, L L La réduite d ordre 8 de est doc : ( ;,, 2,, 4, 3, 5,) G Les valeurs possibles de et serot successivemet : = = 2 = =, =, = =, = =,

7 à 242 = =, L Ue première «meilleure approimatio» de est obteue pour = 242 et = 223 (l écart est iférieur G ). E d autres termes, ue éclipse doée se reproduira après 223 luaisos (ou 242 révolutios dracoitiques). Comme ue luaiso vaut 29, jours, cet itervalle sera de : 29, = 6 585,3234 jours. Remarque Si, au lieu de faire le calcul du saros à partir de la luaiso (révolutio sodique), o était parti de la révolutio dracoitique, o aurait trouvé ue très légère différece (52 miutes), ce qui e uit pas au résultat trouvé cidessus. Évaluatio du saros e jours O costate, par ailleurs, que 8 as se composet de jours (e preat ue aée de 365 jours). Pedat 8 as, il peut avoir o 3 aées bissetiles, il coviet de rajouter 3 jours : 6 573, o 4 aées bissetiles, il coviet de rajouter 4 jours : 6 574, o 5 aées bissetiles, il coviet de rajouter 5 jours : Les différeces sot alors : o = 2 jours, o = jours, o = 0 jours. Das chacu des cas, il reste ue fractio décimale égale à 0,32 34 jours, ce qui est légèremet iférieur à 8 heures. E 8 heures, la Terre aura touré sur elle-même de presque 20 : doc l éclipse qui se reproduira, e sera plus au même edroit sur la Terre. Coclusio Le saros est ue période désormais bie coue. Pour e évaluer la plus fie valeur, il coviedrait aussi de teir compte d ue troisième période, appelée révolutio aomalistique qui marque le retour de la Lue à so périgée. Il se trouve que cette ouvelle période e cotredit pas, elle o plus, le résultat gééral calculé plus haut. Pourquoi le saros est ue période de récurrece? La pricipale iégalité das la logitude de la Lue, l'équatio du cetre, est foctio de sa distace agulaire au périgée de so orbite, cette distace agulaire porte le om d'aomalie. L'itervalle de temps qui sépare e moee le passage de la Lue par la directio de so périgée, s'appelle la révolutio aomalistique. Sa valeur moee est A = 27, jours. Il est très importat de costater que le saros est égalemet u multiple de cette révolutio aomalistique, aisi après u saros, o seulemet o retrouve la même cofiguratio Soleil Terre Lue mais la plus grosse iégalité das la logitude de la Lue a presque la même valeur, doc o retrouve pratiquemet le même écart etre la Lue vraie et la Lue moee. C'est pricipalemet pour cette raiso que le saros est ue période de récurrece des éclipses. E effet le saros est costruit à partir des révolutios sodiques et dracoitique moees de la Lue. Or l'écart etre la révolutio sodique vraie et la révolutio sodique moee de la Lue peut atteidre plus ou mois sept heures, or e sept heures la positio de la Lue varie e moee de 3,5 e logitude (si l'o tiet compte des perturbatios cet écart peut atteidre 7,5 ). Or comme les diamètres apparets de la Lue et du Soleil sot de l'ordre du demi-degré, il est totalemet impossible de prédire ue éclipse du Soleil uiquemet avec la coaissace de la révolutio sodique moee, seule la coaissace de la luaiso 7

8 vraie permet cette prédictio. Doc si ue période de récurrece utilise les révolutios sodique et dracoitique moees, il faut égalemet que cette période ramèe la Lue vraie au même edroit par rapport à la Lue moee, doc que la période de récurrece soit aussi u multiple de la période de la plus grosse iégalité das la logitude de la Lue. O a 239 A = 6 585, jours et saros = 239 A - 0,0079 A ; au bout d'u saros, la Lue se retrouve doc à 2,8 e amot sur sa positio orbitale. 8

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

Séquence 8. Suites arithmétiques et géométriques. Sommaire

Séquence 8. Suites arithmétiques et géométriques. Sommaire Séquece 8 Suites arithmétiques et géométriques Sommaire Pré-requis Suites arithmétiques Suites géométriques Sythèse du cours Exercices d approfodissemet Séquece 8 MA Ced - Académie e lige Pré-requis A

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

Détermination des champs électriques et magnétiques. statiques par la méthode de séparation de variables

Détermination des champs électriques et magnétiques. statiques par la méthode de séparation de variables Détermiatio es champs électriques et magétiques statiques par la méthoe e séparatio e variables Chapitre III Détermiatio es champs électriques et magétiques statiques par la méthoe e séparatio e variables

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

Modèle de pointage et correction des dérives

Modèle de pointage et correction des dérives Ges de la Lue Observatoire astroomique de Plougastel Tél : 0 98 40 69 73 http://www.gesdelalue.org Modèle de poitage et correctio des dérives 1. Présetatio du problème Le poitage d u astre par u télescope

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

B) CHAÎNES DE SOLIDES

B) CHAÎNES DE SOLIDES Chaîes de solides B) CHAÎNES DE SOLIDES Objectifs Cette théorie a pour but d'aalyser les comportemets statique et ciématique d'u mécaisme à partir d'u modèle défii par le schéma ciématique du mécaisme.

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 MÉTHODES NUMÉRIQUES POUR LE PRICING D OPTIONS DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 Table des matières 1 Notatios et équatio de Black-Scholes 2 11 Notatios 2 12 Équatio de Black-Scholes

Plus en détail

Racine nième Corrigés d exercices

Racine nième Corrigés d exercices Racie ième Corrigés d eercices Page 9 : N 8, 8, 8, 86, 88, 89, 9, 9, 9, 97 Page 6 : N, Page 6 : N Page 67 : N 8 Page 6 : N N 8 page 9 6 6 6 6 6 ( ) = = = = = = = = ( ) = = = = = = ( ) 8 = 8 = = = = = =

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL Corrigé du baccalauréat Polyésie 6 jui 4 STID STL spécialité SPCL EXERCICE 4 poits Cet eercice est u questioaire à choi multiples. Pour chacue des questios suivates, ue seule des quatre réposes proposées

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher

Plus en détail

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures)

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures) ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D ÉCONOMIE APPLIQUÉE ENSEA ABIDJAN AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie B Optio Écoomie MATHÉMATIQUES (Durée de l épreuve : 4 heures)

Plus en détail

I. (2 points) III. (2 points)

I. (2 points) III. (2 points) ère S Cotrôle du vedredi 7 mars 05 (0 mi) Préom : Nom : Note : / 0 II ( poits) Soit ABC u triagle isocèle e A tel que AB AC 8 cm et BC 5 cm O ote I le milieu de [AC] Calculer BI (valeur exacte) I ( poits)

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

Correction CCP maths 1 MP

Correction CCP maths 1 MP mai 4 Avertissemet : Il subsiste certaiemet quelques coquilles... Exercice : ue itégrale double Correctio CCP maths MP Pour calculer cette itégrale, o effectue le chagemet de variable e coordoées polaires

Plus en détail

Informatique TP2 : Calcul numérique d une intégrale CPP 1A

Informatique TP2 : Calcul numérique d une intégrale CPP 1A Iformatique TP : Calcul umérique d ue itégrale CPP 1A Romai Casati, Wafa Johal, Frederic Deveray, Matthieu Moy Avril - jui 014 1 Zéro de foctio O doe le code suivat (vu e cours), qui permet de calculer

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

EXERCICES D OPTIQUE GEOMETRIQUE ENONCES

EXERCICES D OPTIQUE GEOMETRIQUE ENONCES EXERCICES D PTIQUE GEMETRIQUE ENNCES Exercice 1 : Vitre Motrer que la lumière est pas déviée par u passage à travers ue vitre. Pour ue vitre d épaisseur 1 cm, que vaut le décalage latéral maximal? Si la

Plus en détail

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé :

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé : http://maths-scieces.fr OPÉRATIONS FINANIÈRES A INTÉRÊTS OMPOSÉS I) Itérêts et valeur acquise Défiitio U capital est placé à itérêts composés lorsque le motat des itérêts produits à la fi de chaque période

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

Mathématiques. Terminale S Corrigés des exercices. Rédaction : Laurent Beroul Isabelle Tenaud Sébastien Cario. Coordination : Sébastien Cario

Mathématiques. Terminale S Corrigés des exercices. Rédaction : Laurent Beroul Isabelle Tenaud Sébastien Cario. Coordination : Sébastien Cario Mathématiques Termiale S Corrigés des eercices Rédactio : Lauret Beroul Isabelle Teaud Sébastie Cario Coordiatio : Sébastie Cario Ce cours est la propriété du Ced Les images et tetes itégrés à ce cours

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Féelo aite-marie Préparatio ciece-po/prépa HEC Foctios Versio du juillet 05 Eercice d degré : racies et coefficiets O rappelle que si l équatio a + b + c = 0 ( a 0 ) adet deu racies α et β (évetuelleet

Plus en détail

TS Intervalle de fluctuation et estimation Cours

TS Intervalle de fluctuation et estimation Cours Aée 2013/2014 TS Itervalle de fluctuatio et estimatio Cours est u etier aturel o ul et p est u réel de l itervalle 0 ; 1. I Itervalle de fluctuatio Cotexte : Das ue populatio, la proportio d idividus présetat

Plus en détail

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces

Plus en détail

Échantillonnage. Pour reprendre contact Les réponses exactes sont : Activité 1. Activité 2. 1 Réponse c. 2 Réponse a. Réponse c. 3 Réponse a.

Échantillonnage. Pour reprendre contact Les réponses exactes sont : Activité 1. Activité 2. 1 Réponse c. 2 Réponse a. Réponse c. 3 Réponse a. Échatilloage 9 Pour repredre cotact Les réposes exactes sot : Répose c. Répose a. Répose c. 3 Répose a. 4 Répose b. Répose c. Activité. La populatio étudiée est la productio d automobiles. Le caractère

Plus en détail

Correction des exercices sur la nature ondulatoire de la lumière

Correction des exercices sur la nature ondulatoire de la lumière CORRECTION EXERCICES TS /5 CHAPITRE 3 Correctio des exercices sur la ature odulatoire de la lumière Correctio exercice : idice d u verre et réfractio. La radiatio = 530 m est verte et la radiatio = 680

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Calcul et raisoemet Remise à Niveau Mathématiques Première partie : Calcul et raisoemet Exercices Page sur 9 RAN Calcul et raisoemet Ex - Rev 04 Mathématiques RAN - Calcul et raisoemet

Plus en détail

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001 Exercice 1 : ( 12 poits ) Les parties A et B peuvet être traitées idépedammet l ue de l autre. O se propose d étudier l évolutio e foctio du temps des températures d u bai et d u solide plogé das ce bai.

Plus en détail

FLUCTUATION ET ESTIMATION

FLUCTUATION ET ESTIMATION 1 FLUCTUATION ET ESTIMATION Le mathématicie d'origie russe Jerzy Neyma (1894 ; 1981), ci-cotre, pose les fodemets d'ue approche ouvelle des statistiques. Avec l'aglais Ego Pearso, il développe la théorie

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

Chap. 5 : Les intérêts (Les calculs financiers)

Chap. 5 : Les intérêts (Les calculs financiers) Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie

Plus en détail

Questions pour un champion en ligne

Questions pour un champion en ligne Questios pour u champio e lige Le jeu télévisé QPUC préseté sur FR3 et aimé par Julie Lepers existe aussi e variate «e lige». U jeu «e lige» se déroule aisi : Six iterautes disputet ue première mache dite

Plus en détail

La classification de données quantitatives avec SPAD

La classification de données quantitatives avec SPAD La classificatio de doées quatitatives avec SPAD SPAD effectue toujours ue ACP de la matrice des doées quatitatives X " p avat de faire la classificatio des idividus. Les méthodes de classificatio s appliquet

Plus en détail

Séries entières. Chap. 09 : cours complet.

Séries entières. Chap. 09 : cours complet. Séries etières Chap 9 : cours complet Rayo de covergece et somme d ue série etière Défiitio : série etière réelle ou complee Théorème : lemme d Abel Théorème : itervalle des valeurs positives où ue série

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

Terminale S. 1. Divers

Terminale S. 1. Divers Termiale S 1 Divers Bézout 3 Quadratique 4 Divisibilité 5 Equatio diophatiee 6 Equatio diophatiee (, Caracas 01_04) 7 Base de umératio 8 Base de umératio 3 9 Somme des cubes 10 PGCD 11 Somme des diviseurs

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

/RJLTXHERROpHQQH. Symbole (norme IEC 1 ) x

/RJLTXHERROpHQQH. Symbole (norme IEC 1 ) x /RJLTXHERROpHQQH I. Défiitios I.. Variable biaire O appelle variable biaire (ou logique), ue variable preat ses valeurs das l esemble {0, }. Eemple : état d u iterrupteur, d u bouto poussoir, la présece

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

II. Permutations sans répétitions et notation factorielle

II. Permutations sans répétitions et notation factorielle février 2012 ORRIGE II. Permutatios sas répétitios et otatio factorielle Aalyse combiatoire 4 ème - 1 I. Itroductio Les différets modèles mathématiques costruits pour étudier les phéomèes où iterviet le

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

Notations Soit I un intervalle de R. Soit f une fonction définie sur I, à valeurs dans R. Notons représentative de f dans un repère du plan.

Notations Soit I un intervalle de R. Soit f une fonction définie sur I, à valeurs dans R. Notons représentative de f dans un repère du plan. Foctio réciproque d'ue octio cotiue, d'ue octio dérivable FNCTIN RECIPRQUE D'UNE FNCTIN CNTINUE, D'UNE FNCTIN DERIVABLE EXEMPLES N SE LIMITERA AUX FNCTINS NUMERIQUES DEFINIES SUR UN INTERVALLE DE R Notatios

Plus en détail

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9 Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

Application «Calculs» Application «Graphiques» Application «Tableur et listes» FR

Application «Calculs» Application «Graphiques» Application «Tableur et listes» FR TI Nspire Documet de Formatio T3 Walloie TI-Nspire Le tout e u des mathématiques Suites umériques La loi de Verhulst Applicatio «Calculs» Applicatio «Graphiques» Applicatio «Tableur et listes» FR Formatios

Plus en détail

1 Programme de l agrégation interne

1 Programme de l agrégation interne Séries umériques Programme de l agrégatio itere Partie 0b : Séries de ombres réels ou complexes Séries à termes positifs La série coverge si et seulemet si la suite des sommes partielles est borée Étude

Plus en détail

Fluctuation et estimation

Fluctuation et estimation Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle

Plus en détail

= e 1, où e est la base des logarithmes népériens ; la relation de récurrence : n I N, u n+1

= e 1, où e est la base des logarithmes népériens ; la relation de récurrence : n I N, u n+1 ERREURS D'ARRONDIS ET CALCULATRICES par Christia Vassard et Didier Trotoux L'idée de cet article ous a été ispirée par u exemple illustrat ue cotributio de Jea-Michel Muller ("Ordiateur e quête d'arithmétique"

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

Fiche 8 : Fonctions II. Limites

Fiche 8 : Fonctions II. Limites Uiversité Paris-Est Val-de-Mare Créteil DAEU-B Fiche 8 : Foctios II. Limites Das la fiche 7 "Foctios I", o a vu la défiitio d ue foctio et différetes otios afféretes. E particulier, o a travaillé sur le

Plus en détail

Développement d une fonction en série entière. Exemples et applications

Développement d une fonction en série entière. Exemples et applications Développemet d ue foctio e série etière Exemples et applicatios Das ce chapitre, K désigera R ou C B(; R) désigera la boule ouverte de cetre et de rayo R > 1 Gééralités Défiitio 1 Soit f ue applicatio

Plus en détail

Feuille 2 : dérivabilité, théorème de Rolle et des accroissements finis, étude des variations

Feuille 2 : dérivabilité, théorème de Rolle et des accroissements finis, étude des variations UPMC 1M001 Aalyse et algèbre pour les scieces 013-014 Feuille : dérivabilité, théorème de Rolle et des accroissemets fiis, étude des variatios Les eercices sas ( ) sot des applicatios directes du cours.

Plus en détail

Chapitre 3: Réfraction de la lumière

Chapitre 3: Réfraction de la lumière 2 e B et C 3 Réfractio de la lumière 16 Chapitre 3: Réfractio de la lumière 1. Expériece 1 : tour de magie avec ue pièce de moaie a) Dispositio Autour d'ue petite boîte coteat ue pièce de 1 de ombreux

Plus en détail

Intervalles de fluctuation et de confiance

Intervalles de fluctuation et de confiance Chapitre 9 Itervalles de fluctuatio et de cofiace Sommaire 9.1 Itervalle de fluctuatio................................... 157 9.1.1 Quelques rappels..................................... 157 9.1.2 Itervalle

Plus en détail

Éléments finis de joint mécaniques et éléments finis de joint couplés hydromécanique

Éléments finis de joint mécaniques et éléments finis de joint couplés hydromécanique Titre : Élémets fiis de joit mécaiques et élémets fi[...] Date : 28/10/2014 Pae : 1/10 Élémets fiis de joit mécaiques et élémets fiis de joit couplés hydromécaique Résumé : Cette documetatio porte sur

Plus en détail

École de technologie supérieure

École de technologie supérieure École de techologie supérieure Mat 165-04 Algèbre liéaire et aalyse vectorielle A-015 Michel Beaudi michel.beaudi@etsmtl.ca Liste d exercices à faire e T.P./Caledrier des évaluatios Itroductio au cours

Plus en détail

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4 UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice

Plus en détail

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f.

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f. Chapitre 14 Itervalle de fluctuatio des fréqueces. Estimatio Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Itervalle de fluctuatio Estimatio Itervalle de cofiace (*). Niveau

Plus en détail

DÉTERMINATION DE L INDICE DE RÉFRACTION D UN LIQUIDE

DÉTERMINATION DE L INDICE DE RÉFRACTION D UN LIQUIDE TP O. Page /5 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET O. Ce documet compred : - ue fiche descriptive du sujet destiée à l examiateur : Page /5 - ue fiche descriptive

Plus en détail

Application du logiciel Excel

Application du logiciel Excel Applicatio du logiciel Ecel Utilisatio du Solver du logiciel Ecel Table de matiers Lacemet du logiciel... Optimisatios... Programmatio liéaire... Problème du trasport... 8 Problème de programmatio quadratique...

Plus en détail

Codes détecteurs et correcteurs d erreurs

Codes détecteurs et correcteurs d erreurs Codes détecteurs et correcteurs d erreurs Lorsque des doées umériques sot stockées ou trasmises, des perturbatios (par exemple électromagétiques) peuvet les edommager. Les codes détecteurs et correcteurs

Plus en détail

Chapitre 1 : Les notions de base

Chapitre 1 : Les notions de base Chapitre : Les otios de base Itroductio I Comparer des gradeurs A) Les pourcetages B) Taux de variatio, coefficiet multiplicateur, idice C) Importace du ses de la comparaiso ) Raisoemet sur les taux de

Plus en détail

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités.

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités. PROBABILITÉS I. PROBABILITÉS ( RAPPELS) a. Expérieces aléatoires et modèles Le lacer d ue pièce de moaie, le lacer d u dé sot des expérieces aléatoires, car avat de les effectuer, o e peut pas prévoir

Plus en détail

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 9 OFFICE DU BACCALAUREAT BP 5005-DAKAR-Fa-Séégal Serveur Vocal: 68 05 59 Téléfax (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 09 G 18bis AR Durée:

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

Séries réelles ou complexes

Séries réelles ou complexes 6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés

Plus en détail

Version du 28 novembre 2016 (20h06)

Version du 28 novembre 2016 (20h06) CHAPITRE 3. SYSTÈMES DE RCES......................................... - 3.1-3.1. Vecteurs caractéristiques d u système de forces............................... - 3.1-3.1.1. Défiitio.....................................................

Plus en détail

MA401 : Probabilités TD3

MA401 : Probabilités TD3 MA : Probabilités Exercice Ue compagie aériee étudie la réservatio sur l u de ses vols. Ue place doée est libre le jour d ouverture de la réservatio et so état évolue chaque jour jusqu à la fermeture de

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Mots de longueur donnée à base de P lettres, et fonction génératrice

Mots de longueur donnée à base de P lettres, et fonction génératrice Mots de logueur doée à base de lettres, et foctio géératrice Cosidéros les mots de logueur à base de lettres, avec etier positif. ) Combie existe-t-il de tels mots? La première lettre du mot est l ue des

Plus en détail

Correction Devoir commun Classes de Secondes concernées : 2nde 10, 2nde 11, 2nde13,

Correction Devoir commun Classes de Secondes concernées : 2nde 10, 2nde 11, 2nde13, LYCEE GRAND AIR Correctio Devoir commu Classes de Secodes cocerées : de 10, de 11, de13, feuilles + papier millimétré. 08/0/013 Exercice 1 : L aée lumière. 1. D après le texte, la vitesse de la lumière

Plus en détail

LES SUITES. u n = 1 n, pour n 1. u n = n 3

LES SUITES. u n = 1 n, pour n 1. u n = n 3 LES SUITES. Défiitio.. Défiitio Ue suite umérique est ue foctio de das, défiie à partir d'u certai rag 0. La otatio (u ) désige la suite e tat qu'objet mathématique et u désige l'image de l'etier (appelé

Plus en détail

Chapitre 1: Calcul des intérêts

Chapitre 1: Calcul des intérêts Chapitre 1: Calcul des itérêts Ce chapitre vise à familiariser le lecteur avec les otios suivates : Itérêt Taux d itérêt omial Taux d itérêt périodique Valeur acquise Valeur actuelle Capitalisatio Le lecteur

Plus en détail

Décomposition d'un nombre en fractions égyptiennes, conjecture de Sierspinski

Décomposition d'un nombre en fractions égyptiennes, conjecture de Sierspinski Décompositio d'u ombre e fractios égyptiees, cojecture de Sierspiski Stage "Mathématiques et iformatique" - Ouagadougou février 999 Sommaire. Historique : l œil oudjat. Décompositio d u ombre e fractios

Plus en détail

La fonction de la maîtrise des vitesses est d assurer un temps

La fonction de la maîtrise des vitesses est d assurer un temps sas frotière OÎTE À OUTILS Guide de dimesioemet La maîtrise des vitesses hydrauliques JEN ROUSSEU 1 La oîte à outils du précédet uméro de Techologie traitait du choix d u distributeur pour l actioeur hydraulique.

Plus en détail

Promenades aléatoires : vers les chaînes de Markov

Promenades aléatoires : vers les chaînes de Markov AME Dossier : Matrices et suites 545 romeades aléatoires : vers les chaîes de Markov ierre Griho (*) Cet article propose ue mise e perspective de la otio de promeade ou de marche aléatoire itroduite das

Plus en détail

Modes propres de vibration ; interprétation ondulatoire

Modes propres de vibration ; interprétation ondulatoire SPECIALITE TS ( PHYSIQUE ) : FICHE CURS 6 1/5 MDES PRPRES DE IBRATI Ce qu'il faut reteir Modes propres de vibratio ; iterprétatio odulatoire 1. Productio d u so à l aide d u istrumet de musique U istrumet

Plus en détail

La plage. Par Arnauld HECQUET, Raphaël SIMONET DAVIN, Maxime LOUIS. Élèves de Seconde au Lycée MONTAIGNE de BORDEAUX. Année 2008.

La plage. Par Arnauld HECQUET, Raphaël SIMONET DAVIN, Maxime LOUIS. Élèves de Seconde au Lycée MONTAIGNE de BORDEAUX. Année 2008. La plage Par Arauld HECQUET, Raphaël SIMONET DAVIN, Maime LOUIS. Élèves de Secode au Lycée MONTAIGNE de BORDEAUX. Itro : présetatio du sujet Partie I : la pièce Techique de comptage Aée 2008 Le ombre total

Plus en détail

Vous allez construire le graphe flottant des ventes du premier trimestre de la feuille Paris du classeur Conso, à partir de l'assistant Graphique.

Vous allez construire le graphe flottant des ventes du premier trimestre de la feuille Paris du classeur Conso, à partir de l'assistant Graphique. Graphiques Excel vous permet très aisémet de géérer des graphiques à partir de vos tableaux. Les graphiques sot automatiquemet ajustés e cas de modificatio des doées du tableau. Les graphiques créés peuvet

Plus en détail

Exercices de Khôlles de Mathématiques, second trimestre

Exercices de Khôlles de Mathématiques, second trimestre Exercices de Khôlles de Mathématiques, secod trimestre Lycée Louis-Le-Grad, Paris, Frace Igor Kortchemski HX 2-2005/2006 Exercices particulièremet itéressats : - Exercices 2., 2.2 - Exercice 3. - Exercice

Plus en détail

Analyse Numérique K.GHENIA. GC201-GM203 Cours et Exercices

Analyse Numérique K.GHENIA. GC201-GM203 Cours et Exercices Aalse Numérique HENIA GC-GM Cours et Eercices Istitut Supérieur de l Educatio et de la Formatio Cotiue TABLE DES MATIERES Résolutio d ue équatio algébrique Méthode d Itératio - Méthode du poit ie 5 Formules

Plus en détail

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C :

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C : Corrigé baccalauréat S Polyésie 200 (raiateabac.blogspot.com) EXERCICE (5 poits) Pré-requis : z a + bi et _ z a bi Partie A : a ) E posat z a + bi et z a + b i o obtiet : z x z (a + bi) ( a + b i) aa bb

Plus en détail