Suites et séries de fonctions

Dimension: px
Commencer à balayer dès la page:

Download "Suites et séries de fonctions"

Transcription

1 [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de foctios de I vers R covees est covee. Eercice 7 [ 894 ] [correctio] Soiet f : R R ue foctio cotiue et P ) ue suite de foctios polyomiales covergeat uiformémet vers f. a) Justifier qu il eiste u etier aturel N tel que pour tout supérieur ou égal à N, o ait pour tout réel, P ) P N ). Que peut-o e déduire quat au degré des foctios polyômes P P N lorsque N? b) Coclure que f est écessairemet ue foctio polyomiale. Eercice [ 885 ] [correctio] Soiet f ) ue suite de foctios covergeat uiformémet vers ue foctio f et g ue foctio uiformémet cotiue. Motrer que la suite de foctios g f ) coverge uiformémet. Eercice 3 [ 884 ] [correctio] Soiet f ) et g ) deu suites de foctios covergeat uiformémet vers des foctios f et g supposées borées. Motrer que la suite de foctios f g ) coverge uiformémet vers fg. Eercice 4 [ 886 ] [correctio] Motrer que la limite uiforme d ue suite de foctios uiformémet cotiues d u itervalle I de R vers R est elle-même ue foctio uiformémet cotiue. Eercice 5 [ 878 ] [correctio] Soit f ) ue suite de foctios réelles cotiues et défiies sur [a, b]. O suppose que f coverge uiformémet vers ue foctio f. Motrer if f if f [a,b] [a,b] Eercice 6 [ 879 ] [correctio] O suppose qu ue suite de foctios f ) de [a, b] vers R coverge uiformémet vers f : [a, b] R cotiue et o cosidère ue suite ) d élémets de [a, b] covergeat vers. Motrer f ) f) Eercice 8 [ 346 ] [correctio] Soit P ) ue suite de foctios polyômes de R das R. O suppose que cette suite coverge uiformémet vers ue foctio f sur R. Motrer que la foctio f est polyomiale. Etude pratique de la covergece d ue suite de foctios Eercice 9 [ 87 ] [correctio] O pose u ) = l avec ], ] et u ) = Etudier la covergece uiforme de la suite de foctios u ) sur [, ]. Eercice [ 87 ] [correctio] Etudier la covergece uiforme de f : [, + [ R défiie par f ) = + ) Eercice [ 87 ] [correctio] O pose u ) = e si) avec R + a) Etudier la covergece simple de la suite de foctios u ) sur [, + [. b) Etudier la covergece uiforme sur [a, + [ avec a >. c) Etudier la covergece uiforme sur [, + [. Diffusio autorisée à titre etièremet gratuit uiquemet - dd

2 [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Eercice [ 873 ] [correctio] O pose f ) = e avec R + Etudier la covergece uiforme de f ) sur R + puis sur [a, + [ avec a >. Eercice 8 [ 876 ] [correctio] O pose f ) = + pour R Sur quels itervalles y a-t-il covergece uiforme? Eercice 3 [ 874 ] [correctio] O pose f ) = + ) avec R Etudier la covergece uiforme de f ) sur R puis sur ], a] [a, + [ avec a >. Eercice 4 [ 875 ] [correctio] O pose ) f ) = si pour > et f ) = Etudier la covergece uiforme de f ) sur R + puis sur [ a, a] avec a >. Eercice 5 [ 57 ] [correctio] Etudier la covergece simple et uiforme sur R de la suite de foctios f ) doée par f ) = si ) cos) Eercice 6 [ 58 ] [correctio] Etudier la suite de foctios f ) défiie par Eercice 7 [ 83 ] [correctio] O pose, pour, f ) = e e f p ) = + ) +/p Etudier la covergece simple puis uiforme de la suite de foctios f p ) p N. Eercice 9 [ 877 ] [correctio] O pose f ) = 4 + ) pour [, ] Sur quels itervalles y a-t-il covergece uiforme? Eercice [ 88 ] [correctio] Soiet α R et f : [, ] R défiie par f ) = α ) a) Etudier la limite simple de la suite f ). b) Pour quels α R, y a-t-il covergece uiforme? Eercice [ 97 ] [correctio] Soit, pour N, f la foctio défiie sur R + par f ) = ) si [, [ et f ) = si Etudier le mode de covergece de f ). Eercice [ 89 ] [correctio] Soit f : R + R défiie par f ) = + ) a) Etudier la limite simple de f ) et motrer que R +, f ) lim f ) b) E partat de l ecadremet suivat valable pour tout t R +, t t l + t) t justifier que la suite f ) coverge uiformémet sur tout itervalle [, a] avec a > ). c) Etablir qu e fait, la suite de foctios f ) coverge uiformémet sur R +. Diffusio autorisée à titre etièremet gratuit uiquemet - dd

3 [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés 3 Eercice 3 [ 89 ] [correctio] Soit f : [, ] R défiie par f ) = ) si [, /] et f ) = sio a) Etudier la limite simple de la suite f ). b) Calculer f t) dt Y a-t-il covergece uiforme de la suite de foctio f )? c) Etudier la covergece uiforme sur [a, ] avec a >. Eercice 4 [ 89 ] [correctio] Pour [, π/], o pose f ) = si cos. a) Détermier la limite simple de la suite de foctios f ). b) Calculer I = π/ f )d La suite f ) coverge-t-elle uiformémet? c) Justifier qu il y a covergece uiforme sur tout segmet iclus das ], π/]. Eercice 5 [ 53 ] [correctio] a) Motrer que la suite de foctios f ) = + α e ) défiies sur R + pour α R et N coverge simplemet vers ue foctio f à détermier. b) Détermier les valeurs de α pour lesquelles il y a covergece uiforme. c) Calculer lim + + e )d Eercice 7 [ 83 ] [correctio] Soit f : [, ] [, ] doée par f) = ) Etudier la covergece de f ) où f est l itéré -ième de f. Eercice 8 [ 97 ] [correctio] O ote E l esemble des foctios f : [, ] R + cotiues. O pose Φf)) = ft) dt pour toute f E. O pose f = puis f + = Φf ) pour tout N. a) Etudier la suite f ). b) Soit f = limf ). Trouvez ue équatio différetielle dot f est solutio. Y a-t-il uicité de la solutio ulle e? Etude théorique de la covergece d ue suite de foctios Eercice 9 [ 883 ] [correctio] Soit f : R + R défiie par f ) = + / Motrer que la suite de foctios f ) coverge uiformémet mais pas f ). Eercice 6 [ 86 ] [correctio] Soit f ) la suite de foctio défiie sur R + par f ) = et f + ) = + f ) pour N Etudier la covergece simple et uiforme de la suite f ) sur R +. Eercice 3 [ 869 ] [correctio] Soit f : R R défiie par f ) = + / Motrer que chaque f est de classe C et que la suite f ) coverge uiformémet sur R vers ue foctio f qui est pas de classe C. Diffusio autorisée à titre etièremet gratuit uiquemet - dd

4 [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés 4 Eercice 3 [ 887 ] [correctio] Soit f : R R ue foctio deu fois dérivable de dérivée secode borée. Motrer que la suite des foctios coverge uiformémet vers f. g : f + /) f)) Eercice 3 [ 888 ] [correctio] Soit f : [, ] R décroissate et cotiue telle que f ) coverge simplemet vers la foctio ulle. Motrer que cette covergece est uiforme. Eercice 33 [ 889 ] [correctio] [Théorème de Dii] Soiet des foctios f : [a, b] R cotiues telles que la suite de foctios f ) coverge simplemet vers la foctio ulle. O suppose que pour tout [a, b], la suite réelle f )) est décroissate. O désire motrer que la covergece de la suite f ) est uiforme. a) Justifier l eistece de lim + f b) Justifier que pour tout N, il eiste [a, b] tel que f = f ). c) E observat que pour tout p, motrer que f et coclure. f ) f p ) Eercice 34 [ 969 ] [correctio] Soit I u itervalle ouvert ; soit pour N, f : I R ue foctio covee. O suppose que f ) coverge simplemet. Motrer que f ) coverge uiformémet sur tout segmet iclus das I. Eercice 35 [ 833 ] [correctio] O ote U l esemble des complees de module et o cosidère ω u complee de module. Eprimer ue coditio écessaire et suffisate pour que la foctio z z ω soit limite uiforme sur U d ue suite de foctios polyomiales. Eercice 36 [ 39 ] [correctio] Soit f : R R de classe C. Pour tout N, o pose u t) = f t + /) ft)) Motrer que la suite de foctios u ) coverge uiformémet sur tout segmet de R vers ue foctio à préciser. Foctio solutio d équatios foctioelles Eercice 37 [ 893 ] [correctio] O défiit u ) suite de foctios de [, ] vers R par u ) = et N, u + ) = + a) Motrer que pour tout [, ], u + ) u ) + + )! u t t ) dt b) E déduire la covergece pour tout [, ] de la suite u )). c) Etablir que la suite u ) coverge uiformémet vers ue foctio u o ulle vérifiat u ) = u ) Eercice 38 [ 389 ] [correctio] Soit γ [, [. O défiit u ) suite de foctios de R + vers R par u ) = et N, u + ) = + a) Motrer que pour tout R +, u + ) u ) + + )! u γt) dt b) E déduire la covergece pour tout R + de la suite u )). c) Etablir que la suite de foctios u ) coverge vers ue foctio u o ulle vérifiat u ) = uγ) Diffusio autorisée à titre etièremet gratuit uiquemet - dd

5 [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés 5 Eercice 39 [ 93 ] [correctio] Pour >, o pose S) = ) + a) Justifier que S est défiie et de classe C sur R +. b) Préciser le ses de variatio de S. c) Etablir >, S + ) + S) = / d) Doer u équivalet de S e. e) Doer u équivalet de S e +. Eercice 4 [ 3777 ] [correctio] Pour >, o pose F ) = ) + a) Motrer que F est bie défiie. b) Motrer que F est de classe C, de classe C. c) Simplifier F ) + F + ) d) Motrer que pour > F ) = e) Doer u équivalet de F e et e +. Eercice 4 [ 93 ] [correctio] Pour >, o pose S) = k= t + t dt + k) a) Justifier que S est défiie et cotiue sur ], + [. b) Former ue relatio liat S) et S + ). c) Détermier u équivalet de S) e + et e. Eercice 4 [ 94 ] [correctio] Pour tout N et tout R +, o pose f ) = th + ) th a) Etablir la covergece de la série de foctios f. b) Justifier que la foctio somme S = + f est cotiue et strictemet croissate sur R +. c) Motrer que d) Etudier la covergece de S e +. R +, S + ) S) = th Eercice 43 [ 3754 ] [correctio] Soit f : R + R cotiue décroissate et itégrable. Motrer l eistece d ue foctio g : R + R cotiue vérifiat Eercice 44 [ 9 ] [correctio] O rappelle que et o pose pour >, R +, g + ) g) = f) R, S) =! = e )! + ) a) Justifier que S est défiie et de classe C sur R +. b) Préciser le ses de variatio de S. c) Etablir que d) Doer u équivalet de S e +. e) Doer u équivalet de S e. S) S + ) = e Diffusio autorisée à titre etièremet gratuit uiquemet - dd

6 [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés 6 Eercice 45 [ 898 ] [correctio] Justifier l eistece de f) = + + = + + pour tout R\Z. Motrer que f est -périodique et qu o a ) ) + f + f = f) pour tout R\Z. Eercice 46 [ 974 ] [correctio] a) Etudier la covergece de la série de foctios = ) pour R\Z. b) Soit u réel c >. Soit f ue foctio cotiue de R das R telle que, pour tout réel, ) ) + f + f = cf) Motrer que f =. c) Motrer que pour tout réel o etier, = ) = π si π Eercice 48 [ 3978 ] [correctio] a) Motrer qu il eiste ue uique foctio f : ], + [ R de limite ulle e + et vérifiat >, f) + f + ) = b) Motrer que f est cotiue et itégrable sur [, + [. c) Calculer ft) dt Etude de la covergece d ue série de foctios Eercice 49 [ 895 ] [correctio] Etudier la covergece simple, uiforme et ormale de la série des foctios f ) = avec et R + Eercice 5 [ 896 ] [correctio] Etudier la covergece simple, uiforme et ormale de la série des foctios f ) = ) avec et R + Eercice 5 [ 897 ] [correctio] O ote I la foctio caractéristique d u itervalle I : { si I I ) = sio Etudier la covergece simple, uiforme et ormale sur [, + [ de la série des foctios u ) = + [,+[) Eercice 47 [ 973 ] [correctio] Trouver les foctios f C [, ], R) telles que [, ], f) = = f ) Eercice 5 [ 377 ] [correctio] O cosidère la série des foctios f ) = e défiies sur R +. Etudier sa covergece simple, sa covergece ormale et sa covergece uiforme. Diffusio autorisée à titre etièremet gratuit uiquemet - dd

7 [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés 7 Eercice 53 [ 3785 ] [correctio] O itroduit l applicatio sur [, + [ f : e a) Etudier les covergeces de la suite de foctios f ). b) Etudier les covergeces de la série de foctios f. Eercice 54 [ 838 ] [correctio] Soiet α R et si N,! u : [, ] α ) R Etudier le mode covergece de la suite de foctios u ), puis de la série de foctios u. Eercice 55 [ 88 ] [correctio] Soiet f : [, ] R cotiue et f : [, ] R défiie par f ) = f) a) Former ue coditio écessaire et suffisate sur f pour que la suite de foctio f ) coverge uiformémet sur [, ]. b) Motrer que la série de foctios f coverge uiformémet sur [, ] si, et seulemet si, f) = et f dérivable e avec f ) =. Eercice 56 [ 395 ] [correctio] Soit a ) N ue suite réelle positive et décroissate. Pour tout N, o pose u ) = a ) avec [, ] a) Motrer la covergece simple de la série de foctios u. b) Motrer que cette série coverge ormalemet si, et seulemet si, il y a covergece de la série a /. c) Motrer que la série de foctios u coverge uiformémet si, et seulemet si, a. Eercice 57 [ 839 ] [correctio] O pose u ) = et u + ) = u t t ) dt pour tout réel [, ] et tout etier aturel. Motrer que la série de terme gééral u est ormalemet covergete. Eercice 58 [ 3988 ] [correctio] Soit u : R + + ) avec N. Etudier la covergece simple et la covergece uiforme de u et u. Foctios zêta Eercice 59 [ 97 ] [correctio] O pose ζ) = a) Motrer que la foctio ζ est défiie et de classe C sur ], + [. b) Etudier mootoie et coveité de la foctio ζ. c) Détermier la limite de la foctio ζ e +. d) Détermier u équivalet de la foctio ζ e +. e) E eploitat l iégalité de Cauchy-Schwarz établir que lζ)) est covee. Eercice 6 [ 834 ] [correctio] Si >, o pose ζ) = = = a) Quelle est la limite de ζ) quad +? b) Pour quels réels la série ζ) coverge-t-elle? c) Si F ) = = ζ) motrer que F est cotiue sur [, [ et de classe C sur ], [. d) Doer ue epressio plus simple de F ) Diffusio autorisée à titre etièremet gratuit uiquemet - dd

8 [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés 8 Eercice 6 [ 98 ] [correctio] O pose ζ ) = = ) Motrer que la foctio ζ est défiie et de classe C sur ], + [. Eercice 6 [ 99 ] [correctio] O pose ζ ) = = ) Motrer que ζ est défiie et de classe C sur ], + [. Eercice 66 [ 9 ] [correctio] O pose u ) = ) + + l pour ], ] et u ) = a) Calculer u ) b) Motrer que la série des u coverge uiformémet sur [, ]. c) E déduire l égalité l + d = ) + + ) Eercice 63 [ 3853 ] [correctio] Détermier la limite quad + de ζ ) = = ) + Eercice 64 [ 899 ] [correctio] Soiet ζ) = et ζ ) ) = = = a) Détermier les domaies de défiitio des foctios ζ et ζ. b) Justifier que les foctios ζ et ζ sot cotiues. c) Etablir la relatio ζ ) = )ζ) pour tout >. Itégratio de la somme d ue série de foctios Eercice 65 [ 9 ] [correctio] Soit ψ) = = ) + Justifier et calculer ψ) d Eercice 67 [ 9 ] [correctio] O doe α [, ], = prologée par cotiuité e ). E itégrat sur [, ], e déduire la valeur de + = α α + = π chπα shπα α + ) Limite et comportemet asymptotique de la somme de série de foctios Eercice 68 [ 558 ] [correctio] Esemble de défiitio et cotiuité de f) = e E trouver la limite e + et u équivalet e +. Diffusio autorisée à titre etièremet gratuit uiquemet - dd

9 [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés 9 Eercice 69 [ 39 ] [correctio] Pour t >, o pose St) = Détermier la limite de St) quad t +. Eercice 7 [ 9 ] [correctio] Pour et R, o pose ) t + u ) = ) ) l + + ) a) Etudier la covergece uiforme de la série de foctios u. b) Détermier la limite de sa somme e +. O pourra eploiter la formule de Stirlig Eercice 7 [ 97 ] [correctio] Détermier la limite de Eercice 7 [ 98 ] [correctio] Motrer que pour tout α >, k= u = k= ) k ) k α e α + e α O pourra eploiter le théorème d iterversio limite/somme ifiie. Eercice 73 [ 99 ] [correctio] Par ue iterversio série-limite, motrer que pour tout z C + z p p) epz) p + Etude pratique de foctios somme de série Eercice 74 [ 9 ] [correctio] Pour >, o pose S) = = + a) Motrer que S est bie défiie sur R +. b) Motrer que S est cotiue. c) Etudier la mootoie de S. d) Détermier la limite e + de S puis u équivalet de S e +. e) Détermier u équivalet à S e. Eercice 75 [ 9 ] [correctio] Sur I = ], + [, o pose S) = = + a) Motrer que S est défiie et cotiue sur I. b) Etudier la mootoie de S. c) Calculer S + ) S) d) Détermier u équivalet de S) e +. e) Etablir N, S) = f) E déduire u équivalet de S) e +. Eercice 76 [ 96 ] [correctio] Soit f) = k= e = a) Quel est le domaie de défiitio de f? Etudier la cotiuité de f sur celui-ci. b) Motrer que f est strictemet décroissate. c) Etudier la limite de f e +. d) Détermier u équivalet simple de f) quad +. k Diffusio autorisée à titre etièremet gratuit uiquemet - dd

10 [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Eercice 77 [ 95 ] [correctio] Pour, o pose S) = = + a) Pour quelles valeurs de das R +, S) est défiie? b) Former ue relatio etre S) et S/) pour. c) Etudier la cotiuité de S sur [, [ puis sur ], + [. d) Dresser le tableau de variatio de S. Eercice 78 [ 837 ] [correctio] O pose S) = + Etudier le domaie de défiitio, la cotiuité, la dérivabilité de S. Doer u équivalet de S e et e. Eercice 79 [ 33 ] [correctio] Défiitio, cotiuité et dérivabilité de S : Eercice 8 [ 59 ] [correctio] Motrer que f) = = = est cotiue sur R et de classe C sur R. + ) arcta) Eercice 8 [ 3797 ] [correctio] O étudie f) = = + a) Motrer que f est défiie et de classe C sur R. b) Doer, à l aide d ue comparaiso itégrale, u équivalet de f au voisiage de +. c) Doer u développemet limité à l ordre de f e. O doe = Eercice 83 [ 394 ] [correctio] Défiitio, cotiuité et classe C de = π + 6 et 4 = π4 9 Eercice 84 [ 94 ] [correctio] Pour t >, o pose ) = St) = = si ) ) + t a) Justifier que S est défiie et cotiue sur ], + [. b) Etudier la limite de S e +. c) Etablir que S est de classe C sur ], + [. Eercice 8 [ 347 ] [correctio] Pour N et R +, o pose u ) = arcta + arcta a) Etudier l eistece et la cotiuité de la foctio S défiie sur R + par la relatio S) = b) Détermier la limite de S e +. u ) Eercice 85 [ 3644 ] [correctio] Pour R, o pose S) = = ) + a) Motrer que la foctio S est bie défiie et étudier sa parité. b) Motrer que la foctio S est cotiue. c) Détermier la limite de S e +. Diffusio autorisée à titre etièremet gratuit uiquemet - dd

11 [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Eercice 86 [ 96 ] [correctio] Pour tout R\ { } et N o pose u ) = ) + a) Justifier que la foctio f : + u ) est défiie sur R\ { }. b) Etablir que pour tout, = f) + f/) = = ) c) Etablir que f est cotiue sur ], [ puis que f est cotiue sur ], [ et ], + [. d) Etablir la cotiuité de f e. Eercice 87 [ 835 ] [correctio] Si > et N, soit f ) =! + k) k= a) Motrer l eistece de Γ) = lim f ). + b) Motrer l Γ) = l γ + l + )) = c) Motrer que Γ est ue foctio de classe C. Eercice 88 [ 95 ] [correctio] O fie α > et o pose a) Domaie de défiitio de f? b) Cotiuité de f? c) Etudier lim + f). f ) = e α et f) = f ) Eercice 89 [ 836 ] [correctio] Soit α u réel. Pour tout etier > et tout réel, o pose O ote I le domaie de défiitio de u ) = α e + S : a) Détermier I. b) Motrer que S est cotiue sur R +. c) A-t-o covergece ormale sur R +? d) O suppose α. Motrer que k=+ u ) u k /) e ted pas vers quad ted vers +. La covergece de la série de foctios u est-elle uiforme sur I? e) Etudier la cotiuité de S sur I. Eercice 9 [ 97 ] [correctio] Soit des suites réelles a ) et ) avec a > pour tout. O suppose que la série de terme gééral a + ) coverge. O pose f : R R, a Etudier la cotiuité et la dérivabilité de f. Eercice 9 [ 47 ] [correctio] Pour N et R +, o pose u ) = arcta + ) arcta ) a) Etudier l eistece et la cotiuité de la foctio S défiie sur R + par la relatio S) = b) Détermier la limite de S e +. u ) Diffusio autorisée à titre etièremet gratuit uiquemet - dd

12 [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Correctios Correctios Eercice : [éocé] Supposos que la suite f ) coverge simplemet vers f sur I avec chaque f covee. Pour tout a, b I e λ [, ] o a N, f λa + λ)b) λf a) + λ)f b) A la limite quad +, o obtiet ce qui fourit la coveité de f. Eercice : [éocé] Par uiforme cotiuité, o a Pour assez grad, o a et doc fλa + λ)b) λfa) + λ)fb) ε >, α >, y α g) gy) ε I, f ) f) α I, gf )) gf)) ε Aisi, il y a covergece uiforme de g f ) vers g f. Eercice 3 : [éocé] O peut écrire f g fg f g g + g f f Or f f et doc la suite f ) est borée car covergete. Par opératio sur les limites, o obtiet alors f g fg f g g + g f f car f f et g g. Eercice 4 : [éocé] Soit f ) ue suite de foctios uiformémet cotiue de I vers R covergeat uiformémet vers f : I R. Soit ε >. Il eiste N vérifiat f f ε. La foctio f état uiformémet cotiue, il eiste α > vérifiat : Or doc, y I, y α f ) f y) ε f) fy) f) f ) + f ) f y) + f y) fy) Aisi f est uiformémet cotiue. Eercice 5 : [éocé] Posos, y I, y α f) fy) 3ε m = if f t) t [a,b] Puisque la foctio f est cotiue sur le segmet [a, b], cet ifimum est ue valeur prise par f et doc il eiste t [a, b] tel que Motros que m m avec m = f t ) m = if f t [a,b] La foctio f est cotiue car limite uiforme d ue suite de foctios cotiues et doc il eiste t [a, b] pour lequel m = ft ) Pour tout ε >, o a pour assez grad, et doc et Aisi O peut alors affirmer m m. f f ε m = f t ) ft ) ε m ε m = ft ) f t ) ε m ε m m ε Diffusio autorisée à titre etièremet gratuit uiquemet - dd

13 [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Correctios 3 Eercice 6 : [éocé] O a f ) f) f ) f ) + f ) f) Soit ε >. Il eiste N tel que et il eiste N tel que, f f,[a,b] ε, f ) f) ε car f ) f) e vertu de la cotiuité de f. Pour = ma, ), o a Eercice 7 : [éocé] a) Pour ε = /, il eiste N N tel que, f ) f) ε N, P f / et doc P P N. Seules les foctios polyomiales costates sot borées sur R doc P P N est ue foctio polyomiale costate. Posos λ la valeur de celle-ci. b) O a λ = P ) P N ) f) P N ) = λ et doc P ) = P N + P P N ) coverge simplemet vers P N + λ. Par uicité de limite f = P N + λ est ue foctio polyomiale. Eercice 9 : [éocé] Les foctios u sot cotiues sur [, ] pour et dérivables sur ], ] avec Le tableau de variatio de u doe u ) = + l ) sup u = u e / ) = [,] e La suite de foctios coverge doc uiformémet sur [, ] vers la foctio ulle. Eercice : [éocé] Pour [, + [, f ) car f ). O a f ) = + ) + ) + ) = + ) Posos = / ). doc f = M = f ) = + f ) M / ) + ) = e Il y a doc covergece uiforme vers la foctio ulle. l ) Eercice 8 : [éocé] Pour ε =, il eiste u rag N N tel que N, P f est borée et P f Pour tout N, o peut alors affirmer que le polyôme P P N = P f) P N f) est boré et doc costat. Puisque la suite P ) coverge uiformémet vers f, la suite P P N ) N coverge uiformémet vers f P N. Or cette suite état formée de foctios costates, sa covergece équivaut à la covergece de la suite de ces costates. E posat C la limite de cette suite, o obtiet f = P N + C et doc f est ue foctio polyôme. Eercice : [éocé] a) Soit [, + [. Si = alors u ) =. Si > alors u ) car e. La suite de foctios u ) coverge doc simplemet vers la foctio ulle sur R +. b) O a sup u ) e a [a,+ [ doc il y a covergece uiforme sur [a, + [ avec a >. c) Puisque u u π/) = e π/ il y a pas covergece uiforme sur R +. Diffusio autorisée à titre etièremet gratuit uiquemet - dd

14 [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Correctios 4 Eercice : [éocé] f ) = )e, le tableau de variatio de f doe sup R + f = f /) = 4 e doc il y a covergece uiforme sur R et doc a fortiori sur [a, + [. Eercice 3 : [éocé] f ) et f ) pour. La foctio limite état pas cotiue, il y a pas covergece uiforme sur R. E revache si a alors f ) + a ) doc il y a covergece uiforme sur ], a] [a, + [ avec a >. Eercice 4 : [éocé] Pour tout R, f ) : il y a covergece simple vers la foctio ulle. f ) = si/ ), il y a doc pas covergece uiforme sur R. Sur [ a, a], f ) = a via si t t. Par suite il y a covergece uiforme sur [ a, a]. Eercice 5 : [éocé] Pour π [π] o a si < et doc f ). Pour = π [π], cos = et doc f ) =. Aisi f ) coverge simplemet vers la foctio ulle. Par π périodicité et parité o e poursuit l étude qu avec [, π]. La foctio f est dérivable avec f ) = si ) + ) cos ) ) O peut dresser le tableau de variatio de f sur [, π] et o obtiet sup f = R f arccos ) = + ) / + ) + La suite de foctio f ) coverge doc uiformémet vers la foctio ulle. Les premières foctios de la suite f ) Eercice 6 : [éocé] f est défiie sur R et peut être prologée par cotiuité e e posat sur f ) =. Pour, f ) +. Pour >, f ). Aisi f ) coverge simplemet vers la foctio ulle sur R +. Il e peut y avoir coverge uiformémet sur R + car alors par le théorème de la double limite : lim lim f ) = lim lim f ) doe = +. Pour a >, sur [a, + [, f ) e e a et par étude foctioelle e 4 e maimum e = /) doc f,[a,+ [ qui doe la coverge uiformémet sur [a, + [. 4e e a ) Diffusio autorisée à titre etièremet gratuit uiquemet - dd

15 [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Correctios 5 Eercice 7 : [éocé] Quad p +, O a f p ) = + ) +/p + = f) f) f p ) = + )/p + ) +/p Or, pour α ], ], la foctio + ) α est cocave ce qui permet d affirmer pour tout et doc + ) α + α f) f p ) p + ) +/p p + p Puisque f f p,r + p, la covergece est uiforme sur R+. Eercice 8 : [éocé] La suite f ) coverge simplemet vers la foctio ulle et sup f ) = f ±/ ) = R + il y a doc pas covergece uiforme sur R. Or ±/ et doc d après le tableau de variatio de f, pour tout a >, o a, pour assez grad, sup f ) = f a) a Aisi, il y a covergece uiforme sur [a, + [ et de même sur ], a]. E revache, il y aura pas covergece uiforme sur les itervalles o siguliers coteat. Eercice 9 : [éocé] O a ) sup f ) = f / = 4 + [,] il y a doc pas covergece uiforme sur [, ]. Or / et doc d après le tableau de variatio de f, pour tout a [, [, o a, pour assez grad, sup f ) = f a) [,a] Aisi il y a covergece uiforme sur [, a]. E revache il y aura pas covergece uiforme sur les itervalles o siguliers coteat. Eercice : [éocé] a) Si = alors f ) =. Si ], ] alors f ) par comparaiso des suites de référece. b) f ) = α ) α+ ) = α ) + )). Après étude des variatios ) f = f + = α ) + + Or + et ) = e l + ) = e +o) e + doc f α e. Il y a covergece uiforme si, et seulemet si, α <. Eercice : [éocé] Soit R +. Pour assez grad f ) = /) = ep l /)) + La suite f ) coverge simplemet vers f : e avec f f. Etudios δ = f f. Pour [, + [, δ ) = e e. Pour [, [, δ ) = e /) et δ ) = e + /). Posos ϕ ) = ) l /) + O a ϕ ) = / + = e Diffusio autorisée à titre etièremet gratuit uiquemet - dd

16 [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Correctios 6 est du sige de. Par étude des variatios de ϕ, o obtiet l eistece de [, [ tel que ϕ ) pour et ϕ ) pour. O e déduit que pour, δ ) et pour, δ ). Aisi δ,[,[ = δ ) = ) ) = e Puisque la foctio e est borée par u certai M sur R +, o obtiet Fialemet δ,[,[ M ) M δ,[,+ [ ma, e O peut doc affirmer que la suite f ) coverge uiformémet sur R + vers f. Eercice : [éocé] a) f ) = ep l + )) = ep + o)) e = f). O sait l + t) t doc par opératios : f ) e b) O sait doc puis t t l + t) t l + ) e + f ) e = e e Sur [, a] o a e e a. Pour ε >, il eiste N N tel que pour tout N, e a / ε. O a alors pour tout [, a], ) f ) f) e e / e a / ε CU Par suite f f. [,a] c) Les foctios f sot décroissates doc a, f ) f a) Soit ε >. Puisque e a a +, il eiste a R+ tel que a, e ε/3 Puisque f a) e a, il eiste N N tel que N, f a) e a ε/3 Mais alors a, f ) e f ) + e f a) + e f a) e a) + e a + e ε De plus, f Fialemet Aisi f CU f doc il eiste N N tel que [,a] CU R + f. N, [, a] f ) e ε man, N ), R +, f ) e ε Eercice 3 : [éocé] a) Pour =, f ) = et pour >, o a aussi f ) = pour assez grad. Par suite f ) coverge simplemet vers la foctio ulle. b) O a f t) dt = / t t) dt = Il y a pas covergece uiforme de la suite f ) puisque f t) dt dt u u) du = 6 c) Pour assez grad, sup f ) = doc f ) coverge uiformémet vers sur [a,] [a, ]. Eercice 4 : [éocé] a) Pour =, f ) =. Pour ], π/], cos [, [ doc f ). Diffusio autorisée à titre etièremet gratuit uiquemet - dd

17 [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Correctios 7 b) Directemet [ I = + cos+ ] π/ = + doc I π/.d et il y a pas covergece uiforme. c) O a π/ f f ) avec = arccos + et f ) = + /) +)/ e + Soit [a, b] ], π/]. O a a > doc à partir d u certai rag < a et alors f = f a) doc il y a covergece uiforme sur [a, b]. sup [a,b] Eercice 5 : [éocé] II) a) E distiguat le cas = du cas gééral, o obtiet que la suite de foctio f ) coverge simplemet vers la foctio f doée par f) =. b) Par étude des variatios de f ) f), o obtiet qu il y a covergece uiforme si, et seulemet si, α <. c) Par u argumet de covergece uiforme, o peut échager limite et itégrale Eercice 6 : [éocé] lim + + e )d = d = Pour, la suite umérique f )) est ue suite homographique. L équatio r = +r possède deu solutios r = + et r = +. Posos g ) = f ) r f ) r O a avec g + ) = +f ) +r +f = f ) r + r ) +r f ) r ρ = + r + r = r r + r = ρg ) Puisque ρ <, la suite géométrique g )) coverge vers. Or après résolutio de l équatio o obtiet g ) = f ) r f ) r f ) = r g )r g ) et o e déduit que la suite umérique f )) coverge vers r = +. Fialemet, la suite de foctios f ) coverge simplemet vers la foctio f : +. Puisque les foctios f sot ratioelles de degrés alterativemet et, la foctio f f e peut-être borée sur R + car de limite + e + ; il y a doc par covergece uiforme sur R +. E revache, o peut motrer que la suite de foctios f ) coverge uiformémet vers f sur [, a] pour tout a. E effet f ) f ) = g ) g ) + D ue part, la foctio + est borée sur [, a]. D autre part, [ ] + g ) = g ) + + Sur [, a], la foctio admet u maimum de valeur < et puisque la foctio cotiue g est borée sur [, a], o peut motrer que la suite de foctios g ) coverge uiformémet vers la foctio ulle sur [, a]. La relatio f ) f ) = g ) g ) + permet alors d établir que la suite de foctios f ) coverge uiformémet vers f sur [, a]. Eercice 7 : [éocé] O remarque que la foctio f est bie défiie et même qu elle pred ses valeurs das [, /] plutôt que [, ]. Diffusio autorisée à titre etièremet gratuit uiquemet - dd

18 [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Correctios 8 O remarque aussi que f ) = f). Pour étudier le comportemet de la suite f a)) = f a)), o peut se limiter au cas où a [, /]. Etudier le comportemet de la suite des itérés f a)) équivaut à étudier la suite récurrete défiie par u = a et u + = fu ) O observe u + u = u u ) La suite u ) est doc croissate. Si a =, cette suite est e fait costate. Si a > cette suite coverge vers ue limite l vérifiat fl) = l. Après résolutio de cette équatio, o obtiet que cette limite e peut qu être /. O peut alors affirmer qu il y a covergece simple de la suite de foctios f ) vers la foctio { / si ], [ f : si = ou Par o cotiuité, il y a o covergece uiforme sur [, ]. E revache la croissace de f sur [, /] permet d assurer que a ], /], [a, /], f ) f a) ce qui permet de justifier la covergece uiforme de la suite de foctios f ) sur [a, a] pour tout a ], /]. et, pour, O a Or doe doc α + = α 4 α + α + = α α + α α 4 α+ α ) Puisque α = α, o obtiet alors par récurrece que la suite α ) est décroissate. Etat aussi miorée par, elle coverge et e passat la relatio de récurrece à la limite, o obtiet α /4 O e déduit que la suite de foctios f ) coverge simplemet vers la foctio ) f : Eercice 8 : [éocé] a) O vérifie sas peie que la suite f ) est bie défiie. De plus f ) f) = α β ) + α ) 4 Si f) = α β alors f ) =, f ) = 3 3/,... Puisque β, o a pour tout [, ] et e eploitat e u + u ) β = e β ) l β ) l Aisi f ) = α β avec Φf)) = α t β/ dt = α β + β/+ α + = α β + et β + = β + Puisque la foctio l est miorée par /e sur [, ], et aisi β = β β e f ) f) = α β ) + α ) 4 O a β = et ce majorat uiforme ted vers. Il y a doc covergece uiforme de la suite de foctios f ) vers f. Diffusio autorisée à titre etièremet gratuit uiquemet - dd

19 [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Correctios 9 b) La relatio doe à la limite f + ) = f) = f t) dt ft) dt d où l o tire f dérivable et f ) = f). Pour l équatio différetielle y = y, il y a pas uicité de la solutio ulle e, car outre la foctio ulle, la foctio y : /) est justemet solutio. Eercice 9 : [éocé] Pour tout R, f ) et f ) = / La suite de foctios f ) coverge uiformémet vers la foctio idetité. Pour tout R, f ) et f ) = + / Il y a pas covergece uiforme de la suite f ). Eercice 3 : [éocé] Par opératios, les foctios f sot de classe C car. est de classe C sur R +. La suite f ) coverge simplemet vers f avec f) = qui est pas dérivable e. E multipliat par la quatité cojuguée : f ) f) = / + / + Par suite f ) f) / = / puis f f. Aisi la suite f ) coverge uiformémet vers ue foctio f qui est pas de classe C. avec M = sup f. Par suite et doc Eercice 3 : [éocé] O a doc g ) f ) M g ) f ),R [, ], f ) f ) f ) f = maf ), f )) ma f ), f ) ) f ) + f ) Eercice 33 : [éocé] a) f est positive car f ) lim f p) = p + Puisque f + ) f ), e passat à la bore supérieure, o obtiet f + f. La suite f est décroissate et miorée doc covergete. b) f = f état cotiue sur u segmet, elle y admet u maimum e u certai. c) La propriété f ) f p ) proviet de la décroissace de la suite f p )) p N. La suite ) état borée, o peut e etraire ue sous-suite covergete ϕ) ) de limite. Comme f ϕ) ϕ) ) f p ϕ) ) o a la limite quad + lim f + f p ) E passat cette relatio à la limite quad p +, o obtiet Eercice 3 : [éocé] Par la formule de Taylor Lagrage : f + ) f) f ) M d où lim f + lim f + = Diffusio autorisée à titre etièremet gratuit uiquemet - dd

20 [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Correctios Eercice 34 : [éocé] Notos f la limite simple de la suite f ). Cette foctio f est évidemmet covee. Par l absurde, supposos la covergece o uiforme sur u segmet [a, b] iclus das I. Il eiste alors ε > et ue suite ) d élémets de [a, b] tels que f ) f) ε pour tout aturel. Par compacité, o peut etraire de ) ue suite covergete et, quitte à supprimer certaies des foctios f, o peut supposer que ) coverge. Posos sa limite. Soit α > tel que [a α, b + α] I ce qui est possible car l itervalle I est ouvert). Pour tout foctio covee ϕ, la croissace des petes doe : y [a, b], ϕa) ϕa α) α ϕy) ϕ) y Par covergece simple, f ) f ). Pour assez grad, f ) f ) ε doc ϕb + α) ϕb) α ) Si ω <, o peut remarquer que pour k N, π e ikθ + e iθ ω dθ = π ω e i+k+))θ dθ = Si z P z) est ue suite de foctios polyomiales covergeat uiformémet sur U vers z z ω alors π P e iθ ) e iθ ω dθ + Or par le calcul précédet, o peut affirmer π O coclut à ue absurdité. La coditio cherchée est ω >. π P e iθ ) e iθ ω dθ = dθ e iθ ω f ) f ) + f ) f ) ε puis Or la suite aussi puis f ) f ) + f ) f ) ε ) f ) f ) est borée e vertu de ) et la suite f a) f a α) α et les termes ecadrat coverget. O obtiet aisi ue absurdité. f ) f ) + + f b + α) f b) α ) f ) f ) Eercice 35 : [éocé] Si ω > alors z ω = z ω ω et la covergece ormale sur U de la série assure la covergece uiforme d ue suite de polyômes vers z z ω Eercice 36 : [éocé] Pour t R, o a u t) = f t + /) ft) / + f t) La suite de foctios u ) coverge simplemet vers f sur R. Soiet [a, b] R et ε >. La foctio f est cotiue sur le compact [a, b + ] dot uiformémet cotiue. Il eiste alors α > vérifiat s, t) [a, b + ], s t α f s) f t) ε Pour assez grad de sorte que / α et t [a, b]. O peut écrire et doc ft + /) ft)) f t) = u t) f t) t+/ t t+/ t f s) f t) ds f s) f t) dt ε Aisi, la covergece de u ) est uiforme sur tout segmet de R. Diffusio autorisée à titre etièremet gratuit uiquemet - dd

21 [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Correctios Eercice 37 : [éocé] a) Par récurrece sur N. Pour = : u ) = et u ) = + dt = + doc u ) u ) =. Supposos la propriété établie au rag. u + ) u + ) = u + t t ) u t t ) dt or u + t t ) u t t ) doc u + ) u + ) et puis u + t t ) u t t ) t t ) + t+ + )! + )! u + ) u + ) + + )! Récurrece établie. b) Pour tout R, o sait qu il y a covergece de la série epoetielle Par comparaiso de série à termes positifs, il y a covergece de la série télescopique u+) u ) et doc covergece de la suite u )). c) Pour tout [, ], u) u ) = doc u) u ) k=+! k=+ u k ) u k )) k + k! k=+ k! + Aisi u ) coverge uiformémet vers u. O e déduit que u est cotiue et, toujours par covergece uiforme Par coséquet [, ], u t t ) dt + [, ], u) = + ut t ) dt ut t ) dt La foctio est doc ue foctio o ulle car u) = ) et dérivable avec u ) = u ) Eercice 38 : [éocé] a) Par récurrece sur N. Pour = : u ) = et u ) = + dt = + doc u ) u ) = Supposos la propriété établie au rag. Soit R +. u + ) u + ) = Par hypothèse de récurrece, o a pour tout t [, ] puis e itégrat u + γt) u γt) dt u + γt) u γt) γt)+ + )! t+ + )! u + ) u + ) + + )! Récurrece établie. b) Pour tout R, o sait qu il y a covergece de la série epoetielle Par comparaiso de série à termes positifs, il y a covergece de la série télescopique u+) u ) et doc covergece de la suite u )). c) Soit a R +. Pour tout [, a], u) u ) = doc u) u ) k=+! k=+ u k ) u k )) k + k! k=+ a k k! + Diffusio autorisée à titre etièremet gratuit uiquemet - dd

22 [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Correctios Aisi u ) coverge uiformémet vers u sur [, a]. O e déduit que u est cotiue et, toujours par covergece uiforme Par coséquet R +, u γt) dt + [, ], u) = + uγt) dt uγt) dt La foctio est doc ue foctio o ulle car u) = ) et dérivable avec u ) = uγ) Par le critère spécial des séries alterées, f ) coverge simplemet sur ], + [ vers S. Soi a >. Sur [a, + [, f,[a,+ [ + + a) et + a) < + doc f coverge ormalemet sur [a, + [ puis coverge uiformémet sur tout segmet de [a, + [. Par théorème, S est défiie et de classe C sur ], + [ et S ) = ) + + ) b) O peut appliquer le critère spécial des séries alterées à la série de somme ) + +). Celle-ci est doc du sige de so premier terme. Aisi S ) et la foctio S est décroissate. c) S + ) + S) = ) ) + + = = ) d) Quad, S) = S + ) et S + ) S) doc ) + = e) Quad +, S) S) + S + )) S) S) + S )) Eercice 39 : [éocé] a) Les foctios f : ) + Les premiers élémets de la suite quad γ = /3 sot de classe C et f ) = )+ + ) avec doe S) Eercice 4 : [éocé] Posos u : ], + [ R doée par u ) = ) + Diffusio autorisée à titre etièremet gratuit uiquemet - dd

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

Correction CCP maths 1 MP

Correction CCP maths 1 MP mai 4 Avertissemet : Il subsiste certaiemet quelques coquilles... Exercice : ue itégrale double Correctio CCP maths MP Pour calculer cette itégrale, o effectue le chagemet de variable e coordoées polaires

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que [http://mp.cpgedupuydelome.fr] édité le 6 octobre 05 Eocés Suites umériques Covergece de suites Exercice [ 047 ] [Correctio] Soiet u ) et v ) deux suites réelles covergeat vers l et l avec l < l. Motrer

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

Séries entières. Chap. 09 : cours complet.

Séries entières. Chap. 09 : cours complet. Séries etières Chap 9 : cours complet Rayo de covergece et somme d ue série etière Défiitio : série etière réelle ou complee Théorème : lemme d Abel Théorème : itervalle des valeurs positives où ue série

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice

Plus en détail

BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2015

BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2015 CONCOURS COMMUNS POLYTECHNIQUES FILIÈRE MP BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 5 avec corrigés V. Bellecave, J.-L. Artigue, P. Berger, J.-P. Bourgade, S. Calmet, A. Calvez, D. Cleet, J. Esteba,

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

1 Programme de l agrégation interne

1 Programme de l agrégation interne Séries umériques Programme de l agrégatio itere Partie 0b : Séries de ombres réels ou complexes Séries à termes positifs La série coverge si et seulemet si la suite des sommes partielles est borée Étude

Plus en détail

Développement en série de Fourier

Développement en série de Fourier [http://mp.cpgedupuydelome.fr] édité le septembre 6 Eocés Développemet e série de Fourier Exercice [ 95 ] [Correctio] Soit f ue foctio cotiue périodique. O suppose que la série de Fourier de f coverge

Plus en détail

Septembre 2011 CPI 317. Exercices. Agnès Bachelot

Septembre 2011 CPI 317. Exercices. Agnès Bachelot Septembre 2 CPI 37 Exercices Agès Bachelot Table des matières - Séries Numériques.......................................... 3 - Séries à termes positifs.................................... 3-2 Séries quelcoques......................................

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

Séries réelles ou complexes

Séries réelles ou complexes 6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés

Plus en détail

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004 3 octobre 2004 Exemple 2. O se doe a I et q C(I, K). L équatio différetielle liéaire : y (x) q(x) y(x) = 0 avec les coditios y(a) = α, y (a) = β SUITES ET SÉRIES DE FONCTIONS PC*2 3 octobre 2004 Admet

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Eocés Exercice [ 43 ] [Correctio] O pose ) k+ s = et u = l e s ) k k= a) Éocer le théorème des séries spéciales alterées, e faire la preuve. b) Prouver

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de

Plus en détail

Feuille 2 : dérivabilité, théorème de Rolle et des accroissements finis, étude des variations

Feuille 2 : dérivabilité, théorème de Rolle et des accroissements finis, étude des variations UPMC 1M001 Aalyse et algèbre pour les scieces 013-014 Feuille : dérivabilité, théorème de Rolle et des accroissemets fiis, étude des variatios Les eercices sas ( ) sot des applicatios directes du cours.

Plus en détail

Exercice 6 [ ] [Correction] (a) Étudier u n où u n = 1 (b) Étudier v n où v n = 1

Exercice 6 [ ] [Correction] (a) Étudier u n où u n = 1 (b) Étudier v n où v n = 1 [http://mp.cpgedupuydelome.fr] édité le 8 décembre 6 Eocés Séries umériques Nature de séries umériques Exercice [ ] [Correctio] Détermier la ature des séries dot les termes gééraux sot les suivats : a

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Questions de cours. tend vers 0, alors que la série harmonique 1. v n = ln n La série u n est convergente, et la série [ ( )]

Questions de cours. tend vers 0, alors que la série harmonique 1. v n = ln n La série u n est convergente, et la série [ ( )] PC - DS N 6 - U corrigé Questios de cours QC..a L assertio a. est fausse. Par exemple, la suite + ted vers 0, alors que la série harmoique + est divergete. QC..b L assertio b. est vraie. Supposos que la

Plus en détail

Développements limités

Développements limités [http://mp.cpgedupuydelome.fr] édité le 0 juillet 04 Eocés Développemets limités Calcul de développemets limités Eercice [ 0447 ] [correctio] Détermier les développemets limités suivats : a) DL 3 (π/4)

Plus en détail

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse UNIVERSITÉ MOHAMMED V - AGDAL Faculté des Scieces Départemet de Mathématiques Filière Scieces de Matières Physiques (SMP4) Module Mathématiques : Aalyse (S4) Cours d Aalyse Séries umériques Suites et Série

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

SUITES et SERIES DE FONCTIONS

SUITES et SERIES DE FONCTIONS UE7 - MA5 : Aalyse SUITES et SERIES DE FONCTIONS I Suites de foctios à valeurs das È ou  Etat doé u esemble E, ue suite de foctios umériques défiies sur E est la doée, pour tout etier, d'ue applicatio

Plus en détail

Terminale S (2014-2015) Suites numériques

Terminale S (2014-2015) Suites numériques Termiale S (04-05) Suites umériques Raisoemet par récurrece. Itroductio E Mathématiques, u certai ombre de propriétés dépedet d u etier aturel. Par exemple, la ( + ) somme des etiers aturels de à est égale

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k SÉRIES NUMÉRIQUES K désige le corps R ou C. Gééralités. Défiitios Défiitio. Série Soit (u ) 0 ue suite umérique (i.e. à valeurs das K). O appelle série de terme gééral u la suite (S ) 0 où 0, S = u k Cette

Plus en détail

Correction HEC III 2007

Correction HEC III 2007 HEC III 7 Voie Écoomique Correctio Page Correctio HEC III 7 Voie écoomique La correctio comporte 9 pages. Eercice. Par dé itio est ue valeur propre de t si et seulemet si est ue valeur propre de T: Et

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

Chapitre Rappels sur les suites

Chapitre Rappels sur les suites Chapitre Séries umériques. Rappels sur les suites Défiitio.. (i) Ue suite (a ) N de réels (ou de complexes) est covergete vers ue limite a si pour tout ε > 0, il existe 0 N tel que pour tout 0, o a a a

Plus en détail

Développement d une fonction en série entière. Exemples et applications

Développement d une fonction en série entière. Exemples et applications Développemet d ue foctio e série etière Exemples et applicatios Das ce chapitre, K désigera R ou C B(; R) désigera la boule ouverte de cetre et de rayo R > 1 Gééralités Défiitio 1 Soit f ue applicatio

Plus en détail

Racine nième Corrigés d exercices

Racine nième Corrigés d exercices Racie ième Corrigés d eercices Page 9 : N 8, 8, 8, 86, 88, 89, 9, 9, 9, 97 Page 6 : N, Page 6 : N Page 67 : N 8 Page 6 : N N 8 page 9 6 6 6 6 6 ( ) = = = = = = = = ( ) = = = = = = ( ) 8 = 8 = = = = = =

Plus en détail

Corrigé de Mathématique éco HEC

Corrigé de Mathématique éco HEC Corrigé de Mathématique éco HEC EXERCICE Hypothèses. M 3 R est l espace vectoriel des matrices carrées d ordre 3 à coefficiets réels. A M 3 R : s A 3 A,j, s A 3 A,j, s 3 A 3 somme des coefficiets des liges

Plus en détail

Table des matières. Aller à la page suivante

Table des matières. Aller à la page suivante CHAPITRE 3. SÉRIES NUMÉRIQUES Chapitre 3 Séries umériques 3. Préparatio Défiitio 3..2 O appelle série de terme gééral u et o ote u (qui se lit «série de terme gééral u»), où (u ) N R N, la suite de terme

Plus en détail

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques Uiversité Deis Diderot (Paris VII) 006-007 MP 3 Quelques exercices corrigés Suites et séries umériques Das les pages qui suivet ous proposos la correctios de quelques exercices de la feuille sur les suites

Plus en détail

Université Mohammed V - Agdal Faculté des Sciences Département de Mathématiques et Informatique Avenue Ibn Batouta, B.P.

Université Mohammed V - Agdal Faculté des Sciences Département de Mathématiques et Informatique Avenue Ibn Batouta, B.P. Uiversité Mohammed V - Agdal Faculté des Scieces Départemet de Mathématiques et Iformatique Aveue Ib Batouta, B.P. 04 Rabat, Maroc Filière DEUG : Scieces Mathématiques et Iformatique (SMI) et Scieces Mathématiques

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008 Sup Galilée - Maths pour l Igéieur Corrigé du Partiel du 9 Novembre 008 Étude d ue suite récurrete Soit u 0 ]0, [ O cosidère la suite (u ) défiie par u + u 3 u ) Justifier que la suite u est borée O motre

Plus en détail

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I SESSION 9 Cocours ENSAM - ESTP - EUCLIDE - ARCHIMEDE E3A Epreuve de Mathématiques B PSI Exercice I ) rga) 3 < 4 et doc A / GL 4 R) Par suite, est valeur propre de A ) Soit U Puisque la somme des coefficiets

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher

Plus en détail

f(t)dt = 0. On pose a = min f et b = max f. 0 1 + x 2 dx = 3 + 1 7 π. 2) En déduire un encadrement de π (meilleur que celui d'archimède).

f(t)dt = 0. On pose a = min f et b = max f. 0 1 + x 2 dx = 3 + 1 7 π. 2) En déduire un encadrement de π (meilleur que celui d'archimède). #4 Itégrale de Riema Khôlles - Classes prépa Thierry Sageaux, Lycée Gustave Eiel Exercice Soit f ue foctio cotiue sur [, ] telle que Motrer que f ab f(t)dt = O pose a = mi f et b = max f Exercice x ) Motrer

Plus en détail

Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2012/2013

Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2012/2013 Master Métiers de l Eseigemet, Mathématiques - ULCO, La Mi-Voix, 202/203 ANALYSE 2 Fiche de Mathématiques 4 - Séries umériques Soit E u espace vectoriel sur le corps K = R ou C Pour toute famille fiie

Plus en détail

Séries entières. Plan de cours

Séries entières. Plan de cours 5 Séries etières «U mathématicie qui est pas aussi quelque peu poète e sera jamais u mathématicie complet.» Extrait d ue lettre de Karl Weierstrass à Sophie Kowalevski (883) Pla de cours I Rayo de covergece

Plus en détail

Notations Soit I un intervalle de R. Soit f une fonction définie sur I, à valeurs dans R. Notons représentative de f dans un repère du plan.

Notations Soit I un intervalle de R. Soit f une fonction définie sur I, à valeurs dans R. Notons représentative de f dans un repère du plan. Foctio réciproque d'ue octio cotiue, d'ue octio dérivable FNCTIN RECIPRQUE D'UNE FNCTIN CNTINUE, D'UNE FNCTIN DERIVABLE EXEMPLES N SE LIMITERA AUX FNCTINS NUMERIQUES DEFINIES SUR UN INTERVALLE DE R Notatios

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

On obtient la formule de Pascal en prenant le cardinal :

On obtient la formule de Pascal en prenant le cardinal : Colles du 3 ovembre 014 Solutio de la questio de cours 1. (i) Soit E u esemble de cardial. L esemble (E) peut alors être partitioé comme suit : (E) (E), où (E) est l esemble des parties de E de cardial.

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice - Loi d u dé truqué - L2/ECS -. X pred ses valeurs das {,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque P X est

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Eocés 1 Déombremet Exercice 1 [ 01529 ] [correctio] Soiet E et F deux esembles fiis de cardiaux resectifs et. Combie y a-t-il d ijectios de E das F?

Plus en détail

MATHEMATIQUES Terminale Scientifique

MATHEMATIQUES Terminale Scientifique MATHEMATIQUES Termiale Scietifique Fiches PROGRAMME 22 (v24) Sylvie LAMY Agrégée de Mathématiques Dilômée de l École Polytechique Cours Pi e-mail : lescoursi@cours-icom site : htt://wwwcours-icom siège

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Exercice 8 [ ] [Correction] Soit α R. Quel est le rayon de convergence de n 1 cos(nα)

Exercice 8 [ ] [Correction] Soit α R. Quel est le rayon de convergence de n 1 cos(nα) [http://mp.cpgedupuydelome.fr] édité le 28 décembre 26 Eocés Séries etières Calcul de rayo de covergece cocret Exercice [ 97 ] [Correctio] Détermier le rayo de covergece des séries etières : Exercice 6

Plus en détail

14 Chapitre 14. Théorème du point fixe

14 Chapitre 14. Théorème du point fixe Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de

Plus en détail

TD 2 : Suites numériques réelles

TD 2 : Suites numériques réelles Uiversité Paris-Est Mare-la-Vallée Licece L Maths/Ifo d semestre 0/0 Aalyse TD : Suites umériques réelles Exercice Cours) Motrer que si ue suite réelle u ) N coverge, alors toute sous-suite de u ) coverge

Plus en détail

Processus et martingales en temps continu

Processus et martingales en temps continu Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de

Plus en détail

Exercice 2 (Séries de fonctions - 7 points)

Exercice 2 (Séries de fonctions - 7 points) INSA Toulouse, STPI, IMACS 2 mercredi 18 décembre 212 Correctio exame d'aalyse I (coquilles probables) Exercice 1 (Séries etières - 5 poits) Calculer le rayo de covergece et le domaie de covergece simple

Plus en détail

SERIES NUMERIQUES réelles ou complexes

SERIES NUMERIQUES réelles ou complexes UE7 - MA5 : Aalyse SERIES NUMERIQUES réelles ou complexes I. Gééralités Défiitio Etat doée ue suite (u ) de ombres réels ou complexes, o appelle série de terme gééral u la suite (S ) défiie par : () S

Plus en détail

Séries à termes positifs

Séries à termes positifs Séries à termes positifs Das toute la suite N désigera les etiers aturels positifs 0,,,..., Z tous les etiers aturels...,,, 0,,, 3,... et Q les ombres ratioels. Efi R désigera les réels, et C les complexes.

Plus en détail

Mathématiques. Terminale S Corrigés des exercices. Rédaction : Laurent Beroul Isabelle Tenaud Sébastien Cario. Coordination : Sébastien Cario

Mathématiques. Terminale S Corrigés des exercices. Rédaction : Laurent Beroul Isabelle Tenaud Sébastien Cario. Coordination : Sébastien Cario Mathématiques Termiale S Corrigés des eercices Rédactio : Lauret Beroul Isabelle Teaud Sébastie Cario Coordiatio : Sébastie Cario Ce cours est la propriété du Ced Les images et tetes itégrés à ce cours

Plus en détail

Cours de Mathématiques Séries numériques ou vectorielles Sommaire

Cours de Mathématiques Séries numériques ou vectorielles Sommaire Sommaire Sommaire I Gééralités sur les séries......................... 2 I. Espace vectoriel des séries, Sous-espace des Séries covergetes.... 2 I.2 Critère de Cauchy. Espace des séries ormalemet covergetes....

Plus en détail

Produit de Cauchy de la série alternée par elle-même.

Produit de Cauchy de la série alternée par elle-même. CCP 8. Filière MP. Mathématiques. Corrigé pour serveur UPS par JL. Lamard (jea-louis.lamard@prepas.org I. Gééralités. Pour > la série défiissat F coverge absolumet, pour < elle coverge par le critère spécial

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Calculs de limites, développements limités, développements asymptotiques

Calculs de limites, développements limités, développements asymptotiques Eo7 Calculs de limites, développemets limités, développemets asymptotiques Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee ****

Plus en détail

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 9 OFFICE DU BACCALAUREAT BP 5005-DAKAR-Fa-Séégal Serveur Vocal: 68 05 59 Téléfax (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 09 G 18bis AR Durée:

Plus en détail

Séries entières. Préparation au Capes de Mathématiques

Séries entières. Préparation au Capes de Mathématiques Séries etières Préparatio au Capes de Mathématiques I - Covergece des séries etières Notatios Pour tout élémet r de R +, o ote D r = fz 2 C / jzj < rg et D r = fz 2 C / jzj rg Déitio 1 O appelle série

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite Eseigemet spécifique Chapitre 1. Les suites umériques Pricipe de récurrece Limite d ue suite I. Rappels sur les suites umériques 1. géérale Ue suite umérique est ue foctio défiie de N vers R, elle peut

Plus en détail

Soit E un ensemble. On appelle classe de parties de E un sous-ensemble non vide de P(E).

Soit E un ensemble. On appelle classe de parties de E un sous-ensemble non vide de P(E). Chapitre 1 Tribus 1.1 Défiitios Soit E u esemble. O appelle classe de parties de E u sous-esemble o vide de P(E). Défiitio 1.1.1. Ue tribu A sur E est u sous-esemble o vide de P(E) tel que : (i) la partie

Plus en détail

3. Développer en série entière au voisinage de 0 la fonction suivante. On précisera le rayon de convergence de la série obtenue. x ln(1 + x 2x 2 ).

3. Développer en série entière au voisinage de 0 la fonction suivante. On précisera le rayon de convergence de la série obtenue. x ln(1 + x 2x 2 ). Colle PC Semaie 3 0-03 Séries Etières Voir : http://www.mimaths.et/img/pdf/s5.pdf http://www.mimaths.et/img/pdf/sem5.pdf EXERCICE :. Doer u exemple de série etière de rayo de covergece π.. Détermier le

Plus en détail

Suites et séries de fonctions

Suites et séries de fonctions Suites et séries de foctios Eercice 1 Étude de covergece Soit α R et f () = α (1 ) pour [0, 1] 1) Trouver la limite simple des foctios f ) Y a-t-il covergece uiforme? Eercice Étude de covergece O pose

Plus en détail

Suites et séries numériques

Suites et séries numériques Maths MP Cours Table des matières Suites et séries umériques Quelques prélimiaires. Les yeux fermés........................................... De quoi parle-t-o?........................................3

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k.

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k. PHEC Correctio feuille d exercices 00-006 correctio de l exercice t. 8t R + ; + t 6 l( + t) 6 t : Pour cela, o itroduit les foctios f : t 7 l( + t) t et g : t 7 t l( + t) + t dé ies sur [0; +[ et o étudie

Plus en détail

Exercices de Khôlles de Mathématiques, second trimestre

Exercices de Khôlles de Mathématiques, second trimestre Exercices de Khôlles de Mathématiques, secod trimestre Lycée Louis-Le-Grad, Paris, Frace Igor Kortchemski HX 2-2005/2006 Exercices particulièremet itéressats : - Exercices 2., 2.2 - Exercice 3. - Exercice

Plus en détail

S n = u u n. S = u k. k=0

S n = u u n. S = u k. k=0 Chapitre 3 Séries umériques 3. Défiitios et exemples 3.. Défiitios Défiitio 3.. Soit (u ) ue suite réelle. O lui associe (S ) ue ouvelle suite défiie par S = u 0 + + u. O appelle série de terme gééral

Plus en détail

Chapitre 16 : Espaces vectoriels

Chapitre 16 : Espaces vectoriels PCSI Préparatio des Khôlles -4 Chapitre 6 : Espaces vectoriels Exercice type Soit E=R[X] et F ={P E, P(X)=XP (X)+P()}, motrer que F est u sous-espace vectoriel de E. : O a bie F E. Si P =est le polyôme

Plus en détail

AVANT PROPOS. Cet ouvrage pourra intéresser également les enseignants de ce niveau.

AVANT PROPOS. Cet ouvrage pourra intéresser également les enseignants de ce niveau. AVANT PROPOS Cet ouvrage propose aux élèves de classes termiales (fraçais) S (spécialité math) des rappels et des complémets de cours assez complet, aisi que des problèmes et des exercices corrigés. Les

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES. Mardi 3 mai : 14 h - 18 h. Les calculatrices sont interdites

EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES. Mardi 3 mai : 14 h - 18 h. Les calculatrices sont interdites SESSION 216 PCMA2 EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES Mardi 3 mai : 14 h - 18 h N.B. : le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio.

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Féelo aite-marie Préparatio ciece-po/prépa HEC Foctios Versio du juillet 05 Eercice d degré : racies et coefficiets O rappelle que si l équatio a + b + c = 0 ( a 0 ) adet deu racies α et β (évetuelleet

Plus en détail

Cours de mathématiques P.S.I.*

Cours de mathématiques P.S.I.* Cours de mathématiques PSI* D'après les cours de M Guillaumie Heriet Queti Séries umériques Das tout le chapitre, K désige le corps R ou C, et o désige par u ue suite de K Gééralités Vocabulaire Défiitio

Plus en détail

Limites de suites et de fonctions

Limites de suites et de fonctions TermS Limites de suites et de foctios I ] Suites ) Défiitio : Ue suite réelle est ue foctio de! das!, défiie à partir d'u certai rag 0. Notatio : u = lire "u idice " = terme d'idice, ou de rag = terme

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM FACULTE DES SCIENCES ET TECHNIQUES. UHA MULHOUSE L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM Chapitre 2 Séries etières Cotets. Gééralités sur les séries etières 2.. Défiitio

Plus en détail

1 Convergence simple et convergence uniforme

1 Convergence simple et convergence uniforme Mster Métiers de l Eseigemet, Mthémtiques - ULCO, L Mi-Voi, 0/03 ANALYSE Fiche de Mthémtiques 5 - Suites et séries de foctios Soiet E et F deu espces métriques quelcoques et (f ) ue suite d pplictios de

Plus en détail

CHAPITRE II. - Séries à termes réels positifs ou nuls. III-Séries - à termes quelconques. Définition.

CHAPITRE II. - Séries à termes réels positifs ou nuls. III-Séries - à termes quelconques. Définition. CHAPITRE II Séries umériques I II - Défiitios et propriétés géérales - Séries à termes réels positifs ou uls III-Séries - à termes quelcoques I-Défiitios et propriétés géérales Défiitio. Soit (u N ue suite

Plus en détail

12 Cours - Suites.nb 1/11. Suites

12 Cours - Suites.nb 1/11. Suites 12 Cours - Suites.b 1/11 Suites I) Gééralités 1) Défiitio 2) Notatio 3) Commet peut être défiie ue suite 4) Suites et ordre 5) Propriété vraie à partir d u certai rag 6) Exercice 7) Suites arithmétiques,

Plus en détail

Suites et séries réelles

Suites et séries réelles Suites et séries réelles Ue suite umérique est ue famille de ombres réels ou complexes idicées par les etiers aturels. O ote ue suite u idifféremmet (u ) N, ou (u ) 0, ou simplemet (u ). L esemble des

Plus en détail

Chapitre 5 : Suites classiques

Chapitre 5 : Suites classiques Chapitre 5 : Suites classiques Objectifs : Révisios sur les suites arithmétiques et géométriques. Révisio du théorème de croissace comparée. Savoir exprimer e foctio de les termes d ue suite récurrete

Plus en détail

SUITES ET FONCTIONS. 1. Espaces vectoriels normés réels ou complexes

SUITES ET FONCTIONS. 1. Espaces vectoriels normés réels ou complexes SUITES ET FONCTIONS. Espaces vectoriels ormés réels ou complexes.. Normes et distaces. Exercice... F Soit E l espace vectoriel des foctios de classe C sur [a, b], o pose Nf = fc + f où c [a, b], f désigat

Plus en détail

IUFM de La Réunion Préparation au CAPES de mathématiques. Exercices d analyse. Dominique Tournès 2000/2001. Newton Leibniz Taylor Euler

IUFM de La Réunion Préparation au CAPES de mathématiques. Exercices d analyse. Dominique Tournès 2000/2001. Newton Leibniz Taylor Euler IUFM de La Réuio Préparatio au CAPES de mathématiques Eercices d aalyse Domiique Tourès / Newto Leibiz Taylor Euler Lagrage Legedre Fourier Gauss Cauchy Abel Dirichlet Weierstrass Riema Lipschitz Ruge

Plus en détail

CHAPITRE 2 : Estimation non-paramétrique 1. Estimateurs empiriques

CHAPITRE 2 : Estimation non-paramétrique 1. Estimateurs empiriques CHAPITRE 2 : Estimatio o-paramétrique 1. Estimateurs empiriques Soit u échatillo i.i.d. de durées T i i1,..., de foctio de survie S Défiitio: L estimateur empirique de la foctio de survie est S x 1 i1

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

n² n b) Quel est le nombre de termes de la somme définissant u n? Quel est le plus petit de ces termes? Quel est le plus grand?

n² n b) Quel est le nombre de termes de la somme définissant u n? Quel est le plus petit de ces termes? Quel est le plus grand? Exercice : Détermier la limite de chaque suite (u ). a) u = si π b) u = () c) u = + d) 0,5 + cos(π) Exercice 2 : la costate d Apéry Pour tout etier, u = 3 + + 2 3 +. + 3 ) Doer u miorat de cette suite.

Plus en détail

E.P.I.T.A Corrigé de l'épreuve optionnelle de mathématiques (2h) p t

E.P.I.T.A Corrigé de l'épreuve optionnelle de mathématiques (2h) p t 3 E.P.I.T.A. 205 Corrigé de l'éreuve otioelle de mathématiques (2h) PARTIE I : rélimiaires sur les séries de Riema ) Etude de la série de Riema our = a) La foctio t ö est décroissate sur @, + D, ce qui

Plus en détail

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition.

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition. Termiale S Chapitre 7 «Foctios logarithmes» Page sur 2 I) Défiitio et propriétés algébriques : ) La foctio : Défiitio : La foctio logarithme épérie, otée, est la foctio défiie sur ;+ qui, à tout réel >

Plus en détail