Petit recueil d'énigmes

Dimension: px
Commencer à balayer dès la page:

Download "Petit recueil d'énigmes"

Transcription

1 Petit recueil d'éigmes Patxi RITTER (*) facile (**) mois facile (***) pas facile (****) il faudra de l aide Solutios e rouge. 1) Cryptarithme (**) Trouvez la valeur de A, B et C satisfaisat l équatio suivate. Chaque icoue est u chiffre compris etre 1 et 9 iclus. Attetio aux reteues!! BAC = 956 A+A+A+ret2 = 17 avec ret2 <= 2 car 3N<=27 pour N=9 au maximum 3*4 = 12, 12+2=14 < 17 3*6=18 > 17 3*5=15, 15+2 = 17 A=5 et ret2=2 B+B+C+ret1 = 25 car ret2=2 doc C>=5 Or A+C+C = 5+2C = 7 ou 17 et C>=5 doc 5+2C=17 C=6 Aisi B = 9 2) Age (**) J ai trois fois l âge que vous aviez quad j avais l âge que vous avez. Quad vous aurez l âge que j ai, ous auros esemble 56 as. Etes-vous majeur? Age de «j ai» = âge de «Y» = y as Age de «vous» = âge de «X» = x as 1ere affirmatio : quad Y avait l âge actuel de X il avait y-(y-x) as et doc X avait x-(y-x) as qui correspod à 1 tiers de so âge actuel doc 3(x-(y-x))=y ou 6x=4y

2 2eme affirmatio : Quad X aura l âge de Y il aura x+(y-x) qui, si o l additioe à l âge de Y à la même époque y+(y-x) o trouve 56. Soit 3y-x = 56 O trouve aisi y = 24 et x = 16<18 (pas majeur) 3) Systeme fou (*) 1+1=a a+a=b b+b=c ((a*b)*c)/(a*b)=y y*a*c= repose =(y*a*b*c*)/a b²+a²=l e=(a+a)*b s=(y+)*b t=(c*a)/y² L.a.repose.e.s.t = ) Carrés (**) O dispose des séries de ombres suivats: 1,2,3,4,5 1,3,4,5,6 1,4,5,6,7 1,5,6,7,8 etc... Trouver ue relatio valable pour chaque série utilisat la totalité des ombres pour obteir le carré d'u etier. Les opérateurs autorisés sot la multiplicatio et l additio. 1+2*3*4*5 = 121 = 11² 1+3*4*5*6 = 361 = 19² 1+4*5*6*7 = 841 = 29² 1+5*6*7*8 = 1681 = 41² 1+(+1)(+2)(+3)(+4) = k² 5) 2 écritures pour u même ombre? (*) Posos A = 0, (à l ifii). Remarque : u ombre avec ue partie décimale ifiie, cela existe : pesez par exemple au célèbre π ou 2. Preos alors ce ombre A et faisos lui subir quelques opératios élémetaires : 10*A = 9, *A = 9+0,

3 10*A = 9+A 10*A-A = 9 9*A = 9 D où A=1 Peut-o vraimet dire que 1 = 0, ?? Si oui, trouvez ue autre faço de le prouver simplemet e utilisat le chiffre 3 et so iverse. La répose à la questio est oui et le calcul e était ue démostratio rigoureuse. E effet «- 1=». Autre démostratio mois élégate serait 1=3*(1/3)=3*0,3333 =0,9999 6) =? (**) Calculer la somme des etiers de 1 à 100. Plus gééralemet peut-o trouver ue formule, foctio de, qui ous doe la somme des ombres etiers de 1 à? Idice : O peut voir cette somme de la faço suivate = (1+100) + (2+99) + (3+98) + + (50+51) Somme de 1 à = *(+1)/2 7) «Equalphabet» (*) (x-a)(x-b)(x-c) (x-y)(x-z) Sachat qu il y a 26 paires de parethèses et que les ombres {a,b,..,z} sot quelcoques, à quoi est égale cette équatio? (x-x) = 0 8) Récurrece (**) O défiit la suite A = A -1 + PGCD(, A -1 ) A 1 = 7 Quelle est la particularité des ombres géérés par les quatités (A -A -1 )? 1, 1, 1, 5, 3, 1, 1, 1, 1, 11, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 3, 1, Les (A -A -1 ) sot premiers.

4 9) U problème de l atiquité chioise (*) Ue ville carrée de dimesios icoues possède ue porte au milieu de chaque côté. U arbre se trouve à 20 pas de la porte Nord, à l extérieur de la ville. Il est visible d u poit que l o atteit e faisat 14 pas à partir de la porte Sud puis 1775 pas vers l ouest. Quelle est la dimesio de chaque côté de la ville? Thales (x/2)/20=1775/(20+x+14) Cela doe: x² + 34 x = 0 dot la solutio positive est 250 Le côté de la ville mesure doc 250 pas. 10) Croix umérique (*) Rager les chiffres de 1 à 8 das le tableau ci-dessous sachat que deux chiffres cosécutifs e doivet pas se toucher. (Idice : les chiffres 1 et 8 sot particuliers puisqu ils ot qu u seul voisi qui leur est cosécutif doc ) 11) Dijkstra (*) Le plus court chemi est la lige droite mais quel est le plus couteux? A B C D E F G H AEBFGDH

5 12) Glaço (**) O met u glaço das u verre d'eau puis l'o remplit celui-ci à ras bord. Que se passe-t-il pedat la fote du glaço? Le iveau d'eau e chage pas, il baisse, ou bie le verre déborde? Le glaço flotte doc il est e équilibre. So poids compese exactemet la poussée d Archimède. L itesité du poids se défiit par le produit de la masse fois l accélératio de la pesateur terrestre. P = m glaco g L itesité de la poussée d Archimède se défiit comme le poids du volume d eau déplacé das le verre par le glaço. A = m eau_déplacée g. L équilibre des forces dit que P = A et doc que m glaco =m eau_déplacée. La masse volumique d u élémet se costruit comme le rapport de sa masse sur so volume occupé das l espace. µ=m/v L équilibre précédet peut doc s écrire µ glaco V glaco =µ eau_déplacée V eau_déplacée E fodat la masse d eau produite par la fote du glaço est idetique à la masse du glaço (coservatio de la masse). Cepedat cette eau aura ue masse volumique qui est plus celle du glaço mais qui est µ eau_fodue =µ eau_déplacée et occupera u volume V eau_fodue =m glaco / µ eau_déplacée qui est exactemet égal à V eau_déplacée. Pour résumer, le iveau de l eau das le verre e chage pas car l eau produite par la fote du glaço occupera exactemet le volume occupé par la partie immergée du glaço (ou de faço équivalete le volume d eau déplacé par le glaço). Même expériece mais das u verre de Whisky. Que ce passe t-il? Le Whisky coteat de l éthaol o dit de lui qu il est «plus léger que l eau». E fait sa masse volumique est iférieure à celle de l eau µ whisky <µ eau. Doc cette fois ci µ eau_fodue >µ whisky_déplacé et doc V eau_fodue =m glaco / µ eau_fodue < m glaco / µ whisky_déplacé =V whisky_déplacée. O a aisi V eau_fodue < V whisky_déplacée qui par coséquet fait baisser le iveau du verre de Whisky E bref : la masse volumique de l éthaol état plus faible que celle l eau, l eau fodue occupera mois de place que le volume d alcool déplacé doc le iveau baisse. Moralité? 13) Diophate (**) Diophate d'alexadrie était u brillat mathématicie grec qui vivait au IVème siècle avat otre ère. La légede racote que ses élèves firet graver sur sa tombe cette épitaphe traduite e alexadris par Emile Fourrey das ses Récréatios mathématiques. 'Passat sous ce tombeau repose Diophate. Ces quelques vers tracés par ue mai savate Vot te faire coaître à quel âge il est mort. Des jours assez ombreux que lui compta le sort, Le sixième marqua le temps de so eface; Le douzième fut pris par so adolescece.

6 Des sept parts de sa vie, ue ecore s'écoula, Puis s'état marié, sa femme lui doa Ciq as après u fils, qui, du desti sévère, Reçut de jours hélas! deux fois mois que so père. De quatre as, das les pleurs, celui-ci survécut. Dis, si tu sais compter, à quel âge il mourut." A quel âge est mort Diophate? O pose l'équatio : A = A/6 + A/12 + A/ A/2 + 4 et o obtiet A = 84. O vérifie alors les étapes de la vie de Diophate : - A/ 6 : efat jusqu'à 14 as -A /12 + A/6 : ( + 7 as) Quelques poils à 21 as - A/7 + A/6 + A /12 : (+12 as ) marié à 33 as - A/6 + A/12 + A/7 + 5 : ( + 5 as ) père à 38 as - A/6 + A/12 + A/ A/2 ( + 42 as) il perdit so fils à 80 as - A/6 + A/12 + A/ A/2 + 4 : (+ 4 as) décédé à 84 as 14) Boulets! (***) Sur la place du palais de Moaco, o a empilé des boulets de cao par couches rectagulaires successives. Ue première couche repose au sol. Esuite, la largeur et la logueur de chaque ouvelle couche comportet chacue u boulet de mois que celles de la couche iférieure. Efi, la derière couche est ue ragée, d u boulet de largeur, dot la logueur est égale à la largeur de la première couche. Sachat que c est u carré parfait, o cherche le ombre total de boulets du tas. 1. O cherche ue solutio iférieure à O cherche ue autre solutio iférieure à (3. Y a-t-il d'autres solutios?) Aide : O rappel que ( + ) + 1 k = k² = k= et ( )( 2 + 1) k = 1 6 1ère ragée (e haut) : 1 * boulets 2ème ragée : 2 * (+1) boulets 3ème ragée : 3 * (+2) boulets... -ème ragée : * (2-1) boulets Doc si l'o appelle N le ombre total de boulets, alors : N = N = k( + k 1) = k² + ( 1) k = 1 k = 1 k = 1 ( + )( 2 + 1) ( ) ( 1 1 ) k

7 N = ( + 1)( 2 + 1) + 3( 1)( + 1) ( + 1)( 5 2) 6 = Le problème cosiste doc à trouver (hauteur de la pile de boulets) tel que N (ombre total de boulets) soit u carré. O peut trouver : = 1 et N = 1 (solutio triviale avec u seul boulet), = 6 étages et N = 196 boulets e tout (carré de 14), aisi que = 49 étages et N = boulets e tout (carré de 315). 6 15) Théorie des codes (***) Pour protéger ue iformatio il est parfois écessaire de la coder. U code a été appliqué à 4 mots du dictioaire fraçais : 29575, 9310, , Sachat que le premier est u mot de 5 lettres et est u objet précieux, le secod est u mot de 7 lettres pouvat ecombrer, se plier ou s accumuler das ue disciplie doée, le troisième est u mot de 7 lettres syoyme de raiso, et le derier u mot de 8 lettre pouvat être califorie ou même thaïladais, saurez-vous casser ce code et révéler les mots cachés? A = 1, B = 2, C = 3..Z = 26 puis multiplicatio des lettres etre elles. Exp : ABC 1*2*3 = = 07 x 05 x 13 x 13 x 05 GEMME 9310 = 02 x 01 x 07 x 01 x 07 x 05 x 19 BAGAGES = 19 x 01 x 07 x 05 x 05 x 19 x 19 x 05 SAGESSE = 13 x 01 x 19 x 19 x 01 x 07 x 05 x 19 MASSAGES 16) L astroome et les 2 comètes (****) I - Le 8 décembre 1999, u astroome a observé ue comète das le ciel. De la même positio, 6 jours plus tard il a vu ue autre comète passer. Après des recherches, il s'iforme que la 1ere comète apparait périodiquemet chaque 105 jours et la 2e tous les 81 jours. - détermiez le prochai jour où l'astroome pourra voir les 2 comètes passer le même jour. II - Cepedat, cet astroome 'est pas aussi itelliget que vous, alors il rate le redez vous à la suite d'u faux calcul : aidez le à détermier le prochai redez-vous de ces deux comètes. i) 6+81 doit être multiple de 105m 6=105m-81m. PGCD(81,105)=3, remoté de l algo d Euclide m=26 et =20 doc elles sot apparue e même temps 20*105 jours avat le 8 décembre 1999 soit le 9 mars La prochaie recotre aura lieux das u ombre de jour qui correspod au plus petit multiple commu de 105 et 81 après le 9 mars O a PPCM(81,105)=81*105/PGCD(81,105)=2835jours doc le 12 décembre ii) De même 12 décembre jours = 16 septembre 2009

8 17) Problème de Bhaskara (Ide, XII ème siècle) (***) Si tu es versé das les opératios de l algèbre, dis le ombre dot le bicarré mois le double de la somme du carré et deux cet fois le ombre est égal à la myriade mois u. ( ue myriade égale le myriarche commadait dix mille hommes, le bicarré = puissace 4) X 4-2(X²+200X) = X 4-2X²+1 400X-100² = 0 X 4 +2X²+1 4X²-400X-100² = 0 (X²+1)² - (2X+100)² = 0 X²-2X-99 = 0 X = {-9, 11} 18) Trompette (***) Preos u cylidre creux d épaisseur ulle, d'u mètre de rayo d'u mètre de hauteur. Je pose dessous le même gere de cylidre mais cette fois de 1/2 mètre de rayo d'u mètre de hauteur. Puis ecore dessous u cylidre de 1/3 de mètre de rayo et toujours d'u mètre de hauteur le log de l'axe de symétrie des cylidres. Cela fabrique u etooir "discret". Je cotiue mo etooir avec ue ifiité de cylidres de plus e plus petits, les rayos état de 1/ et les hauteurs de 1 mètre. Questio 1: Quelle est le volume itérieur de l etooir? Questio 2: Quelle est la surface itérieure de l etooir? Remarque : Das ce derier calcul o e comptera pas la surface des couroes. Aide : Euler ous appred 1 π ² = k = 1 k² 6 Quel est le paradoxe? Volume d'u cylidre de hauteur 1 mètre et de rayo r : π R² Surface de la paroi verticale du même cylidre : Volume de "l etooir téléscopique" : lim N N k = 1 N R Surface du dit etooir : lim 2π = N k= 1 k 2 πr 2 R π k 3 π = R² car, d après Euler 6 1 ² π ² =. k = 1 k 6 O a doc, u solide de surface ifiie et de volume fii. Note : E remplaçat la somme par ue itégrale, o tombe sur la trompette de Gabriel.

9 19) U petit problème de géométrie-arithmétique (**) O dessie u triagle dot les sommets sot les œuds d'u quadrillage orthoormé. L'itérieur du triagle cotiet u uique œud G (poit vert) et les côtés du triagle e passet par aucu autre œud du quadrillage. Idice : Formule de Pick. G est-il toujours le cetre de gravité du triagle? Utilisatio de la formule de Pick 3 sommets A, B, C et u poit G uique à l'itérieur. Aire (ABC) = 1+3/2-1= 1,5 Aire(ABG) = Aire (ACG) = Aire (BCG) = 0 + 3/ 2-1 = 0,5 Doc G est bie le cetre de gravité de ABC. Soit u polygoe costruit sur ue grille de poits équidistats tel que tous ses sommets soiet des poits de la grille ; le théorème de Pick fourit ue formule simple pour calculer l'aire A de ce polygoe e se servat du ombre i de poits itérieurs du polygoe et du ombre b de poits du bord du polygoe :. 20) Echec au Roi (*) Sachat que deux rois situés sur deux cases qui se touchet par u côté ou par u coi s'attaquet, combie peut-o disposer de rois au maximum sur u échiquier (de taille 8 fois 8) sas qu'aucu 'attaque u autre? O peut teter de placer les rois les plus proches possible des us des autres e commeçat par exemple par le coi iférieur gauche du damier. Au total o voit que l o peut placer 16 rois et qu o e peut e aucu cas e rajouter u 17 ème sas qu il attaque u des autres. Cepedat peut être existe-t-il ue autre cofiguratio qui autorise u ombre plus importat que la solutio 16. E fait, il s'agit d'ue applicatio igéieuse du pricipe des tiroirs : o peut découper l'échiquier e 16 parties, chacue costitué de 4 cases disposées e carré. Supposos doc que l'o ait disposé 17 rois sur l'échiquier. D'après le pricipe des tiroirs, au mois 2 d'etres eux se trouvet das la même case, doc s'attaquet mutuellemet!

10 21) Nombres de Kaprekar (*) U ombre de Kaprekar est u ombre qui, das ue base doée, lorsqu'il est élevé au carré, peut être séparé e ue partie gauche et ue partie droite (o ulle) telles que la somme doe le ombre iitial. Motrer que 703 est u ombre de Kaprekar e base 10. 5, 9,13, 45, 55, 98 et 297 sot-il des ombres de Kaprekar? 703 = ; =703 1, 9, 45, 55, 99, 297, 703, 999, 2223, 2728, 4879, 4950, 5050, ) 5 (**) Ue cojecture dit que toutes les puissaces de 5 ot la propriété de voir leurs chiffres réarragés e u calcul simple doat leur valeur. 5^1 = 5 = 5 5^2 = 25 = 5^2 5^3 = 125 = 5^(1 + 2) 5^4 = 625 = 5^(6-2) Les opératios autorisées sot + - / * et ^ Aller u peu plus loi, 5^5, 5^6, 5^7 5^1 = 5 = 5 5^2 = 25 = 5^2 5^3 = 125 = 5^(1 + 2) 5^4 = 625 = 5^(6-2) 5^5 = 3125 = 5^(3+1*2) = (3+1*2)^5 (das l'ordre) 5^6 = = 5^((1+5+6)/2) 5^7 = = 5^(17-8-2) 5^8 = = 5^(9+0-6/2/3) 5^9 = = 5^( *2) = (1+9-5)^((3+1)*2)*5 (das l'ordre) 5^10 = = 5^((9+7+6)/2+5-6) = ( )^5 (das l'ordre) 5^11 = = 5^( ) = (48/8/2-8)^12/5 (das l'ordre) 5^12 = =5^(2*4+4+1* ) = (((2+4)*4+1)^4+0)*625 (das l'ordre) 5^13 = =5^(1* ) = ((1-2)* )^(3*1+2*5) (das l'ordre) = ( )^12*5 (das l'ordre) 5^14 = =5^( *5+6-2) = ((6-10+3)*5)^(1+5+6)*25 (das l'ordre) 5^15 = =5^( ) = ( *5+7*8-1*2)^5 (das l'ordre) 5^16 = =5^(1* ) = ( )^(6+2*5) (das l'ordre) 5^17 = = 5^( ) = (7* )^(5*3*1)*25 (das l'ordre) 5^18 = = 5^( ) = (3* )^(5+6*2)*5 (das l'ordre)

11 23) 42 est la répose ultime (**) Si 19+29=42 et si =42, combie fot 14+19? Et pourquoi? Idice : u chagemet de base est peut être écessaire 2D e hexadecimal 24) Tuyauterie (**) Cosidéros u tuyau circulaire d'u diamètre de 6 cm, das lequel sot isérés 2 câbles : l'u de 4 cm de diamètre, l'autre de 2 cm de diamètre. Quel est le diamètre du plus gros câble que je puisse ajouter das le tuyau? Idice : Exprimez la logueur des 3 segmets e gras de maière à obteir 3 équatios à 3 icoues X, Y et Z, la valeur cherchée état X. (1) (1+X)^2 = Y^2+Z^2 (2) (2+X)^2 = (3-Y)^2 + Z^2 (3) (3-X)^2 = (2-Y)^2+Z^2 3 équatios, 3 icoues, o résout : X= 6/7. (2)-(3) Y = 5-5X (3)-(1) X = 6/7 25) SamLoyd # 1 (***) Le passage d u fleuve est assuré par deux bateaux. Chacu de ces bateaux circule à vitesse costate, mais l u des bateaux est plus rapide que l autre. Les bateaux partet exactemet à la même heure des rives opposées et se croiset à 2 km d u des bords. Ayat effectué leur trajet aller, ils s arrêtet chacu 10 miutes. Pedat le trajet du retour, ils se croiset à 1 km de l autre bord. Quelle est la largeur du fleuve? Remarque : La vitesse moyee d u mobile s écrit comme le rapport de la distace parcourue sur l itervalle de temps pris pour effectuer cette distace V = D/T. D 2km à T1 à T2 1km

12 D doit être supérieur à 4 car la distaces au momet des 2 croisemets est relative aux deux rives distictes. Istat T1 du 1 er croisemet : T1 = (D-2)/V1 = 2/V2 V1/V2 = (D-2)/2 Istat T2 du 2 ème croisemet : T2 = D/V (D-1)/V1 = D/V /V2 V1/V2 = (2D- 1)/(D+1) D=5 26) Proba&Rogeur (**) Ue souris est mise das ue cage à 8 portes semblables dot ue seule peut permettre à cette souris de s'échapper; tadis que pour les autres, la souris subira u choc électrique O suppose que la souris 'a pas ue boe mémoire. Quelle est la probabilité que la souris s échappe à la 20eme tetative? Puisqu elle a ue très mauvaise mémoire elle a ue proba 7/8 de se tromper à chaque tetative. La proba de se tromper 19 fois deviet (7/8)^19. La 20 ème tetative est la boe avec ue chace sur 8 soit au total 7^19/8^20. 27) Pyramide différeciée (**) Costruisez ue pyramide avec les cubes 1 à 15, chaque cube état la différece absolue des deux cubes du dessous. Remarque : A B= 15 est impossible pour A,B {1,2, 14} De même A B = 14 a qu ue solutio pour A,B {1,2,..,13,15} U exemple avec 6 premiers cubes Pyramide à compléter

13 28) Disque et Volume (***) O dispose d u disque e carto que ous trasformos e côe e découpat u secteur et e pliat le reste e forme de côe. Quel doit être e degrés l'arc du secteur découpé pour que le côe soit de capacité maximum? Sas perte de gééralité o peut supposer le rayo égal à 1. 2π, 0<x<1, le côe formé a pour base u cercle de rayo x. Si o découpe u secteur d'agle ( 1 x) La hauteur du côe est alors 1 x². π Le volume est, au facteur près, x² 1 x². 3 1 x² = x x O doit trouver le maximum de ( ) La dérivée est 4x 6x = 2x ( 2 3x² ) Elle s'aule pour x. 2 x =. 3 L'agle découpé est doc '40". 3 29) Questio d abodace (****) L abodace d u etier strictemet positif est défiie par sig()- où sig() est la somme des diviseurs de ( o compris). U ombre d abodace positive est appelé u ombre abodat, u ombre dot l abodace est égative est u ombre déficiet et efi u ombre qui possède ue abodace ulle est u ombre parfait (o pourrait égalemet metioer les ombres quasi-parfaits caractérisés par ue abodace égale à 1). Le multiple d u ombre abodat est-il abodat? Combie existe-t-il doc de ombres abodats?

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil. Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9 Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions Déombremet ECE3 Lycée Carot 12 ovembre 2010 Itroductio La combiatoire, sciece du déombremet, sert comme so om l'idique à compter. Il e s'agit bie etedu pas de reveir au stade du CP et d'appredre à compter

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice

Plus en détail

Intérêt simple CHAPITRE. Sommaire

Intérêt simple CHAPITRE. Sommaire HAPTRE térêt simple Sommaire A B D E F G H J K L Notio d itérêt Formule fodametale de l itérêt simple Durée de placemet exprimée e mois Durée de placemet exprimée e jours alculs sur la formule fodametale

Plus en détail

Chap. 5 : Les intérêts (Les calculs financiers)

Chap. 5 : Les intérêts (Les calculs financiers) Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie

Plus en détail

14 Chapitre 14. Théorème du point fixe

14 Chapitre 14. Théorème du point fixe Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de

Plus en détail

Séries réelles ou complexes

Séries réelles ou complexes 6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés

Plus en détail

Processus et martingales en temps continu

Processus et martingales en temps continu Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3... Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1

Plus en détail

Suites et séries de fonctions

Suites et séries de fonctions [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de

Plus en détail

55 - EXEMPLES D UTILISATION DU TABLEUR.

55 - EXEMPLES D UTILISATION DU TABLEUR. 55 - EXEMPLES D UTILISATION DU TABLEUR. CHANTAL MENINI 1. U pla possible Les exemples qui vot suivre sot des pistes possibles et e aucu cas ue présetatio exhaustive. De même je ai pas fait ue étude systématique

Plus en détail

Apprentissage: cours 3a Méthodes par moyennage local

Apprentissage: cours 3a Méthodes par moyennage local Appretissage: cours 3a Méthodes par moyeage local Guillaume Oboziski 1 er mars 2012 Réferece : chap. 6 of [Hastie et al., 2009] ad chap. 6 of [Devroye et al., 1996]. Algorithmes par moyeage local O cosidère

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4 UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»

Plus en détail

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe Cosolidatio La société THEOS, qui commercialise des vis, exerce so activité das trois villes : Paris, Nacy et Nice. Le directeur de la société souhaite cosolider les résultats de ses vetes par ville das

Plus en détail

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3 1 Groupe orthogoal d'u espace vectoriel euclidie de dimesio, de dimesio Voir le chapitre 19 pour l'étude des espaces euclidies et des isométries. État doé u espace euclidie E de dimesio 1, o rappelle que

Plus en détail

UNIVERSITÉ DE SFAX École Supérieure de Commerce

UNIVERSITÉ DE SFAX École Supérieure de Commerce UNIVERSITÉ DE SFAX École Supérieure de Commerce Aée Uiversitaire 2003 / 2004 Auditoire : Troisième Aée Études Supérieures Commerciales & Scieces Comptables DÉCISIONS FINANCIÈRES Note de cours N 3 Première

Plus en détail

Approximation de la solution d une équation différentielle ordinaire avec impulsions qui dépendent de l état

Approximation de la solution d une équation différentielle ordinaire avec impulsions qui dépendent de l état Approximatio de la solutio d ue équatio différetielle ordiaire avec impulsios qui dépedet de l état F. Dubeau A. Ouasafi A. Sakat CRM-276 Jauary 21 Départemet de mathématiques et d iformatique, Uiversité

Plus en détail

2 ième partie : MATHÉMATIQUES FINANCIÈRES

2 ième partie : MATHÉMATIQUES FINANCIÈRES 2 ième partie : MATHÉMATIQUES FINANCIÈRES 1. Défiitios L'itérêt est l'idemité que doe au propriétaire d'ue somme d'arget celui qui e a joui pedat u certai temps. Divers élémets itervieet das le calcul

Plus en détail

P : Dénombrements / Probabilités en univers fini

P : Dénombrements / Probabilités en univers fini P : Déombremets / Probabilités e uivers fii Déombremet & Combiatoire P.1 O tire les cartes! O tire 5 cartes das u jeu de 32 cartes usuel. Combie y a-t-il de tirages possibles vérifiat les coditios suivates

Plus en détail

Probabilité 1 - L1 MMIA

Probabilité 1 - L1 MMIA Probabilité 1 - L1 MMIA Tra Viet Chi, vtra@u-paris10fr, Bureau E12(G) Exercice 1 (Pour démarrer) 1 Soiet A et B deux esembles Rappelez les défiitios de l itersectio A B, de l uio A B, de la différece A

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

Statistique descriptive bidimensionnelle

Statistique descriptive bidimensionnelle 1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets

Plus en détail

Exercices de mathématiques

Exercices de mathématiques MP MP* Thierry DugarDi Marc rezzouk Exercices de mathématiques Cetrale-Supélec, Mies-Pots, École Polytechique et ENS Coceptio et créatio de couverture : Atelier 3+ Duod, 205 5 rue Laromiguière, 75005 Paris

Plus en détail

STATISTIQUE AVANCÉE : MÉTHODES

STATISTIQUE AVANCÉE : MÉTHODES STATISTIQUE AVANCÉE : MÉTHODES NON-PAAMÉTIQUES Ecole Cetrale de Paris Arak S. DALALYAN Table des matières 1 Itroductio 5 2 Modèle de desité 7 2.1 Estimatio par istogrammes............................

Plus en détail

Formation d un ester à partir d un acide et d un alcool

Formation d un ester à partir d un acide et d un alcool CHAPITRE 10 RÉACTINS D ESTÉRIFICATIN ET D HYDRLYSE 1 Formatio d u ester à partir d u acide et d u alcool 1. Nomeclature Acide : R C H Alcool : R H Groupe caractéristique ester : C Formule géérale d u ester

Plus en détail

4 Approximation des fonctions

4 Approximation des fonctions 4 Approximatio des foctios Ue foctio f arbitraire défiie sur u itervalle I et à valeur das IR peut être représetée par so graphe, ou de maière équivalete par la doée de l esemble de ses valeurs f(t) pour

Plus en détail

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009 M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted

Plus en détail

Chapitre 3 : Transistor bipolaire à jonction

Chapitre 3 : Transistor bipolaire à jonction Chapitre 3 : Trasistor bipolaire à joctio ELEN075 : Electroique Aalogique ELEN075 : Electroique Aalogique / Trasistor bipolaire U aperçu du chapitre 1. Itroductio 2. Trasistor p e mode actif ormal 3. Courats

Plus en détail

HEC. Gilles Mauffrey. METHODES QUANTITATIVES AVEC EXCEL Programmation linéaire, programmation dynamique, simulation, statistique élémentaire

HEC. Gilles Mauffrey. METHODES QUANTITATIVES AVEC EXCEL Programmation linéaire, programmation dynamique, simulation, statistique élémentaire HEC Gilles Mauffrey METHODES QUANTITATIVES AVEC EXCEL Programmatio liéaire, programmatio dyamique, simulatio, statistique élémetaire La Modélisatio LA MODELISATION Modèle et typologie des modèles. La otio

Plus en détail

Probabilités et statistique pour le CAPES

Probabilités et statistique pour le CAPES Probabilités et statistique pour le CAPES Béatrice de Tilière Frédérique Petit 2 3 jui 205. Uiversité Pierre et Marie Curie 2. Uiversité Pierre et Marie Curie 2 Table des matières Modélisatio de phéomèes

Plus en détail

c. Calcul pour une évolution d une proportion entre deux années non consécutives

c. Calcul pour une évolution d une proportion entre deux années non consécutives Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages

Plus en détail

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces

Plus en détail

3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions.

3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions. 3 Réseau Le réseau costitue u aspect essetiel d u eviroemet virtuel ESX. Il est doc importat de compredre la techologie, y compris ses différets composats et leur coopératio. Das ce chapitre, ous étudios

Plus en détail

1. CALCUL DES CARACTÉRISTIQUES «R- L-C» D'UNE JONCTION TRIPHASÉE

1. CALCUL DES CARACTÉRISTIQUES «R- L-C» D'UNE JONCTION TRIPHASÉE . CALCUL DES CAACTÉISTIQUES «- L-C» DUNE JONCTION TIPHASÉE Trasport et Distributio de léergie Electrique Mauel de travaux pratiques. CALCUL DES CAACTÉISTIQUES «-L-C» DUNE JONCTION TIPHASÉE.. Itroductio....

Plus en détail

UV SQ 20. Automne 2006. Responsable d Rémy Garandel ( m.-el. remy.garandel@utbm.fr ) page 1

UV SQ 20. Automne 2006. Responsable d Rémy Garandel ( m.-el. remy.garandel@utbm.fr ) page 1 UV SQ 0 Probabilités Statistiques UV SQ 0 Autome 006 Resposable d Rémy Garadel ( m.-el. remy.garadel@utbm.fr ) page SQ-0 Probabilités - Statistiques Bibliographie: Titre Auteur(s) Editios Localisatio Niveau

Plus en détail

Comment utiliser ce que vous POSSÉDEZ pour réduire ce que vous DEVEZ

Comment utiliser ce que vous POSSÉDEZ pour réduire ce que vous DEVEZ Commet utiliser ce que vous POSSÉDEZ pour réduire ce que vous DEVEZ Survol du compte Mauvie U La majorité des Caadies gèret leurs fiaces comme suit : 1. Ils déposet leur reveu et autres actifs à court

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation 1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus

Plus en détail

Sommaire Chapitre 1 - L interface de Windows 7 9

Sommaire Chapitre 1 - L interface de Windows 7 9 Sommaire Chapitre 1 - L iterface de Widows 7 9 1.1. Utiliser le meu Démarrer et la barre des tâches de Widows 7...11 Démarrer et arrêter des programmes...15 Épigler u programme das la barre des tâches...18

Plus en détail

Gérer les applications

Gérer les applications Gérer les applicatios E parcourat les rayos du Widows Phoe Store, vous serez e mesure de compléter les services de base de votre smartphoe à travers plus de 10 000 applicatios. Gratuites ou payates, ces

Plus en détail

Le marché du café peut être segmenté en fonction de deux modes de production principaux : la torréfaction et la fabrication de café soluble.

Le marché du café peut être segmenté en fonction de deux modes de production principaux : la torréfaction et la fabrication de café soluble. II LE MARCHE DU CAFE 1 L attractivité La segmetatio selo le mode de productio Le marché du café peut être segmeté e foctio de deux modes de productio pricipaux : la torréfactio et la fabricatio de café

Plus en détail

Statistiques appliquées à la gestion Cours d analyse de donnés Master 1

Statistiques appliquées à la gestion Cours d analyse de donnés Master 1 Aalyse des doées Statistiques appliquées à la gestio Cours d aalyse de doés Master F. SEYTE : Maître de coféreces HDR e scieces écoomiques Uiversité de Motpellier I M. TERRAZA : Professeur de scieces écoomiques

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires

Plus en détail

DETERMINANTS. a b et a'

DETERMINANTS. a b et a' 2003 - Gérard Lavau - http://perso.waadoo.fr/lavau/idex.htm Vous avez toute liberté pour télécharger, imprimer, photocopier ce cours et le diffuser gratuitemet. Toute diffusio à titre oéreux ou utilisatio

Plus en détail

PROMENADE ALÉATOIRE : Chaînes de Markov et martingales

PROMENADE ALÉATOIRE : Chaînes de Markov et martingales PROMENADE ALÉATOIRE : Chaîes de Markov et martigales Thierry Bodieau École Polytechique Paris Départemet de Mathématiques Appliquées thierry.bodieau@polytechique.edu Novembre 2013 2 Table des matières

Plus en détail

Solutions particulières d une équation différentielle...

Solutions particulières d une équation différentielle... Solutios particulières d ue équatio différetielle......du premier ordre à coefficiets costats O cherche ue solutio particulière de y + ay = f, où a est ue costate réelle et f ue foctio, appelée le secod

Plus en détail

TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 )

TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 ) RAIRO Operatios Research RAIRO Oper. Res. 34 (2000) 99-129 TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 ) Commuiqué par Berard LEMAIRE Résumé. L étude

Plus en détail

Régulation analogique industrielle ESTF- G.Thermique

Régulation analogique industrielle ESTF- G.Thermique Chapitre 5 Stabilité, Rapidité, Précisio et Réglage Stabilité. Défiitio Coditio de stabilité. Critères de stabilité.. Critères algébriques.. Critère graphique ou de revers das le pla de Nyquist Rapidité

Plus en détail

Université Pierre et Marie Curie. Biostatistique PACES - UE4 2013-2014

Université Pierre et Marie Curie. Biostatistique PACES - UE4 2013-2014 Uiversité Pierre et Marie Curie Biostatistique PACES - UE4 2013-2014 Resposables : F. Carrat et A. Mallet Auteurs : F. Carrat, A. Mallet, V. Morice Mise à jour : 21 octobre 2013 Relecture : V. Morice,

Plus en détail

Télé OPTIK. Plus spectaculaire que jamais.

Télé OPTIK. Plus spectaculaire que jamais. Télé OPTIK Plus spectaculaire que jamais. Vivez toute la puissace de la télévisio sur IP grâce au réseau OPTIK 1 de TELUS et découvrez-e l extraordiaire potetiel. Télé OPTIK MC vous doe la parfaite maîtrise

Plus en détail

Cours de Statistiques inférentielles

Cours de Statistiques inférentielles Licece 2-S4 SI-MASS Aée 2015 Cours de Statistiques iféretielles Pierre DUSART 2 Chapitre 1 Lois statistiques 1.1 Itroductio Nous allos voir que si ue variable aléatoire suit ue certaie loi, alors ses réalisatios

Plus en détail

Chapitre 13. Statistiques et probabilités. Sommaire

Chapitre 13. Statistiques et probabilités. Sommaire 13 Chapitre Chapitre 13 Statistiques et probabilités Les statistiques et les probabilités occupet ue place importate das l eseigemet de certaies classes préparatoires Les pricipales foctios écessaires

Plus en détail

Le meilleur scénario pour votre investissement

Le meilleur scénario pour votre investissement ivestir Best Strategy 2012 Le meilleur scéario pour votre ivestissemet U ivestissemet diversifié U coupo uique de 0% à 50% brut* à l échéace Ue courte durée : 4 as et demi Votre capital garati à l échéace

Plus en détail

Module 3 : Inversion de matrices

Module 3 : Inversion de matrices Math Stat Module : Iversio de matrices M Module : Iversio de matrices Uité. Défiitio O e défiira l iverse d ue matrice que si est carrée. O appelle iverse de la matrice carrée toute matrice B telle que

Plus en détail

LES PROBABILITÉS POUR LES OPTIONS B, C ET D

LES PROBABILITÉS POUR LES OPTIONS B, C ET D LES PROBABILITÉS POUR LES OPTIONS B, C ET D PRÉPARATION À L AGRÉGATION EXTERNE DE MATHÉMATIQUES DE L UNIVERSITÉ RENNES 1 1 ANNÉE 2009/2010 1. ESPACE PROBABILISÉ - VARIABLE ALÉATOIRE 1.1 ESPACE PROBABILISÉ

Plus en détail

Mobile Business. Communiquez efficacement avec vos relations commerciales 09/2012

Mobile Business. Communiquez efficacement avec vos relations commerciales 09/2012 Mobile Busiess Commuiquez efficacemet avec vos relatios commerciales 9040412 09/2012 U choix capital pour mes affaires Pour gérer efficacemet ses affaires, il y a pas de secret : il faut savoir predre

Plus en détail

Probabilités. Voir en bibliographie l ouvrage [1], pages 52 et 53.

Probabilités. Voir en bibliographie l ouvrage [1], pages 52 et 53. Probabilités «Pour compredre l actualité, ue formatio à la statistique est aujourd hui idispesable ; c est ue formatio qui développe des capacités d aalyse et de sythèse et exerce le regard critique. Le

Plus en détail

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe 1/5 Trois objectifs poursuivis par le gouveremet : > améliorer la compétitivité fiscale de la Frace > péreiser les activités de R&D > faire de la Frace u territoire attractif pour l iovatio Les icitatios

Plus en détail

Cours 5 : ESTIMATION PONCTUELLE

Cours 5 : ESTIMATION PONCTUELLE Cours 5 : ESTIMATION PONCTUELLE A- Gééralités B- Précisio d u estimateur C- Exhaustivité D- iformatio E-estimateur sas biais de variace miimale, estimateur efficace F- Quelques méthode s d estimatio A-

Plus en détail

trouve ton équilibre

trouve ton équilibre trouve to équilibre www.bee-secure.lu FR Trouver so équilibre Es-tu allé à u cocert ou à la piscie récemmet? A quad remote ta derière recotre avec des amis? Combie de temps passes-tu sur les réseaux sociaux?

Plus en détail

STATISTIQUE : TESTS D HYPOTHESES

STATISTIQUE : TESTS D HYPOTHESES STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie

Plus en détail

Université Victor Segalen Bordeaux 2 Institut de Santé Publique, d Épidémiologie et de Développement (ISPED) Campus Numérique SEME

Université Victor Segalen Bordeaux 2 Institut de Santé Publique, d Épidémiologie et de Développement (ISPED) Campus Numérique SEME Uiversité Victor Segale Bordeaux Istitut de Saté Publique, d Épidémiologie et de Développemet (ISPED) Campus Numérique SEME MODULE Pricipaux outils e statistique Versio du 8 août 008 Écrit par : Relu par

Plus en détail

Les algorithmes de tri

Les algorithmes de tri CONSERVATOIRE NATIONAL DES ARTS ET METIERS PARIS MEMOIRE POUR L'EXAMEN PROBATOIRE e INFORMATIQUE par Nicolas HERVE Les algorithmes de tri Souteu le mai JURY PRESIDENTE : Mme COSTA Sommaire Itroductio....

Plus en détail

Introduction : Mesures et espaces de probabilités

Introduction : Mesures et espaces de probabilités Itroductio : Mesures et espaces de probabilités Référeces : Poly cédric Berardi et Jea Michel Morel. J.-F. Le Gall, Itégratio, Probabilités et Processus Aléatoire J.-Y. Ouvrard, Probabilités 2, maîtrise-agrégatio,

Plus en détail

Bio-Statistique. 1 ère partie. Discipline : Bio-statistique, Bio-mathématique et Sciences de l Information

Bio-Statistique. 1 ère partie. Discipline : Bio-statistique, Bio-mathématique et Sciences de l Information Bio-Statistique 1 ère partie Disciplie : Bio-statistique, Bio-mathématique et Scieces de l Iformatio OBJECTIFS PEDAGOGIQUES Réaliser l importace du problème de la variabilité ihérete au doées médicales,

Plus en détail

Statistique Numérique et Analyse des Données

Statistique Numérique et Analyse des Données Statistique Numérique et Aalyse des Doées Arak DALALYAN Septembre 2011 Table des matières 1 Élémets de statistique descriptive 9 1.1 Répartitio d ue série umérique uidimesioelle.............. 9 1.2 Statistiques

Plus en détail

Des résultats d irrationalité pour deux fonctions particulières

Des résultats d irrationalité pour deux fonctions particulières Collect. Math. 5, 00, 0 c 00 Uiversitat de Barceloa Des résultats d irratioalité pour deux foctios particulières Richard Choulet 7, Rue du 4 Août, 40 Aveay, Frace E-mail: richardchoulet@waadoo.fr Received

Plus en détail

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules sera mis à dispositio des cadidats, si écessaire. Etat au 1er mars

Plus en détail

La fibre optique arrive chez vous Devenez acteur de la révolution numérique

La fibre optique arrive chez vous Devenez acteur de la révolution numérique 2 e éditio Edité par l Autorité de régulatio des commuicatios électroiques et des postes RÉPUBLIQUE FRANÇAISE DÉCEMBRE 2010 La fibre optique arrive chez vous Deveez acteur de la révolutio umérique Petit

Plus en détail

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules est à dispositio olie et sera doé aux cadidats lors des exames oraux

Plus en détail

Etude Spéciale SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT?

Etude Spéciale SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT? Etude Spéciale o. 7 Javier 2003 SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT? MARK SCHNEIDER Le CGAP vous ivite à lui faire part de vos commetaires, de vos rapports et de toute demade d evoid autres

Plus en détail

Maîtrise de Mathématiques TER Le bandit manchot à deux bras

Maîtrise de Mathématiques TER Le bandit manchot à deux bras Maîtrise de Mathématiques TER Le badit machot à deux bras Deis Cousieau Sous la directio de Jea-Michel Loubes Septembre 2003 Table des matières 1 Présetatio du problème 2 1.1 Exemple de la machie à sous,

Plus en détail

Processus géométrique généralisé et applications en fiabilité

Processus géométrique généralisé et applications en fiabilité Processus géométrique gééralisé et applicatios e fiabilité Lauret Bordes 1 & Sophie Mercier 2 1,2 Uiversité de Pau et des Pays de l Adour Laboratoire de Mathématiques et de leurs Applicatios - Pau UMR

Plus en détail

Cours : Le choix des investissements grâce à l actualisation : La VAN (Valeur Actualisée Nette) et le TIR (Taux Interne de Rendement)

Cours : Le choix des investissements grâce à l actualisation : La VAN (Valeur Actualisée Nette) et le TIR (Taux Interne de Rendement) Cours : Le choix des ivestissemets grâce à l actualisatio : La VAN (Valeur Actualisée Nette) et le TIR (Taux Itere de Redemet) 1 La VAN, la Valeur Actualisée (ou Actuelle) Nette e aveir certai 11 La comparaiso

Plus en détail

Terminale S. Terminale S 1 F. Laroche

Terminale S. Terminale S 1 F. Laroche Termiale S Exercices. Rappels et exercices de base 3.. QCM (P. Egel) 3.. QCM, Atilles 005 4. 3. QCM, Liba 009, 3 poits 4. 4. QCM, C. étragers 007. 5. QCM, Frace 007 5 6. 6. QCM, N. Calédoie 007 7. 7. QCM

Plus en détail

POLITIQUE ECONOMIQUE ET DEVELOPPEMENT

POLITIQUE ECONOMIQUE ET DEVELOPPEMENT POLTQU ONOMQU T DVLOPPMNT TRUTUR DU MAR NATONAL DU AF-AAO T PR AU PRODUTUR MALAN Beïla Beoit osultat PD N 06/008 ellule d Aalyse de Politiques coomiques du R Aée de pulicatio : Avril 009 Résumé e papier

Plus en détail