1 Mesure et intégrale

Dimension: px
Commencer à balayer dès la page:

Download "1 Mesure et intégrale"

Transcription

1 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios suivates sot vérifiées : (i), F; (ii) si A i F pour i =1, 2,..., alors i A i F; (iii) si A F, alors A c F,oùA c désige le complémetaire de A das. La tribu boréliee B = B est défiie comme la tribu miimale sur telle que : (iv) pour tous ã< b, o a ]ã, b[ B. Propositio 1.1. La tribu boréliee est bie défiie. De plus, pour tous ã b vérifiat les iégalités ã a et b b o a [ã, b], [ã, b[, ]ã, b] B. Démostratio. Soit {F α,α A}la famille de toutes les tribus vérifiat (iv). Alors l itersectio α F α est la tribu boréliee. Motros que B cotiet tous les itervalles. E effet, cosidéros, par exemple, le cas d u itervalle fermé [ã, b]. Les propriétés (ii) et (iii) impliquet que si A i B, alors i A i B. D autre part, o a [ã, b] ã = 1, b + 1. Comme les esembles ã 1, b + 1 appartieet à B, o coclut que [ã, b] B. Propositio 1.2. Soit a ã b b + et Γ B [a,b].alorsγ [ã, b] appartiet à B [ã, b].réciproquemet,siγ B [ã, b],alorsγ est borélie e tat que sous-esemble de [a, b]. Démostratio. Soit B = {Γ B [a,b] :Γ [ã, b] B [ã, b] }. Alors B est ue tribu vérifiat (iv) avec =[a, b]. Doc B B [a,b], et o voit que Γ [ã, b] B [ã, b] pour tout Γ B [a,b]. La démostratio de la deuxième partie est similaire. Soit f : R ue foctio. O dit que f est mesurable si {x : f(x) <α} B pour tout α R. Exemples ) Soit A B. Alors la foctio caractéristique I A est mesurable. 2) Soit f : R ue foctio cotiue. Alors f est mesurable. Cette propriété est coséquece de la propositio

2 Propositio 1.4. Soiet f, g deux foctios mesurables. Alors f g, f g, f +g, fg, f/g sot des foctios mesurables. De plus, si {f } est ue suite de foctios mesurables, alors les foctios sup f, if f, lim sup f, lim if f sot aussi mesurables. Efi, si f (x) f(x) pour tout x, alorsf est mesurable. Démostratio. O a : {f g<α} = {f <α} {g<α}, {f g<α} = {f <α} {g<α}, {f + g<α} = {f <r 1 } {g<r 2 }, r 1+r 2<α où r 1 et r 2 sot des ombres ratioels. Ces relatios impliquet que f g, f g, f + g sot des foctios mesurables. La preuve de mesurabilité de fg est u exercice. Motros maiteat que si g = 0, alors f/g est mesurable. Il suffit de motrer que 1/g est mesurable. Supposos par exemple que α> 0. Alors {1/g < α} = {1/g < α, g > 0} {1/g < α, g < 0} d où o coclut que 1/g est mesurable. = {g >1/α, g > 0} {g<1/α, g < 0}, Soit {f } ue suite de foctios mesurables. Alors {sup f <α} = {lim sup f <α} = m=1 {f <α 1 m }, m=1 =1 = {f <α 1 m }, doc sup f et lim sup f sot mesurables. Comme if f = sup ( f )et lim if f = lim sup ( f ), o coclut que ces foctios sot aussi mesurables. Efi, si f (x) f(x) pour tout x, alors f =limsup f, et doc f est aussi mesurable. Propositio 1.5. Si f : R est ue foctio mesurable, alors f 1 (Γ) = {x : f(x) Γ} B pour tout Γ B R. De plus, si f : R R et g : R sot deux foctios mesurables, alors la foctio composée f g est aussi mesurable. Démostratio. Soit F = {Γ B R : f 1 (Γ) B }. Alors F est ue tribu coteat les itervalles de la forme ],α[ pour tout α R. Ils esuitquef cotiet tous les itervalles de R, et doc F doit coteir la tribu boréliee de R. Motros que la foctio composée f g est mesurable. Soit Γ B R. Alors (f g) 1 (Γ) = g 1 (Γ 1 ), où Γ 1 = f 1 (Γ). D après la première propriété de la propositio, o a Γ 1 B R, d où o coclut que Γ B. 3

3 Ue foctio f : R mesurable est dite é t a g é e si elle e pred qu u ombre fii de valeurs : f(x) = c k I Γk (x), Γ k Γ =, Γ k =. Théorème 1.6. Soit f : R ue foctio mesurable. Alors il existe ue suite de foctios étagées f : R telles que f (x) f(x) pour tout x quad. (1.1) De plus, si f 0, alorsopeutcostruireuesuitecroissatevérifiat(1.1). Efi, si f est borée, alors il existe ue suite croissate {f } telle que la covergece (1.1) soit uiforme. Démostratio. Comme tout foctio f est représetable comme la somme de deux foctios positives, sas perte de gééralité o peut supposer que f 0. O va doc motrer qu il existe ue suite croissate {f } qui coverge vers f. Pour tout etier 1, cosidéros la subdivisio de l itervalle [0,] défiie par les poits yk = k 2, k =0,...,2. O défiit les foctios 2 f (x) = yk 1I Γ k (x), où Γ k = {y k 1 f(x) <y k } pour 1 k<2 et Γ 2 = {f(x) y 2 1}. Alors {f } est croissate et coverge vers f. Deplus,sif est borée, alors la covergece est uiforme. 1.2 Mesure Soit = [a, b] et B la tribu boréliee. Ue mesure sur (, B) est ue foctio µ : B R + vérifiat les propriétés suivates : µ( ) =0; Pour toute suite d esembles {A } Bdeux à deux disjoits o a µ A = µ(a ). O appelle µ() lamasse totale de µ. Siµ() <, alors o dit que est ue mesure fiie. Propositio 1.7. Soit µ ue mesure sur (, B ).Alorslespropriétéssuivates ot lieu. (a) Si A, B Bet A B, alorsµ(a) µ(b). 4

4 (b) Soit {A } Bue suite telle que A 1 A 2.Alors µ A = lim µ(a ). (1.2) De même, si {A } Best ue suite décroissate telle que µ(a 1 ) <, alors µ A = lim µ(a ). (1.3) Démostratio. (a) Soit C = B \ A. Alors B = A C et A C =, et doc (b) O ote µ(b) =µ(a) +µ(c) µ(a). Ã 1 = A 1, Ã 2 = A 2 \ A 1,...,Ã = A \ A 1. Alors Doc, Ã = A, Ã Ãm = pour m =. µ A = µ(ã) =µ(a 1 )+ µ(a ) µ(a 1 ) = lim µ(a ). =2 Pour démotrer (1.3), o remarque que A 1 \ A = (A 1 \ A ), d où, d après la formule (1.2), o obtiet D autre part, µ A 1 \ A = lim µ(a 1 \ A )=µ(a 1 ) lim µ(a ). µ A 1 \ Ces deux relatios impliquet (1.3). A = µ(a 1 ) µ A. Exemples ) Mesure de Dirac. Soit x 0. Pour tout A B, o défiit 1, x0 A, δ x0 (A) = 0, x 0 / A. 5

5 2) Mesure de comptage : µ(a) = ombre d élémets de A. 3) Soit {x } ue suite de poits deux à deux disjoits et {α } ue suite de ombre positifs. O pose µ(a) = α. x A Théorème 1.9 (sas démostratio). Soit =[a, b] et B la tribu boréliee. Alors il existe ue uique mesure λ sur (, B) telle que λ([ã, b]) = b ã pour tous a ã b b. Voir chapitre II das [Far06] ou chapitre V das [KF75] pour la démostratio de ce résultat. O appelle λ la mesure de Lebesgue sur [a, b]. 1.3 Itégrale Soit =[a, b] u itervalle mui de sa tribu boréliee B et µ ue mesure sur (, B). O défiit d abord la otio d itégrale pour des foctios positives. Soit f ue foctio étagée positive : O pose f(x) = c k I Γk (x), Γ k B, Γ k Γ =. fdµ = c k µ(γ k ). Propositio Soit f ue foctio de la forme f(x) = α i I Ai (x), α i 0, A i B. Alors f est ue foctio étagée positive et fdµ = α i µ(a i ). Démostratio. Il existe des esembles Γ k B, k = 1,...,,deuxàdeux disjoits tels que A i = i j=1 Γ k i j. 6

6 Cette relatio implique que Il s esuit que I Ai = ε i ki Γk, ε i k = 0 ou 1. µ(a i )= f(x) = ε i kµ(γ k ), α i ε i ki Γk = α i ε i k I Γk. E utilisat la défiitio de l itégrale, o obtiet fdµ = α i ε i k µ(γ k )= ε i kµ(γ k ) α i. Soit maiteat f : R + ue foctio mesurable. D après le théorème 1.6, il existe ue suite de foctios étagées f : R + telle que f (x) f +1 (x), f (x) f(x) pour tout x. (1.4) Il est facile à voir que f dµ est ue suite croissate. O défiit l itégrale (de Lebesgue) de f par la formule fdµ = lim f dµ. Théorème La valeur de l itégrale de f e déped pas de la suite {f }. De plus, fdµ =sup gdµ ; g 0 est ue foctio étagée telle que g f. (1.5) Démostratio. O ote I(f) le membre de droite de (1.5). Il est clair que pour toute suite {f } vérifiat (1.4) la limite des itégrales est majorée par I(f). Motros l iégalité réciproque. Soit ε>0etg 0 ue foctio étagée telle que I(f) gdµ + ε. Soit c ]0, 1[ et E = {x : f (x) cg(x)}. Alors E E +1 et E =. Il s esuit que f dµ f I E dµ c gi E dµ c gdµ ci(f) cε, 7

7 d où o coclut que fdµ ci(f) cε. Comme c ]0, 1[ et ε>0 étaiet quelcoques, o arrive à la relatio (1.5). Ue foctio positive f est dite itégrable si fdµ <. La propositio suivate établit quelques propriétés de l itégrale. Propositio (a) Si 0 f g, alors fdµ gdµ. (b) Si f,g 0 et c 0, alors cfdµ = c fdµ, (f + g)dµ = fdµ+ gdµ. Démostratio. (a) O ote E la famille de foctios étagées et E + la famille de foctios h E positives. Comme f g, o a d où o coclut que sup hdµ, h E +,h f {h E +,h f} {h E +,h g}, sup hdµ, h E +,h g. (b) Soit f E + ue suite croissate qui coverge vers f. Alors {cf } est aussi croissate et coverge vers cf. Doc, cfdµ = lim cf dµ = c lim f dµ = c fdµ. La démostratio de la deuxième relatio est similaire. O défiit maiteat l itégrale d ue foctio quelcoque. Soit f : R ue foctio mesurable. O dit que f est itégrable si f dµ <. Das ce cas, o pose fdµ = f + dµ f dµ, où f + = f 0etf =( f) 0. Propositio L itégrale possède les propriétés suivates. (a) Si f = f 1 f 2 est itégrable et f i 0, alors fdµ = f 1 dµ f 2 dµ. 8

8 (b) Si f,g sot des foctios itégrables et c R, alors (cf + g)dµ = c fdµ+ gdµ. (c) Si f est itégrable, alors fdµ f dµ. Démostratio. ous allos motrer que la propriété (a), car les deux autres propriétés sot des coséqueces simples de (a) et de la défiitio de l itégrale. Etat doées deux foctios f i 0, o peut écrire f 1 = f + g 1, f 2 = f + g 2, f = f 1 f 2. Alors g 1 0, g 2 0etg 1 g 2 0. Il s esuit que g 1 =(f 1 f 2 ) +, g 2 =(f 1 f 2 ). E utilisat la défiitio de l itégrale, o obtiet fdµ = g 1 dµ + g 2 dµ. D autre part, d après la propositio 1.12, o a f i dµ = fdµ+ g i dµ, i =1, 2. Ces deux relatios impliquet le résultat cherché. Sigalos que tous les résultats obteus ci-dessus restet vrais das le cas de foctios à valeurs complexes. 1.4 Itégrales de Riema et de Lebesgue Théorème Soit =[a, b] avec a> et b<. O muit de la mesure de Lebesgue. Alors pour toute foctio borée itégrable à la fois au ses de Riema et de Lebesgue les valeurs des deux itégrales sot cofodues. Démostratio. Sas perte de gééralité, o peut supposer que 0 f 1. Cosidéros ue partitio = {x 0 = a<x 1 < <x = b} de l itervalle [a, b] et les somme de Darboux correspodates : I + (f, ) = (x k x k 1 ) sup [x k 1,x k ] f, I (f, ) = (x k x k 1 ) if f. [x k 1,x k ] Comme f est itégrable au ses de Riema, pour toute ε>0ilexisteue partitio ε telle que I + (f, ε ) I (f, ε ) <ε. (1.6) 9

9 O itroduit des foctios étagées f + ε et f ε par Alors f ε f f + ε, f + ε (x) = f ε (x) = f ε dλ = I (f, ε ) sup f pour x [x k 1,x k [, [x k 1,x k ] if f pour x [x k 1,x k [. [x k 1,x k ] b a fdx I + (f, ε )= f ε dλ. (1.7) Les relatios (1.6), (1.7) impliquet que les valeurs des itégrales de Lebesgue et de Riema sot égales. Exemple Cosidéros la foctio 1, x Q, f(x) = 0, x / Q. Cette foctio est pas itégrable au ses de Riema, mais so itégrale de Lebesgue vaut zéro. 10

Soit E un ensemble. On appelle classe de parties de E un sous-ensemble non vide de P(E).

Soit E un ensemble. On appelle classe de parties de E un sous-ensemble non vide de P(E). Chapitre 1 Tribus 1.1 Défiitios Soit E u esemble. O appelle classe de parties de E u sous-esemble o vide de P(E). Défiitio 1.1.1. Ue tribu A sur E est u sous-esemble o vide de P(E) tel que : (i) la partie

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

Université Pierre et Marie Curie Licence de Mathématiques (3ème année) Année 2004/2005. Probabilités Pierre Priouret

Université Pierre et Marie Curie Licence de Mathématiques (3ème année) Année 2004/2005. Probabilités Pierre Priouret Uiversité Pierre et Marie Curie Licece de Mathématiques (3ème aée) Aée 2004/2005 Probabilités Pierre Priouret Mode d emploi Ce polycopié est destié aux étudiats de la Licece (3ème aée) de Mathématiques

Plus en détail

Processus et martingales en temps continu

Processus et martingales en temps continu Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de

Plus en détail

Correction CCP maths 1 MP

Correction CCP maths 1 MP mai 4 Avertissemet : Il subsiste certaiemet quelques coquilles... Exercice : ue itégrale double Correctio CCP maths MP Pour calculer cette itégrale, o effectue le chagemet de variable e coordoées polaires

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Féelo aite-marie Préparatio ciece-po/prépa HEC Foctios Versio du juillet 05 Eercice d degré : racies et coefficiets O rappelle que si l équatio a + b + c = 0 ( a 0 ) adet deu racies α et β (évetuelleet

Plus en détail

PROJET DE MONTE CARLO SUJET 1: LE PRICING

PROJET DE MONTE CARLO SUJET 1: LE PRICING LE Age KHOURI Nadie M MMD PROJE DE MONE ARLO SUJE : LE PRIING Selim ZOUGHLAMI QUESION : Supposos d abord que X est u mouvemet browie W t G([ 0, ]) Alors W0 G( 0 ) suit ue loi N(0,0) et doc W 0ps 0 Esuite,

Plus en détail

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 9 OFFICE DU BACCALAUREAT BP 5005-DAKAR-Fa-Séégal Serveur Vocal: 68 05 59 Téléfax (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 09 G 18bis AR Durée:

Plus en détail

1 Intégrale de Riemann

1 Intégrale de Riemann Uiversité Paris 13, Istitut Galilée Aée uiversitaire 2015-2016 Préparatio à l agrégatio 0. Rappels de théorie de l itégratio 1 Itégrale de Riema L itégrale itroduite e L1 ou e classe prépa est l itégrale

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

Développement d une fonction en série entière. Exemples et applications

Développement d une fonction en série entière. Exemples et applications Développemet d ue foctio e série etière Exemples et applicatios Das ce chapitre, K désigera R ou C B(; R) désigera la boule ouverte de cetre et de rayo R > 1 Gééralités Défiitio 1 Soit f ue applicatio

Plus en détail

Apprentissage: cours 3a Méthodes par moyennage local

Apprentissage: cours 3a Méthodes par moyennage local Appretissage: cours 3a Méthodes par moyeage local Guillaume Oboziski 1 er mars 2012 Réferece : chap. 6 of [Hastie et al., 2009] ad chap. 6 of [Devroye et al., 1996]. Algorithmes par moyeage local O cosidère

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

Introduction : Mesures et espaces de probabilités

Introduction : Mesures et espaces de probabilités Itroductio : Mesures et espaces de probabilités Référeces : Poly cédric Berardi et Jea Michel Morel. J.-F. Le Gall, Itégratio, Probabilités et Processus Aléatoire J.-Y. Ouvrard, Probabilités 2, maîtrise-agrégatio,

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

Correction du devoir surveillé de mathématiques n o 5

Correction du devoir surveillé de mathématiques n o 5 Correctio du devoir surveillé de mathématiques o 5 Exercice 1 1. Soit g la foctio défiie sur R par g(x) = (x 1)e x. (a) Détermier les ites de g e et +. Limite e. O a ue forme idétermiée. E développat,

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

Cours de théorie des probabilités avec exercices corrigés et devoirs

Cours de théorie des probabilités avec exercices corrigés et devoirs Cours de théorie des probabilités avec exercices corrigés et devoirs Licece de mathématiques, 3 ième aée Bruo Saussereau Aée uiversitaire 203-204 Bruo Saussereau, Laboratoire de Mathématiques de, UF Scieces

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

AVANT PROPOS. Cet ouvrage pourra intéresser également les enseignants de ce niveau.

AVANT PROPOS. Cet ouvrage pourra intéresser également les enseignants de ce niveau. AVANT PROPOS Cet ouvrage propose aux élèves de classes termiales (fraçais) S (spécialité math) des rappels et des complémets de cours assez complet, aisi que des problèmes et des exercices corrigés. Les

Plus en détail

BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2015

BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2015 CONCOURS COMMUNS POLYTECHNIQUES FILIÈRE MP BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 5 avec corrigés V. Bellecave, J.-L. Artigue, P. Berger, J.-P. Bourgade, S. Calmet, A. Calvez, D. Cleet, J. Esteba,

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

14 Chapitre 14. Théorème du point fixe

14 Chapitre 14. Théorème du point fixe Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de

Plus en détail

Suites et séries de fonctions

Suites et séries de fonctions [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

Séries réelles ou complexes

Séries réelles ou complexes 6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

Chapitre 16 : Espaces vectoriels

Chapitre 16 : Espaces vectoriels PCSI Préparatio des Khôlles -4 Chapitre 6 : Espaces vectoriels Exercice type Soit E=R[X] et F ={P E, P(X)=XP (X)+P()}, motrer que F est u sous-espace vectoriel de E. : O a bie F E. Si P =est le polyôme

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que [http://mp.cpgedupuydelome.fr] édité le 6 octobre 05 Eocés Suites umériques Covergece de suites Exercice [ 047 ] [Correctio] Soiet u ) et v ) deux suites réelles covergeat vers l et l avec l < l. Motrer

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice - Loi d u dé truqué - L2/ECS -. X pred ses valeurs das {,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque P X est

Plus en détail

Séquence 1. Les suites numériques. Sommaire. 1. Pré-requis 2. Le raisonnement par récurrence 3. Notions de limites 4. Synthèse

Séquence 1. Les suites numériques. Sommaire. 1. Pré-requis 2. Le raisonnement par récurrence 3. Notions de limites 4. Synthèse Séquece Les suites umériques Sommaire Pré-requis Le raisoemet par récurrece 3 Notios de limites 4 Sythèse Das cette séquece, il s agit d ue part d approfodir la otio de suites umériques permettat la modélisatio

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

MATHEMATIQUES Terminale Scientifique

MATHEMATIQUES Terminale Scientifique MATHEMATIQUES Termiale Scietifique Fiches PROGRAMME 22 (v24) Sylvie LAMY Agrégée de Mathématiques Dilômée de l École Polytechique Cours Pi e-mail : lescoursi@cours-icom site : htt://wwwcours-icom siège

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Eocés 1 Déombremet Exercice 1 [ 01529 ] [correctio] Soiet E et F deux esembles fiis de cardiaux resectifs et. Combie y a-t-il d ijectios de E das F?

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions Déombremet ECE3 Lycée Carot 12 ovembre 2010 Itroductio La combiatoire, sciece du déombremet, sert comme so om l'idique à compter. Il e s'agit bie etedu pas de reveir au stade du CP et d'appredre à compter

Plus en détail

Université Mohammed V - Agdal Faculté des Sciences Département de Mathématiques et Informatique Avenue Ibn Batouta, B.P.

Université Mohammed V - Agdal Faculté des Sciences Département de Mathématiques et Informatique Avenue Ibn Batouta, B.P. Uiversité Mohammed V - Agdal Faculté des Scieces Départemet de Mathématiques et Iformatique Aveue Ib Batouta, B.P. 04 Rabat, Maroc Filière DEUG : Scieces Mathématiques et Iformatique (SMI) et Scieces Mathématiques

Plus en détail

STATISTIQUE : ESTIMATION

STATISTIQUE : ESTIMATION STATISTIQUE : ESTIMATION Préparatio à l Agrégatio Bordeaux Aée 202-203 Jea-Jacques Ruch Table des Matières Chapitre I. Estimatio poctuelle 5. Défiitios 5 2. Critères de comparaiso d estimateurs 6 3. Exemples

Plus en détail

Devoir de statistiques: CORRIGE

Devoir de statistiques: CORRIGE CPP - la prépa des INP ( ème aée). Bordeaux, 6/04/04. Devoir de statistiques: CORRIGE durée h Doées: O rappelle que si Z suit ue loi N (0, ), o a P(Z.96) 0, 975 et P(Z.65) 0, 95. Exercice. θ et O cosidère

Plus en détail

THEORIE ERGODIQUE ET APPLICATIONS

THEORIE ERGODIQUE ET APPLICATIONS THEORIE ERGODIQUE ET APPLICATIONS TER de Master ROUSSEAU Emmauel VOISIN Nathalie 5 jui 2007 Mouvemet Browie (vue d artiste) 2 INTRODUCTION 3 Itroductio E mécaique classique o étudie l évolutio au cours

Plus en détail

Approximation de la solution d une équation différentielle ordinaire avec impulsions qui dépendent de l état

Approximation de la solution d une équation différentielle ordinaire avec impulsions qui dépendent de l état Approximatio de la solutio d ue équatio différetielle ordiaire avec impulsios qui dépedet de l état F. Dubeau A. Ouasafi A. Sakat CRM-276 Jauary 21 Départemet de mathématiques et d iformatique, Uiversité

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice

Plus en détail

Éléments de cours de Probabilités

Éléments de cours de Probabilités Élémets de cours de Probabilités Licece de mathématiques Uiversité de Versailles Sait-Queti Jea-Fraçois Marckert Table des matières I. Itroductio 1 1. U peu d histoire......................................

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

Corrigé de Mathématique éco HEC

Corrigé de Mathématique éco HEC Corrigé de Mathématique éco HEC EXERCICE Hypothèses. M 3 R est l espace vectoriel des matrices carrées d ordre 3 à coefficiets réels. A M 3 R : s A 3 A,j, s A 3 A,j, s 3 A 3 somme des coefficiets des liges

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

LES PROBABILITÉS POUR LES OPTIONS B, C ET D

LES PROBABILITÉS POUR LES OPTIONS B, C ET D LES PROBABILITÉS POUR LES OPTIONS B, C ET D PRÉPARATION À L AGRÉGATION EXTERNE DE MATHÉMATIQUES DE L UNIVERSITÉ RENNES 1 1 ANNÉE 2009/2010 1. ESPACE PROBABILISÉ - VARIABLE ALÉATOIRE 1.1 ESPACE PROBABILISÉ

Plus en détail

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures)

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures) ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D ÉCONOMIE APPLIQUÉE ENSEA ABIDJAN AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie B Optio Écoomie MATHÉMATIQUES (Durée de l épreuve : 4 heures)

Plus en détail

La classification de données quantitatives avec SPAD

La classification de données quantitatives avec SPAD La classificatio de doées quatitatives avec SPAD SPAD effectue toujours ue ACP de la matrice des doées quatitatives X " p avat de faire la classificatio des idividus. Les méthodes de classificatio s appliquet

Plus en détail

Correction HEC III 2007

Correction HEC III 2007 HEC III 7 Voie Écoomique Correctio Page Correctio HEC III 7 Voie écoomique La correctio comporte 9 pages. Eercice. Par dé itio est ue valeur propre de t si et seulemet si est ue valeur propre de T: Et

Plus en détail

Équations différentielles - Cours no 6 Approximation numérique

Équations différentielles - Cours no 6 Approximation numérique Équatios différetielles - Cours o 6 Approximatio umérique 1 Itroductio De très ombreux problèmes scietifiques sot mis e équatio à l aide d u système d équatios différetielles ẋt) = ft, xt)) voir par exemple

Plus en détail

On obtient la formule de Pascal en prenant le cardinal :

On obtient la formule de Pascal en prenant le cardinal : Colles du 3 ovembre 014 Solutio de la questio de cours 1. (i) Soit E u esemble de cardial. L esemble (E) peut alors être partitioé comme suit : (E) (E), où (E) est l esemble des parties de E de cardial.

Plus en détail

SUITES ET FONCTIONS. 1. Espaces vectoriels normés réels ou complexes

SUITES ET FONCTIONS. 1. Espaces vectoriels normés réels ou complexes SUITES ET FONCTIONS. Espaces vectoriels ormés réels ou complexes.. Normes et distaces. Exercice... F Soit E l espace vectoriel des foctios de classe C sur [a, b], o pose Nf = fc + f où c [a, b], f désigat

Plus en détail

Promenades aléatoires : vers les chaînes de Markov

Promenades aléatoires : vers les chaînes de Markov AME Dossier : Matrices et suites 545 romeades aléatoires : vers les chaîes de Markov ierre Griho (*) Cet article propose ue mise e perspective de la otio de promeade ou de marche aléatoire itroduite das

Plus en détail

Exercices corrigés pour le cours. Intégration 1

Exercices corrigés pour le cours. Intégration 1 Exercices corrigés pour le cours de Licece de Mathématiques Itégratio 2 INTEGATION, Feuille d exercices Exercice.. Soit f : Y ue applicatio. a. Motrer que pour toute famille (B i ) i I de parties de Y,

Plus en détail

Mathématiques. Terminale S Corrigés des exercices. Rédaction : Laurent Beroul Isabelle Tenaud Sébastien Cario. Coordination : Sébastien Cario

Mathématiques. Terminale S Corrigés des exercices. Rédaction : Laurent Beroul Isabelle Tenaud Sébastien Cario. Coordination : Sébastien Cario Mathématiques Termiale S Corrigés des eercices Rédactio : Lauret Beroul Isabelle Teaud Sébastie Cario Coordiatio : Sébastie Cario Ce cours est la propriété du Ced Les images et tetes itégrés à ce cours

Plus en détail

STATISTIQUE : TESTS D HYPOTHESES

STATISTIQUE : TESTS D HYPOTHESES STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie

Plus en détail

Feuille d exercices 5

Feuille d exercices 5 Mathématiques Physique S3, 205/206 Uiversité Blaise Pascal Feuille d exercices 5 Ex.. Tracer le graphe des foctios périodiques suivates, doer leur développemet e série de Fourier et discuter la covergece

Plus en détail

Modes propres de vibration ; interprétation ondulatoire

Modes propres de vibration ; interprétation ondulatoire SPECIALITE TS ( PHYSIQUE ) : FICHE CURS 6 1/5 MDES PRPRES DE IBRATI Ce qu'il faut reteir Modes propres de vibratio ; iterprétatio odulatoire 1. Productio d u so à l aide d u istrumet de musique U istrumet

Plus en détail

Table des matières. Aller à la page suivante

Table des matières. Aller à la page suivante CHAPITRE 3. SÉRIES NUMÉRIQUES Chapitre 3 Séries umériques 3. Préparatio Défiitio 3..2 O appelle série de terme gééral u et o ote u (qui se lit «série de terme gééral u»), où (u ) N R N, la suite de terme

Plus en détail

CORRECTION DU BAC BLANC 2

CORRECTION DU BAC BLANC 2 CORRCTION DU BAC BLANC 2 XRCIC 1 (6 poits) Baccalauréat ST Mercatique Podichéry - 2010 Deux tableaux sot doés e aexe : le premier doe l évolutio du prix du mètre carré das l immobilier résidetiel acie

Plus en détail

Suites et séries numériques

Suites et séries numériques Maths MP Cours Table des matières Suites et séries umériques Quelques prélimiaires. Les yeux fermés........................................... De quoi parle-t-o?........................................3

Plus en détail

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités.

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités. PROBABILITÉS I. PROBABILITÉS ( RAPPELS) a. Expérieces aléatoires et modèles Le lacer d ue pièce de moaie, le lacer d u dé sot des expérieces aléatoires, car avat de les effectuer, o e peut pas prévoir

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

MATHEMATIQUES Option scientifique Mardi 9 mai 2006 de 8h à 12h

MATHEMATIQUES Option scientifique Mardi 9 mai 2006 de 8h à 12h ECOLE DE HUTES ETUDES COMMERCILES DU NORD Cocors d'admissio sr classes préparatoires MTHEMTIQUES Optio scietifiqe Mardi 9 mai 6 de 8h à h La présetatio, la lisibilité, l'orthographe, la qalité de la rédactio,

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9 Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios

Plus en détail

Arbres et dérivée d une fonction composée

Arbres et dérivée d une fonction composée Abes et déivée d ue foctio composée Nous allos voi ici commet l o peut epésete les déivées successives d ue foctio composée pa u esemble d abes fiis. f et g désigeot deux foctio idéfiimet déivables, et

Plus en détail

Probabilités et statistique pour le CAPES

Probabilités et statistique pour le CAPES Probabilités et statistique pour le CAPES Béatrice de Tilière Frédérique Petit 2 3 jui 205. Uiversité Pierre et Marie Curie 2. Uiversité Pierre et Marie Curie 2 Table des matières Modélisatio de phéomèes

Plus en détail

4 Approximation des fonctions

4 Approximation des fonctions 4 Approximatio des foctios Ue foctio f arbitraire défiie sur u itervalle I et à valeur das IR peut être représetée par so graphe, ou de maière équivalete par la doée de l esemble de ses valeurs f(t) pour

Plus en détail

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4 1 Déombremet Table des matières 1 Déombrer des listes 2 1.1 Permutatio................................ 2 1.2 Arragemet............................... 3 1.3 -liste.................................... 4

Plus en détail

Fluctuation et estimation

Fluctuation et estimation Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle

Plus en détail

Analyse de structures de données et d algorithmes

Analyse de structures de données et d algorithmes Uiversité Paris 3 Istitut Galilée Master Math-Ifo Aalyse de structures de doées et d algorithmes Polycopié 2006-2007 Christia Lavault Table des matières Combiatoire et déombremet. Permutatios, arragemets

Plus en détail

STATISTIQUE AVANCÉE : MÉTHODES

STATISTIQUE AVANCÉE : MÉTHODES STATISTIQUE AVANCÉE : MÉTHODES NON-PAAMÉTIQUES Ecole Cetrale de Paris Arak S. DALALYAN Table des matières 1 Itroductio 5 2 Modèle de desité 7 2.1 Estimatio par istogrammes............................

Plus en détail

TS Intervalle de fluctuation et estimation Cours

TS Intervalle de fluctuation et estimation Cours Aée 2013/2014 TS Itervalle de fluctuatio et estimatio Cours est u etier aturel o ul et p est u réel de l itervalle 0 ; 1. I Itervalle de fluctuatio Cotexte : Das ue populatio, la proportio d idividus présetat

Plus en détail

Séquence 8. Suites arithmétiques et géométriques. Sommaire

Séquence 8. Suites arithmétiques et géométriques. Sommaire Séquece 8 Suites arithmétiques et géométriques Sommaire Pré-requis Suites arithmétiques Suites géométriques Sythèse du cours Exercices d approfodissemet Séquece 8 MA Ced - Académie e lige Pré-requis A

Plus en détail

Licence informatique - L3 Année 2012/2013. Conception d algorithmes et applications (LI325) COURS 1

Licence informatique - L3 Année 2012/2013. Conception d algorithmes et applications (LI325) COURS 1 Licece iformatique - L Aée 0/0 Coceptio d algorithmes et applicatios (LI) COURS Résumé. Ce cours est ue iitiatio à quelques grads pricipes algorithmiques (Diviser pour Réger, Programmatio Dyamique, Algorithmes

Plus en détail

Séquence 9. Lois normales, intervalle de fluctuation, estimation. Sommaire

Séquence 9. Lois normales, intervalle de fluctuation, estimation. Sommaire Séquece 9 Lois ormales, itervalle de fluctuatio, estimatio Sommaire 1. Prérequis. Lois ormales 3. Itervalles de fluctuatio 4. Estimatio 5. Sythèse de la séquece Séquece 9 MA0 1 Ced - Académie e lige Das

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

Méthodes de Monte-Carlo

Méthodes de Monte-Carlo Méthodes de Mote-Carlo Aie MILLET Uiversités Paris 7 et Paris 1 Master ème aée : Spécialité Modélisatio Aléatoire Recherche et Professioel Parcours : Statistique et Modèles Aléatoires e Fiace Parcours

Plus en détail

Probabilités. Poly des exercices. Prépa HEC Saint-Jean de Douai. Springer-Verlag ECS1 2007-2008. 4 septembre 2008

Probabilités. Poly des exercices. Prépa HEC Saint-Jean de Douai. Springer-Verlag ECS1 2007-2008. 4 septembre 2008 Prépa HEC Sait-Jea de Douai Probabilités Poly des exercices ECS1 2007-2008 Christia Skiada 4 septembre 2008 Spriger-Verlag Berli Heidelberg NewYork Lodo Paris Tokyo Hog Kog Barceloa Budapest Préface Voici

Plus en détail

Cours de calcul stochastique Master M2 IRFA

Cours de calcul stochastique Master M2 IRFA 1 Cours de calcul stochastique Master M2 IRFA Christophe Chorro Septembre 26 $!!!$!!&!!(!!*!!#!!!#$!!#&!!"!!"#!"$!"%!"&!"'!"(!")!"*!"+ #"! #"# Les évetuelles fautes d orthographe, coquilles ou erreurs

Plus en détail

/RJLTXHERROpHQQH. Symbole (norme IEC 1 ) x

/RJLTXHERROpHQQH. Symbole (norme IEC 1 ) x /RJLTXHERROpHQQH I. Défiitios I.. Variable biaire O appelle variable biaire (ou logique), ue variable preat ses valeurs das l esemble {0, }. Eemple : état d u iterrupteur, d u bouto poussoir, la présece

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail