FILTRAGE. ANALOGIQUE et NUMERIQUE. (Vol. 8)

Dimension: px
Commencer à balayer dès la page:

Download "FILTRAGE. ANALOGIQUE et NUMERIQUE. (Vol. 8)"

Transcription

1 Dpt GEII IUT Bordaux I FILTRAGE AALOGIQUE t UMERIQUE (Vol. 8) G. Couturir Tl : mail :

2 Sommair I-Itroductio p. II-Filtrag aalogiqu p. 4 II-- Filtrs pass-bas d'ordr dux p. 5 II-- Réalisatio d'u filtr pass-bas d'ordr égal à dux p. 8 II-3- Filtrs pass-bas d'ordr supériur à dux p. II-4- Sythès ds filtrs pass-bas p. 5 II-5- Filtrs pass-haut d'ordr dux p. 8 II-6- Réalisatio d'u filtr pass-haut d'ordr égal à dux p. 9 II-8- Sythès ds filtrs pass-haut p. 5 II-9- Filtrs pass-bad du duxièm ordr p. 7 II-- Filtrs réjcturs du duxièm ordr p. 9 II-- Filtrs uivrsls p. 3 II-- Filtrs à capacités commutés p. 36 α) approch simplifié du filtr p. 36 β) traitmt complt du filtr à capacités commutés p. 38 III-Filtrag umériqu p. 4 III-- Critèr d stabilité ds filtrs umériqus p. 44 III-- Comportmt fréqutil ds filtrrs umériqus p. 45 III-3- Sythès ds filtrs RII p. 46 α) la foctio modèl st la répos fréquc : trasformé biliéair p. 46 β) xmpl d calcul d'u filtr par utilisatio d la trasformé biliéair p. 5 γ) la foctio modèl st la répos impulsioll : ivariac impulsioll p. 53 ε) xmpl d calcul d'u filtr par utilisatio d l'ivariac impulsioll p. 54 III-4- Sythès ds filtrs RIF p. 58 III-5- Implémtatio ds filtrs RII t RIF das ls procssurs d d sigaux p. 68 III-5-- Implémtatio d'u filtr RIF das u DSP p. 68 III-5-- Implémtatio d'u filtr RII das u DSP p. 69 ) Méthod d'implémtatio dirct p. 69 ) Méthod d'implémtatio cascad p. 7 III-5-3- Prformacs ds filtrs p. 73 ax I : Ls outils d traitmt ds sigaux umériqus p. 77 I- Répos impulsioll d'u systèm umériqu t trasformé Z p. 77 I- - Répos impulsioll p. 77 I- - Produit d covolutio p. 77 I- 3- Trasformé Z p. 78

3 II- Répos harmoiqu d'u systèm umériqu : foctio d trasfrt isochro p. 8 II- - Propriétés d la foctio d trasfrt isochro d'u sytèm umériqu p. 8 II- - Exmpls p. 8 ax II : Tabl ds trasformés Z p. 86 B + Cz ax III : Calcul d la trasformé ivrs d H( z) βz + α z p. 87 ax IV : Uivrsal Activ Filtr UAF4 - Burr-Brow p. 89 ax V : MF6 6th Ordr Switchd Capacitor Buttrworth Lowpass Filtr, atioal Smicoductor MF Uivrsal Moolithic Dual Switchd Capacitor Filtr, atioal smicoductor p. 9 I- Itroductio

4 Das ctt itroductio ous allos motrr à partir d'u xmpl simpl la écssité d dévloppr ds forms stadards ds foctios d trasfrt ds filtrs aalogiqus t d la mêm maièr ous motrros l bsoi d'u méthodologi d cocptio ds filtrs umériqus. Pros doc l cas simpl d'u filtr pass-bas du prmir ordr, dot l schéma élctriqu st rprésté ci-dssous : V R V s C Fig. Filtr aalogiqu pass-bas du prmir ordr Ecrivos l'équatio différtill régissat l foctiomt d c filtr, il vit : ( ) V ( t) V ( t) RC dv t s s + () dt Soit V (p) t V s (p) ls trasformés d Laplac d V (t) t V s (t), écrivos la foctio d trasfrt H(p) V s (p)/v (p) du filtr, o suppos V s (t - )V s (t + ) : ( ) H p ( p) ( ) Vs V p + RCp () La foctio d trasfrt H(p) st ici du prmir ordr car l'équatio différtill régissat l circuit st du prmir ordr. Ls filtrs du prmir ordr sot gééral pu prformats (pt d'attéuatio limité à -db/décad). O put à partir d la simpl cllul R-C précédt costruir ds filtrs dot la pt d'attéuatio st -db/décad, il suffit par xmpl d disposr plusiurs clluls cascad. L'équatio différtill régissat l foctiomt d'u tl filtr costitué d clluls srait d l form : a d V ( t ) ( ) s d Vs t a V ( t) V ( t) s (3) dt dt Soit V (p) t V s (p) ls trasformés d Laplac d V (p) t V s (p), la foctio d trasfrt H(p) du filtr s'écrit : ( ) H p ( p) ( ) Vs (4) V p a p + a p + + Il st facil d prédir l comportmt pour f t f, fft :

5 H( jω) si f t H( jω) si f (5) ω a La pt d'attéuatio st doc d -xdb/décad, il s'agit ici d'u filtr pass-bas du ièm ordr. Il st par cotr plus difficil d prédir l comportmt du filtr pour ls fréqucs itrmédiairs, clui-ci dépd ds cofficits a j (j, -,..., ), rmarquos qu'il xist u ifiité d filtrs pass-bas du ièm ordr. Pour facilitr la sythès ds filtrs (fair la sythès c'st chrchr la foctio d trasfrt H(p) tll qu la courb d répos fréquc obéiss à u crtai gabarit), o utilisra doc ds foctios stadards, c'st à dir ds foctios d trasfrt H(p) avc ds cofficits a j choisis tls qu H(jω) prést crtais caractéristiqus itérssats. La réalisatio ds filtrs fait d plus plus souvt appl aux tchiqus umériqus. Très succictmt, il s'agit d'échatillor l sigal aalogiqu d'tré V (t), o dispos doc d V (t) aux istats T, où T st la périod d'échatilloag, t o fait subir à cs échatillos u trasformatio mathématiqu. Pros l cas par xmpl du filtr pass-bas d prmir ordr, à l'équatio différtill précédt o fait corrspodr u équatio aux différcs fiis d la form : ( ) (( ) ) V ( T ) V ( T ) RC V T V T s + T s s (6) O obtit alors la rlatio d récurrc suivat prmttat d calculr l ièm trm d V s coaissat l (-) ièm trm t l ièm trm d V. ( ) (( ) ) ( ) V T s RC T RC V T T T RC V T s + (7) + + U filtr umériqu, c'st d'abord u algorithm d calcul. O put bi tdu ' rstitur u sigal aalogiqu V ( t) s à partir ds échatillos Vs ( T ) ffctuat par xmpl la covolutio par u bloquur d'ordr zéro d répos impulsioll ' h( t) [ U ( t) U ( t T )], l sigal d sorti st alors oté volotairmt V ( t) s pour l distigur du sigal V s (t) corrspodat à l'opératio d filtrag aalogiqu. ous étudiros par la suit ls différcs tr cs dux sigaux. Ici cor l'itérêt ds filtrs du prmir ordr st limité ; il ous faut doc établir ds rlatios d récurrc corrspodat à ds filtrs d'ordr. Comm précédmmt, il st à priori possibl d partir d l'équatio différtill d'ordr t d'écrir l'équatio aux différcs fiis corrspodat. O voit tout d suit la "lourdur" d ctt démarch. E fft, écrir par xmpl la dérivé d'ordr 4 sous form d différcs fiis rlèv prsqu ds "travaux d'hrcul"!.... Il ous faut doc dévloppr u méthodologi simpl prmttat d'obtir rapidmt ls foctios d récurrc ds filtrs umériqus. Ls cofficits ds filtrs sot gééral calculés par utilisatio d foctios modèls. Ls foctios modèls utilisés pour la sythès ds filtrs sot soit la répos impulsioll soit la répos fréquc d filtrs aalogiqus cous. Das l cas d'u foctio modèl d typ répos impulsioll, ls élémts h(k) d la répos impulsioll umériqu sot obtus calculat h(t), la répos

6 impulsioll du filtr aalogiqu, aux istats tkt. La foctio d trasfrt Z du filtr s'écrit doc : H( z) h( k ) z k k (8) Si la foctio d trasfrt H(z) st cou, alors il st facil d'écrir l'équatio d récurrc. E gééral, o priviligi la répos fréquc plutôt qu la répos impulsioll, das c cas la foctio modèl utilisé st la répos fréquc d'u filtr aalogiqu cou. La procédur st alors la suivat : coaissat la foctio d trasfrt aalogiqu H(p) (ou H(jω)) o chrch u rlatio foctioll p f ( z) tll qu la foctio d trasfrt isochro T ( j ) T ( jω ) st égal H(z) calculé pour z ( j T ) ω du filtr umériqu soit la plus proch possibl d H(jω) ; rapplos qu xp ω. Foctio d trasfrt aalogiqu H(p) Rlatio foctioll p f(z) Foctio d trasfrt umériqu H(z) Rlatio d récurrc y( ) Ctt démarch écssit d'u part d coaîtr ls filtrs aalogiqus t d'autr part d trouvr u rlatio foctioll p f(z). Ls filtrs umériqus, dot ous vos d parlr coduist à ds rlatios d récurrc, c'st à dir qu l'échatillo Vs ( T ) st obtu à partir d V (( ) s T ) t das l ( ) Vs j T, avc j,,... tc. Fialmt s dépd d tout l'histoir du sigal V ( t), ou plutôt ds V ( T ). C'st égalmt vrai das l cas ds filtrs aalogiqus, autrmt dit cs filtrs ot ds réposs impulsiolls ifiis. Ls filtrs umériqus aisi réalisés sot classés das la catégori ds filtrs RII ou IIR (Répos Impulsioll Ifii ou Ifiit Impuls Rspos), ou cor filtrs récursifs. Ls tchiqus umériqus prmttt cpdat d réalisr ds filtrs o récursifs. cas plus gééral à partir ds échatillos ( ) l'échatillo V ( T ) E fft, o put réalisr ds filtrs dot l'échatillo Vs ( T ) st simplmt calculé à partir d'u ombr fii d'échatillos V ( jt ) avc j,,, M. Cs filtrs ot doc ds réposs impulsiolls fiis, il sot classés das la catégori ds filtrs RIF ou FIR (Répos Impulsioll Fii ou Fiit Impuls Rspos). Ls cofficits ds filtrs RIF puvt êtr calculés par trocatur d la répos impulsioll d'u filtr idéal. Ls filtrs RIF ot l'avatag d'êtr toujours stabls, par cotr ils écssitt u grad ombr d cofficits c qui augmt l tmps d calcul t la plac mémoir.

7 II- Filtrag aalogiqu O distigu ciq typs d filtrs : - filtr pass-bas - filtr pass-haut - filtr pass-bad - filtr réjctur - filtr déphasur pur (gai costat q.q.s. la fréquc t phas dépdat d la fréquc). U filtr aalogiqu st caractérisé par sa foctio d trasfrt H(p) ; l gai complx H(jω) st obtu faisat pjω das H(p). D'u maièr gééral H(p) s prést sous la form : H( p) M i j a p i b p j i j avc M (9) L'ordr d'u filtr st doé par l dgré du polyom du déomiatur, c'st à dir. C'st l dgré d l'équatio différtill régissat l foctiomt du filtr (voir par xmpl équatios (3) t (4) ci-dssus). L'ordr du filtr défiit l comportmt asymptotiqu quad ω td vrs zéro ou l'ifii. Par xmpl, pour u filtr pass-bas d'ordr 4, la pt d ( ) Log H jω foctio d Log ω sra d -8dB/décad quad ω. L'ordr d'u filtr st doc u caractéristiqu importat. Ls filtrs d'ordr dux t d'ordr u occupt u plac d tout prmièr importac, fft u filtr d'ordr qulcoqu put êtr réalisé à partir d'u smbl d filtrs d'ordr dux t u si écssair. filtr ordr 5 filtr ordr filtr ordr filtr ordr Fig. Réalisatio d'u filtr d'ordr 5 Ls filtrs d'ordr u préstt pas d difficulté. Lur foctio d trasfrt st soit + p H p τp + τp pour u filtr pass-haut ( ) ( τ ) pour u filtr pass-bas, soit ( ) ( ) H p avc τ rél. O put s posr la qustio d l'itérêt ds filtrs d'ordr dux, fft il st à priori possibl d réalisr u filtr d'ordr dux à partir d dux filtrs d'ordr u. La mis cascad d dux filtrs d'ordr u costitu bi u filtr d'ordr dux, ll prmt pas toutfois d réalisr tous ls filtrs d'ordr dux, fft ls pôls d H(p) sot das c cas toujours réls. E coséquc ombr d filtrs d'ordr dux sot pas réalisabls par la mis cascad d dux filtrs d'ordr u.

8 ous allos ous itérssé plus particulièrmt aux filtrs d'ordr dux d typ pass-bas. Ls filtrs pass-bas sot d tout prmièr importac, d'u part parc qu'ils sot très utilisés t d'autr part parc qu la sythès ds autrs filtrs st gradmt facilité par la coaissac ds foctios d trasfrt ds filtrs pass-bas (voir suit du cours). II-- Filtrs pass-bas d'ordr dux La foctio d trasfrt d'u filtr pass-bas d'ordr dux st doc d la form : H( p) a () b + b p + b p A ctt form, o préfèr la form caoiqu suivat : H( p) A LP ω () p + pω Q + ω das laqull A LP st la gai aux basss fréqucs, fft H( j ) ω ω A LP, ω st la fréquc caractéristiqu t Q st applé cofficit d surtsio, la justificatio d cs dux gradurs apparaîtra clairmt par la suit. L modul d H(jω) st doé par : ( ω) H j A LP ω ω ω + ω Q () U étud rapid d H( jω ) foctio d ω motr qu ( ) d H( jω) ; fft impliqu qu ω ω ( ) maximum si Q dω Das l cas où Q. 77, il st facil d motrr qu : H jω préstra u Q. ( ω) ω ω ( Q ) H j A LP 4 Q Q QA LP si Q (3) c'st la raiso pour laqull Q st applé cofficit d surtsio. Pour u mêm valur du cofficit Q, ls tracés log H( jω ) foctio d log ω s déduist ls us ds autrs par u simpl traslatio, avc c systèm d'ax il xist doc u ifiité d tracés suivat la valur d la pulsatio caractéristiqu ω. Il st possibl d ramr tous ls tracés ayat u mêm valur d Q à u tracé uiqu à coditio d prdr comm ax ds x o plus log ω mais log (ω/ω ).

9 L'allur d log H( jω ) foctio d log (ω/ω ) st rprésté ci-dssous pour trois valurs différts du cofficit Q (Q.77, Q<.77 t Q>.77). log A LP log H(jω) Q>.77 Q.77 Q<.77 db pt d -4dB/décad log ( ω/ω ) Fig. 3 Courbs d gai pour Q.77, Q<.77 t Q>.77 A l'écritur d l'équatio () o préfèr u écritur variabl réduit, à ct fft o pos sp/ω, das c cas l'équatio () s'écrit : H( p) H( s) ALP s (4) + s Q + La foctio d trasfrt (4) st applé foctio d trasfrt ormalisé. Suivat la valur d Q ls filtrs portt ds oms différts, o distigu : a) Q.77 Buttrworth b) Q.577 Bssl c) Q.863 Chbyschv (rippl bad.5db) Q.8 Chbyschv (rippl bad db) Ls filtrs d Buttrworth ot ls courbs d répos ls plus plats das la bad passat (pas d rbod), c sot ls filtrs ls plus utilisés. Das la suit du cours, ous préstros la sythès ds filtrs uiqumt à partir ds filtrs d Buttrworth. Das l cas ds filtrs d Buttrworth, la pulsatio caractéristiqu ω st égal à la pulsatio d coupur à -3dB. E fft compt tu d la rlatio (), l modul d H(jω ) st égal à A LP / pour ωω si Q /. Ls filtrs d Chbyschv préstt u pt d'attéuatio (roll-off) supériur à 4dB/décad au voisiag d la fréquc d coupur. Ls filtrs d Chbyschv sot caractérisés par u odulatio das la bad passat (rippl bad), voir la défiitio sur l graph d la Fig. 4. Ls filtrs d Chbyschv sot caractérisés par la valur d Q t la pulsatio ω db ; c'st la pulsatio pour laqull l gai st d ouvau égal à A LP, c'st à dir l gai à la fréquc ull. Pour u filtr d rippl bad.5db, o a la rlatio :ω. 3ω db, pour u rippl baddb : ω. 97ω db.

10 log H(jω) log A LP rippl bad db db log ( ω /ω ) db log ( ω/ω ) Fig. 4 Filtr pass-bas d Chbyschv d'ordr dux Das l cas ds filtrs d Bssl, la pulsatio d coupur à -3dB st rlié à la pulsatio caractéristiqu ω par la rlatio : ω. 74ω 3dB. L'itérêt ds filtrs d Bssl résid das la phas liéair aux basss fréqucs. Trop souvt, o oubli la phas ϕ(ω) ds filtrs, or sa variatio avc la fréquc st u élémt importat das u opératio d filtrag, pour s' covaicr pros l cas d'u sigal costitué d trois siusoïds : ( ω ) ( ω ) ( ω ) ( t) Asi t + B si t + C si 3 t. L filtr st coçu par xmpl pour élimir la pulsatio ω 3 >ω,, ω ; l sigal spéré sorti du filtr st doc : sth ( t) Asi( ω t) + B si( ω t). Supposos qu l gai du filtr st voisi d l'uité pour ls dux pulsatios ω t ω t pratiqumt ul pour ω 3. Soit ϕ(ω ) t ϕ(ω ) ls phass rspctivs pour ls dux pulsatios ω t ω. L sigal s(t) après filtrag s'écrit doc : ( ω ϕ( ω) ) ω ϕ( ω ) s( t) A si t + + B si t + ( ) L sigal après filtrag st déformé, sauf si la phas ϕ( ω) arctg( H jω ) ( ) du filtr vari liéairmt avc la fréquc, fft das c cas o put écrit ϕ(ω)kω par xmpl, t l sigal s(t) s'écrit : ( ω ω) ( ω ω ) ( ω ( )) ( ω ) s( t) A si t + k + B si t + k A si t + k + B si ( t + k) s ( t + k) th E coclusio, si la phas ϕ(ω) vari liéairmt foctio d la fréquc, l sigal st simplmt traslaté mais o déformé. Pour quatifir la dépdac d ϕ(ω) foctio d ω, o itroduit l rtard d group τ d ϕ d ω (group dlay) ; u filtr à phas liéair a doc u rtard d group costat. E pratiqu, o put pas réalisr u filtr aalogiqu à phas liéair, l filtr d Bssl st clui dot la phas vari la plus liéairmt foctio d la fréquc das la bad passat.

11 B : L filtr pass-bas idéal srait clui dot la répos fréquc aurait l'allur suivat (gai uité das la bad passat t phas ull) : Gai -F F c c Phas f f Fig. 5 Pass bas idéal La répos impulsioll d'u tl filtr st doé par la trasformé d Fourir ivrs d H(f), avc H(f) pour -F c <f<f c t H(f) aillurs d'où : Fc si π h( t) df Fc ( πf t) j ft c Il st clair qu'u tl filtr st irréalisabl, fft il s'agit d'u filtr o causal (la sorti précèd l'tré). ous vrros das la suit du cours qu'il st possibl d réalisr ds filtrs umériqus RIF à phas liéair. πt

12 II-- Filtrs à capacités commutés Das ls filtrs uivrsls la pulsatio caractéristiqu ω st foctio ds costats d tmps τ t τ ds dux itégraturs. La modificatio d ω 'st doc pas très aisé. Ls filtrs à capacités commutés offrt u altrativ à c problèm, fft das cs filtrs la pulsatio ω st fixé par la fréquc f d'u sigal logiqu. L schéma élctriqu d bas d'u filtr à capacités commutés, ici u itégratur, st doé à la Fig. 6. K K U C - + C U s logiqu d commad à la fréquc f Fig. 6 Schéma d bas d'u filtr à capacités commutés (itégratur) Ls itrrupturs K t K (MOSFET commutatio) sot frmés ou ouvrts sychroism avc u sigal logiqu d fréquc f, suivat l chroogramm d la Fig. 7. Au ivau logiqu '' l codsatur C suit l sigal d'tré U. A l'istat T par xmpl la tsio aux bors d C st égal à U (T ). A l'istat T +, c'st à dir au ivau logiqu '' la charg du codstur C st trasféré itégralmt au codsatur C. Ctt opératio s'ffctu u tmps ul si o églig la résistac ds itrrupturs K t K. La tsio aux bors d C rstra costat jusqu'à l'istat (+)T, ( pratiqu C s déchargra très faiblmt, d'u part à caus du courat d polarisatio d l'amplificatur opératiol t d'autr part à caus d la coductivité élctroiqu du matériau costituat l diéltriqu du codsatur, cs dux quatités rstt cpdat très faibls). Pour détrmir l comportmt du filtr fréquc, l'utilisatio d la trasformé Z s'impos. Das u prmièr approch ous faisos cpdat u raisomt simplifié sas itroduir ct outil mathématiqu. α) Approch simplifié du filtr ous allos motrr qu l filtr s comport comm u itégratur d costat d tmps τr q C avc R q /C f T /C. A ct fft, supposos u sigal d'tré U AU(t) avc U(t) la foctio échlo. L sigal d sorti U s st costitué d marchs d'égal amplitud

13 comm l motr la Fig. 8. E écrivat la cosrvatio d la charg, o obtit u hautur d march d C A. C sigal logiqu d commad ds itrrupturs U '' '' K frmé K ouvrt K ouvrt K frmé K frmé K ouvrt T (+ )T (+)T t t tsio aux bors d C t U s - C U (T ) C T Fig. 7 Pricipaux sigaux du schéma d la Fig. 6 (+)T t Qull dvrait êtr la valur d R q du schéma (b) d la Fig. 9 pour qu la droit pass par ls sommts ds marchs? La droit a pour équatio : A C R q t L'accroissmt valur absolu d Us ' ( t ) (droit ) pdat u duré T st doc égal à : A C R T C A. E comparat ctt valur à la hautur d'u march, o obtit : C q R q T /C. O put coclur qu ls schémas (a) t (b) sot ds itégraturs d foctio d trasfrt H( p) τp avc τ R C T q C C. Il st clair qu l sigal U s (t) sra d'autat plus proch du sigal U s ' (t) qu ls marchs srot ptits doc qu la fréquc f sra élvé. Pour étudir plus détail l comportmt du filtr, par xmpl sa répos harmoiqu, il faut fair usag d la trasformé Z.

14 sigal logiqu d commad T t A Us -A T C R q droit t t -C A C -A t C R q Fig. 8 Répos du filtr à capacités commutés à u échlo d tsio K K U C - + C U s C U R q - + U s ' logiqu d commad à la fréquc f (a) (b) Fig. 9 Equivalc tr filtrs à capacités commutés t filtr aalogiqu β) Traitmt complt du filtr à capacités commutés Il st à otr qu l sigal d sorti U s srait ichagé mêm présc d'u sigal U tl qu clui rprésté poitillés à la Fig. 7. L filtr d la Fig. 6 réalis fait trois opératios disticts comm l motr la Fig., o distigu : ) u échatilloag : ls échatillos U () sot obtus par échatilloag du sigal U (t) à la fréquc f ) u traitmt umériqu ds échatillos U () : à la suit ds échatillos U () o fait corrspodr la ouvll suit ds échatillos U s () : C ( ) U U ( ) U ( ) s s C (4) L'équatio (4) traduit sulmt la cosrvatio d la charg.

15 3) u rcostructio aalogiqu par u bloquur d'ordr zéro U (t) échatilloag U () trasformatio ds échatillos U s () rcostructio aalogiqu par bloquur d'ordr zéro U s (t) domai tmporl domai fréqutil opératio opératio opératio 3 multiplicatio covolutio rlatio d récurrc foctio d trasfrt isochro Fig. Différts opératios réalisés par l filtr d la Fig. 6 covolutio multiplicatio Pour étudir la répos harmoiqu du filtr, supposos u tré d la form cosiusoïdal U (t)acos(ω t) t chrchos à détrmir U s (t) t so spctr. La trasformé d Fourir d U (t) s'écrit (au ss ds distributios) : A T. F. U ( ) ( ) ( ) [ t ] { δ f f + δ f + f } Ell st costitué d dux rais d'amplitud A/ situés aux fréqucs -f t f comm l motr la Fig. -a. Ls échatillos U () sot obtus par échatilloag, c'st à dir multiplicatio (au ss ds distributios) par l pig d Dirac : U ( ) U ( t) δ t kt T. F. U ( t) T. F. t kt k [ ( )] ( f f ) ( f f ) T. F. U ( ) T. F. [ U ( )] [ ] δ( ) A { δ δ } δ( f kf ) { δ( f f kf ) δ( f f kf ) A T T Il s'agit d'u spctr d rais d'amplitud A/T situés aux fréqucs...-f -f, -f +f, f, f, f -f, f +f,... comm l motr la Fig. -b. Chaqu composat d fréquc précédt st multiplié par la foctio d trasfrt isochro T (jω) d l'opératio. T (jω) st obtu calculat H(z) pour z j T ω, avc H(z) la foctio d trasfrt Z déduit d l'équatio d récurrc (4). D'après (4), o obtit rspctivmt pour H(z) t T (jω) : k k

16 C H( z) C ( z ) C T ( jω) ω C ( j T ) La trasformé d Fourir ds échatillos U s () st cor costitué d rais situés aux fréqucs...-f -f, -f +f, f, f, f -f, f +f,.... L'amplitud complx d'u rai st obtu multipliat A/T par l gai T (jω) calculé à la fréquc corrspodat. Du fait d la périodicité d T (jω), o otra qu T ( j ) Fig. -c. ω st l mêm pour touts ls rais, voir la (a) T.F. d U (t)acos(ω t) A/ -f f f (b) T. F. ds échatillos U () A/T f -f -f f +f f f -f f +f - -f (c) T. F. ds échatillos U s () A T (jω ) T -f -f f +f - -f f f -f f +f f (d) T. F. d U s (t) A j ω ( CT /C ) -f f f Fig. Spctrs ds différts sigaux d la Fig. L sigal d sorti U s (t) st l résultat d la covolutio ds échatillos U s () par u bloquur d'ordr zéro d répos impulsioll h( t) U( t) U( t T ). La trasformé d Fourir d U s (t) st doc obtu ffctuat l produit : T.F.[U s ()]xh(jω), avc H( jω ) T. F. h( t) jωt. L spctr d U jω s (t) st cor costitué d rais situés...-f -f, -f +f, f, f, f -f, f +f,..., comm l motr la Fig. -d. L'amplitud complx d'u rai d fréquc f st doé par :

17 A T C C jωt ( ) jωt ( ) jω A C A T C jω jπf T C C avc f [...-f -f, -f +f, f, f, f -f, f +f,... ]. O rtrouv l résultat obtu α) : l filtr s comport comm u itégratur d costat d tmps T C / C. La sorti U s (t) du filtr sra d'autat plus proch d'u cosiusoïd qu la fréquc d'échatilloag f sra grad dvat la fréquc d travail f. Si par xmpl, o impos qu la rai situé f -f soit ifériur à % à la rai pricipal situé f o ; il faut satisfair l'iégalité suivat : π ( f f ) T C C < d'où f T C f πf C E pratiqu il st cosillé d travaillr avc f >5f. B : O pourra cosultr, ax V, ls caractéristiqus tchiqus ds filtrs à capacités commutés MF6 t MF d atioal smicoductor. III- Filtrag umériqu U filtr umériqu st u algorithm d calcul qui fait corrspodr à u suit d'échatillos x() u autr suit d'échatillos y(). Das l cas l plus gééral l'échatillo y() s'écrit : i M i i j y( ) b x( i) + a y( j) C'st u gééralisatio du bloc umériqu du filtr à capacités commutés, où la rlatio d récurrc s'écrivait : j (4)

18 y ( ) C y ( ) C x( ) (a t a i pour i> ; b -C /C t b i pour i>) A partir d la rlatio (4) o put distigur dux typs d filtrs : α) ls filtrs à répos impulsioll fii (RIF) ou FIR (Fiit Impuls Rspos). Das cs filtrs tous ls cofficits a j sot uls, o obtit doc : i M y( ) b x( i) i i (4) L'échatillo y() dépd doc qu d'u ombr limité d'échatillos. La foctio d trasfrt H(z) s'écrit : Y( z) H( z) X( z) i M i b z i i (43) La trasformé H(z) st aussi la trasformé Z d la répos impulsioll h() ; H( z) h( k) z k. Il s'suit qu b i h(i), ls cofficits h(k) sot doc uls pour k>m, c'st k la raiso pour laqull cs filtrs sot applés filtrs à répos impulsioll fii. C sot ds filtrs toujours stabls car la sorti rvit toujours à zéro après supprssio d l'xcitatio. Exmpl d filtr RIF : x( ) + x( ) Soit l filtr obéissat à la rlatio suivat : y( ), suls ls dux prmirs cofficits b t b sot différts d zéro. La répos impulsioll d c filtr st rprésté ci-dssous. / Répos impulsioll Fig. Répos impulsioll du filtr y( ) x( ) + x( ) β) Filtrs à répos impulsioll ifii (RII) ou IIR (Ifiit Impuls Rspos), cs filtrs sot cor applés filtrs récursifs. Das cs filtrs ls cofficits a j sot différts d zéro, coséquc u échatillo y() dépd d tous ls échatillos x() passés. La trasformé H(z) d cs filtrs s'écrit : M Y( z) y( ) z bi x( i) z + a j y( j) z i j

19 M bi x( i) z + a j y( j) z i j E ffctuat ls chagmts d variabls (-i)u t (-j)v, o obtit : M M i j i i j i i j i j Y( z) b z X( z) + a z Y( z) X( z) b z + Y( z) a z d'où la foctio d trasfrt H(z) suivat : j j Y( z) H( i z) X( z) M j b z i i b z j j (44) La répos impulsioll d cs filtrs st doc ifii, coséquc cs filtrs puvt dvir istabls. Exmpl d filtr RII : x( ) + y( ) Soit l filtr obéissat à la rlatio suivat :y( ). La trasformé Z d c filtr s'écrit : H( z). La trasformé z ivrs prmt d détrmir z l'élémt h() d la répos impulsioll : h( ). Il s'agit bi d'u répos impulsioll ifii, l systèm st stabl, fft h( ) quad. La répos impulsioll du filtr st doé ci-dssous. / Répos impulsioll /4 /8 /6 3 tc Fig. 3 Répos impulsioll du filtr y( ) x( ) + y( ) III-- Critèr d stabilité ds filtrs umériqus Comm pour ls systèms aalogiqus la stabilité ds sytèms umériqus put êtr déduit du liu ds pôls das l pla complx ds z.

20 Soit doc H(z) la trasformé z d'u systèm umériqu, la décompositio élémts simpls d l'xprssio (44) coduit soit à ds trms d la form : A α) pour u pôl situé za ( az ) soit à ds trms : B + Cz pour ds pôls imagiairs cojugués situés βz + α z β) ( ) z, β ± j α β avc z, α. Ls trasformés ivrss ds cs dux xprssios sot rspctivmt (voir axs II t III) : A Aa U ( ) avc U() la séquc échlo ( az ) t B + Cz ( βz + α z ) ( ) K C / B + β α si( ωt ). [ α { ( ω ) ( ω )}] B cos T + K si T U ( ) avc cos( ωt ) β / α Cs dux suits covrgt à coditio qu a t α soit ifériurs à l'uité. E coséquc l critèr d stabilité ds systèms umériqus put s'éocr comm suit : U systèm umériqu st stabl si l modul ds pôls rst ifériur à l'uité. Das l pla complx ds z l liu ds pôls d'u systèm stabl st doc l crcl d rayo uité. Pla complx ds z zo d stabilité Fig. 4 Pla complx ds Z t liu ds pôls d'u systèm stabl Pour illustrr l critèr d stabilité, ous étudios trois filtrs umériqus simpls, u filtr RIF t dux filtrs RII dot u st istabl.

21 Exmpl : x( ) + x( ) Soit l filtr RIF obéissat à la rlatio y( ), c filtr a pour z trasformé Z ; H( z) +. H(z) prést doc u pôl z, l systèm st doc stabl. Suls ls dux prmirs élémts d la répos impulsioll h() sot différts d zéro ; h()h()/, h(i) pour i. Exmpl : x( ) + y( ) Soit l filtr RII obéissat à l'équatio récurrt y( ), c filtr a z pour trasformé Z ; H( z). H(z) prést doc u pôl z/, l systèm st ( z ) doc stabl. Sa répos impulsioll st : h( ) ( / )( / ), ll covrg vrs zéro quad. Exmpl 3 : Soit l filtr RII obéissat à l'équatio récurrt y( ) x( ) + y( ), c filtr a z pour trasformé Z ; H( z). H(z) prést u pôl z, doc à l'xtériur du ( z ) crcl uité, l systèm st doc istabl. Sa répos impulsioll st : h( ) ( ), ll divrg quad. III-- Comportmt fréqutil ds filtrs umériqus L comportmt fréqutil ds filtrs umériqus st obtu étudiat la foctio d trasfrt isochro T (jω); T ( jω) H( z) où T st la périod d'échatilloag z j ω T (voir ax I). T (jω) st égalmt la trasformé d Fourir umériqu ds échatillos h() d la répos impulsioll (voir Vol.4). ( ω) T j H( z) ω h( ) j T z jωt h( ) cos( ωt ) + j h( )si( ωt ) (45) O rappll qu T (jω) st u foctio périodiqu d la fréquc, d périod f /T, par aillurs la parti réll d T (jω) st pair alors qu la parti imagiair st impair. Pour illustrr la sigificatio d T (jω), pros la cas d'u systèm umériqu attaqué par u séquc Acos(ω T ). E régim prmat, la sorti du systèm sra cor u séquc cosiusoïdal, ll s'écrit : A T ( jω ) cos ω T ϕ ( ω ) ( ) + avc ( ) arctg T ( j ) ϕ ω ω ω ω Rmarqu : La foctio d trasfrt isochro T (jω) st cor la trasformé d Fourir umériqu d la répos impulsioll h().

22 Pour ls systèms aalogiqus, l'équivalt d T (jω) st H(jω) obtu faisat pjω das H(p). H(jω) st cor la trasformé d Fourir d la répos impulsioll h(t) du jωt systèm aalogiqu : H( jω) h( t) dt pour u systèm causal. III Sythès ds filtrs RII Ls cofficits a j t b i d la rlatio (4) sot gééralmt obtus à partir d'u foctio modèl. La foctio modèl utilisé st soit la répos fréquc soit la répos impulsioll d'u filtr aalogiqu cou, par xmpl u filtr pass-bas d typ Buttrworth du 4 èm ordr. ous traitos succssivmt ls dux cas. α) la foctio modèl st la répos fréquc : trasformé biliéair Soit doc u filtr aalogiqu dot la foctio d trasfrt H(p) st cou. La répos fréquc du filtr H(jω) st obtu calculat H(p) pour pjω. Filtr aalogiqu H(p) ; H(jω) U U () Echatillour Filtr umériqu H(z) ; T (jω ) traitmt umériqu U s () T U s Fc filtr d rcostructio aalogiqu Fig. 5 Equivalc tr filtrs aalogiqus t umériqus L filtr umériqu équivalt comprd trois blocs. L prmir bloc réalis l'échatilloag, l duxièm bloc réalis l traitmt umériqu proprmt dit, il st caractérisé par u foctio d trasfrt H(z), l troisièm bloc st u filtr d rcostructio aalogiqu. O rappll qu si l sigal U st à bad passat limité B max t si l filtr d rcostructio st idéal avc u fréquc d coupur F c tll B max <F c <f -B max alors U s U si H(z), autrmt dit U s ()U (). E coséquc si o vut réalisr u filtr umériqu qui ffctu l mêm traitmt qu l filtr aalogiqu d répos fréquc H(jω), il faut vérifir l'égalité suivat : H( jω) H( p) T ( jω) H( z) p j z j ω T ω (46) H(z) st doc obtu faisat p log( z) das H(p). T Exmpl : pros l cas d'u filtr pass-bas avc H(p)/(+τp), o obtit pour H(z) :

23 H( z) τ + log( z) T O vérifi bi qu T ( jω) τ + T log jωt ( ) H( jω) τ T j T + jωτ + ω E gééral, la foctio d trasfrt H(p) st sous form ratioll (quotit d dux polyoms p), il s'suit qu la trasformé z obtu faisat p log( z) T coduit pas à u form ratioll pour H(z). Si H(z) 'st pas sous u form ratioll alors il st impossibl d'obtir la rlatio d récurrc (4), t par coséqut d'implémtr l filtr. O procèd alors à u approximatio qui cosist à dir qu T (jω) sra proch d H(jω) pour ls basss fréqucs, approximatio tout à fait légitim. E fft, u opératio d filtrag umériqu écssit au préalabl u échatilloag à la fréquc F, c qui suppos qu touts ls fréqucs supériurs à F / ot été élimiés, sio il y a rplimt ds spctrs. E coséquc, la rlatio p log( z) st approximé par la form ratioll T suivat : z p T z + (47) obtu chrchat u dévloppmt quad pt rst voisi d zéro. démostratio : Si pt rst voisi d zéro ; z st voisi d l'uité. Posos alors z(+x)/(-x) avc x <<, t chrchos u dévloppmt limité d log[(+x)/(-x)] pour x ptit dvat l'uité. Il vit : + x log log( + x) log( x) ( x x / + x 3 / 3+...) ( x x / x 3 / 3+...) x x, cosrvat qu ls trms au prmir ordr. Par aillurs, x(z-)/(z+), o obtit fialmt : log( z) ( z ), d'où la rlatio d passag d l'spac ds p à l'spac ds z : ( z + ) z p T z +

24 La trasformatio approché (47) fait qu ls filtrs aalogiqus t umériqus aurot l mêm gai pour dux fréqucs f a t f différts comm l motr la Fig. 6. Chrchos la rlatio tr f a t f. T (j ω ) H(jω ) f f a F / Fig. 6 Filtrs aalogiqu t umériqu ot mêm valur d gai pour dux fréqucs f a t f différts L gai du filtr aalogiqu H(p) st obtu rmplaçat p par jω a t clui du filtr umériqu H(z) rmplaçat z par jω T, d'après (47) la rlatio tr f a t f st doé par : z p j a T z + ( ) ω T jω T ( + ) T jω T jω T / jω T / jω T / jω T / ( ) jω T / jω T / ( + ) jω a ( ) T jtg T f πf ω / f a tg (48) π f Sur la Fig. 7, f a st tracé foctio d f. O rmarqu qu pour la fréquc f f /, l filtr umériqu aura l gai du filtr aalogiqu à la fréquc ifii ( f a ). f a pt -f / f / f Fig. 7 variatio d f a foctio d f

25 L factur /T d la rlatio (47) apparaît uiqumt comm u factur d'échll, il st rmplacé par u costat k à détrmir. Fialmt, la trasformatio pour passr du pla ds p au pla ds z s mt sous la form suivat : p k z z + (49) Ctt trasformatio st cou sous l om d trasformé biliéair. Ls filtrs aalogiqu t umériqu aurot l mêm gai pour ds fréqucs f a t f. Cs fréqucs sot obtus rmplaçat das (49) p par jω a t z par jω T, o obtit : f k tg π f / f (5) π ( ) a La costat k st calculé d tll maièr qu filtrs aalogiqu t umériqu ait l mêm gai pour u fréquc particulièr doé f p, comm l motr la Fig. 8. E gééral, ls foctios d trasfrt ds filtrs aalogiqus sot doés avc la variabl s p / ω, où ω st la pulsatio caractéristiqu, par xmpl la pulsatio d coupur à -3dB pour u filtr d typ Buttrworth. Il suffit d modifir comm suit la rlatio (49) : p k z z + p k z s K z avc K k ω ω z + z + ω (5) D la mêm maièr la rlatio (5) dvit : f k f a k f a tg ( π f / f ) tg( πf / f ) K tg( πf / f ) (5) π f πf f a f a pt T (j ω ) H(jω ) f p -f / f p f / f f p F / Fig. 8 La costat k st calculé d faço H(jω p )T (jω p )

UV Traitement du signal. Cours 7. Signaux discrets et Transformée de Fourier ASI 3

UV Traitement du signal. Cours 7. Signaux discrets et Transformée de Fourier ASI 3 UV Traitmt du sigal Cours 7 Sigau discrts t Trasformé d Fourir D la Trasformé d Fourir à tmps discrt (TFTD) à la Trasformé d Fourir Discrèt (TFD) ASI 3 Cotu du cours Sigau discrts Rappls, défiitio Propriétés

Plus en détail

Chapitre 0 : Signaux discrets (rappels)

Chapitre 0 : Signaux discrets (rappels) Chapitr : Sigaux discrts rappls Itroductio Ls sigaux physiqus xistat das la atur sot gééral ds sigaux d typ aalogiqu o dit aussi cotiu, au ss où l sigal st u octio cotiu du tps t il sra écssair, lorsqu

Plus en détail

- Partie A - Échantillonnage -

- Partie A - Échantillonnage - ÉCHANTILLONNAGE - ESTIMATION - Parti A - Échatilloag - L'objctif d ctt parti st d répodr à la problématiqu suivat : commt, à partir d'iformatios (coupl moy-écart-typ ou proportio) cous sur u populatio,

Plus en détail

LA TRANSFORMATION EN Z.

LA TRANSFORMATION EN Z. LA TRANSFORMATION EN Z U cours ivau BTS Pirr Lóp Group Mathématiqus t Scics Physiqus au Lycé, IREM d Toulous Mmbrs : Mms Michèl Fauré, Moiqu Madlur, Moiqu Sosst Itroductio Das u précédt articl («Fil d

Plus en détail

Exponentielle exercices corrigés

Exponentielle exercices corrigés Trmial S Foctio potill Ercics corrigés Fsic 996, rcic Fsic 996, rcic 3 3 Fsic 996, rcic 4 4 Fsic, rcic 6 3 5 Fsic, rcic 4 3 6 Baqu 4 4 7 Epo + air, Amériqu du Nord 5 5 8 Basiqu, N Calédoi, ov 4 7 9 Basiqus

Plus en détail

Terminale S Pondichéry, Avril 2009 Sujets de Bac

Terminale S Pondichéry, Avril 2009 Sujets de Bac D PINEL, Sit Mathmitc : http://mathmitcfrfr/idphp Trmial S Podichéry, Avril 009 Sujts d Bac D PINEL, Sit Mathmitc : http://mathmitcfrfr/idphp Trmial S Podichéry, Avril 009 Sujts d Bac D PINEL, Sit Mathmitc

Plus en détail

La couleur de votre MySpeedy est parfaitement coordonnée avec celle de

La couleur de votre MySpeedy est parfaitement coordonnée avec celle de FR s l è d Mo Origial, coloré, prsoalisé. L plus tdac d tous ls compturs motr qui vous êts. Choisissz votr favori parmi ls styls proposés t xprimz votr idividualité avc u comptur uiqu. La coulur d votr

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

Séries numériques. Chap. 02 : cours complet.

Séries numériques. Chap. 02 : cours complet. Séris méris Cha : cors comlt Séris d réls t d comlxs Défiitio : séri d réls o d comlxs Défiitio : séri corgt o dirgt Rmar : iflc ds rmirs trms d séri sr la corgc Théorèm : coditio écssair d corgc Théorèm

Plus en détail

Une nouvelle méthode de mesure des propriétés thermophysiques de super-isolants. Yves Jannot & Alain Degiovanni

Une nouvelle méthode de mesure des propriétés thermophysiques de super-isolants. Yves Jannot & Alain Degiovanni U ouvll méthod d msur ds propriétés thrmophysiqus d supr-isolats Yvs Jaot & Alai Dgiovai PLAN DE LA PRESENTATION Limits ds méthods d msur xistats L dispositif d msur proposé Modélisatio La méthod d stimatio

Plus en détail

CALCUL DE LA REPONSE DYNAMIQUE DES STRUCTURES ELANCEES A LA TURBULENCE DU VENT

CALCUL DE LA REPONSE DYNAMIQUE DES STRUCTURES ELANCEES A LA TURBULENCE DU VENT UNIVERITÉ DE NANTE EOE DOTORAE «MEANIQUE, THERMIQUE ET GENIE IVI» DE NANTE Aé Thès d DOTORAT Discipli : cics pour l Igéiur pécialité : Géi ivil Présté t soutu publiqumt par Alxadr d la Foy 9 juillt à l

Plus en détail

adrien.trillon AT vallourec.fr

adrien.trillon AT vallourec.fr RECONSTRUCTION TOMOGRAPHIQUE PAR COURANTS DE FOUCAULT AVEC MODELE DIRECT ELEMENTS FINIS ET REGULARISATION ADDITIVE EDDY CURRENT TOMOGRAPHY WITH FINITE ELEMENT FORWARD MODEL AND ADDITIVE REGULARIZATION

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Traitement Numérique du signal. Chapitre I -- Les représentations du signal... 3

Traitement Numérique du signal. Chapitre I -- Les représentations du signal... 3 Itrducti au traitmt umériqu du sigal A. Oumad Traitmt umériqu du sigal Chapitr I -- Ls rpréstatis du sigal... 3 I. -- Sigal...3 I. -- Sigal ctiu u sigal aalgiqu...3 I.3 -- Sigal discrt...3 I. -- Ls dux

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

MPSI-PCSI. Classes Préparatoires aux Grandes Écoles Scientifiques. Mathématiques, Physique, Chimie, Sciences de l Ingénieur. Présentation générale

MPSI-PCSI. Classes Préparatoires aux Grandes Écoles Scientifiques. Mathématiques, Physique, Chimie, Sciences de l Ingénieur. Présentation générale MPSI-PCSI http://www.lyc-chataubriad.fr/ http://www.lyc.joliotcuri.fr.fr/ Classs Préparatoirs aux Grads Écols Scitifiqus Mathématiqus, Physiqu, Chimi, Scics d l Igéiur Préstatio gééral Ouvrts aux bachlirs

Plus en détail

Remblayage des tranchées et réfection des chaussées Compléments au guide Sétra-LCPC de mai 1994

Remblayage des tranchées et réfection des chaussées Compléments au guide Sétra-LCPC de mai 1994 ^ìíéìê=w=`bqb=kçêã~åçáéj`éåíêé= = gìáå=ommt= Rmblayag ds trachés t réfctio ds chaussés Complémts au guid Sétra-LCPC d mai 99 `Ü~ìëë Éë= a ééåç~ååéë= NNT= L guid "Rmblayag ds trachés t réfctio ds chaussés"

Plus en détail

Détermination des champs électriques et magnétiques. statiques par la méthode de séparation de variables

Détermination des champs électriques et magnétiques. statiques par la méthode de séparation de variables Détermiatio es champs électriques et magétiques statiques par la méthoe e séparatio e variables Chapitre III Détermiatio es champs électriques et magétiques statiques par la méthoe e séparatio e variables

Plus en détail

EXÉ CCADEAU CIC 221008:CCADEAU ALF 27/10/08 11:33 Page1 CC E au GUID E RT CA de ca

EXÉ CCADEAU CIC 221008:CCADEAU ALF 27/10/08 11:33 Page1 CC E au GUID E RT CA de ca EXÉ CCADEAU CIC 221008:CCADEAU ALF 27/10/08 11:33 Pag1 G U I D E caau CARTE C C EXÉ EXÉ CCADEAU CIC 221008:CCADEAU ALF 27/10/08 11:33 Pag3 G U I D E caau CARTE EXÉ CCADEAU CIC 221008:CCADEAU ALF 27/10/08

Plus en détail

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 9 OFFICE DU BACCALAUREAT BP 5005-DAKAR-Fa-Séégal Serveur Vocal: 68 05 59 Téléfax (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 09 G 18bis AR Durée:

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

Transformée de Fourier Discrète. Transformée de Fourier rapide (F.F.T.)

Transformée de Fourier Discrète. Transformée de Fourier rapide (F.F.T.) Trasformée de Fourier Discrète Trasformée de Fourier rapide (F.F.T.) Pierre Le Bars (avec la collaboratio de Fracis Gary) lebars@moiut.uiv-bpclermot.fr Trasformée de Fourier Discrète Trasformée de Fourier

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

La transformée de Fourier de cette fonction est directe et donne 1 ) T

La transformée de Fourier de cette fonction est directe et donne 1 ) T Efft d l échantillonnag t d la troncation sur l spctr d un signal Ls signaux réls utilisés n physiqu sont d plus n plus souvnt traités d façon numériqu. Pour cla, il st nécssair d échantillonnr l signal.

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

PROJET DE MONTE CARLO SUJET 1: LE PRICING

PROJET DE MONTE CARLO SUJET 1: LE PRICING LE Age KHOURI Nadie M MMD PROJE DE MONE ARLO SUJE : LE PRIING Selim ZOUGHLAMI QUESION : Supposos d abord que X est u mouvemet browie W t G([ 0, ]) Alors W0 G( 0 ) suit ue loi N(0,0) et doc W 0ps 0 Esuite,

Plus en détail

Contrôle de TP Dictionnaire & Arbres Binaires mercredi 20 mars 2013 durée : 3h 6 pages

Contrôle de TP Dictionnaire & Arbres Binaires mercredi 20 mars 2013 durée : 3h 6 pages IUT ds Pays d l Adour - RT2 Informatiqu - Modul IC2 - Algorithmiqu Avancé Contrôl d TP Dictionnair & Arbrs Binairs mrcrdi 20 mars 2013 duré : 3h 6 pags Ls programms d corrction orthographiqu ont bsoin

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

EXERCICES D OPTIQUE GEOMETRIQUE ENONCES

EXERCICES D OPTIQUE GEOMETRIQUE ENONCES EXERCICES D PTIQUE GEMETRIQUE ENNCES Exercice 1 : Vitre Motrer que la lumière est pas déviée par u passage à travers ue vitre. Pour ue vitre d épaisseur 1 cm, que vaut le décalage latéral maximal? Si la

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

Équations différentielles - Cours no 6 Approximation numérique

Équations différentielles - Cours no 6 Approximation numérique Équatios différetielles - Cours o 6 Approximatio umérique 1 Itroductio De très ombreux problèmes scietifiques sot mis e équatio à l aide d u système d équatios différetielles ẋt) = ft, xt)) voir par exemple

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Chapitre 16 : Espaces vectoriels

Chapitre 16 : Espaces vectoriels PCSI Préparatio des Khôlles -4 Chapitre 6 : Espaces vectoriels Exercice type Soit E=R[X] et F ={P E, P(X)=XP (X)+P()}, motrer que F est u sous-espace vectoriel de E. : O a bie F E. Si P =est le polyôme

Plus en détail

Signes et symboles mathématiques à employer dans les sciences physiques et dans la technique. (extraits de la norme internationale iso 31-11 :1992)

Signes et symboles mathématiques à employer dans les sciences physiques et dans la technique. (extraits de la norme internationale iso 31-11 :1992) Sigs t symbols mthémtiqus à mployr ds ls scics physiqus t ds l tchiqu. (trits d l orm itrtiol iso 3- :99) C documt rgroup ds trits choisis pour ls élèvs t ls sigts CGPE d l orm itrtiol iso 3-:99. Pour

Plus en détail

Système d'éclairage et perturbations

Système d'éclairage et perturbations Lycée N.APPER 447 ORVAUL Essai de système Système d'éclairage et perturbatios Objectifs Etude du foctioemet des systèmes d'éclairage fluorescets à tube et "fluocompacte" : foctioemet, perturbatios du réseau.

Plus en détail

5 Transformée de Fourier Discrète

5 Transformée de Fourier Discrète Traitemet umérique du sigal Cours ELE-FOD 5. Séries réelles 5 Trasformée de Fourier Discrète Das so ouvrage «Théorie aalytique de la chaleur (8» Joseph FOURIER itroduit la décompositio des foctios périodiques

Plus en détail

Correction CCP maths 1 MP

Correction CCP maths 1 MP mai 4 Avertissemet : Il subsiste certaiemet quelques coquilles... Exercice : ue itégrale double Correctio CCP maths MP Pour calculer cette itégrale, o effectue le chagemet de variable e coordoées polaires

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Féelo aite-marie Préparatio ciece-po/prépa HEC Foctios Versio du juillet 05 Eercice d degré : racies et coefficiets O rappelle que si l équatio a + b + c = 0 ( a 0 ) adet deu racies α et β (évetuelleet

Plus en détail

Triome batisseurs d espaces, la maitrise totale de votre projet

Triome batisseurs d espaces, la maitrise totale de votre projet Triom batissurs d spacs, la maitris total d votr projt 4 pôls xprts, 1 pol positio! Orgaisé autour d ss quatr pôls, l Group AEVO maîtris : l trpris gééral (TRIOME), l gros-œuvr (TEXIA CONSTRUCTIONS), ls

Plus en détail

La mécanique du cycliste 1 : «Le cycliste et son équation»

La mécanique du cycliste 1 : «Le cycliste et son équation» La mécaiqu du cyclit 1 : «L cyclit t o équatio» Nou abordo ici la mécaiqu du cyclit vu par u phyici. C t Gilbrt Vict, profur d phyiqu à l uivrité d Grobl, qui charg, appuyat ur o avoir d uivritair t o

Plus en détail

École de technologie supérieure

École de technologie supérieure École de techologie supérieure Mat 165-04 Algèbre liéaire et aalyse vectorielle A-015 Michel Beaudi michel.beaudi@etsmtl.ca Liste d exercices à faire e T.P./Caledrier des évaluatios Itroductio au cours

Plus en détail

Document ressource. Les états de surface

Document ressource. Les états de surface Lycée Vaucaso Tours Documet ressource Les états de surface PTSI Objectifs : Coaître les élémets caractéristiques d u état de surface, savoir lire les spécificatios ormalisées associées et coaître les moyes

Plus en détail

/RJLTXHERROpHQQH. Symbole (norme IEC 1 ) x

/RJLTXHERROpHQQH. Symbole (norme IEC 1 ) x /RJLTXHERROpHQQH I. Défiitios I.. Variable biaire O appelle variable biaire (ou logique), ue variable preat ses valeurs das l esemble {0, }. Eemple : état d u iterrupteur, d u bouto poussoir, la présece

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

Série n 3 d Electrocinétique : Régime sinusoïdal forcé

Série n 3 d Electrocinétique : Régime sinusoïdal forcé Séri n 3 d Elctrocinétiqu : Régim sinusoïdal forcé Exrcic n 1 : Résonanc n tnsion d un circuit RLC parallèl 1.\ Détrminr l équation différntill qui régi l évolution d u(t). 2.\ Exprimr l amplitud complx

Plus en détail

La classification de données quantitatives avec SPAD

La classification de données quantitatives avec SPAD La classificatio de doées quatitatives avec SPAD SPAD effectue toujours ue ACP de la matrice des doées quatitatives X " p avat de faire la classificatio des idividus. Les méthodes de classificatio s appliquet

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

STATISTIQUE : TESTS D HYPOTHESES

STATISTIQUE : TESTS D HYPOTHESES STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie

Plus en détail

Développement d une fonction en série entière. Exemples et applications

Développement d une fonction en série entière. Exemples et applications Développemet d ue foctio e série etière Exemples et applicatios Das ce chapitre, K désigera R ou C B(; R) désigera la boule ouverte de cetre et de rayo R > 1 Gééralités Défiitio 1 Soit f ue applicatio

Plus en détail

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3 1 Groupe orthogoal d'u espace vectoriel euclidie de dimesio, de dimesio Voir le chapitre 19 pour l'étude des espaces euclidies et des isométries. État doé u espace euclidie E de dimesio 1, o rappelle que

Plus en détail

Modèle de pointage et correction des dérives

Modèle de pointage et correction des dérives Ges de la Lue Observatoire astroomique de Plougastel Tél : 0 98 40 69 73 http://www.gesdelalue.org Modèle de poitage et correctio des dérives 1. Présetatio du problème Le poitage d u astre par u télescope

Plus en détail

CAHIER DU CONGRÈS Nom : Prénom : Classe : École :

CAHIER DU CONGRÈS Nom : Prénom : Classe : École : CAHIER DU CONGRÈS Nom Préom Class Écol ispctio académiqu Haut-Garo a c a d é m i T o u l o u s é d u c a t i o a t i o a l LE CONGRÈS SCIENTIFIQUE DES ENFANTS A Motfort L mssag ds doctorats... Tu as la

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9 Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios

Plus en détail

Chapitre 3 : Transistor bipolaire à jonction

Chapitre 3 : Transistor bipolaire à jonction Chapitre 3 : Trasistor bipolaire à joctio ELEN075 : Electroique Aalogique ELEN075 : Electroique Aalogique / Trasistor bipolaire U aperçu du chapitre 1. Itroductio 2. Trasistor p e mode actif ormal 3. Courats

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

Guide de correction TD 6

Guide de correction TD 6 Guid d corrction TD 6 JL Monin nov 2004 Choix du point d polarisation 1- On décrit un montag mttur commun à résistanc d mttur découplé, c st à dir avc un condnsatur n parallèl sur R. La condition d un

Plus en détail

La Méthode de Monte Carlo

La Méthode de Monte Carlo La Méthode de Mote Carlo Etiee Pardoux UMR 6632 Laboratoire d Aalyse, Topologie, Probabilités et EA 3781 Evolutio Biologique Uiversité de Provece Etiee Pardoux (LATP) Marseille, 13/09/2006 1 / 33 Cotets

Plus en détail

Promenades aléatoires : vers les chaînes de Markov

Promenades aléatoires : vers les chaînes de Markov AME Dossier : Matrices et suites 545 romeades aléatoires : vers les chaîes de Markov ierre Griho (*) Cet article propose ue mise e perspective de la otio de promeade ou de marche aléatoire itroduite das

Plus en détail

Selon Maia Wentland Forte (photo), vice-recteur. Comment l ordinateur va révolutionner l enseignement

Selon Maia Wentland Forte (photo), vice-recteur. Comment l ordinateur va révolutionner l enseignement C qu il pt Commt l ordiatur va révolutior l igmt Alai Hrzog Slo Maia Wtlad Fort (photo), vic-rctur d l Uivrité d Laua t profur xtraordiair d trpri t tchologi d l iformatio à l Ecol d HEC, l cybr-igmt pourrait

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

Apprentissage: cours 3a Méthodes par moyennage local

Apprentissage: cours 3a Méthodes par moyennage local Appretissage: cours 3a Méthodes par moyeage local Guillaume Oboziski 1 er mars 2012 Réferece : chap. 6 of [Hastie et al., 2009] ad chap. 6 of [Devroye et al., 1996]. Algorithmes par moyeage local O cosidère

Plus en détail

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 MÉTHODES NUMÉRIQUES POUR LE PRICING D OPTIONS DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 Table des matières 1 Notatios et équatio de Black-Scholes 2 11 Notatios 2 12 Équatio de Black-Scholes

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que [http://mp.cpgedupuydelome.fr] édité le 6 octobre 05 Eocés Suites umériques Covergece de suites Exercice [ 047 ] [Correctio] Soiet u ) et v ) deux suites réelles covergeat vers l et l avec l < l. Motrer

Plus en détail

ELECTRICITE. Chapitre 11 Tensions et courants dans les lignes triphasées. Montages étoile et triangle. Analyse des signaux et des circuits électriques

ELECTRICITE. Chapitre 11 Tensions et courants dans les lignes triphasées. Montages étoile et triangle. Analyse des signaux et des circuits électriques ELECTRICITE Analys ds signaux t ds circuits élctriqus Michl Piou Chapitr Tnsions t courants dans ls ligns triphasés Montags étoil t triangl Edition /0/04 Tabl ds matièrs POURQUOI ET COMMENT? DENOMINATION

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Feuille d exercices 5

Feuille d exercices 5 Mathématiques Physique S3, 205/206 Uiversité Blaise Pascal Feuille d exercices 5 Ex.. Tracer le graphe des foctios périodiques suivates, doer leur développemet e série de Fourier et discuter la covergece

Plus en détail

Filière de Sciences Économiques et de Gestion. Semestre : S 3 Module : M 12 (Méthodes Quantitatives III) Matière : Algèbre I.

Filière de Sciences Économiques et de Gestion. Semestre : S 3 Module : M 12 (Méthodes Quantitatives III) Matière : Algèbre I. Uirsité ohmmd V gdl Fculté ds Scics Juridiqus Ecoomiqus t socils RT http://www.ssr.c.m ا اآال آ ام ا واد وا اا! ط Filièr d Scics Écoomiqus t d Gstio Smstr : S odul : éthods Qutittis III tièr : lgèbr I

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Calcul et raisoemet Remise à Niveau Mathématiques Première partie : Calcul et raisoemet Exercices Page sur 9 RAN Calcul et raisoemet Ex - Rev 04 Mathématiques RAN - Calcul et raisoemet

Plus en détail

f n (x) = x n e x. T k

f n (x) = x n e x. T k EXERCICE 3 (7 points) Commun à tous ls candidats Pour tout ntir naturl n supériur ou égal à, on désign par f n la fonction défini sur R par : f n (x) = x n x. On not C n sa courb rprésntativ dans un rpèr

Plus en détail

Corrigé du baccalauréat S Pondichéry 13 avril 2011

Corrigé du baccalauréat S Pondichéry 13 avril 2011 Corrigé du baccalauréat S Pondichéry avril EXERCICE Commun à tous ls candidats Parti I points. L ax ds ordonnés st asymptot à C au voisinag d ; la fonction étant décroissant sur ] ; + [, la limit quand

Plus en détail

Régulation analogique industrielle ESTF- G.Thermique

Régulation analogique industrielle ESTF- G.Thermique Chapitre 5 Stabilité, Rapidité, Précisio et Réglage Stabilité. Défiitio Coditio de stabilité. Critères de stabilité.. Critères algébriques.. Critère graphique ou de revers das le pla de Nyquist Rapidité

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

B) CHAÎNES DE SOLIDES

B) CHAÎNES DE SOLIDES Chaîes de solides B) CHAÎNES DE SOLIDES Objectifs Cette théorie a pour but d'aalyser les comportemets statique et ciématique d'u mécaisme à partir d'u modèle défii par le schéma ciématique du mécaisme.

Plus en détail

Intérêt simple CHAPITRE. Sommaire

Intérêt simple CHAPITRE. Sommaire HAPTRE térêt simple Sommaire A B D E F G H J K L Notio d itérêt Formule fodametale de l itérêt simple Durée de placemet exprimée e mois Durée de placemet exprimée e jours alculs sur la formule fodametale

Plus en détail

LENTILLES SYSTEME CENTRE

LENTILLES SYSTEME CENTRE LENTILLES SYSTEME CENTRE. Letilles mices Parmi toutes les letilles, il e existe u certai ombre qui peuvet être décrites par u modèle simple : il s agit des letilles mices. Ue letille mice est ue letille

Plus en détail

Correction des exercices sur la nature ondulatoire de la lumière

Correction des exercices sur la nature ondulatoire de la lumière CORRECTION EXERCICES TS /5 CHAPITRE 3 Correctio des exercices sur la ature odulatoire de la lumière Correctio exercice : idice d u verre et réfractio. La radiatio = 530 m est verte et la radiatio = 680

Plus en détail

CONTRÔLE INDUSTRIEL et RÉGULATION AUTOMATIQUE

CONTRÔLE INDUSTRIEL et RÉGULATION AUTOMATIQUE Sssion 200 Brvt d Tchnicin Supériur CONTRÔLE INDUSTRIEL t RÉGULATION AUTOMATIQUE U4 Instrumntation t Régulation Duré : 3 hurs Cofficint : 4 L utilisation d un calculatric réglmntair st autorisé. Calculatric

Plus en détail

Exercice 1 :(15 points)

Exercice 1 :(15 points) TE/pé TL Elémnts d corrction du D. n 2 du Vndrdi 2 0ctobr 2012 sans documnt, avc calculatric 1h1min Ercic 1 :(1 points) À l occasion d un fstival culturl, un agnc d voyags propos trois typs d transport

Plus en détail

Studio 12 scan control scan control. professional light desk user s manual rel. 1.41

Studio 12 scan control scan control. professional light desk user s manual rel. 1.41 Studio ca cotrol ca cotrol profioal light dk ur maual rl Coig Gééral Lir atttivmt l coig d écurité trouvat da ctt otic, car ll fourit d importat iformatio cocrat la écurité d itallatio, d utiliatio t d

Plus en détail

II. Permutations sans répétitions et notation factorielle

II. Permutations sans répétitions et notation factorielle février 2012 ORRIGE II. Permutatios sas répétitios et otatio factorielle Aalyse combiatoire 4 ème - 1 I. Itroductio Les différets modèles mathématiques costruits pour étudier les phéomèes où iterviet le

Plus en détail

AVANT PROPOS. Cet ouvrage pourra intéresser également les enseignants de ce niveau.

AVANT PROPOS. Cet ouvrage pourra intéresser également les enseignants de ce niveau. AVANT PROPOS Cet ouvrage propose aux élèves de classes termiales (fraçais) S (spécialité math) des rappels et des complémets de cours assez complet, aisi que des problèmes et des exercices corrigés. Les

Plus en détail

Master1 Génie des Systèmes Industriels U.E.: Capteurs, Chaînes de mesure 1 ère session 2011-2012

Master1 Génie des Systèmes Industriels U.E.: Capteurs, Chaînes de mesure 1 ère session 2011-2012 Mastr1 Géni ds Systèms Industrils U.E.: Capturs, Chaîns d msur 1 èr sssion 211-212 Cod Unité : 172 Cod épruv : 14977 Samdi 26 Mai 8H -1H Duré : 2 hurs Documnts t Calculatric autorisés Ls partis III t IV

Plus en détail

On obtient la formule de Pascal en prenant le cardinal :

On obtient la formule de Pascal en prenant le cardinal : Colles du 3 ovembre 014 Solutio de la questio de cours 1. (i) Soit E u esemble de cardial. L esemble (E) peut alors être partitioé comme suit : (E) (E), où (E) est l esemble des parties de E de cardial.

Plus en détail

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6 Corrigés TD Chapitre : Variables aléatoires sur u uivers fii Exercice : Soit X la VAR défiie par le tableau suivat : x i - - 0 p 6 4 6 4 6 i O ote Y = X ) Détermier la loi cooite de X et Y ) Détermier

Plus en détail

Corrigé de Mathématique éco HEC

Corrigé de Mathématique éco HEC Corrigé de Mathématique éco HEC EXERCICE Hypothèses. M 3 R est l espace vectoriel des matrices carrées d ordre 3 à coefficiets réels. A M 3 R : s A 3 A,j, s A 3 A,j, s 3 A 3 somme des coefficiets des liges

Plus en détail

Chapitre 3 Détermination de la taille de l'échantillon

Chapitre 3 Détermination de la taille de l'échantillon Chapitre 3 Détermiatio de la taille de l'échatillo Lorsqu o prélève u échatillo pour estimer u paramètre, o court toujours le risque de découvrir u peu trop tard que l'échatillo prélevé est trop petit

Plus en détail

Arbres et dérivée d une fonction composée

Arbres et dérivée d une fonction composée Abes et déivée d ue foctio composée Nous allos voi ici commet l o peut epésete les déivées successives d ue foctio composée pa u esemble d abes fiis. f et g désigeot deux foctio idéfiimet déivables, et

Plus en détail

Mesure de la diffusivité thermique de matériaux anisotropes de petites dimensions par thermographie infrarouge et transformations intégrales.

Mesure de la diffusivité thermique de matériaux anisotropes de petites dimensions par thermographie infrarouge et transformations intégrales. Cogrès Fraçais d Thriqu, SFT 7,Î ds Ebi, 9 ai-1 jui 7 Msur d a diffusivité thriqu d atériau aisotrops d ptits disios par thrographi ifraroug t trasforatios itégras. Bjai REMY 1/*, Aai DEGIOVANNI 1 t Dis

Plus en détail

Initiation aux problèmes de télécommunications

Initiation aux problèmes de télécommunications Initiation aux problèms d télécommunications. Etud d un outil fondamntal : la boucl à vrrouillag d phas (P.L.L.). La boucl à vrrouillag d phas (P.L.L. Phas Lock Loop) st un systèm qui prmt d assrvir la

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail