e x dx = e x dx + e x dx + e x dx.

Dimension: px
Commencer à balayer dès la page:

Download "e x dx = e x dx + e x dx + e x dx."

Transcription

1 Chtr Foctos Gmm t foctos d Bssl Chtr Focto Gmm t foctos d Bssl Détrmto d l focto Gmm L focto Gmm st très sml à dédur à rtr d l tégrl d'eulr: Ctt tégrl st u focto d rmètr ; ll st rrésté r l symbol () t s ll l focto Gmm L tégrl d Eulr st u tégrl o ror, cr l bor suérur st f, l'tégrl st égl à tdt vrs zéro our < our d t r coséqut touts ls rssos sous tégrl Cosdéros our qulls vlurs d l'tégrl ut str Pour cl, dvsos l trvll d tégrto tros rts: d zéro à >, d à t d à l'f O ur: d d d d Motros qu l drèr tégrl st our 'mort qull vlur d d lm b b (S l lmt st) O utls our motrr l'stc d l lmt: lm - (qu o ut fclmt motr lqut lusurs fos l théorèm d l'hôstl) t r coséqut, our ls grds vlurs d, r ml, s >, l vrbl sr férur à ε ; s o os d ε, s our > o : S o os, o ur: < t <

2 Chtr t < b b - - b d d < < b Foctos Gmm t foctos d Bssl Doc: Étt doé qu - - >, vc l crossc d b, d ugmt b lm b d st Cosdéros l tégrl d, our < Pour, ; t l focto sous tégrl sr d l'ordr our b, t d str our ls mêms vlurs d our lsqulls st l tégrl d Cdt: d lm lm ( ε ε ε ε ) d lm ε ε O ut rmrqur qu: s, ε > t l'tégrl str; s <, ε t l tégrl str S, o ur: c st-à-dr qu l'tégrl 'st s Doc, d lmd/ lm L ε ε ε ε, st our > Pr coséqut our >, o : 3 d

3 Chtr Foctos Gmm t foctos d Bssl A ttr d'ml clculos () t (): ( ) ( ) d () ( / ) / Posos z; dz / / d; z Doc: d / d ; Pour clculr ctt tégrl osos: (/ ) z dz O ut écrr qu: A z dz t A z dt Pros A dz L fctur Doc: z dz t dt st u costt qu'o ut clur ds l'tégrl A (z t ) dz dt L clcul st lus sml à rélsr s l o utls ls coordoés olrs ρ t ϕ (fg ) O coît qu : ( ) Doc : A où A A dϕ, A z t t l élémt d surfc st égl à ρ d d ϕ u ρ², du ρdρ; dϕ d u dϕ u dϕ ; 4 du 4

4 Chtr Foctos Gmm t foctos d Bssl L clcul rélsé c-dssus motr, qu l clcul d ( ) r l tégrl d Eulr st comlqué Fg Prorétés d l focto Gmm Prorété Eml ( ) ( ) () Démostrto : rréstos ( ) r l tégrl d Eulr t tégros r rts : où ( ) d u,du dv d, v d; d, Or Pr coséqut : lm lm ( ) d ( ) Corollr 5

5 Chtr Foctos Gmm t foctos d Bssl S st ombr tr, o ( ) ( )! As, o : ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )! Doc, d c corollr, o ut rmrqur commt l focto gmm crot rdmt : ( ) ( 5) 4! 4 ( 9) ( ) ( 6) 5! ( ) ( 3)! ( 7) 6! 7 ( 4) 3! 6 ( 8) 7! 54 8! L focto gmm ut êtr utlsé our rédur l rréstto du rodut ( )( ) ( )( ) m m, où m- tr t S l o jout ( ), o obtt ( m ), d où l o ut écrr : Corollr (m ) (m - ) ( ) 6 ( m ) () Détrmto d l focto gmm our ls vlurs égtvs t o tèrs d Sot doé sur l trvll (, ) Doc sr trouvé sur l trvll (, ) t ( ) clculé r l formul d Eulr () Posos : Pour -, l formul do l f, t doc : t ( ) Pr coséqut ( ) st s ut êtr ( ) ( ) our (3) L trsto d u trvll à u utr (,) (, ), ( 3, ) tc, ut êtr détrmé r l formul (3) L focto gmm st s our ls égtfs trs Eml :

6 Chtr Foctos Gmm t foctos d Bssl L vlur d st trouvé à rtr d l tbl 3 Prorété : ( P) lm! ( )( )( ) Ctt formul st utlsé our l clcul romtf d l focto gmm Pour l démostrto, cosdéros l focto : O ut fclmt vor qu : lm f (,) ( ) Evdmmt : f (,) d lm lm f (,) lm d d d ( ) form : D u utr rt, tégrt r rts, o obtt our f (, ) u rsso sous l où O obtt l rsso : f (, ) u f ( ) du dv d, d d, v (,) d d; 7

7 Chtr Foctos Gmm t foctos d Bssl E l tégrt r rts cor u fos ost : d où O obtt : du u, dv d d ; v, d d Ou cor rès tégrto r rts fos, o obtt : Pr coséqut : ( ) ( ) ( ) ( ) ( ) ( ) f (, ) d! ( )( )( )!! ( )( ) ( )( ) ( ) lm! ( ) ( ) Prorété 3 Dérvé du logrthm d l focto gmm Trouvos l formul our : E ost, ( ) ( ) l ( ) : ( ) ( ) lm ; ( ) ( ) ( ) ( ) ( ) lm l l! l l ; ( ) ( )! lm l 8

8 Chtr Foctos Gmm t foctos d Bssl () lm l () L rt guch d ctt églté st égl romtvmt à -,577 L grdur,577 s ll l costt C d Eulr Pr coséqut : Doc, o ut écrr : lm l C ( ) lm [ l ( ) 3 ] lm [ l 3 C 3 m m m m 3 Détrmto d l focto d Bssl d rmèr sèc L équto dffértll d Bssl st : y y y L soluto d ctt équto s ll focto d Bssl L équto dffértll d Bssl st u équto lér d ordr du L soluto géérl l form : y C y C y, où C t C sot ds costts ; t y t y sot ls solutos lérs t dédts d l équto O v chrchr l soluto d l équto sous l form d l sér : (4) y ( ), E ost L roblèm sr d trouvr ls coffcts,,, t l ombr L focto : 9

9 Chtr Foctos Gmm t foctos d Bssl y, sr trodut ds l équto Trouvos ls dérvés : y y E ls rmlçt ds l équto, o trouv : ( ) ( )( ) ( ) ( ) ( ) ² L dtté ut êtr écrt sous form : ; O ut dédur qu : [( ) ] ( ) E tt comt qu : 3 5,,,,, c st-à-dr qu ls coffcts yt ds dcs mrs sot uls Sur l bs d l formul d récurrc, o ut écrr : ( ) ² ( ) 4 ( 4) ( )( ) 4 ( ) ( ) 3 6 ( 6) 3( )( )( 3) ( ) K! ; ( )( ) ( ) ; ; O rmrqu qu tous ls coffcts rs sot rmés focto, o ut écrr lors : ( )

10 Chtr Foctos Gmm t foctos d Bssl E tt comt d ( ) ( ) ( ) ; ( )( ) ( 3 ), ( )( ) ( ) ( ) ( ), tc o ut écrr our smlfr qu : ( )! ( P ), L soluto d l équto ut êtr rrésté sous form : y ( ) ( / )! ( ) où ± v L soluto d l équto our st oté r () t ll st lé équto d Bssl d rmèr sèc d ordr v L soluto our lé équto d Bssl d rmèr sèc d ordr v Pr coséqut : j j v ( ) v ( ) Pour o tr ( ), ( ) t r coséqut : v ( )! ( ) ( ) v! ( ) v st oté r -v () t ll sot ds foctos lérmt dédts ( ) C ( ) y C st l soluto géérl d l équto d Bssl S st u tr égl à, ( ), ( ) srot lérmt dédts Pour cofrmr clu-c, cosdéros l sér our ( ) ( ) ( ), t trsformos l :! ( ) O coît qu l focto gmm our ls ombrs trs égtfs t ul ll st égl à l f Pr coséqut, our, ( ) ut êtr débuté d : t l sér sr ull L sommto

11 Chtr Foctos Gmm t foctos d Bssl ( ) ( )! ( ) S m -, o ur : ( ) ( ) m m ( ) ( ) m m ( m )! ( m ) m m ( m ) m! [ é t t doé qu ( m ) m!, lors, ( m ) ( m! )] focto ( ) Pr coséqut : Doc, ( ) t ( ) ( ) ( ) ( ) sot lérmt dédts Cosdéros ( ) t ( ): (vc! ) Pr coséqut : ( ) ( ) ( )! 4 ² 4 ²! 6 6 3! ( ) 8 8 4! K 5! L drèr sér détrm l (!) ( ) ( ) t l focto st r Pour, ( ) S our ( ) ds cq mmbrs d l sér : 4 6 8, 4 6 8! 3! 4!, o rd l somm l rrur sr férur à, L sér covrg lors rclmt our L 7 5! grh d l focto ( ) st rrésté r l fgu C grh ut êtr costrut rlvt d l tbl u sér ds vlurs d ( ) :

12 Chtr Foctos Gmm t foctos d Bssl () ( ) ( )! ( )! ( ) !3! 3!4! Pour, ( ) D lus, o ( ) ( ) t r coséqut ( ) L rlto ( ) ( ) t ( ) ( ) st mr rmt d drssr l tbl our ( ) ( ) ( c) ( ),,,,,39,5767,5,9385,43,5 -,484,497,,765,44 3, -,6,339,5,58,5579 Fg 4 Focto d Bssl d duèm sèc E qulté d duèm soluto o rd : Pour Y ( ) cos lm s 3 ( ) ( ), o : s,cos ( ) t( ) ( ) ( )] t o obtt u détrmto Utlsos l règl d l Hostl :

13 Chtr Foctos Gmm t foctos d Bssl ( ) [ cos ( ) ( ) ] Y lm s O obtt : ( ) ( ) Y ( ) ( ) l C ( ) ( ) ( ) m m m m où C st l costt d Eulr L soluto géérl st : C ( ) C ( ) Y L focto Y ( ) s ll équto d Bssl d duèm sèc d ordr ou focto d Num Ecrvos l sér our Y ( ) Y ( ) ( ) 4 4 m [ m m doc: Y l C ( ) l C 3 ( ) our ( ) (!) ] ² 5 Equto dffértll codust à l équto d Bssl Focto d Bssl d trosèm sèc Sot l équto : y y (5) y Trsformos ctt équto trodust u ouvll vrbl dérvé d y focto d t : t Ermos l 4

14 Chtr Foctos Gmm t foctos d Bssl dy dy dt dy y ; d dt d dt dy d d d y dt y d dt d d y dt Ls rssos trouvés sot rmlcés ds (5) : smlfos r d y dt t dy dt t C st doc l équto d Bssl Ss solutos srot ( ) ( ) ( ) t t ou t Cosdéros l équto d y dt t 5 y ² y y y (6) ² S l o trodut l sg (-) sous l rthès t l o os, l équto (6) ² dvt : y y y, qu st u cs rtculr d l équto (5), qud L ² soluto d l équto (5) sr : ( ) t ( ) ( ) ( ) dy dt ( ) ( ) t y ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ; ;

15 Chtr Foctos Gmm t foctos d Bssl [ t ] o utlsé ( ), ( ) Ett doé qu l équto dffértll st homogè, doc qulqu sot C t qulqu sot C ls foctos C () t C () srot ss solutos E ost C,t C, o obtt l soluto sous form : ( )! ( ) ( )! ( ), ;! ( ) Posos! ( )! ( ) ( ), ( ) Ls foctos ( ) t ( ) sot ls foctos d Bssl du trosèm sèc Ds l cs d frctol, ( ) t ( ) sot lérmt dédts t y C ( ) C ( ) soluto géérl d (6) Ds l cs (tr), ( ) ( ) Vérfos : ( )! (étt doé qu, l ombr ( )! ( ) sr l t r coséqut ( ), t ls mmbrs corrsodts d l sér sot uls) trodusos u ouvu dc d sommto m, ost m D où : 6

16 Chtr Foctos Gmm t foctos d Bssl m m ( ) ( m )! ( m ) m m ( m ) m! Ds l cs où st u tr, l ouvll soluto lérmt dédt vc ( ) : K ( ) t l soluto géérl d (6) s écrr sous form : y C ( ) ( ) s ( ) C K ( ) 6 Focto géértrc d l focto Bssl Cosdéros l focto ( z, t) z t t u qu o décomos sér : ( ) O ut écrr, qu ou u zt u z t ( ) z!m! ( z, t) m u ( z, t) zt! m ( z, t) A t m z t m! m t m m L coffct A st : A m ( ) m z m Pour z, l coffct A dvt ( ) t u z m m ( ) ( m )!m! m! ( m ) m t t (, t) ( ) t (7) L focto u (, t) s ll l focto géértrc d l focto d Bssl d rmèr sèc d ordr tr S l o os z, o : 7

17 Chtr Foctos Gmm t foctos d Bssl 8 ( ) ( ) ( ) ( ) ( ),!! ) ( t t m m m m m m t t u t m m m m A (8) L focto u (, t) s ll l focto géértrc d l focto d Bssl d trosèm sèc 7 Prorétés d l focto d Bssl d rmèr t trosèm sècs Formul d récurrc ( ) ( ) () Ctt formul jou u rôl mortt ds l théor ds foctos d Bssl Ell rmt d rédur l clcul ds foctos d ordr suérur à ds foctos d rmr t duèm ordr, c st à dr ( ) ( ) t Eml : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ² 4 8 ² 48 8 ² () () L formul d récurrc rmt our l focto d Bssl d ordr tr d s lmtr à l étblssmt ds tbls our ( ) ( ) t Démostrto : ros l rlto (7) t clculos t u r du méthods :

18 Chtr Foctos Gmm t foctos d Bssl ) t t u ( ) ( ) t () t ; t t² t u b) ( ) t Ls du rts drots ds du dfférts rssos dovt êtr égls our Eglsos ls coffcts our t O obtt : u t D où : ( ) ( ) ( ) ( ) ( ) ( ) ( ), tc Formul our l dérvé [ ] ( ) ( ) ( ) Pour l démostrto clculos r du méthods () t u ) t t t t u b) ( ) t ( ) ; t Églsos ls coffcts our t O obtt : ' ( ) [ () ()], tc L formul motr, qu r ls tbls ( ) t ( ), Ds l cs rtculr our, o obtt : o ut clculr '( ) ' ( ) [ ( ) ( ) ] [ ( ) ( ) ] ( ) 3 Pros l formul (8) Dérvos r rort à t comm focto otll d bord us comm sér : 9

19 Chtr Foctos Gmm t foctos d Bssl u t u t t t t () t Eglsos ls coffcts our t - O obtt : ou : d où : () () t () t [ () ()] [ () ()] [ ] ( ) ( ) ( ) ( ) ( ) ( ) l formul récurrt our l focto d Bssl d trosèm sèc 4 S l o clcul u d l formul (8) r du méthods t o égls ls coffcts ds ls du rssos trouvés our t, o obtdr l dérvé d l focto d Bssl du trosèm sèc : D u utr rt, où : t t t ( ) t t u u ( ) t ( ) t ; ( ) [ ( ) ( )] [ ( ) ( )]

20 Chtr Foctos Gmm t foctos d Bssl vc : Pour ( ) [ () ()] tc ( ) [ () ()] ( ), ( ) ( ) Ds formuls logus uvt êtr obtus our Y ( ) t K ( ) 8 Formuls tégrls d l focto d Bssl d rmèr t trosèm sècs Af d dédur ls formuls our ( ), o rd l rlto : t o os t ϕ D où t l rlto (7 ) dvt : L focto vc Pour, o : t t ϕ t t ( ) t (7 ) s ϕ ϕ ϕ ϕ s ϕ; t ϕ ( ) ϕ (9) ϕ ϕ l rorété tll qu, dϕ Kϕ our, doc : d, ϕ ϕ t ϕ cos s dϕ dϕ Doc, our trouvr ls foctos our ( ), l fut multlr l églté (9) r tégrr r rort à ϕ sur l trvll sϕϕ dϕ ( ) ( ) ϕ dϕ ϕ t

21 Chtr Foctos Gmm t foctos d Bssl O obtt f : ( ) dϕ ( ) E trsformt l rt guch r l formul d Eulr, o obtt : [ cos ( s ϕ ϕ) s ( s ϕ ϕ)] dϕ ( ) Pour ls vlurs rélls d, l focto ( ) ossbl s : Pr coséqut : Ds l cs rtculr our, o s ( ) cos ( s ϕ) rdr ds vlurs rélls t l églté sr ( s ϕ ϕ) dϕ ( ) cos ( s ϕ ϕ) dϕ cos ( s ϕ)dϕ dϕ cos ( s ϕ)dϕ () Af d trouvr l formul tégrl our ( ), ros l focto géértrc our l focto d Bssl d trosèm sèc : t t ( ) t t ffctuos ls mêms trsformtos ost t ϕ, d où t t s ϕ; t ϕ ϕ ϕ s ϕ t sϕ ϕ ( ) Multlos r ϕ t tégros d o à : s ϕϕ dϕ ( ) ϕ ( ) dϕ

22 Chtr Foctos Gmm t foctos d Bssl U sul tégrl st our ds l rt drot, d où : Pour, o : s ϕϕ dϕ s ϕ dϕ ( ) ( ) 9 tégrl d Wbr-Lchtz O rcotr souvt géohysqu ls tégrls d Wbr-Lchtz : z K ( r) d z r ( r) cos( z) d, Motros l rmèr formul Pour ( r) ros l formul tégrl () : z r ( r) cos(r s ϕ) d ϕ E rmlçt ctt rsso ds l rt guch d ctt équto, o obtt : z l'rsso cos ( r s j ) st égl à : D où : z ( r) d cos( r s ϕ) dϕd r s ϕ r s ϕ z z r s ϕ z r s ϕ ( ) ϕ r d d d z r s ϕ z r s ϕ dϕ z r s ϕ z r s ϕ z r s ϕ z r s ϕ dϕ 3

23 Chtr Foctos Gmm t foctos d Bssl E rédust u mêm déomtur, o : z z z² r²s z ( r) d dϕ ϕ dϕ z² r²s ϕ Posos tg ϕ t ; dt sc ϕdϕ; L tégrl chrché sr : dϕ dt sc ² ϕ dt dt ; tg² ϕ t² tg² ϕ t² s ² ϕ sc ² ϕ t² z dt z dt ² t z ( z² r² ) t ( t² ) z² r² t z dt z z² r² ( z² r² ) z² t² ( z² r² ) z z² r² t z² r² rc tg z z² r² z² r² Ds l cs rtculr our z : ( r) d r Orthogolté d l focto d Bssl L vlur st l rc d ( ), dfférts d l focto ( ), o ur : s ( ) ( ) ( µ) d Motros qu s t µdu rcs L églté à zéro d l tégrl st u rorété d orthogolté d l focto d Bssl : y µ y Pour l démostrto, osos ( ) t ( ), doc coformémt à (6), o 4

24 Chtr Foctos Gmm t foctos d Bssl y y y ² y µ² y y, Af d trouvr l focto sous tégrl y y, multlos l rmèr équto r y t l duèm r y t rtrchos l duèm églté d l rmèr O obtt : qu o ut écrr sous form : L tégrl d à do : ( y y y y ) ( y y y y ) ( ² µ² ) y y d d (y y y y ) ( µ ) yy ( ) ( ) ( y y y y ) ² µ ² y y d () E cosdért qu µ st u vrbl : ( ) ( ) ( ) ( µ ) y, y ; y µ, y ; ( ) ( ) ( ) ( ) d d d y ( ) ; y ( ) d d d E rmlçt l rsso trouvé, o trouv : ( ) ( ) ( ) y y y y µ D où : ( ) [ ( y y y y )] ( ) ( µ ) ² d lm lm µ µ² ² µ µ² ² E lqut l théorèm d Hôstl à l rt drot, o : ( ) ( ) ( ) µ ² ( ) d lm µ µ 5

25 Chtr Foctos Gmm t foctos d Bssl d où : v ( ) d ( ) Décomosto d l focto f ( ) sér r l focto d Bssl f() r : Ls foctos ( ) ossèdt u fté d solutos,,,,, Rréstos f() c ( ) c j ( ) c ( ) Af d trouvr ls costts c, c, c, utlsos l rorété d orthogolté f ( ) ( ) d C ( ) ( ) C ( ) d d O obtt : D où : f ( ) ( ) f d ( ) ( ) d c ² ( ) d c f ( ) ( ) d [ ( ) ]² v ( ) d () Eml : Décomosr ordr f () sur trvll (, ) sér r l focto d Bssl du rmr Soluto : sot : f () c ( ) c ( ) c ( ) c ( ) Ls coffcts d l sér sot détrmés r l formul () O os, d où : ( t) dt ² ( ) c ² ( )d ² [ ( )] t O os t, doc : dt d, o ut écrr : 6

26 Chtr Foctos Gmm t foctos d Bssl Doc : t ² 3 ( ) d ² ( t) t² f () c t ( t) dt ( ) ( ) [ ' 3 ( ) v ]² ( ) ( ) ' [ ] dt ( ) ( ) ² Clculos our c D l tbl o 3,837 O trouv r l formul d récurrc d Bssl d rmèr sèc qu : D l tbl o trouv ( ),48 Pr coséqut : ( ) ( ) ( ) ( ) Pr coséqut : t ( ),48 ( ) / [ ( ) ( )],48 c,955 O ut clculr d u mèr logu, c, c 3 Alcto d l focto d Bssl à l soluto ds roblèms d hysqu mthémtqu Problèm Progto d l chlur ds u cyldr f d ryo R l fut détrmr l tmértur à l térur du cyldr, s o l dstrbuto d l tmértur u momt tl t sur l surfc du cyldr O rd qu l tmértur U déd d l dstc ρ Sot l codto tl : 7

27 Chtr Foctos Gmm t foctos d Bssl Fg 3 O v cosdérr qu l tmértur U à l surfc st ull, d où U R (Codto tl) L équto d coductblté thrmqu st : U ² U t L oértur d Llc st lus sml à rdr coordoés cyldrqus : U ρ ρ U ρ ρ ρ ² U ² U ρ ϕ² z² Ds codtos du roblèm, o U qu déd s d ϕ t d z, d où : ρ ²U ϕ² ²U t z² L équto d coductblté thrmqu rd l form : ou U t ² ρ ρ U ρ ρ ² ² ρ ρ ρ U ² U ²U U ² t ² ρ ρ ρ U ρ (3) 8

28 Chtr Foctos Gmm t foctos d Bssl As, l fut résoudr l équto (3) s U R méthod d Fourr our l résoluto sous form : U ( ρ, t) ω( ρ) T ( t) ρ t U t f ( ρ) O v utlsr lors l Doc : L équto (3) rd l form : U ω ρ t U ω ρ ²U ω ρ² ( ) T ( t), ( ρ) T ( t), ( ρ) T ( t), qu o ut écrr sous form : T ( t) ω( ρ) ² T( t) ω ( ρ) ω ( ρ) T ²T ( t) ( t) Pour qu U sot soluto d (3), l fut : ω ( ) ( ) ρ ω ρ ( ρ) ω ( ρ) 9 ( ) ρ ² T t ² T t ; (4) ω ( ρ ) ω ( ρ ) ² ω ( ρ ) (5) ρ L équto (4) ut s écrr sous form : dt ² ² dt T E l tégrt, o obtt : focto : L focto : l T ² ² t l C ou T ² ² t C L équto (5) st l équto d Bssl d ordr t d rgumt U ω ( ρ) ( ρ) ² ²t ( ρ, t) C ( ρ) ρ S soluto sr l

29 Chtr Foctos Gmm t foctos d Bssl sr l soluto d l équto dffértll (3) stsfr l codto u lmts Pr coséqut : d où : ² t ( ) C R, ( R) Cdt l focto U( ρ, t) dot Ls vlurs R sot ls rcs d l focto ( ) S ls rcs sot désgés r µ µ,,,, doc our, o :, µ Pour ls doés o : qu st u soluto d (3) U µ, R µ,, R 3 µ, R ² ²t ( ρ, t) C ( ρ),,,3, foctos crctérstqus ou rors du roblèm Aucu focto U ( ρ, t) U C ( ρ), t o f( ρ ) Af d trouvr l soluto, ros : our t, U f(ρ ) t r coséqut : sot ls ombrs crctérstqus du roblèm ( ρ) stsft ls codtos u lmts, étt doé qu our t : ρ U (, t) C ² f ( ρ) ²t c ( ρ) ρ µ R L drèr sér st l décomosto d f ( ρ) r l focto d Bssl d ordr : doc : L focto : st l soluto du roblèm osé c ρ [ ] f ( ρ) µ d '( µ ) R R R ρ ρ c [ ] ρf ( ρ) ( ρ) dρ '( µ ) R t U ( ρ, t) c ( ρ) sot ls

30 Chtr Foctos Gmm t foctos d Bssl Problèm Problèm d Drchlt our u cyldr Sot u cyldr z, z H, R Trouvr l focto hrmoqu à l térur du cyldr, s l o coît ss vlurs sur l surfc l fut résoudr l roblèm U, vc ls codtos u lmts : U U U z H ρ z,, f ( ρ) U Pusqu U déd s d ϕ, t l équto dvt : ϕ U ρ U U ρ ρ z Posos U( ρ,z) ω( ρ)z(z) D où : U ω ( ρ)z(z); ρ U ω ( ρ) Z(z); ρ U ω( ρ) Z (z) z E ls rmlçt ds l équto, o obtt : [ ω ( ρ) ω ( ρ)]z(z) ω( ρ)z (z) ρ Décomosos ls vrbls : ω ( ρ) ω ( ρ) ρ Z (z) ω( ρ) Z(z) Pour trouvr ω(ρ) t Z(z), obtos ls équtos : Z (z) Z(z) (6) ω ( ρ) ω ( ρ) ω( ρ) (7) ρ L équto (6) st u équto lér t homogè du duèm ordr Pour s résoluto, étblssos l équto crctérstqu : S soluto géérl sr : Z(z) C, ± z C L équto (7) st u équto d Bssl dot l soluto st D ( ρ ) 3 z

31 Chtr Foctos Gmm t foctos d Bssl L focto : sr l soluto d l équto d Llc U z z (z, ρ) D(C C ) ( ρ) Af qu our z H, o U, l fut qu : L églté sr stsft s : H H C C C H, C H D où : (Hz) (Hz) z z C C sh(h z), t l focto U(z, ρ ) Dsh (H z) ( ρ) stsfr l rmèr codto u lmts Af d stsfr l duèm codto u lmts, l fut qu : ρ, ( ρ), C'st-à-dr : ( ) S,,, sot ls rcs d ( ), doc,,, o :, U D sh (H z) ( qu stsfr ls du rmèrs codtos u lmts E qulté d u ouvll soluto, ros l focto : U ( ρ,z) ρ) D sh (H z) ( ρ) Chosssos ls coffcts d fço qu our z, o : f ( ρ) D sh ( H) ( ρ) Ls codtos d l sér sot détrmés r l formul () Pr coséqut : L focto : D sh ( H) ρf ( ρ) ( ρ)dρ [ `( )] D sh (H z) ( ρ), sr l soluto du roblèm osé 3

32 Chtr Foctos Gmm t foctos d Bssl Problèm 3 Cosdéros l roblèm d Drchlt vc ls codtos suvts : Posos : U ( ρ, z) U ( ρ, z) Z z H,, U ( ρ, z) ρ U( ρ,z) ω( ρ)z(z), f ( z) O trouv : ou cor : t ω ( ρ) ω ( ρ) ρ Z (z) ω( ρ) Z(z) ω ( ρ) ω ( ρ) ω( ρ) ρ Z (z) Z(z) L rmèr équto st u équto dffértll our l focto d Bssl du trosèm sèc d ordr t d rgumt ρ S soluto sr l focto : ω ( ρ) ( ρ) L duèm équto st lér à coffcts costts Ls rcs d l équto crctérstqu sot ± L soluto géérl d ctt équto sr : L focto : sr l soluto d l équto d Llc Pour qu z, o U, l fut qu : chos ossbl qu our C C cos z Ds z U ( ρ, z) ( C cosz Ds z) ( ρ) C cos Ds, Pour qu our zh, o U, l fut qu D s H, chos ossbl qu our : Pr coséqut, où,,3, H H 33

33 Chtr Foctos Gmm t foctos d Bssl L focto : U z ( ρ, z) D ρ s H H Stsft ls du codtos u lmts Af d trouvr l focto stsfst l trosèm codto u lmts, ros : t cosdéros qu : D ρ s z H Hρ z D s f (z) H H Ctt sér st l sér d Fourr our l focto f (z) Pr ls formuls d Fourr, o trouv : L focto : sr l soluto du roblèm osé rors D H z f (z)s dz H H H z U( ρ,z) D ρ s H H sot ls vlurs rors t H z s sot ls foctos H Erccs 3 3 Scht, trouvr,, Motrr qu : où st tr () s, Ecrr l équto dffértll our () t () 3 Vérfr qu s t cos () stsfot l équto dffértll : y y y 4 cos ; 34

34 Chtr Foctos Gmm t foctos d Bssl 4 Trouvr ls rssos our : 5 Trouvr 4 (,5) t (,5) 6 Motrr qu: 3 () t () 5 sϕ 7 E utlst l'rcc 6, motrr qu: 8 Motrr qu: () ( ()cos ϕ ()cos 4ϕ ) ( ()sϕ ()s3ϕ ) 3 4 ( ) cos( sϕ)cos ϕdϕ, () s ( s ϕ)s ( ) ϕdϕ t (t)dt () 9 Décomosr l focto f() sur (,) sér r foctos d Bssl d'ordr Réos : c ( ) Motrr qu: t (t)dt () Bblogrh - Coulomb, obrt G Trté d géohysqu tr Msso t sc, Prs Murry Y, Sgl R Alys d Fourr t lcto u roblèms d vlurs u lmts Sér Schum, Edscc, Smrov V Cours d mthémtqus suérurs, T Mr, Moscou, 97 35

Signes et symboles mathématiques à employer dans les sciences physiques et dans la technique. (extraits de la norme internationale iso 31-11 :1992)

Signes et symboles mathématiques à employer dans les sciences physiques et dans la technique. (extraits de la norme internationale iso 31-11 :1992) Sigs t symbols mthémtiqus à mployr ds ls scics physiqus t ds l tchiqu. (trits d l orm itrtiol iso 3- :99) C documt rgroup ds trits choisis pour ls élèvs t ls sigts CGPE d l orm itrtiol iso 3-:99. Pour

Plus en détail

Récupération de la base de données

Récupération de la base de données IGE48 Modélsto ds bss d doés Récupérto d l bs d doés Dogo Plo IGE48 Modélsto ds bss d doés Pl d l s Récupérto Pourquo l récupérto? Typs d ps Log d trsctos Ms à jour d doés Roll bck ds trsctos Chckpot chés

Plus en détail

IGE G 4 E 87 M o M d o é d lisation o n de d s ba b ses de d do d n o n n é n es S ma m ine n 7

IGE G 4 E 87 M o M d o é d lisation o n de d s ba b ses de d do d n o n n é n es S ma m ine n 7 IGE48 Modélsto ds bss d doés Récupérto d l bs d doés Dogo Plo Pl d l s Récupérto Pourquo l récupérto? Typs d ps Log d trsctos Ms à jour d doés Roll bck ds trsctos Chckpot chés d récupérto Bckup t récupérto

Plus en détail

Calcul des pertes du distributeur

Calcul des pertes du distributeur Clcul des pertes du dstrbuteur Jver 007 Clcul des pertes du dstrbuteur Tros étpes : Clcul des pertes techques pr tpe d ouvrge Modélsto des pertes o techques (PNT) Modélsto d ue courbe de tpe P²+bP+c ou

Plus en détail

IGE487 Modélisation des bases de données Semaine 14. Entrepôt de données. Domingo Palao

IGE487 Modélisation des bases de données Semaine 14. Entrepôt de données. Domingo Palao IGE487 Modélsto ds bss d doés Etrpôt d doés. Dogo Plo IGE487 Modélsto ds bss d doés Pl d l s Etrpôt d doés. tockg ds u trpôt d doés. Clssfcto ds trpôts d doés. Modélsto ds trpôts d doés. ché ultdsol. Foctoltés

Plus en détail

Filière de Sciences Économiques et de Gestion. Semestre : S 3 Module : M 12 (Méthodes Quantitatives III) Matière : Algèbre I.

Filière de Sciences Économiques et de Gestion. Semestre : S 3 Module : M 12 (Méthodes Quantitatives III) Matière : Algèbre I. Uirsité ohmmd V gdl Fculté ds Scics Juridiqus Ecoomiqus t socils RT http://www.ssr.c.m ا اآال آ ام ا واد وا اا! ط Filièr d Scics Écoomiqus t d Gstio Smstr : S odul : éthods Qutittis III tièr : lgèbr I

Plus en détail

a g c d n d e s e s m b

a g c d n d e s e s m b PPrrooppoossiittiioo 22001111JJPP 22770055 000011 uu 0088 fféévvrriirr 22001111 VVlliiiittéé jjuussqquu uu 3300//0044//22001111 tim c ir tv é p g c h u i rè s G A Z iv lu s IC.G R é c lo y m ip s 9 r7

Plus en détail

Séries numériques. Chap. 02 : cours complet.

Séries numériques. Chap. 02 : cours complet. Séris méris Cha : cors comlt Séris d réls t d comlxs Défiitio : séri d réls o d comlxs Défiitio : séri corgt o dirgt Rmar : iflc ds rmirs trms d séri sr la corgc Théorèm : coditio écssair d corgc Théorèm

Plus en détail

L approche client-serveur avec JDBC et Java

L approche client-serveur avec JDBC et Java IFT287 Explotto d bs d doés rltolls t ortés objt L pproch clt-srvur vc JDBC t Jv Dogo Plo IFT287 Explotto d BD rltolls t OO Pl d l s L pproch clt-srvur vc JDBC t Jv U progr d pplcto Bs d doés Progrto d

Plus en détail

ECOULEMENT AUTOUR D UNE AILE

ECOULEMENT AUTOUR D UNE AILE Eoulmnt autour d un al EOUEMET UTOUR UE IE St 2006 obtf d TP st d arvnr à msurr la ortan t la traîné d un al d avon, à artr d msurs d rssons n dfférnts onts d l al. On s attahra à dérr l évoluton d s du

Plus en détail

Terminale S Pondichéry, Avril 2009 Sujets de Bac

Terminale S Pondichéry, Avril 2009 Sujets de Bac D PINEL, Sit Mathmitc : http://mathmitcfrfr/idphp Trmial S Podichéry, Avril 009 Sujts d Bac D PINEL, Sit Mathmitc : http://mathmitcfrfr/idphp Trmial S Podichéry, Avril 009 Sujts d Bac D PINEL, Sit Mathmitc

Plus en détail

CAPES EXTERNE. Partie I : Première approche de la constante d Euler

CAPES EXTERNE. Partie I : Première approche de la constante d Euler SESSION 2 CAPES EXTERNE MATHÉMATIQUES Prie I : Preière roche de l cose d Euler Soi N L focio es coiue e décroisse sur ],+ [ e doc sur [,+] Doc our ou réel de [,+], o + D rès l iéglié, o O e dédui que +

Plus en détail

Résumé Math HEC 1ère Math

Résumé Math HEC 1ère Math Résué Mth HE èr Mth Mthétiqus icirs (chir spécil. Méthod récursiv p.. Equivlc d pits p.4 Vlur cpitlisé : vlur utur d u ott court > Fctur d cpitlistio : ( + i Vlur scopté : vlur court d u ott utur < Fctur

Plus en détail

Calculs financiers. Auteur : Philippe GILLET

Calculs financiers. Auteur : Philippe GILLET Clculs fcers Auteur : Phlppe GILLET Le tux d térêt Pour l empruteur qu e dspose ps des fods écessres, l représete le prx à pyer pour ue cosommto mmédte. Pour le prêteur, l représete le prx ecssé pour l

Plus en détail

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période)

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période) A-PDF OFFICE TO PDF DEMO: Purchase from www.a-pdf.com to remove the watermark Mathématques Facères : l essetel Les formules cotourables (F de érode) htt://www.ecogesam.ac-a-marselle.fr/esed/gesto/mathf/mathf.html#e5aels

Plus en détail

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe

Plus en détail

Présentation du cours. Rappel sur SQL

Présentation du cours. Rappel sur SQL IFT287 Explotto d bss d doés rltolls t ortés objt Préstto du cours. Rppl sur QL «If you do t kow whr you r gog, you wll probbly d up sowhr ls.» Dogo Plo «tu ss ps où tu t vs, probblt tu rrvrs llurs» -Lurc

Plus en détail

sont distincts 2 à 2.

sont distincts 2 à 2. Lycée Thers CORRIGÉ TP PYTHON - 09 L algorthme des k-meas pour partager u uage de pots e u ombre doé de classes peu dspersées 1 - La méthode de Forgy [Qu. 1] 1) Cette double somme comporte termes pusque

Plus en détail

Nouvelles technologies : Forage de données (Data Mining)

Nouvelles technologies : Forage de données (Data Mining) IGE487 Modélsto ds bss d doés Nouvlls tchologs : Forg d doés (Dt Mg) Dogo Plo IGE487 Modélsto ds bss d doés Pl d l s Nouvlls tchologs: Forg d doés. Dt Mg L dstcto tr doés t cossc L procssus d Dt Mg Ls

Plus en détail

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie VARIABLES ALÉATOIRES déo oco de réro vrble léore dscrèe moyee - vrce - écr ye esérce mhémque vrble léore coue oco d ue vrble léore : rsormo combso lére de vrbles léores Déo E : eérece léore S : esce échllol

Plus en détail

DEA de physique subatomique Corrigé de l examen d analyse statistique des données et de modélisation session de février - année 2002-2003

DEA de physique subatomique Corrigé de l examen d analyse statistique des données et de modélisation session de février - année 2002-2003 DEA d physqu subatomqu Corrgé d l xamn d analys statstqu ds donnés t d modélsaton ssson d févrr - anné 22-23 Jérôm Baudot sur 45 ponts I- Errur sur la msur d un asymétr avant-arrèr ponts I-a La formul

Plus en détail

f(t) g(t)dt f²(t)dt g²(t) dt a a a

f(t) g(t)dt f²(t)dt g²(t) dt a a a PCSI Chatre 4 : Produts scalares-résumé Das ce chatre E est u -ev. Produts scalares. Défto et exemles de référeces Def: O aelle rodut scalare sur E toute alcato de E² das est bléare. est symétrque: x,ye,

Plus en détail

IFT287 Exploitation de base de données relationnelles et orientées objet Semaine 2. Introduction à Java. Domingo Palao

IFT287 Exploitation de base de données relationnelles et orientées objet Semaine 2. Introduction à Java. Domingo Palao IFT87 Explotto d bs d doés rltolls t ortés objt Itroducto à Jv Dogo Plo IFT87 Explotto d BD rltolls t OO Pl d dux prochs ss Ls crctérstqus du odèl orté objt L prdg d l Orté Objt Itroducto à Jv Ls clsss

Plus en détail

PHYSIQUE DES SEMICONDUCTEURS

PHYSIQUE DES SEMICONDUCTEURS MIISTERE DE L'ESEIGEMET SUPERIEURE ET DE LA REHERHE SIETIFIQUE UIERSITE DE BEHAR Départemet es Sceces Laboratore e Pysque es spostfs à semcoucteurs (L.P.D.S ttp://www.uv-becar.z/lps/ PHYSIQUE DES SEMIODUTEURS

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

3. APPLICATIONS DE L EQUATION DE FOURIER (cas unidimensionnels et stationnaires)

3. APPLICATIONS DE L EQUATION DE FOURIER (cas unidimensionnels et stationnaires) Phénomèns d tansft 3. Alcatons d l équaton d Fou 3. APPLICATIONS DE L EQUATION DE FOURIER (cas undmnsonnls t statonnas) Avc l équaton. nous somms caabls d calcul la dstbuton d la tméatu n foncton d l ndot

Plus en détail

Cours (Terminale S) Limite d une fonction

Cours (Terminale S) Limite d une fonction Cours (Termile S) Limite d ue octio Limite d ue octio e + ou Foctio déiie u voisige de + (resp ) Soit ue octio d esemble de déiitio D O dir que «l octio est déiie u voisige de + (resp )» s il eiste u réel

Plus en détail

AUTOMATISATION DE LA MESURE DE LA CONDUCTIVITE ET DE LA DIFFUSIVITE PAR LA METHODE DES BOITES

AUTOMATISATION DE LA MESURE DE LA CONDUCTIVITE ET DE LA DIFFUSIVITE PAR LA METHODE DES BOITES Joural ds Sccs AUOMAISAION DE LA MESUE DE LA CONDUCIVIE E DE LA DIFFUSIVIE PA LA MEHODE DES BOIES L. M. VOUMBO, B. DIENG 5, S. AMBA, S. GAYE 3, M. ADJ 4, G. SISSOKO 5 Ecol Natoal Supérur Polytchqu, Uvrsté

Plus en détail

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20.

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20. BTS CG 996 Eercce : (0 pots) Ue agece mmoblère evsage de commercalser u programme de costructo d'appartemets Deu projets lu sot soums: Projet P : Le coût de producto de appartemets ( eter et 0 )est doé

Plus en détail

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1 II - Notos de probablté 9/0/007 PHYS-F-30 G. Wlquet Ue varable aléatore est ue varable dot la valeur e peut être prédte avec certtude mas dot la probablté d occurrece d ue valeur (varable dscrète) ou d

Plus en détail

Equivalence entre mesures de similarité floues : Application à la recherche d images par le contenu

Equivalence entre mesures de similarité floues : Application à la recherche d images par le contenu Equvlece etre mesures de smlrté floues : Applcto à l recherche d mges pr le coteu Je-Frços Omhover, Berdette Boucho-Meuer LIP6 Pôle IA, Uversté Perre et Mre Cure Prs VI cotct : e-frcos.omhover@lp6.fr Résumé

Plus en détail

VÉHICULES MEUBLES CONTAINERS CONTAINERS FRIGORIFIQUES. La gamme NOTRE SOLUTION DE STOCKAGE FRIGORIFIQUE. www.petitforestier.fr

VÉHICULES MEUBLES CONTAINERS CONTAINERS FRIGORIFIQUES. La gamme NOTRE SOLUTION DE STOCKAGE FRIGORIFIQUE. www.petitforestier.fr VÉHICULES MEUBLES CONTAINERS CONTAINERS FRIGORIFIQUES La gamm NOTRE SOLUTION DE STOCKAGE FRIGORIFIQUE www.pttforstr.fr u stockag ffcac POUR UNE CHAÎNE DU FROID PRÉSERVÉE Cosrvato, pcs d actvté, stockag

Plus en détail

ALGORITHMIQUE & CALCUL NUMÉRIQUE Travaux pratiques résolus Programmation avec les logiciels Scilab et Python

ALGORITHMIQUE & CALCUL NUMÉRIQUE Travaux pratiques résolus Programmation avec les logiciels Scilab et Python ALGORITHMIQUE & CALCUL NUMÉRIQUE Trvux prtques résolus Progrmmto vec les logcels Sclb et Pytho Lcece Préprto ux cocours José OUIN Igéeur INSA Toulouse Professeur grégé de Gée cvl Professeur grégé de Mthémtques

Plus en détail

Travail, handicap, entreprises : prospective 2020 Sortir des logiques habituelles pour anticiper les solutions de demain

Travail, handicap, entreprises : prospective 2020 Sortir des logiques habituelles pour anticiper les solutions de demain Trvl, hdp, trprss : prsptv 2020 Srtr ds lgqus hbtulls pur tpr ls sluts d dm Prstt d l dmrh Jur tl du CCAH 04/12/2014 Ph. Dur L dmrh Prmèr tud prsptv d tt mplur rls Fr sur tt thmtqu, ll prps u vs prtg ds

Plus en détail

- Partie A - Échantillonnage -

- Partie A - Échantillonnage - ÉCHANTILLONNAGE - ESTIMATION - Parti A - Échatilloag - L'objctif d ctt parti st d répodr à la problématiqu suivat : commt, à partir d'iformatios (coupl moy-écart-typ ou proportio) cous sur u populatio,

Plus en détail

Baccalauréat S Nouvelle - Calédonie Mars 2009

Baccalauréat S Nouvelle - Calédonie Mars 2009 Bcclurét S Nouvelle - Clédoie Mrs 009 Exercice Commu à tous les cdidts (5 poits) r r Le pl est rpporté à u repère orthoorml direct ( O, u, v) d uité grphique cm O cosidère les poits et B d ffixes respectives

Plus en détail

Estimation des incertitudes sur les erreurs de mesure.

Estimation des incertitudes sur les erreurs de mesure. Estmto des certtdes sr les errers de mesre. I. Itrodcto : E sceces epérmetles, l este ps de mesres ectes. Celle-c e pevet être q etchées d errers pls o mos mporttes selo le protocole chos, l qlté des strmets

Plus en détail

Les puissances à exposants négatifs

Les puissances à exposants négatifs CHAPITRE Les puissces à exposts égtifs. Itroductio : les puissces de Nous coissos bie l ottio où est u etier positif : E géérl : ( ) 0 8 6 N... fcteurs Rerquos qu'il y ue reltio évidete etre deux puissces

Plus en détail

Raffinement de modèles comportementaux UML, vérification des relations d implantation et d extension sur les machines d états

Raffinement de modèles comportementaux UML, vérification des relations d implantation et d extension sur les machines d états Rffinmnt d modèls comportmntux UML, vérifiction ds rltions d implnttion t d xtnsion sur ls mchins d étts Thoms Lmolis Ann-Lis Couris Hong-Vit Luong févrir 2009 1 Motivtions L dévloppmnt d SLP (SIS ---

Plus en détail

04 > Évaluation du personnel

04 > Évaluation du personnel 04vlut prl 10/12/08 16:54 Pg 1 04 l t u l r v É > du p 04 > Évlut du prl E plu du rpct d l blgt légl d vr u m u trt ul vc lré, l trt put êtr, l t b ft t prépré, urc d mtvt t d prfrmc tt pur l lré qu pur

Plus en détail

Attention, parfois tu pourras choisir

Attention, parfois tu pourras choisir r i ustio Q l b l é pr Atttio, prfois tu pourrs choisir plusiurs réposs! 1. À to vis, qu st-c qu u rfug fortifié? 4. quoi l fug d Dosshim st-il costruit? c st u liu qui ccuillit ls gs qud ils étit mcés

Plus en détail

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot Scence Indutrelle Précon de ytème erv Pncol Robert Lycée Jcque Amyot I - PRECISION DES SYSTEMES ASSERVIS A. Poton du roblème 1. Préentton On vu que le rôle d un ytème erv et de fre uvre à l orte (t) une

Plus en détail

ANALYSE DES ENQUETES CAS-TEMOINS. AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séries non appariées) ad bc. , bc. 762, nmnm

ANALYSE DES ENQUETES CAS-TEMOINS. AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séries non appariées) ad bc. , bc. 762, nmnm I. DEFINITION ANALYSE DES ENQUETES CAS-TEMOINS AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séres o apparées) Dr F. Séguret Départemet d Iformato Médale, Épdémologe et Bostatstques U facteur F est ue

Plus en détail

La spirale de Théodore bis, et la suite «somme=produit».

La spirale de Théodore bis, et la suite «somme=produit». Etde d e vrite de l spirle de Théodore, dot issce à e site dot les sommes prtielles sot égles x prodits prtiels. Mots clés : spirle de Théodore, théorème de Pythgore, site, série, polyôme. L spirle de

Plus en détail

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant :

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant : STATISTIQUES Cours Termale ES O observe que, das certas cas, l semble ester u le etre deu caractères statstques quattatfs (deu varables) sur ue populato ; par eemple, etre le pods et la talle d u ouveau-é,

Plus en détail

ANALYSE DES CORRESPONDANCES SIMPLES

ANALYSE DES CORRESPONDANCES SIMPLES ANALYSE DES DONNÉES TEST DU KHI-DEUX ANALYSE DES CORRESPONDANCES SIMPLES Perre-Lous Gozalez MESURE DE LIAISON ENTRE DEUX VARIABLES QUALITATIVES KHI-DEUX Mesure de la laso etre deux varables qualtatves

Plus en détail

Clemenceau. Régime sinusoïdal forcé. Impédances Lois fondamentales - Puissance. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O.

Clemenceau. Régime sinusoïdal forcé. Impédances Lois fondamentales - Puissance. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O. ycé Clnca PCS - Physq ycé Clnca PCS (O.Granr) ég snsoïdal forcé pédancs os fondantals - Pssanc ycé Clnca PCS - Physq ntérêt ds corants snsoïdax : Expl d tnsons snsoïdals : tnson d sctr (50 H 0 V) s lgns

Plus en détail

CHAPITRE 6 : LE BIEN-ETRE. Durée : Objectif spécifique : Résumé : I. L agrégation des préférences. Cerner la notion de bien-être et sa mesure.

CHAPITRE 6 : LE BIEN-ETRE. Durée : Objectif spécifique : Résumé : I. L agrégation des préférences. Cerner la notion de bien-être et sa mesure. TABLE DES MATIERES Durée...2 Objectf spécfque...2 Résumé...2 I. L agrégato des préféreces...2 I. Le système de vote à la majorté...2 I.2 Vote par classemet...3 I.3 Codtos de décso socale et théorème d

Plus en détail

Exploration interactive d archives de forums : Le cas des jeux de rôle en ligne

Exploration interactive d archives de forums : Le cas des jeux de rôle en ligne Exploration interactive d archives de forums : Le cas des jeux de rôle en ligne Anne Lavallard To cite this version: Anne Lavallard. Exploration interactive d archives de forums : Le cas des jeux de rôle

Plus en détail

Les arbres binaires Implémentations

Les arbres binaires Implémentations Ls arbrs bnars Impémntatons Natha Jnor Bot mars 2014 Défnton : Un arbr bnar st sot vd, sot d a form B = , où G t D sont ds arbrs bnars dsjonts t o st n nœd appé racn. c o n Fgr 1 Arbr bnar 1 L

Plus en détail

Intégration et primitives

Intégration et primitives DERNIÈRE IMPRESSIN LE 8 mrs 24 à 4:2 Itégrtio et primitives Tle des mtières Notio d itégrle 2. Défiitio................................. 2.2 Exemple de clcul d itégrle : l qudrture de l prole.... 3.3 Itégrle

Plus en détail

Xiros AIR 70 % 450 L* 250 W BREVETS LE SEUL CHAUFFE-EAU THERMODYNAMIQUE MURAL, À VENTOUSE CONCENTRIQUE. Pour l HABITAT INDIVIDUEL ou COLLECTIF

Xiros AIR 70 % 450 L* 250 W BREVETS LE SEUL CHAUFFE-EAU THERMODYNAMIQUE MURAL, À VENTOUSE CONCENTRIQUE. Pour l HABITAT INDIVIDUEL ou COLLECTIF www.ur.r Xros IR LE SEUL CHUFFE-EU THERMODYNMIQUE MURL, À VENTOUSE CONCENTRIQUE Bénécz d'un Crédt d'mpôt slon l lo d nncs n vuur Pour l HBITT INDIVIDUEL ou COLLECTIF L EU CHUDE... TOUT SIMPLEMENT BREVETS

Plus en détail

BOUCLE A VERROUILLAGE DE PHASE. (P.L.L. = Phase Locked Loop) Pierre Le Bars (avec la collaboration de Francis Gary) lebars@moniut.univ-bpclermont.

BOUCLE A VERROUILLAGE DE PHASE. (P.L.L. = Phase Locked Loop) Pierre Le Bars (avec la collaboration de Francis Gary) lebars@moniut.univ-bpclermont. BOUCL A VRROUILLAG D PHAS (P.L.L. = Phase Locked Loo) Pierre Le Bars (avec la collaboration de rancis Gary) lebars@moniut.univ-bclermont.fr BOUCL A VRROUILLAG D PHAS (P.L.L. = Phase Locked Loo) I/ Introduction

Plus en détail

x deux caractères de G. Le produit xx est défini par la formule : PREMIeRE COMPOSITION DE MATHEMATIQUES

x deux caractères de G. Le produit xx est défini par la formule : PREMIeRE COMPOSITION DE MATHEMATIQUES 74 Écoles Normales Supérieures Ulm et Lyo optio M lère compositio 1/6 PREMIeRE COMPOSITION DE MATHEMATIQUES (Sujet commu ENS : ULM et LYON) DURÉE : 6 heures Lc cadidat peut traiter l ue quelcoque des parties

Plus en détail

La réalité augmentée. La com et le sport. Quel avenir? Dossier du mois CROWDFUNDING. Ses spécificités. Le financement 2.0

La réalité augmentée. La com et le sport. Quel avenir? Dossier du mois CROWDFUNDING. Ses spécificités. Le financement 2.0 Portrt: Rémy Srx Agc Aouk Déqué Dossr du mos CROWDFUNDING L fcmt 2.0 L rélté ugmté Qul vr? L com t l sport Ss spécfctés 2 ED IT O Ls uvrs d l commucto t du dgtl vot vor rrvr u ouvu mgz: l 21èm. E-mgz d

Plus en détail

Usage pédagogique de la tablette Tactile

Usage pédagogique de la tablette Tactile U péqu tbtt Tt ém Crét JLfbr 2014 r L, u z? C rô rré été té 1994 pr u trpr Jp, prmt tkr frmt t put êtr u pr u D équpé u Cmér C t brét pur uk p, fftmt u f «fhé» é tu ffht ttémt. I put yr rtmt r u t wb,

Plus en détail

Electromagnétisme des milieux continus OPTIQUE. Licence de Physique, Institut Galilée Université Paris-Nord 2000 / 2001. P. Kužel

Electromagnétisme des milieux continus OPTIQUE. Licence de Physique, Institut Galilée Université Paris-Nord 2000 / 2001. P. Kužel ltromagétsm ds mlu otus OPTIQU L d Phsqu, Isttut Gallé Uvrsté Pars-Nord / P. Kužl Tabl ds matèrs. Itroduto... Sptr éltromagétqu... Rappls sur la théor du hamp éltromagétqu...3 A. quatos Mawll...3 B. rg

Plus en détail

Apport de la technique de décomposition de domaine en réduction modale de branche

Apport de la technique de décomposition de domaine en réduction modale de branche Apport de la techque de décomposto de domae e réducto modale de brache Perre-Olver LAFFAY, Olver QUEMENER *, Etee VIDECOQ, Ala NEVEU Laboratore de Mécaque et d Eergétque d Evry (LMEE) 40, Rue du Pelvoux

Plus en détail

Centrale PSI 1 un corrigé

Centrale PSI 1 un corrigé Cetrle PSI u corrigé L foctio Γ. I.A. f : t t e t est cotiue sur R + ; les seuls problèmes d itégrbilité sot u voisiges de et de +. - Au voisige de, f (t) t est itégrble si et seulemet si < (foctios de

Plus en détail

Correction CCP maths 1 MP

Correction CCP maths 1 MP mai 4 Avertissemet : Il subsiste certaiemet quelques coquilles... Exercice : ue itégrale double Correctio CCP maths MP Pour calculer cette itégrale, o effectue le chagemet de variable e coordoées polaires

Plus en détail

ou 8 à vélo Métro Maison M-M OUchy Plus d info sur www.liguesdelasante.ch

ou 8 à vélo Métro Maison M-M OUchy Plus d info sur www.liguesdelasante.ch t Métr M p J c ll n n trl Cn bèr - Lnn-fl t Lnn-gr. l. Pc Bllr JrlS R n nc DélcS Cr p. L Hr 12. D l. 'O 15 p él Pc/ptr Mtc. 1 ll é Mé lelé 12 Mé Olmpq 9 OUc Q 30 mt pr jr Ptt grn, l t rcmmné prtqr cq jr

Plus en détail

Chapitre 8. Structures de données avancées. Primitives. Applications. L'informatique au lycée. http://ow.ly/35jlt

Chapitre 8. Structures de données avancées. Primitives. Applications. L'informatique au lycée. http://ow.ly/35jlt L'nformtqu u lycé Chptr 8 http//ow.ly/35jlt Chptr 8 Structurs d donnés vncés Un structur d donnés st un orgnston logqu ds donnés prmttnt d smplfr ou d'ccélérr lur trtmnt. 8.1. Pl En nformtqu, un pl (n

Plus en détail

6GEI300 - Électronique I. Examen Partiel #1

6GEI300 - Électronique I. Examen Partiel #1 6GEI3 Électroque I Autome 27 Modalté: Aucue documetato est permse. Vous avez drot à ue calculatrce o programmable. La durée de l exame est de 3h Cet exame compte pour 2% de la ote fale. Questo 1. Questos

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

Intégrales doubles et triples - M

Intégrales doubles et triples - M Intégrales s et - fournie@mip.ups-tlse.fr 1/27 - Intégrales (rappel) Rappels Approximation éfinition : Intégrale définie Soit f définie continue sur I = [a, b] telle que f (x) > 3 2.5 2 1.5 1.5.5 1 1.5

Plus en détail

CHAPITRE I : LES SERIES STATISTIQUES A DEUX DIMENSIONS : DISTRIBUTIONS MARGINALES ET CONDITIONNELLES

CHAPITRE I : LES SERIES STATISTIQUES A DEUX DIMENSIONS : DISTRIBUTIONS MARGINALES ET CONDITIONNELLES CHAPITRE I : LES SERIES STATISTIQUES A DEU DIMESIOS : DISTRIBUTIOS MARGIALES ET CODITIOELLES CHAPITRE I : LES SERIES STATISTIQUES A DEU DIMESIOS : DISTRIBUTIOS MARGIALES ET CODITIOELLES Il est très courat

Plus en détail

Exponentielle exercices corrigés

Exponentielle exercices corrigés Trmial S Foctio potill Ercics corrigés Fsic 996, rcic Fsic 996, rcic 3 3 Fsic 996, rcic 4 4 Fsic, rcic 6 3 5 Fsic, rcic 4 3 6 Baqu 4 4 7 Epo + air, Amériqu du Nord 5 5 8 Basiqu, N Calédoi, ov 4 7 9 Basiqus

Plus en détail

NOTICE DE MONTAGE VERSION 72

NOTICE DE MONTAGE VERSION 72 L â pour port oulnt motl NOTIE E MONTGE VERSION â pour port oulnt motl NOMENLTURE: â, rl t qunllr m l Montnt vrtux ntérur Entrto ( u) Fullr (0 u) l n polytyrèn ( u) Montnt vrtl potérur Smll Prt or upérur

Plus en détail

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes

Plus en détail

Les Laboratoires Pharmaceutiques

Les Laboratoires Pharmaceutiques Les Laboratoires Pharmaceutiques Les plus grands laboratoires et les cadres de l'industrie pharmaceutique. Les laboratoires recensés sont les laboratoires pharmaceutiques, parapharmaceutiques et leurs

Plus en détail

Contrôle de TP Dictionnaire & Arbres Binaires mercredi 20 mars 2013 durée : 3h 6 pages

Contrôle de TP Dictionnaire & Arbres Binaires mercredi 20 mars 2013 durée : 3h 6 pages IUT ds Pays d l Adour - RT2 Informatiqu - Modul IC2 - Algorithmiqu Avancé Contrôl d TP Dictionnair & Arbrs Binairs mrcrdi 20 mars 2013 duré : 3h 6 pags Ls programms d corrction orthographiqu ont bsoin

Plus en détail

1. Limites. Les limites dans la vie courante. Vitesse instantanée. Pente d'une courbe en un point LIMITES

1. Limites. Les limites dans la vie courante. Vitesse instantanée. Pente d'une courbe en un point LIMITES LIMITES. Limites.. Les ites ds l vie courte Vitesse isttée L otio de vitesse, et e prticulier l vitesse d'u objet à u istt précis, est, étommet, subtile et difficile à défiir précisémet. Cosidérez cette

Plus en détail

Coefficient de partage

Coefficient de partage Coeffcet de partage E chme aque, la sythèse d'u composé se fat e pluseurs étapes : la réacto propremet dte (utlsat par exemple u motage à reflux quad la réacto dot être actvée thermquemet), les extractos

Plus en détail

Liens entre fonction de transfert et représentations d'état d'un système (formes canoniques de la représentation d'état)

Liens entre fonction de transfert et représentations d'état d'un système (formes canoniques de la représentation d'état) oqe V oqe Cor e ere foco de rfer e repréeo dé d èe fore coqe de l repréeo dé SI Coe oqe! Irodco! e ere le dfféree decrpo d èe! Pge odèle dé " foco de rfer # C d èe oovrle # C d èe lvrle! Pge foco de rfer

Plus en détail

Leçon. Cette leçon aborde le sujet des stéréotypes dans notre société. 2. Documentaire MATÉRIEL FACULTATIF

Leçon. Cette leçon aborde le sujet des stéréotypes dans notre société. 2. Documentaire MATÉRIEL FACULTATIF 1 l g C g ç L m G A M (I ) SO P U S U Ç CO É P S àl C lç bd l uj d d c. c à u cu cv, l lèv v d cm à qul l d lu ug d qull ç d mbu l u d lu ublc. L cl l lumè u l m qu cch dè c qu cmmcl u d dvg u u mdèl l

Plus en détail

Compression Compression par dictionnaires

Compression Compression par dictionnaires Compression Compression par dictionnaires E. Jeandel Emmanuel.Jeandel at lif.univ-mrs.fr E. Jeandel, Lif CompressionCompression par dictionnaires 1/25 Compression par dictionnaire Principe : Avoir une

Plus en détail

Définition : Un logiciel de traitement de texte permet en particulier Merci de visitez le site web : www.9alami.com

Définition : Un logiciel de traitement de texte permet en particulier Merci de visitez le site web : www.9alami.com I N T R O D U C T I O N W O R D e s t u n l o g i c i e l d e t r a i t e m e n t d e t e x t e t r è s p e r f o r m a n t q u i n o u s p e r m e t d de o ccurméee nr ta u n C e d o c u m e n t p e u

Plus en détail

Espaces vectoriels normés

Espaces vectoriels normés Espaces vectorels ormés Marc SAGE 13 avrl 006 Table des matères 1 Sommes de fermés et d ouverts U sev strct est d téreur vde 3 U crtère de cotuté pour les formes léares 3 4 Dstace à u fermé 3 5 Covergece

Plus en détail

Chapitre 1 Calculs algébriques dans... 3. Chapitre 2 Logique... 27. Chapitre 3 Fonctions numériques... 41. Chapitre 4 Calcul intégral...

Chapitre 1 Calculs algébriques dans... 3. Chapitre 2 Logique... 27. Chapitre 3 Fonctions numériques... 41. Chapitre 4 Calcul intégral... Avt-propos Cet ouvrge est coçu pour permettre u étudits des clsses préprtoires ECE d order leur première ée ds les meilleures coditios e fcilitt l trsitio vec l eseigemet secodire Aisi, l ojectif est i

Plus en détail

ÉVALUATION DU NUT ET DU FLUX TRANSFÉRÉ

ÉVALUATION DU NUT ET DU FLUX TRANSFÉRÉ Chapitr 6 ÉVALUATION DU NUT ET DU FLUX TRANSFÉRÉ Parturiunt onts ; nastur ridiulus us HORACE 6.. RÉSISTANCES D ENCRASSEMENT Pour êtr n sur d alulr la puissan thriqu d un éhangur, il aut onnaîtr son NUT,

Plus en détail

2009/2010. Elaboré par : ALI AKIR

2009/2010. Elaboré par : ALI AKIR BAC MATHS 9/ Cors et 8 eercices Elboré pr : ALI AKIR Doe des cors prticliers e mthémtiqes por tos les ive Pls d iformtios : Cotcter à GSM : 4 96 4 Emil : kircm@gmilcom Site Web : http://mths-kirmidiblogscom/

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

CHAPITRE 3 : TABLEAUX DE CORRESPONDANCE POSTES / COMPTES

CHAPITRE 3 : TABLEAUX DE CORRESPONDANCE POSTES / COMPTES Journal Officiel de l OHADA N 10 4 ème Année 221 AA CHAPITRE 3 : POSTES / COMPTES SECTION 1 : Système normal BILAN-ACTIF ACTIF N os DE COMPTES À INCORPORER DANS LES POSTES Réf. POSTES Brut Amortissements/

Plus en détail

DME TYXAL+ IP IP 55. www.deltadore.com. Contenu / Contents / Inhalt / Contenuto / Contenido / / Inhoud

DME TYXAL+ IP IP 55. www.deltadore.com. Contenu / Contents / Inhalt / Contenuto / Contenido / / Inhoud DME TYXL+ www.tor.o Not stto EN Istto u DE Isttostu IT u stzo ES Mu stó PL Istru st NL Istt 2xLS 14500-3,6 V - 5,8 - Ltu utoo 10 s - utooy 10 yrs Cotu / Cotts / It / Cotuto / Coto / / Iou Cosupto st-y

Plus en détail

Augmentation de capital - Comptabilisation

Augmentation de capital - Comptabilisation Ctluppi & Hug AG Softwre d Augmettio de cpitl - Comptbilistio Descriptio Ue ugmettio de cpitl est ue ugmettio du cpitl ctio d'ue société oyme pr émissio de ouvelles ctios. Il existe différetes formes d'ugmettio

Plus en détail

FD5-10-15 Solutions D Acquisition de données Module d acquisition de données

FD5-10-15 Solutions D Acquisition de données Module d acquisition de données Module d acqusto de doées De 5 à 15 etrées aalogques sychrosées dfféretelles uverselles Logcel d'explotato embarqué Serveur Web Jusqu'à 400 échatllos par secode par voe Voes de calcul et de tratemet Stockage

Plus en détail

Intégration et calcul de primitives

Intégration et calcul de primitives École polytechique Itégrtio et clcul de primitives Tble des mtières Les foctios usuelles. Foctios primitives et foctios réciproques................... Les foctios logrithme et epoetielle......................3

Plus en détail

Intégrales généralisées

Intégrales généralisées 3 Iégrles géérlisées Pour ce chpire, les focios cosidérées so priori défiies sur u iervlle réel I o rédui à u poi, à vleurs réelles ou complees e coiues pr morceu. L défiiio e les propriéés de l iégrle

Plus en détail

ANALYSE IV 29-06-2009. Informations. (5) Pour rendre l examen il faut signer une feuille de présence disponible avec les assistants responsables.

ANALYSE IV 29-06-2009. Informations. (5) Pour rendre l examen il faut signer une feuille de présence disponible avec les assistants responsables. EXAMEN CORRIGE ANALYSE IV 9-6-9 informations: http://cag.epfl.ch sections IN + SC Prénom : Nom : Sciper : Section : Informations () L épreuve a une durée de 3 heures et 45 minutes. () Les feuilles jaunes

Plus en détail

Calculs en chromatographie

Calculs en chromatographie Calculs e chroatographe éthode de la oralsato tere... 1 Coeffcet de répose assque relatf... 1 Calcul des pourcetages assques... 2 Calcul des pourcetages olares... 3 xeple d aalyse CG d ue substtuto copéttve

Plus en détail

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR Semestre : 4 Module : Méthodes Quattatves III Elémet : Mathématques Facères Esegat : Mme BENOMAR Elémets du cours Itérêts smples, précompte, escompte et compte courat Itérêts composés Autés Amortssemets

Plus en détail

La Cible Sommaire F oc us F o n d a t e u r : J e a n L e B I S S O N N A I S

La Cible Sommaire F oc us F o n d a t e u r : J e a n L e B I S S O N N A I S La Cible Sommaire F oc us F o n d a t e u r : J e a n L e B I S S O N N A I S D i r e c t e u r d e l a p u b l i c a t i o n : M a r t i n e M I N Y R é d a c t e u r e n c h e f : S e r g e C H A N T

Plus en détail

Erreur statique. Chapitre 6. 6.1 Définition

Erreur statique. Chapitre 6. 6.1 Définition Chapitre 6 Erreur statique On considère ici le troisième paramètre de design, soit l erreur statique. L erreur statique est la différence entre l entrée et la sortie d un système lorsque t pour une entrée

Plus en détail

RÉSIDENCE RÉSIDENCE. Noria Park TOULOUSE > > BORDEROUGE

RÉSIDENCE RÉSIDENCE. Noria Park TOULOUSE > > BORDEROUGE RÉSIDENCE Nori Prk RÉSIDENCE TOULOUSE > > ORDEROUGE TOULOUSE, À LA DÉCOUVERTE DE LA CULTURE OCCITANE L Métroum TOULOUSE, MÉTROPOLE D AVENIR AU CHARME D EXCEPTION Vill d crctèr à l cct chtt, Toulous s distgu

Plus en détail

LA TRANSFORMATION EN Z.

LA TRANSFORMATION EN Z. LA TRANSFORMATION EN Z U cours ivau BTS Pirr Lóp Group Mathématiqus t Scics Physiqus au Lycé, IREM d Toulous Mmbrs : Mms Michèl Fauré, Moiqu Madlur, Moiqu Sosst Itroductio Das u précédt articl («Fil d

Plus en détail

MECANIQUE QUANTIQUE Chapitre 6 : Oscillateur Harmonique Quantique

MECANIQUE QUANTIQUE Chapitre 6 : Oscillateur Harmonique Quantique MECANIQUE QUANTIQUE Cpitre 6 : Oscillteur Hroique Qutique Pr. M. ABD-LEFDIL Uiversité Moed V- Agdl Fculté des Scieces Déprteet de Pysique Aée uiversitire 6-7 Filières SM-SMI Itroductio L'oscillteur roique

Plus en détail

Tour de refroidissement

Tour de refroidissement TP N7 Tour d rfroidimnt ENSEEIHT 2, ru Chrl CAMICHEL B.P. 7122 31071 TOULOUSE Cdx 7 FRANCE (33) 05 61 58 82 00 (33) 05 61 62 09 76 Tour d rfroidimnt Dn l cycl d l pur, l fluid à l étt d pur n orti d l

Plus en détail

6. RADIERS 6.1. GÉNÉRALITÉS

6. RADIERS 6.1. GÉNÉRALITÉS 6. RADIERS 6.. GÉNÉRALITÉS U raer est ue alle plae, évetuellemet ervurée, costtuat l'esemble es foatos 'u bâtmet. Il s'éte sur toute la surface e l'ouvrage. Ce moe e foato est utlsé as eux cas : lorsque

Plus en détail

Le théorème du viriel

Le théorème du viriel Le théorème du vrel On se propose de démontrer le théorème du vrel de deux manères dfférentes. La premère fat appel à deux "trcks" qu l faut vor. Cette preuve met en avant une quantté, notée S c, qu permet

Plus en détail

Problèmes de courant continu

Problèmes de courant continu Captur résistif d tmpératur Probèms d courant continu Variation d a résistanc d un thrmistanc n fonction d a tmpératur a résistanc R d un thrmistanc, formé d un matériau smi-conductur, vari avc a tmpératur

Plus en détail