INTENTION LES PROCESSUS MATHÉMATIQUES

Dimension: px
Commencer à balayer dès la page:

Download "INTENTION LES PROCESSUS MATHÉMATIQUES"

Transcription

1 INTENTION Adpttios u Cdre commu des progrmmes d études de mthémtiques M-9 telles que reflétées ds le documet Mthémtiques M-9 : Progrmme d études de l Albert (2007) Le coteu du documet Mthémtiques M-9 : Progrmme d études de l Albert (2007) été coçu à prtir du Cdre commu des progrmmes d études de mthémtiques : Protocole de l Ouest et du Nord cdies (2006). E élbort le progrmme d études de l Albert, ue révisio du coteu été complétée et quelques chgemets ot été effectués. Ce documet idetifie ces chgemets et, pr le fit même, idetifie les différeces etre le Cdre commu des progrmmes d études de mthémtiques : Protocole de l Ouest et du Nord cdies (2006) et Mthémtiques M-9 : Progrmme d études de l Albert (2007). LES PROCESSUS MATHÉMATIQUES Techologie L éocé suivt été elevé : Même si l techologie peut être utilisée de l mterelle à l troisième ée pour erichir l ppretissge, o s tted à ce que les élèves tteiget tous les résultts d ppretissge ss y voir recours. LA NATURE DES MATHÉMATIQUES Le ses du ombre Les éocés suivts ot été joutés : L mîtrise des fits devrit être cquise pr l élève e développt leur ses du ombre. L mîtrise des fits fcilite les clculs plus complexes, mis e devrit ps être tteite ux dépeds de l compréhesio du ses du ombre. LES RÉSULTATS D APPRENTISSAGE GÉNÉRAUX Décrire le mode à l ide de régulrités pour résoudre des problèmes été chgé à Décrire le mode et résoudre des problèmes à l ide des régulrités. L forme et l espce (L mesure) Résoudre des problèmes à l ide de mesures directes ou idirectes été chgé à Résoudre des problèmes à l ide de mesures directes et idirectes. Adpttios u Cdre commu des progrmmes d études de mthémtiques M-9 (2007) / 1

2 LES RÉSULTATS D APPRENTISSAGE SPÉCIFIQUES Mterelle Le ombre RAS2. Ajout du terme subitizer. RAS2. Ajout de ce résultt d ppretissge : Trier u esemble d objets à prtir d u seul ttribut et expliquer l règle de trige. 1 re ée Le ombre RAS1. Retrit de cette puce : comptt u pr u et pr ordre croisst et décroisst, etre deux ombres doés; Ajout de ces puces : u pr u etre deux ombres doés; u pr u à rebours de 20 à 0; RAS2. Ajout du terme subitizer. RAS7. Ce résultt d ppretissge été remplcé : Démotrer, de fço cocrète et imgée, commet u ombre doé peut être représeté pr divers groupes égux, vec et ss uités. Pr ce résultt d ppretissge : Démotrer ue compréhesio de l coservtio des ombres. RAS3. Ajout de ce résultt d ppretissge: Trier u esemble d objets à prtir d u seul ttribut et expliquer l règle de trige. Adpttios u Cdre commu des progrmmes d études de mthémtiques M-9 (2007) / 2

3 2 e ée 3 e ée 4 e ée Le ombre RAS9. Ajout des termes l propriété de l commuttivité de l dditio à l descriptio de cette propriété à l troisième puce. Ajout de l puce suivte : Utilist l propriété de l ssocitivité de l dditio (regrouper des esembles de ombres de différetes mières ffecte ps l somme). RAS3. Ajout de ce résultt d ppretissge : Trier u esemble d objets à prtir de deux ttributs et expliquer l règle de trige. RAS3. Ajout de ce résultt d ppretissge : Trier des objets ou des ombres à prtir d u ou de plus d u ttribut. Le ombre RAS6. Ajout de l puce ppliquer l propriété de l distributivité de l multiplictio. L forme et l espce (les trsformtios) RAS11.L puce utilist des ombres comptibles été remplcée pr utilist des strtégies persoelles pour détermier les sommes et les différeces. RAS2. Ce résultt d ppretissge été remplcé : Reproduire ue régulrité observée ds ue tble ou u tbleu à l ide de mtériel cocret. Pr ce résultt d ppretissge : Trsposer, d ue représettio à ue utre, ue régulrité observée ds u tbleu, ds ue représettio grphique ou cocrète. RAS3. L éocé représeter et décrire des régulrités été remplcé pr représeter, décrire et prologer des régulrités. RAS5. Ajout de ce résultt d ppretissge : Démotrer ue compréhesio de l cogruece, de fço cocrète et imgée. Adpttios u Cdre commu des progrmmes d études de mthémtiques M-9 (2007) / 3

4 5 e ée Le ombre RAS3. L éocé pour détermier les fits de multiplictio été remplcé pr pour détermier, vec fluidité, les réposes ux fits de multiplictio. (les vribles et les équtios) L forme et l espce (l mesure) 6 e ée RAS5. L éocé démotrer ue compréhesio de l multiplictio de ombres été remplcé pr démotrer, vec et ss l ide de mtériel de mipultio, ue compréhesio de l multiplictio de ombres. RAS2. Ajout de ce résultt d ppretissge : Exprimer u problème doé comme ue équtio ds lquelle ue lettre est utilisée pour représeter ue qutité icoue (limité ux ombres etiers positifs). RAS1. Ajout de ce résultt d ppretissge : Idetifier des gles de 90. Le ombre RAS2. Ce résultt d ppretissge été remplcé : Résoudre des problèmes comportt de grds ombres à l ide de l techologie. Pr ce résultt d ppretissge : Résoudre des problèmes comportt des ombres etiers positifs et des ombres décimux. (les vribles et les équtios) 7 e ée RAS4. Ajout de ce résultt d ppretissge : Exprimer u problème doé comme ue équtio ds lquelle ue lettre est utilisée pour représeter ue qutité icoue. RAS5. L éocé démotrer et expliquer de fço cocrète, imgée et symbolique été remplcé pr démotrer et expliquer de fço cocrète et imgée. Aucu chgemet. Adpttios u Cdre commu des progrmmes d études de mthémtiques M-9 (2007) / 4

5 8 e ée Le ombre RAS3. L éocé de pourcetges supérieurs ou égux à 0 % été remplcé pr des pourcetges supérieurs ou égux à 0 %, y compris les pourcetges supérieurs à 100 %. L forme et l espce (les trsformtios) 9 e ée L sttistique et l probbilité (l lyse de doées) RAS6. Retrit de ce résultt d ppretissge : Démotrer ue compréhesio de dllge... Ajout de ce résultt d ppretissge : Démotrer ue compréhesio de l cogruece des polygoes. RAS1. Ajout de mières spécifiques pour représeter les doées : ds des digrmmes circulires, des digrmmes à lige brisée, ds des digrmmes à bdes et ds des pictogrmmes. Le ombre RAS2. Les puces suivtes ot été déplcées des idicteurs de redemet u résultt d ppretissge spécifique. m m m m, m > m m b b m m m b b, b 0. Adpttios u Cdre commu des progrmmes d études de mthémtiques M-9 (2007) / 5

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

Augmentation de capital - Comptabilisation

Augmentation de capital - Comptabilisation Ctluppi & Hug AG Softwre d Augmettio de cpitl - Comptbilistio Descriptio Ue ugmettio de cpitl est ue ugmettio du cpitl ctio d'ue société oyme pr émissio de ouvelles ctios. Il existe différetes formes d'ugmettio

Plus en détail

Baccalauréat S Nouvelle - Calédonie Mars 2009

Baccalauréat S Nouvelle - Calédonie Mars 2009 Bcclurét S Nouvelle - Clédoie Mrs 009 Exercice Commu à tous les cdidts (5 poits) r r Le pl est rpporté à u repère orthoorml direct ( O, u, v) d uité grphique cm O cosidère les poits et B d ffixes respectives

Plus en détail

Cours (Terminale S) Limite d une fonction

Cours (Terminale S) Limite d une fonction Cours (Termile S) Limite d ue octio Limite d ue octio e + ou Foctio déiie u voisige de + (resp ) Soit ue octio d esemble de déiitio D O dir que «l octio est déiie u voisige de + (resp )» s il eiste u réel

Plus en détail

Chapitre 1 Calculs algébriques dans... 3. Chapitre 2 Logique... 27. Chapitre 3 Fonctions numériques... 41. Chapitre 4 Calcul intégral...

Chapitre 1 Calculs algébriques dans... 3. Chapitre 2 Logique... 27. Chapitre 3 Fonctions numériques... 41. Chapitre 4 Calcul intégral... Avt-propos Cet ouvrge est coçu pour permettre u étudits des clsses préprtoires ECE d order leur première ée ds les meilleures coditios e fcilitt l trsitio vec l eseigemet secodire Aisi, l ojectif est i

Plus en détail

MATHÉMATIQUES. 3 ème. v.2.5 programme 2008 édition 2015

MATHÉMATIQUES. 3 ème. v.2.5 programme 2008 édition 2015 MATHÉMATIQUES 3 ème 1 er trimestre v..5 progrmme 008 éditio 015 Cours Pi Etblissemet privé hors cotrt d eseigemet à distce SARL u cpitl de 17 531,86 euros - RCS PARIS B 391 71 1 - APE 8559B siège socil

Plus en détail

Centrale PSI 1 un corrigé

Centrale PSI 1 un corrigé Cetrle PSI u corrigé L foctio Γ. I.A. f : t t e t est cotiue sur R + ; les seuls problèmes d itégrbilité sot u voisiges de et de +. - Au voisige de, f (t) t est itégrble si et seulemet si < (foctios de

Plus en détail

Bulletin officiel spécial n 8 du 13 octobre 2011

Bulletin officiel spécial n 8 du 13 octobre 2011 Bulleti officiel spécil 8 du 13 octobre 2011 Aee Progrmme d eseigemet de mthémtiques Clsse termile des séries techologiques STI2D et STL, spécilité SPCL L eseigemet des mthémtiques u collège et u lycée

Plus en détail

COURS DE TERMINALE S ENSEIGNEMENT OBLIGATOIRE PROGRAMME 2002. Demaria Philippe : mademi-4@scs-net.org

COURS DE TERMINALE S ENSEIGNEMENT OBLIGATOIRE PROGRAMME 2002. Demaria Philippe : mademi-4@scs-net.org COURS DE TERMINALE S ENSEIGNEMENT OBLIGATOIRE PROGRAMME 2002 Demri Philippe : mdemi-4@scs-et.org Avt - Propos Ce cours de Termile S s ppuie sur le progrmme de 200 de l eseigemet obligtoire. Il s dresse

Plus en détail

4. Puissances et racines

4. Puissances et racines PUISSANCES ET RACINES 4. Puissces et rcies 4.. Puissces à exposts etiers Défiitio L puissce ième d'u ombre réel est u produit de fcteurs tous égux à : =, =, etc. O dit que est l bse de l puissce et l'expost.

Plus en détail

Intégration et primitives

Intégration et primitives DERNIÈRE IMPRESSIN LE 8 mrs 24 à 4:2 Itégrtio et primitives Tle des mtières Notio d itégrle 2. Défiitio................................. 2.2 Exemple de clcul d itégrle : l qudrture de l prole.... 3.3 Itégrle

Plus en détail

Cours de Mathématique - Statistique Calcul Matriciel

Cours de Mathématique - Statistique Calcul Matriciel L - Mth Stt Cours de Mthémtique - Sttistique Clcul Mtriciel F. SEYTE : Mître de conférences HDR en sciences économiques Université de Montpellier I M. TERRZ : Professeur de sciences économiques Université

Plus en détail

FONDEMENTS MATHÉMATIQUES ET MATHÉMATIQUES PRÉ-CALCUL 10 E ANNÉE. Mesure

FONDEMENTS MATHÉMATIQUES ET MATHÉMATIQUES PRÉ-CALCUL 10 E ANNÉE. Mesure FONDEMENTS MATHÉMATIQUES ET MATHÉMATIQUES PRÉ-CALCUL 10 E ANNÉE [C] Commuicatio [CE] Calcul metal et estimatio Mesure 1. Résoudre des problèmes comportat la mesure liéaire à l aide : d uités de mesure

Plus en détail

COMPARAISON DE PROPORTIONS. Éric Taillard, Ph. Wälti, J. Zuber EIVD. Haute École spécialisée de Suisse occidentale, Yverdon-les-Bains, Suisse

COMPARAISON DE PROPORTIONS. Éric Taillard, Ph. Wälti, J. Zuber EIVD. Haute École spécialisée de Suisse occidentale, Yverdon-les-Bains, Suisse UN NOUVEAU TEST STATISTIQUE POUR LA COMPARAISON DE PROPORTIONS Éric Tillrd, Ph. Wälti, J. Zuber EIVD Hute École spécilisée de Suisse occidetle, Yverdo-les-Bis, Suisse FRANCORO04, Fribourg, Suisse, 8.2004

Plus en détail

Déroulement de l épreuve de mathématiques

Déroulement de l épreuve de mathématiques Dérouleet de l épreuve de thétiques MATHÉMATIQUES Extrit de l ote de service 2012-029 du 24 février 2012 (BOEN 13 du 29-3-2012) Durée de l épreuve : 2 heures Nture de l épreuve : écrite pr le socle cou

Plus en détail

1 Convergence simple et convergence uniforme

1 Convergence simple et convergence uniforme Mster Métiers de l Eseigemet, Mthémtiques - ULCO, L Mi-Voi, 0/03 ANALYSE Fiche de Mthémtiques 5 - Suites et séries de foctios Soiet E et F deu espces métriques quelcoques et (f ) ue suite d pplictios de

Plus en détail

Chapitre 2 LES EMPRUNTS INDIVIS

Chapitre 2 LES EMPRUNTS INDIVIS Chptre LES EMPRUNTS INDIVIS.1 Actulsto de flux Actvté.1.1 : O dspose de chffres cocert l évoluto du chffre d ffres de l socété FLORIS depus 1985. E 1985, le Chffre d ffres étt de 1 Mllo de Frcs, e 1990

Plus en détail

1. Limites. Les limites dans la vie courante. Vitesse instantanée. Pente d'une courbe en un point LIMITES

1. Limites. Les limites dans la vie courante. Vitesse instantanée. Pente d'une courbe en un point LIMITES LIMITES. Limites.. Les ites ds l vie courte Vitesse isttée L otio de vitesse, et e prticulier l vitesse d'u objet à u istt précis, est, étommet, subtile et difficile à défiir précisémet. Cosidérez cette

Plus en détail

Intégration sur un intervalle compact de IR

Intégration sur un intervalle compact de IR PREMIERE PARTIE Itégrtio sur u itervlle compct de IR CHAPITRE I PSEUDO-MESURES, MESURES, FONCTIONNELLES SOMMABLES SUR [,b] Comme océ ds l itroductio, ce premier chpitre pour objectif de fourir le plus

Plus en détail

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C. 16 Suites de foctios Suf précisio cotrire, I est u itervlle réel o réduit à u poit et les foctios cosidérées sot défiies sur I à vleurs réelles ou complexes. 16.1 Covergece simple et covergece uiforme

Plus en détail

LOIS A DENSITE (Partie 1)

LOIS A DENSITE (Partie 1) LOIS A DENSITE (Prtie ) I. Loi de probbilité à densité ) Rppel Eemple : Soit l'epérience létoire : "On lnce un dé à si fces et on regrde le résultt." L'ensemble de toutes les issues possibles Ω = {; ;

Plus en détail

1. Justifier que l intégrale I est l aire d une partie du plan que l on hachurera sur le graphique donné en annexe (à rendre avec la copie).

1. Justifier que l intégrale I est l aire d une partie du plan que l on hachurera sur le graphique donné en annexe (à rendre avec la copie). Atilles-ue septembre 0 EXERCICE poits Commu à tous les cdidts O cosidère l foctio f défiie ] 0 ; + [ pr : f () = l Prtie A : Étude d ue foctio Détermier l limite de l foctio f e + b Détermier l limite

Plus en détail

Séries de Fourier - Calculs fondamentaux

Séries de Fourier - Calculs fondamentaux Séries de Fourier - Clculs fodmetux I - Série de Fourier ssociée à ue foctio f L série de Fourier ssociée à ue foctio f, périodique de période T, s écrit : S(t) + + cos(ωt) + b si(ωt) où l pulstio ω est

Plus en détail

Calcul littéral. Exemple : Déterminer l expression mathématique permettant de calculer: - le rayon du cylindre et la hauteur d un cylindre.

Calcul littéral. Exemple : Déterminer l expression mathématique permettant de calculer: - le rayon du cylindre et la hauteur d un cylindre. Clcul littérl I L essetiel : - Formule : Ue formule trduit ue reltio etre lusieurs grdeurs, c est ue exressio qui cotiet des lettres et les idictios des oértios ortt sur les lettres : o dit que c est ue

Plus en détail

MECANIQUE QUANTIQUE Chapitre 6 : Oscillateur Harmonique Quantique

MECANIQUE QUANTIQUE Chapitre 6 : Oscillateur Harmonique Quantique MECANIQUE QUANTIQUE Cpitre 6 : Oscillteur Hroique Qutique Pr. M. ABD-LEFDIL Uiversité Moed V- Agdl Fculté des Scieces Déprteet de Pysique Aée uiversitire 6-7 Filières SM-SMI Itroductio L'oscillteur roique

Plus en détail

Dérivées des fonctions de référence Du nombre dérivé à la fonction dérivée. 1 ère S. f a h f a k k h h. Objectifs : f a h f a lim 0

Dérivées des fonctions de référence Du nombre dérivé à la fonction dérivée. 1 ère S. f a h f a k k h h. Objectifs : f a h f a lim 0 ère S Objectifs : Dérivées des foctios de référece Du ombre dérivé à l foctio dérivée Poursuivre l objet d étude des deu cpitres précédets : l tgete à ue courbe Psser de l otio de ombre dérivé à l otio

Plus en détail

Calcul d aire et intégrale

Calcul d aire et intégrale Clcul d ire et itégrle Tle des mtières I Activité d itroductio 1 II Défiitio de l itégrle 2 1 Itégrle d ue foctio cotiue et positive................................ 2 2 Itégrle d ue foctio cotiue et égtive...............................

Plus en détail

ANALYSE. 4 ème année. 1.1 Calcul intégral 1

ANALYSE. 4 ème année. 1.1 Calcul intégral 1 ANALYSE ème ée. Clcul itégrl.. Le smole Σ.. Défiitios.. Propriétés de l itégrle défiie 7.. Le théorème fodmetl de l lse..5 Primitives..6 Méthodes d itégrtio prticulières *..7 Applictios du clcul itégrl

Plus en détail

a) En 1990 la population mondiale était de 5,3 milliards. Elle croît chaque année de 1,8%.

a) En 1990 la population mondiale était de 5,3 milliards. Elle croît chaque année de 1,8%. LGL Cours de Mthémtiques 26 Foctios epoetielles et foctios logrithmes fiche professeur ) Eemples itroductifs ) E 99 l popultio modile étit de 5,3 millirds. Elle croît chque ée de,8%.. Doe ue descriptio

Plus en détail

Le manuel d utilisation du jeu Rody & Mastico II

Le manuel d utilisation du jeu Rody & Mastico II Le mnuel d utilistion du jeu Rody & Mstico II Mnuel rélisé pr : Fredo_L Site web : http://www.lnkhor.net E-mil : fred@lnkhor.net Remrque : les erreurs du mnuel d origine ont volontirement étient reproduites

Plus en détail

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé :

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé : http://maths-scieces.fr OPÉRATIONS FINANIÈRES A INTÉRÊTS OMPOSÉS I) Itérêts et valeur acquise Défiitio U capital est placé à itérêts composés lorsque le motat des itérêts produits à la fi de chaque période

Plus en détail

Intégration et calcul de primitives

Intégration et calcul de primitives École polytechique Itégrtio et clcul de primitives Tble des mtières Les foctios usuelles. Foctios primitives et foctios réciproques................... Les foctios logrithme et epoetielle......................3

Plus en détail

Outils de calcul pour la 3 ème

Outils de calcul pour la 3 ème Chpitre I Outils de clcul pour l Ce que nous connissons déjà :! Opértions sur les décimux, les reltifs et les quotients. Puissnces de dix. Nottions scientifiques. Clcul littérl simple. Objectifs de ce

Plus en détail

LES PUISSANCES. a n désigne le produit de n facteurs, tous égaux à a. a n = a a a. a a apparaît n fois Il y a donc n 1 multiplications

LES PUISSANCES. a n désigne le produit de n facteurs, tous égaux à a. a n = a a a. a a apparaît n fois Il y a donc n 1 multiplications LES PUISSANCES I) Défiitios : ) Défiitio : Soit u omre reltif Soit u omre etier positif o ul désige le produit de fcteurs, tous égux à.. pprît fois Il y doc multiplictios est ue puissce du omre et se lit

Plus en détail

Les puissances à exposants négatifs

Les puissances à exposants négatifs CHAPITRE Les puissces à exposts égtifs. Itroductio : les puissces de Nous coissos bie l ottio où est u etier positif : E géérl : ( ) 0 8 6 N... fcteurs Rerquos qu'il y ue reltio évidete etre deux puissces

Plus en détail

Services Web. www.roquebrunesurargens.fr cverbeek@roquebrunesurargens.fr. 2540 RD N7 83520 Roquebrune-sur-Argens

Services Web. www.roquebrunesurargens.fr cverbeek@roquebrunesurargens.fr. 2540 RD N7 83520 Roquebrune-sur-Argens Services Web 2015 Notre service communiction à Roquebrune-sur-Argens rélise en interne l crétion de votre site Internet Vitrine. Ce service est disponible à tous les professionnels du tourisme. Tél 04

Plus en détail

5. Puissances et racines

5. Puissances et racines - - Puissces et rcies. Puissces et rcies. Puissces d expost positif Il rrive souvet qu o multiplie u etier plusieurs fois ps lui-même. Pr exemple : est le produit de fcteurs égux à. L ottio «puissce» permet

Plus en détail

Agrégation de Mathématiques 2012-2013. Intégration

Agrégation de Mathématiques 2012-2013. Intégration Agrégtio de Mthémtiques -3 CMI Uiversité d Aix-Mrseille Itégrtio. Itégrles défiies. Subdivisio. Soiet et b deux ombres réels tels que < b. O ppelle subdivisio de l itervlle [, b] toute suite fiie strictemet

Plus en détail

Chapitre 7: Calculs approchés d intégrale

Chapitre 7: Calculs approchés d intégrale Lycée Mssé Chpitre 7: Clculs pprochés d itégrle 1 Itroductio Les foctios usuelles qu o mipule possèdet souvet des primitives que l o peut exprimer à l ide des foctios usuelles. Cepedt, ce est ps le cs

Plus en détail

Optimisation non linéaire

Optimisation non linéaire 8-1-003 Optimistio o liéire Nio Silerio Support e cours proisoire pour l uité e leur Mthémtiques et sttistiques estié ux clsses u BTS Comptbilité-Gestio e l ECG. Itrouctio Au lycée, ue gre prtie u cours

Plus en détail

1. Introduction. Antoine CRINIERE 1*, Jean DUMOULIN 1, Laetitia PEREZ 2 et Fréderic BOURQUIN 3

1. Introduction. Antoine CRINIERE 1*, Jean DUMOULIN 1, Laetitia PEREZ 2 et Fréderic BOURQUIN 3 Thermogrphie ifrrouge sychroisée vec l mesure de prmètres météorologiques : Applictio à l usculttio du tblier d u pot ouvert u trfic Atoie CRINIERE 1*, Je DUMOULIN 1, Letiti PEREZ 2 et Fréderic BOURQUIN

Plus en détail

IFT 615 : Devoir 4 Travail individuel

IFT 615 : Devoir 4 Travail individuel IFT 615 : Devoir 4 Trvil individuel Remise : 1 vril 01, 16h0 (u plus trd) 1. [ points] Dns le cours, nous vons vu différents types de problèmes d intelligence rtificielle insi que plusieurs solutions possibles

Plus en détail

Calcul intégral. 1 Aire sous une courbe 2

Calcul intégral. 1 Aire sous une courbe 2 Clcul itégrl Tble des mtières Aire sous ue courbe 2 2 Défiitios 3 2. Foctio cotiue et positive sur u itervlle.............................. 3 2.2 Foctio cotiue de sige quelcoque..................................

Plus en détail

PRENDRE UN BON DÉPART EN SECONDE LES RÈGLES DE PRIORITÉ

PRENDRE UN BON DÉPART EN SECONDE LES RÈGLES DE PRIORITÉ LES RÈGLES DE PRIORITÉ Règle 1 Ds ue suite de clculs, il fut effectuer d bord les clculs etre prethèses. Exemple 1 + (1-4) 1-9 Règle Si, ds ue suite de clculs figuret plusieurs prethèses imbriquées, il

Plus en détail

DEVOIR DE SYNTHESE N 2

DEVOIR DE SYNTHESE N 2 EDUCATION EN LIGNE PARTAGE DU SAVOIR DEVOIR DE SYNTHESE N 2 4ème Ecoomie et Gestio Mthémtique WWW.NETSCHOOL1.NET Bri Power School Lycée secodire Ghzl Devoir de sythése 2 MATHEMATIQUES 4EG M r :WALID Jebli

Plus en détail

1. Contribution au raccordement

1. Contribution au raccordement TARIFS 215 CHAUFFAGE A DISTANCE CONTRIBUTIONS AU RACCORDEMENT 1. Contribution u rccordement 1.1 L contribution u rccordement est clculée en fonction des kw th souscrits dns le cdre des puissnces normlisées.

Plus en détail

Théorème de convergence dominée

Théorème de convergence dominée [http://mp.cpgedupuydelome.fr] édité le juillet 4 Eocés Théorème de covergece domiée Eercice [ 9 ] [correctio] Clculer les ites des suites dot les termes gééru sot les suivts : ) u = π/4 t b) v = + e Eercice

Plus en détail

I. (2 points) III. (2 points)

I. (2 points) III. (2 points) ère S Cotrôle du vedredi 7 mars 05 (0 mi) Préom : Nom : Note : / 0 II ( poits) Soit ABC u triagle isocèle e A tel que AB AC 8 cm et BC 5 cm O ote I le milieu de [AC] Calculer BI (valeur exacte) I ( poits)

Plus en détail

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville Théorème de Lx Milgrm Appliction u problème de Dirichlet pour l éqution de Sturm Liouville Résumé du cours de MEDP Mîtrise de mthémtiques 2000 2001 2001nov18 (medp-lx-milgrm.tex) Dns ce chpitre, on se

Plus en détail

TP 10 : Lois de Kepler

TP 10 : Lois de Kepler TP 10 : Lois de Kepler Objectifs : - Estimer l msse de Jupiter à prtir de l troisième loi de Kepler. - Utiliser Stellrium, un simulteur de plnétrium «photo-réel». Compétences trvillées : - Démontrer que,

Plus en détail

7 Fonctions d une variable réelle

7 Fonctions d une variable réelle 7 Foctios d ue vrile réelle 7.1 Cotiuité Pour ce chpitre les référeces clssiques ([Liret Mrtiis, Lelog-Ferrd Arudiès, Moier Alyse, Rmis Deschmps Odou] etc. ) 7.1.1 Défiitios des limites et cotiuité O défiit

Plus en détail

Primitives de Fonctions Calcul Intégral Site MathsTICE de Adama Traoré Lycée Technique Bamako

Primitives de Fonctions Calcul Intégral Site MathsTICE de Adama Traoré Lycée Technique Bamako Primitives de Foctios Clcul Itégrl Site MthsTICE de Adm Troré Lcée Techique Bmko I Primitives d ue foctio umérique : - Activité : Soit l foctio f : + 3 ; Clculer l dérivée de chcue des foctios F ; G ;

Plus en détail

Cours d analyse 1, semestre d automne. Hugo Duminil-Copin

Cours d analyse 1, semestre d automne. Hugo Duminil-Copin Cours d lyse 1, semestre d utome Hugo Dumiil-Copi 30 décemre 2013 Tle des mtières 1 Élémets de théorie des esemles 5 1.1 Élémets de Logique................................ 5 1.1.1 L otio d esemle...........................

Plus en détail

REGLEMENT DU CLASSEMENT NATIONAL

REGLEMENT DU CLASSEMENT NATIONAL REGLEMET DU CLASSEMET ATIOAL / Les règles indiquées ici sont celles utilisées pour clculer les ttributions de points de l sison -. I. PRICIPES DE BASE Le clssement ntionl de l F.F.B. est le seul uquel

Plus en détail

STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS

STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS CHAPITRE 1 STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS Objectifs Comme les liquides et les gz, les solides jouent un rôle très importnt en chimie. Or l pluprt des solides sont des solides cristllins.

Plus en détail

uanacia pour le trimestre terminé le 31 décembre 2013

uanacia pour le trimestre terminé le 31 décembre 2013 * I1 # Office ntionl Ntionl Energy Bord Rpport finncier trimestriel Compte rendu soulignnt les résultts, les risques et les chngements importnts qunt u fonctionnement, u personnel et ux progrmmes Introduction

Plus en détail

ARBRES. Etiquettes / Arbre ordinaire : A = (N,P) - N ensemble des nœuds - P relation binaire «parent de» - r N la racine

ARBRES. Etiquettes / Arbre ordinaire : A = (N,P) - N ensemble des nœuds - P relation binaire «parent de» - r N la racine ARBRES Arbre ordinire : A = (N,P) - N ensemble des nœuds - P reltion binire «prent de» - r N l rcine x N un seul chemin de r vers x r = y o P y P y... P y n = x 0 r n ps de prent x N - { r } x exctement

Plus en détail

Des extraits de cette norme seront présentés pour la compréhension de la démarche.

Des extraits de cette norme seront présentés pour la compréhension de la démarche. Estimtion de l incertitude de l mesure : Appliction à l incertitude sur le clcul de l concentrtion d EDTA lors de l détermintion de l dureté d une eu nturelle Pour cette démrche, nous nous ppuierons sur

Plus en détail

Moulay El Mehdi Falloul. Une introduction à la recherche opérationnelle et au management des projets

Moulay El Mehdi Falloul. Une introduction à la recherche opérationnelle et au management des projets Mouly El Mehdi Flloul Ue itroductio à l recherche opértioelle et u mgemet des projets Itroductio L Recherche opértioelle (RO) est ue disciplie qui trite de l pplictio des méthodes d lyse vcées pour ider

Plus en détail

Préparation à l'examen écrit de maturité Mathématiques 2013

Préparation à l'examen écrit de maturité Mathématiques 2013 Wechter Loïc Mturité 2013 Mthémtiques Cours de M. Flcoz 2013 Préprtion à l'exmen écrit de mturité Mthémtiques 2013 1.Primitives et intégrles 1.1Primitives (CRM pp.77-80) Une primitive pourrit se définir

Plus en détail

Suites et séries d applications

Suites et séries d applications Chpitre 3 Suites et séries d pplictios Ds tout ce chpitre,, b R vec < b (ou évetuellemet, et/ou b + ). Pour N, : [, b] R ou C sot des octios déiies sur l itervlle [, b] (ou R ou [, b] ou [, + [). 3. Covergece

Plus en détail

CALCUL. Supprimez les parenthèses inutiles : i. (x+2) (x 1) + (3 x) (x+2)

CALCUL. Supprimez les parenthèses inutiles : i. (x+2) (x 1) + (3 x) (x+2) CALCUL. Clcul.. Clcultrice Priorité des opértios L ottio lgébrique de votre clcultrice est-elle hiérrchisée ou o? Pour le svoir, écrivez sur votre clcultrice : + 5. Si vous trouvez 7, l ottio est hiérrchisé

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

Automates et langages

Automates et langages Automtes et lngges L exmen corrigé RICM 9 jnvier 22 Grmmire Automte Expression On considère l grmmire régulière G =(Γ,Σ,S,Π) vec Γ = {S,P,R}, Σ={,} et Π={S P,P R,P S,R,R P }.. Construire un utomte A cceptnt

Plus en détail

1.2 Signe de l exposant. (à ne pas confondre avec signe d une puissance!!) = a = a

1.2 Signe de l exposant. (à ne pas confondre avec signe d une puissance!!) = a = a CLASSE DE EME LES PUISSANCES.. Puissce d'u obre o ul.. Défiitio. Soit u obre reltif o ul et u etier Ds ce cs :... fcteurs Se souveir que : 0 ; Et que 0 0 ' ps de ses. Bie sûr : 0 'existe ps!. Sige de l

Plus en détail

Calcul matriciel et applications

Calcul matriciel et applications Clcul mtriciel et lictios I Défiitio d ue mtrice, somme de mtrices et roduit r u réel 1 Défiitio d ue mtrice Ue mtrice A de dimesios coloes Pour 1 i m et 1 j lige et de l j-ième coloe m, vec m et deux

Plus en détail

Exemple 89. Définition 51. point d inflexion de Exemple Tracé du graphe d une fonction

Exemple 89. Définition 51. point d inflexion de Exemple Tracé du graphe d une fonction 59 Eemple 89. L foctio f : 2 est deu fois dérivle sur R, et pour dérivée et dérivée secode sur R : f ) = 2 et f ) = 2 Puisque s dérivée secode est positive sur R, l foctio f est covee sur R. E u poit 0

Plus en détail

Les langages de programmations.

Les langages de programmations. Communiction technique: L utomte progrmmle industriel (les lngges) Leçon Les lngges de progrmmtions. Introduction : L écriture d un progrmme consiste à créer une liste d instructions permettnt l exécution

Plus en détail

Étude globale des fonctions (C01) Exercices

Étude globale des fonctions (C01) Exercices Étude globle des foctios (C) Exercices Exercice O fixe R et b R vec < b O cosidère ue foctio croisste f : [, b] R b) Motrer que pour tout etier N, l esemble D c := { x [, b] ; f(x+) f(x ) > } est fii b)

Plus en détail

Savoir-faire expérimentaux.

Savoir-faire expérimentaux. LYCEE LOUIS DE CORMONTAIGNE. 12 Plce Cormontigne BP 70624. 57010 METZ Cedex 1 Tél.: 03 87 31 85 31 Fx : 03 87 31 85 36 Sciences Appliquées. Svoir-fire expérimentux.. Référentiel.. :. S5 Sciences. Appliquées......

Plus en détail

PicoScope 6. Logiciel oscilloscope PC. Manuel d'utilisation. psw.fr r41 Copyright 2007-2015 Pico Technology Ltd. Tous droits réservés.

PicoScope 6. Logiciel oscilloscope PC. Manuel d'utilisation. psw.fr r41 Copyright 2007-2015 Pico Technology Ltd. Tous droits réservés. PicoScope 6 Logiciel oscilloscope PC Mnuel d'utilistion Mnuel d'utilistion du PicoScope 6 I Tble des mtières 1 Bienvenue... 1 2 Aperçu de PicoScope 6... 2 3 Introduction... 4 1 Mentions légles... 4 2

Plus en détail

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 9 OFFICE DU BACCALAUREAT BP 5005-DAKAR-Fa-Séégal Serveur Vocal: 68 05 59 Téléfax (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 09 G 18bis AR Durée:

Plus en détail

Pour développer votre entreprise LES LOGICIELS EN LIGNE, VOUS ALLEZ DIRE OUI!

Pour développer votre entreprise LES LOGICIELS EN LIGNE, VOUS ALLEZ DIRE OUI! Pour développer votre entreprise Gestion Commercile Gérez le cycle complet des chts (demnde de prix, fcture fournisseur), des stocks (entrée, sortie mouvement, suivi) et des ventes (devis, fcture, règlement,

Plus en détail

2. Formules d addition.

2. Formules d addition. IX. Trigonométrie 1. Rppels 1.1 Définitions : Dns le cercle trigonométrique C ( O, 1 ), si nous fixons un point P correspondnt à un ngle d mplitude nous vons défini : = bscisse du point P sin = ordonnée

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

Mesure de résistances

Mesure de résistances GEL 1002 Trvux prtiques Lortoire 2 1 Trvux prtiques Lortoire 2 (1 sénce) Mesure de résistnces Ojectifs Les ojectifs de cette phse des trvux prtiques sont : ) d utiliser déqutement l plquette de montge

Plus en détail

Fiabilité, sécurité et enfichage intégral éprouvés. Tous les connecteurs sont équipés de dispositifs de verrouillage antiarrachement.

Fiabilité, sécurité et enfichage intégral éprouvés. Tous les connecteurs sont équipés de dispositifs de verrouillage antiarrachement. Fibilité, sécurité et enfichge intégrl éprouvés Tous les connecteurs sont équipés de dispositifs de verrouillge ntirrchement. 100% stekerbr Qu est-ce qu une instlltion 100 % enfichble? Mtériel fourni en

Plus en détail

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006 Mjortions de l erreur dns les clculs clssiques de vleurs pprochées d intégrle Notes pour l préprtion u CAPES - Strsbourg- février 00 On trouve dns différents ouvrges élémentires des démonstrtions à coup

Plus en détail

Chapitre 6 : Fonctions affines -28-01-12- Seconde 7, 2010-2011, Y. Angeli

Chapitre 6 : Fonctions affines -28-01-12- Seconde 7, 2010-2011, Y. Angeli Chpitre 6 : Fonctions ffines -8-01-1- Seconde 7, 010-011, Y. Angeli 1. Éqution réduite d une droite Théorème. Dns un repère, soient A(x A ;y A ) et B(x B ;y B ) tels que x A x B. Alors l droite (AB) est

Plus en détail

Dynamique des systèmes et automates à états

Dynamique des systèmes et automates à états Chpitre 8 Dynmique des systèmes et utomtes à étts L modélistion sttique s intéresse à ce qu il y dns le système, à s structure, etc. L modélistion de l dynmique trite de l évolution du système dns le temps.

Plus en détail

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 28 novembre 2013 Lien vers l dernière mise à jour de ce document Lien vers les exercices de ce chpitre Chpitre 20 Intégrtion Sommire 20.1 Continuité uniforme.................................

Plus en détail

Automates 1 Présentation

Automates 1 Présentation Automates Présetatio Présetatio d u automate 2 Ue maière de désiger l automate de l exemple 3 Défiitio géérale 4 U exemple d automate 5 Mot costruit sur l alphabet C 6 L esemble de tous les mots das u

Plus en détail

Programme d identification visuelle de la Ville de Québec. Guide sommaire des normes graphiques

Programme d identification visuelle de la Ville de Québec. Guide sommaire des normes graphiques Progrmme d identifiction visuelle de l Ville de Québec Guide sommire des normes grphiques Progrmme d identifiction visuelle L Ville de Québec s est dotée d un progrmme d identifiction visuelle cohérent,

Plus en détail

Lois de probabilité à densité

Lois de probabilité à densité Lois de probbilité à densité Christophe ROSSIGNOL Année scolire 0/03 Tble des mtières Loi à densité sur un intervlle I. Deux exemples pour comprendre..................................... Densité de probbilité...........................................3

Plus en détail

Réalisation de sites Internet PME & Grandes entreprises Offre Premium. Etude du projet. Webdesign. Intégration HTML. Développement.

Réalisation de sites Internet PME & Grandes entreprises Offre Premium. Etude du projet. Webdesign. Intégration HTML. Développement. Rélistion de sites Internet PME & Grndes entreprises Offre Premium Etude du projet Réunions de trvil et étude personnlisée de votre projet Définition d une strtégie de pré-référencement Webdesign Définition

Plus en détail

Loi Gamma, loi du 2 et loi de Student

Loi Gamma, loi du 2 et loi de Student Loi Gmm, loi du t loi d Studt A. Foctio Gmm A.. Défiitio L foctio Gmm st défii pour ls réls positifs pr l itégrl : () t t dt pour A. Rltio d récurrc Cosidéros (+) : ( ) t t dt E itégrt pr prti ous otos

Plus en détail

Calculs financiers. Auteur : Philippe GILLET

Calculs financiers. Auteur : Philippe GILLET Clculs fcers Auteur : Phlppe GILLET Le tux d térêt Pour l empruteur qu e dspose ps des fods écessres, l représete le prx à pyer pour ue cosommto mmédte. Pour le prêteur, l représete le prx ecssé pour l

Plus en détail

La puissance nième d une matrice 2X2

La puissance nième d une matrice 2X2 L puissce ième d ue mtrice X L puissce ième d ue mtrice (détils)... Le théorème de CLEY-HMILTON (pour les mtrices x)... lgorithme de clcul de l puissce ième...6 Suite umérique ssociée à l puissce ième...7

Plus en détail

Fiche 2 : les fonctions

Fiche 2 : les fonctions Nº : 300 Fice : les foctios Pl de l fice I - Limites, comportemet symptotique II - Dérivtio III - Cotiuité I - Limites, comportemet symptotique Défiitios Ue foctio f pour ite e lorsque : l foctio f est

Plus en détail

Manuel d instructions du KIT de mise à niveau I

Manuel d instructions du KIT de mise à niveau I Mnuel d instructions du KIT de mise à niveu I TABLE DES MATIÈRES AVANT DE COMMENCER... 2 NOUVELLES FONCTIONNALITÉS... 2 UTILISATION DE LA TABLETTE À STYLET... 3 À propos de l tblette à stylet... 3 Utilistion

Plus en détail

Fonctions : variations et extremums. Fonctions affines

Fonctions : variations et extremums. Fonctions affines Fonctions : vritions et extremums. Fonctions ffines Clsse de seconde I. Sens de vrition d'une fonction... 1) Fonctions croissntes... ) Fonctions décroissntes... II. Tbleu de vritions...3 III. Mximum, minimum...3

Plus en détail

SyGEMe: Système de gestion municipale intégrée du cycle de l eau ESRI France, Paris, 2 octobre 2008 k

SyGEMe: Système de gestion municipale intégrée du cycle de l eau ESRI France, Paris, 2 octobre 2008 k SyGEMe: Système de gestion municiple intégrée du cycle de l eu Géomonitoring, structurtion de l informtion, gestion de l connissnce et rchitecture système 1. Introduction 2. Géomonitoring et structurtion

Plus en détail

H HACHETTE Supérieur

H HACHETTE Supérieur H HACHETTE Supérieur Créditsphotogrphiques Toutes lesphotogrphies de cet ouvrge provieet de l photothèque HACHETTE LIVRE. Compositio, mise e pge et schéms :Publilog Mquette itérieure :SG CrétioetPscl

Plus en détail

Exercices sur les forces, 2 e partie Module 3 : Des phénomènes mécaniques Objectif terminal 4 : La dynamique

Exercices sur les forces, 2 e partie Module 3 : Des phénomènes mécaniques Objectif terminal 4 : La dynamique Dte : No : Groupe : Résultt : / 76 Exercices sur les orces, e prtie Module 3 : Des phéoèes éciques Objecti teril 4 : L dyique. Quelle est l ccélértio de cet objet tiré obliqueet, si o élie le rotteet?

Plus en détail

Chapitre 2 Les automates finis

Chapitre 2 Les automates finis Chpitre 2 Les utomtes finis 28 2.1 Introduction Automtes finis : première modélistion de l notion de procédure effective.(ont ussi d utres pplictions). Dérivtion de l notion d utomte fini de celle de progrmme

Plus en détail

A11 : La représentation chaînée (1ère partie)

A11 : La représentation chaînée (1ère partie) A11 : L représettio chîée (1ère prtie) - Défiitio et schéms de cosulttio - Schéms de mise à jour (isertio, suppressio) - Exemples J-P. Peyri - L représettio chîée (première prtie) 0 Pricipe de l représettio

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

>>> Fluctuations dans les cellules. 4Avancées de la recherche

>>> Fluctuations dans les cellules. 4Avancées de la recherche Esemle de téries Virio Hrveyi géétiquemet idetiques, d eviro, mm de logueur. À guhe, photo e miro sopie à otrste de phse. À droite, sigl de lumiesee, très vrile d ue térie à l utre. Importe et otrôle des

Plus en détail

Fonctions affines ; Equations et inéquations

Fonctions affines ; Equations et inéquations Fonctions ffines ; Equtions et inéqutions I. Fonctions ffines.. Définition Définition d une fonction ffine : on ppelle fonction ffine toute fonction définie sur pr f ( ) où et sont des réels tels que.

Plus en détail