STI2D Logique binaire SIN. L' Algèbre de BOOLE

Dimension: px
Commencer à balayer dès la page:

Download "STI2D Logique binaire SIN. L' Algèbre de BOOLE"

Transcription

1 L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole. George Boole est le fondteur de l logique moderne. L'lgère de Boole est une lgère permettnt de trduire des signux (tout ou rien) en expressions mthémtiques en remplçnt chque signl élémentire pr des vriles logiques et leur tritement pr des fonctions logiques. L'lgère de Boole permet de résoudre des équtions logiques fin de réliser des fonctions sur des signux numériques. Ces fonctions seront ppelées fonctions comintoires. L'lgère de Boole des fonctions logiques permet de modéliser des risonnements logiques, en exprimnt un «étt» en fonction de conditions. Un mthémticien ritnnique qui, durnt le milieu du XIXe siècle, restructur complètement l logique en un système formel. Plus spécifiquement, l'lgère ooléenne permet d'utiliser des techniques lgériques pour triter les expressions à deux vleurs. Aujourd'hui, l'lgère de Boole trouve de nomreuses pplictions en informtique et dns l conception des circuits électroniques. Étt des contcts et des récepteurs. Un circuit électrique, électronique ou pneumtique, peut voir étts logiques. Ces étts peuvent prendre les vleurs ou 0. Ces étts sont fonctions de l'étt des composnts en série dns le circuit. Étt 0 : Les ctionneurs tels que : moteurs, vérins sont à l'étt 0 (ou niveu s) lorsqu'ils ne sont ps limentés. Le circuit est lors ouvert. Pour un circuit pneumtique ceci correspond à une sence de pression. Pour un circuit électrique cel correspond à une sence de différence de potentiel entre les ornes du circuit. Pour un contct ou un distriuteur, c'est l sence d'ction physique intervennt sur un contct qui représente l'étt 0. GAMBETTA - CARNOT - ARRAS - pge / 5

2 Étt : Les ctionneurs sont à l'étt (niveu hut) lorsqu'ils sont limentés. Pour un circuit pneumtique ou hydrulique ceci correspond à une pression d ir ou d huile dns le circuit. Pour un circuit électrique cel correspond à une différence de potentiel entre les ornes du circuit. Pour un contct ou un distriuteur ils sont ctionnés, c est à dire qu'une ction physique est prise en compte. Définitions : Contct à fermeture : C'est un contct qui est normlement ouvert (Normlly Open) u repos. Il se ferme lorsqu'il est ctionné. On désigne ce type de contct pr des lettres minuscules,, c... Ses ornes sont repérées pr des chiffres. Symole électrique Contct ouvert u repos (NO) Contct à ouverture : C'est un contct qui est normlement fermé (Normlly Closed) u repos et qui s'ouvre lorsqu'il est ctionné. On désigne ce type de contct pr des lettres /, /, c/ ( / se lit " rre"). Ses ornes sont repérées pr des chiffres, et ici. Symole électrique Contct fermé u repos (NC) GAMBETTA - CARNOT - ARRAS - pge / 5

3 Étt d'un circuit électrique : Un circuit électrique est dit pssnt, ou fermé, lorsqu'un cournt électrique circule dns ce circuit. Cel implique qu'il y it continuité de ce circuit, c est à dire que le contct étlisse le circuit. Un circuit électrique est non pssnt, ou ouvert, si le cournt ne peut ps circuler dns ce circuit. Un circuit électrique comprend u minimum, une source d'énergie, un récepteur et un contct. BATTERIE V LAMPE V BATTERIE V LAMPE V Circuit ouvert, ps de cournt Circuit fermé, circultion d'un cournt Chronogrmme : Un chronogrmme est une représenttion schémtique temporelle de l évolution d un système utomtisé en fonction des vritions d étt d une ou plusieurs entrées. Cette évolution est représentée sous l forme suivnte : GAMBETTA - CARNOT - ARRAS - pge 3 / 5

4 Différents types de signux : Dns les systèmes trois types de signux sont utilisés principlement. Les signux nlogiques, numériques et tout ou rien. Un signl nlogique est un signl qui représente l vrition continue d une certine grndeur (ex : tempérture, vitesse...). Un signl logique (tout ou rien) est un signl qui représente l étt inire (vri, non vri) d une vrile d un système (ex : un contcteur d un circuit électrique est soit ctionné soit non ctionné). Un signl numérique est un signl qui représente l vrition d une grndeur pr succession de vleurs discrètes (ex : une montre à ffichge numérique). GAMBETTA - CARNOT - ARRAS - pge 4 / 5

5 Tle de vérité : Une tle de vérité est l représenttion de l évolution du comportement d un système utomtisé en fonction des vritions de ses entrées. Chcune des vriles est représentée sous une écriture inire. Une tle de vérité s'utilise principlement en logique comintoire. Elle est représentée sous l forme suivnte : Logigrmme : Un logigrmme est un schém représentnt une succession de symoles logiques permettnt d otenir pr cominison de vriles d entrées l sortie recherchée. Attention, les fonctions logiques sont des opérteurs logiques et non des opérteurs mthémtiques. Le résultt otenu ser un résultt logique et non un résultt mthémtique. 0 3 U:A 7400 U:A U3:A GAMBETTA - CARNOT - ARRAS - pge 5 / 5

6 Codes inires : Le code inire pur : Le code inire pur est une représenttion numérique en se deux. Cette représenttion permet de représenter des nomres sous forme de et de 0, ou de décrire l évolution des vriles vries ou non vries d un système utomtisé, c est cette possiilité que nous llons utiliser. Le nomre de cominisons possiles des vriles se clcule de l fçon suivnte : vrile d'entrée ==> = cominisons (0, ) vriles d'entrée ==> = 4 cominisons ( 00, 0, 0, ) 3 3 vriles d'entrée ==> = 8 cominisons (000, 00, ) 4 4 vriles d'entrée ==> = 6 cominisons (0000, ) n n vriles d'entrée ==> cominisons possiles Le code inire réfléchi : Lorsque l on regrde ligne pr ligne l évolution du code inire pur, on remrque que pour psser d une ligne à l utre, plusieurs vriles peuvent être menées à chnger de vleur simultnément. Ceci est très gênnt lorsque l on cherche à nlyser le comportement d un système en fonction de ses entrées. Un utre code inire été mis u point, c est le code inire réfléchi ou code GRAY du nom de son inventeur. Ce code permet de psser d une ligne à l utre de l description d un système vec l évolution d une seule vrile à l fois. Ce code permettr de définir l évolution d un système utomtisé. En ucun cs il ne pourr servir de se de comptge comme le inire pur. On utiliser ce codge ultérieurement dns le cours pour l définition des tleux de Krnugh. GAMBETTA - CARNOT - ARRAS - pge 6 / 5

7 Binire pur Binire réfléchi Le inire réfléchi est construit pr symétrie de lignes. Le groupement "" est reproduit en "" symétriquement pr rpport à l ligne. Les groupements "" et "" sont reproduits en "e" symétriquement pr rpport à l ligne. L même règle prévut pour les groupements "c" et "d". L suite se construit à l identique. On remrque lors qu une seule vrile, l vrile rouge, évolue d une ligne à l utre. Le complément d une vrile Nous vons vu précédemment qu une vrile "e" vit deux étts, l étt 0 et l étt. Si on dmet qu il peut exister une vrile "e/" qui l étt inverse de l vrile "e", lors on pourr dire que "e/" est le complément de "e". GAMBETTA - CARNOT - ARRAS - pge 7 / 5

8 Fonctions logiques Les fonctions logiques sont des opérteurs logiques. C est à dire qu en fonction d une ou plusieurs vriles données, ils vont répondre pr une sortie prticulière. Le symole " Ξ " se lit "équivlent" pour ien distinguer le résultt logique d un résultt mthémtique. Fonction OUI - Éqution : S = ; ==> S - S reproduit l vrile d entrée. Symole électrique 0 S 0 Tle de vérité Chronogrmme S U4:A GAMBETTA - CARNOT - ARRAS - pge 8 / 5

9 Fonction NON - Éqution : S = ( lire S égl rre ) - S reproduit l inverse de l vrile d entrée. Symole électrique Tle de vérité Chronogrmme S 0 0 U4:A GAMBETTA - CARNOT - ARRAS - pge 9 / 5

10 Fonction ET (AND) - Éqution : S =. ( lire S égl ET ) - S reproduit le produit des vriles d entrée et. L sortie S est u niveu hut, si = ET =, sinon S est u niveu s Symole électrique Porte ET à entrées S 0 Porte ET à 3 entrées c 3 74 S c S Tle de vérité S ET à entrées ET à 3 entrées GAMBETTA - CARNOT - ARRAS - pge 0 / 5

11 Chronogrmme remrque: l fonction ET est commuttive. =. l fonction ET est ssocitive (. ). c =. (. c ) =.. c Q: comment réliser une fonction ET à 3 vriles à l'ide de portes ET à entrées? S 7408 U4:A U4:B GAMBETTA - CARNOT - ARRAS - pge / 5

12 Solution c S 7408 S = (c. ). =.. c U4:A U4:B GAMBETTA - CARNOT - ARRAS - pge / 5

13 Fonction OU (OR) - Éqution : S = + ( lire S égl OU ) - S reproduit l somme des vriles d entrée et. L sortie S est u niveu hut, si = OU =, sinon S est u niveu s Symole électrique Porte OU à entrées 3 S 743 c U:A 8 9 S Porte OU à 3 entrées Tle de vérité S OU à entrées 4075 U:A c S OU à 3 entrées GAMBETTA - CARNOT - ARRAS - pge 3 / 5

14 Chronogrmme remrque: l fonction OU est commuttive + = + l fonction OU est ssocitive ( + ) + c = + ( + c ) = + + c Q: comment réliser une fonction OU 4 vriles à l'ide de portes OU à entrées? c d U:B 743 U:C U:D GAMBETTA - CARNOT - ARRAS - pge 4 / 5

15 Solution c d U:B 743 U:C U:D S = ( + ) + (c + d) = + + c + d GAMBETTA - CARNOT - ARRAS - pge 5 / 5

16 Fonction ET-NON (NAND ; No-AND) - Éqution : S =. ; S = (. )/ ( lire S égl ET le tout rre) - S reproduit l inverse du produit logique des vriles d entrée et. L sortie S est u niveu s, si = ET =, sinon S est u niveu hut Symole électrique Porte ET-NON à entrées U:A 3 S = Porte ET-NON à 3 entrées c 3 U:A 740 S =.. c GAMBETTA - CARNOT - ARRAS - pge 6 / 5

17 Tle de vérité S ET-NON à entrées c S ET-NON à 3 entrées Chronogrmme Remrque: L fonction ET-NON, est une fonction universelle, c est à dire que les fonctions OUI, NON, OU, ET peuvent être rélisées vec uniquement des opérteurs ET-NON. Ainsi toute fonction même complexe peut être rélisée vec uniquement des portes NAND. Exemples ) Réliser une porte NON à l'ide d'une porte ET-NON ) Réliser une porte Et à entrées à l'ide de portes ET-NON c) Réliser une porte OU à entrées à l'ide de portes ET-NON GAMBETTA - CARNOT - ARRAS - pge 7 / 5

18 Réliser une porte NON à l'ide de porte ET-NON 4 S = 6 5 U:B 7400 Réliser une porte ET à l'ide de porte ET-NON U:A U:B 6 S = Réliser une porte OU à entrées à l'ide de porte ET-NON 4 5 U3:A 7400 U3:B U3:C S = Remrque: (. ) = + (. )/ = + GAMBETTA - CARNOT - ARRAS - pge 8 / 5

19 Fonction OU-NON (NOR ; No-OR) - Éqution : S = + ; S = ( + )/ ( lire S égl OU le tout rre) - S reproduit l inverse de l somme logique des vriles d entrée et. L sortie S est u niveu s, si = OU =, sinon S est u niveu hut Symole électrique Porte OU-NON à entrées 3 U:A S = +? 740 Porte OU-NON à 3 entrées c 3 U:A 747 S = + + c GAMBETTA - CARNOT - ARRAS - pge 9 / 5

20 Tle de vérité S OU-NON à entrées c S OU-NON à 3 entrées Chronogrmme Remrque: L fonction OU-NON, est ussi une fonction universelle, c est à dire que les fonctions OUI, NON, OU, ET, ET-NON peuvent être rélisées vec uniquement des opérteurs OU-NON. Exemples ) Réliser une porte NON à l'ide d'une porte OU-NON à entrées ) Réliser une porte Et à entrées à l'ide de portes OU-NON c) Réliser une porte OU à entrées à l'ide de portes OU-NON d) Réliser une porte ET-NON à entrées à l'ide de portes OU-NON GAMBETTA - CARNOT - ARRAS - pge 0 / 5

21 Fonction OU-Exclusif (XOR, exclusive OR) - Éqution : S = ; S = + ( lire S égl OU exclusif ) - S reproduit l somme des vriles d entrée et. L sortie S est u niveu hut, si l'une des deux entrées est à, sinon S est u niveu s. Symole électrique Porte OU-Exclusif à entrées U:A = 3 S = 7436 Tle de vérité S OU-exclusif à entrées Remrque: S = S = (. ) + (. ) GAMBETTA - CARNOT - ARRAS - pge / 5

22 exercices montge ) Compléter les chronogrmmes suivnts 4 5 U:B = 6 S S 7436 montge ) 4 5 U:B = 6 S S montge c) 4 5 U:B = 6 S S 7436 GAMBETTA - CARNOT - ARRAS - pge / 5

23 réponses ) réponse ) S = en effet = (. 0) + (. ) = 0 + = réponse c) S = en effet 0 = (. ) + (. 0) = + 0 = S est toujours u niveu s (en théorie) en effet = (. ) + (. ) = = 0 GAMBETTA - CARNOT - ARRAS - pge 3 / 5

24 Reltions crctéristiques de l logique ooléenne : Sommes logiques Produits logiques + =. = + 0 =. 0 = 0 + =. = + =. = =.. = Théorèmes d Augustus De Morgn : Le complément d un produit logique de vriles est égl à l somme logique des compléments de vriles. (. ) = + Le complément d une somme logique de vriles est égl u produit logique des compléments de vriles. ( + ) =. GAMBETTA - CARNOT - ARRAS - pge 4 / 5

25 lien : Auguste De Morgn (7 juin 806 à Mduri (Tmil Ndu) - 8 mrs 87) est un mthémticien et logicien ritnnique, né en Inde. Il est le fondteur vec Boole de l logique moderne ; il notmment formulé les lois de De Morgn Auguste De Morgn lien: George Boole Lien: Bernrd LEWANDOWICZ 6/05/4 logique inire stid.odt GAMBETTA - CARNOT - ARRAS - pge 5 / 5

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états.

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états. ciences Industrielles ystèmes comintoires Ppnicol Roert Lycée Jcques Amyot I - YTEME COMBINATOIRE A. Algère de Boole. Vriles logiques: Un signl réel est une grndeur physique en générl continue, on ssocie

Plus en détail

3 LES OUTILS DE DESCRIPTION D UNE FONCTION LOGIQUE

3 LES OUTILS DE DESCRIPTION D UNE FONCTION LOGIQUE 1GEN ciences et Techniques Industrielles Pge 1 sur 7 Automtique et Informtiques Appliquées Génie Énergétique Première 1 - LA VARIABLE BINAIRE L électrotechnique, l électronique et l mécnique étudient et

Plus en détail

Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.

Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques. Logique binaire I. L'algèbre de Boole L'algèbre de Boole est la partie des mathématiques, de la logique et de l'électronique qui s'intéresse aux opérations et aux fonctions sur les variables logiques.

Plus en détail

La logique combinatoire est une technique dédiée à la représentation de diverses

La logique combinatoire est une technique dédiée à la représentation de diverses Chpitre I Logique comintoire 1 L logique comintoire est une technique dédiée à l représenttion de diverses fonctions. Elle permet de synthétiser des systèmes comportnt des étts finis. Les circuits logiques

Plus en détail

Les langages de programmations.

Les langages de programmations. Communiction technique: L utomte progrmmle industriel (les lngges) Leçon Les lngges de progrmmtions. Introduction : L écriture d un progrmme consiste à créer une liste d instructions permettnt l exécution

Plus en détail

SYSTEMES LOGIQUES LOGIQUE COMBINATOIRE

SYSTEMES LOGIQUES LOGIQUE COMBINATOIRE Ch.I Commnde des systèmes logiques ogique comintoire - p1 SYSTEMES OGIQUES OGIQUE COMBINATOIRE I Commnde des systèmes logiques 1. Structure des systèmes utomtisés Reprenons l structure étlie dns le cours

Plus en détail

Systèmes logiques combinatoires

Systèmes logiques combinatoires «'enseignement devrit être insi : celui qui le reçoit le recueille comme un don inestimle mis jmis comme une contrinte pénile.» Alert Einstein Systèmes logiques comintoires Définitions. es vriles inires

Plus en détail

LA LOGIQUE COMBINATOIRE

LA LOGIQUE COMBINATOIRE LA LOGIQUE OMBINATOIRE ompétences ssociées A2 : Anlyser et interpréter une informtion numérique DEFINITION De nomreux dispositifs électroniques, électromécnique, (mécnique, électrique, pneumtique, etc...)

Plus en détail

Mesure de résistances

Mesure de résistances GEL 1002 Trvux prtiques Lortoire 2 1 Trvux prtiques Lortoire 2 (1 sénce) Mesure de résistnces Ojectifs Les ojectifs de cette phse des trvux prtiques sont : ) d utiliser déqutement l plquette de montge

Plus en détail

Théorie de langages, TD3

Théorie de langages, TD3 Théorie de lngges, TD3 Octoer 6, 25 Automtes finis. Definitions Un utomte fini déterministe (DFA deterministic finite utomton) est une mchine de clcul A qui peut être définie pr les cinq éléments suivnts.

Plus en détail

LA CHAINE D INFORMATION :La fonction ACQUERIR

LA CHAINE D INFORMATION :La fonction ACQUERIR Livret des compétences essentielles de seconde II Fiche N 3- Niveu d cquisition exigé : «je sis en prler» LA CHAINE D INFORMATION :L fonction ACQUERIR L fonction ACQUERIR est chrgée de mettre en forme

Plus en détail

Systèmes automatisés à logique combinatoire

Systèmes automatisés à logique combinatoire Systèmes utomtisés à logique comintoire I. Introduction Un système logique est un système pour lequel les vriles d entrées-sorties de l prtie commnde sont du type tout ou rien (0 ou 1, vri ou fux). Il

Plus en détail

CAP PRO E SCHEMA : LE MOTEUR

CAP PRO E SCHEMA : LE MOTEUR CAP PRO E SCHEMA : E MOTEUR folio folio folio folio folio folio folio 7 folio 8 folio 9 plque signlétique d un moteur puissnce sorée pr un moteur plque à ornes d un moteur triphsé e couplge étoile e couplge

Plus en détail

2.1 Comment implanter en C un reconnaisseur de mots? Aut2 q 0 q 1

2.1 Comment implanter en C un reconnaisseur de mots? Aut2 q 0 q 1 Lngges Automtes Non-déterminisme Grmmires Attiuées et Génértives Expressions régulières Correction Prtielle de Progrmmes Ceci n'est ps un cours de Lngge C++ 2.1 Comment implnter en C un reconnisseur de

Plus en détail

Cours de mathématiques. Chapitre 12 : Calcul Intégral

Cours de mathématiques. Chapitre 12 : Calcul Intégral Cours de mthémtiques Terminle S1 Chpitre 12 : Clcul Intégrl Année scolire 2008-2009 mise à jour 5 mi 2009 Fig. 1 Henri-Léon Leesgue et Bernhrd Riemnn n les confond prfois 1 Tle des mtières I Chpitre 12

Plus en détail

2008 2010 MODULE M4 MATHEMATIQUES TERMINALE STAV

2008 2010 MODULE M4 MATHEMATIQUES TERMINALE STAV LEGTHP Sint Nicols STAV Promotion 8 MODULE M4 MATHEMATIQUES TERMINALE STAV Fiches de cours S. FLOQUET Septemre 9 Lycée Sint Nicols Igny Promotion 8 SOMMAIRE STAV PARTIE : RESUMES DE COURS Équtions de droites

Plus en détail

Cours 1 - La numération

Cours 1 - La numération Cours - L numértion I - éfinitions I-) Expression générle L se d'un système de numértion représente le nomre d'unités d'un certin rng, nécessires pour former une unité de rng imméditement supérieur. L'ensemle

Plus en détail

Lycée Hoche Versailles. Automatique Systèmes combinatoires

Lycée Hoche Versailles. Automatique Systèmes combinatoires Lycée Hoche Versilles Automtique ystèmes comintoires Philippe Bourzc 2000 Automtique ystèmes comintoires AUTOMATIQUE YTEME COMBINATOIRE. Modèle de fonctionnement logique d un système comintoire. Définition

Plus en détail

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique.

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique. C39211 Ecole Normle Supérieure de Cchn 61 venue du président Wilson 94230 CACHAN Concours d dmission en 3 ème nnée Informtique Session 2009 INFORMATIQUE 1 Durée : 5 heures «Aucun document n est utorisé»

Plus en détail

Marc Chemillier Master M2 Atiam (Ircam), 2011-2012

Marc Chemillier Master M2 Atiam (Ircam), 2011-2012 MMIM Modèles mthémtiques en informtique musicle Mrc Chemillier Mster M2 Atim (Ircm), 2011-2012 Notions théoriques sur les lngges formels - Définitions générles o Mots, lngges o Monoïdes - Notion d utomte

Plus en détail

Chapitre I - Algèbre de Boole

Chapitre I - Algèbre de Boole Chpitre I - Algèbre de Boole I.1. Introduction : Un circuit électrique, pneumtique, hydrulique peut voir 2 étts logiques. Ces étts peuvent prendre les vleurs 1 ou 0. C'est ce que l'on ppelle l vrible logique.

Plus en détail

1 Langages reconnaissables

1 Langages reconnaissables 8INF713 Informtique théorique Automne 2014 Exercices 1 Lngges reconnissles 1.1 Considérez les deux utomtes suivnts et répondez ux questions suivntes : q 3, q 3 q 4 () A 1 () A 2 Figure 1 () Quel est l

Plus en détail

Chapitre 2 Les automates finis

Chapitre 2 Les automates finis Chpitre 2 Les utomtes finis 28 2.1 Introduction Automtes finis : première modélistion de l notion de procédure effective.(ont ussi d utres pplictions). Dérivtion de l notion d utomte fini de celle de progrmme

Plus en détail

CHAPITRE 7 ELEMENTS DE LOGIQUE COMBINATOIRE CODAGE

CHAPITRE 7 ELEMENTS DE LOGIQUE COMBINATOIRE CODAGE Université de Svoie CHAPITRE 7 DEUG Sciences et Technologie er semestre Electronique et Instrumenttion ELEMENTS DE LOGIQUE COMBINATOIRE CODAGE. FONCTIONS/OPÉRATEURS LOGIQUES ALGÈBRE DE BOOLE...56. DÉFINITIONS...56..

Plus en détail

Théorie des Langages Formels Chapitre 5 : Automates minimaux

Théorie des Langages Formels Chapitre 5 : Automates minimaux 1/29 Théorie des Lngges Formels Chpitre 5 : Automtes minimux Florence Levé Florence.Leve@u-picrdie.fr Année 2014-2015 2/29 Introduction Les lgorithmes vus précédemment peuvent mener à des utomtes reltivement

Plus en détail

Chapitre 3 Dérivées et Primitives

Chapitre 3 Dérivées et Primitives Cours de Mthémtiques Clsse de Terminle STI - Chpitre : Dérivées et Primitives Chpitre Dérivées et Primitives A) Rppels de première et compléments ) Dérivées usuelles Fonction définie sur Fonction f() =

Plus en détail

Savoir-faire expérimentaux.

Savoir-faire expérimentaux. LYCEE LOUIS DE CORMONTAIGNE. 12 Plce Cormontigne BP 70624. 57010 METZ Cedex 1 Tél.: 03 87 31 85 31 Fx : 03 87 31 85 36 Sciences Appliquées. Svoir-fire expérimentux.. Référentiel.. :. S5 Sciences. Appliquées......

Plus en détail

Dynamique des systèmes et automates à états

Dynamique des systèmes et automates à états Chpitre 8 Dynmique des systèmes et utomtes à étts L modélistion sttique s intéresse à ce qu il y dns le système, à s structure, etc. L modélistion de l dynmique trite de l évolution du système dns le temps.

Plus en détail

Chapitre 9: Primitives et intégrales

Chapitre 9: Primitives et intégrales PRIMITIVES ET INTEGRALES 7 Chpitre 9: Primitives et intégrles Prérequis: Limites, dérivées Requis pour: Emen de mturité 9. «À quoi ç sert?» Un peu d histoire Isc Newton (64-77) Les clculs d ire de figures

Plus en détail

CHAPITRE 9 : PRIMITIVES - INTEGRALES

CHAPITRE 9 : PRIMITIVES - INTEGRALES Primitives et intégrles Cours CHAPITRE 9 : PRIMITIVES - INTEGRALES. Primitives d une fonction Définition Soit f une fonction définie sur un intervlle I. Une fonction F est une primitive de f sur I, si

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

c.jossin J:\TRAVAIL\AUTOM\Algèbre_de_Boole\_Algèbre_de_Boole.doc Algèbre de BOOLE

c.jossin J:\TRAVAIL\AUTOM\Algèbre_de_Boole\_Algèbre_de_Boole.doc Algèbre de BOOLE cjossin J:\TRAVAIL\AUTOM\Algère_de_Boole\_Algère_de_Booledoc Algère de BOOLE SOMMAIRE : 1 Présenion, hisorique 2 Propriéés; 21 Ideniés remrqules; 22 Théorèmes de DE MORGAN 3 Représenions grphiques : 31

Plus en détail

2. Formules d addition.

2. Formules d addition. IX. Trigonométrie 1. Rppels 1.1 Définitions : Dns le cercle trigonométrique C ( O, 1 ), si nous fixons un point P correspondnt à un ngle d mplitude nous vons défini : = bscisse du point P sin = ordonnée

Plus en détail

LOIS A DENSITE (Partie 1)

LOIS A DENSITE (Partie 1) LOIS A DENSITE (Prtie ) I. Loi de probbilité à densité ) Rppel Eemple : Soit l'epérience létoire : "On lnce un dé à si fces et on regrde le résultt." L'ensemble de toutes les issues possibles Ω = {; ;

Plus en détail

L'algèbre de Boole (1)

L'algèbre de Boole (1) L'algèbre de Boole (1) (1) Georges BOOLE Né le 2 novembre 1815 à Lincoln, dans le Lincolnshire (Angletere), décédé le 8 décembre 1864 à Ballintemple (Ireland). Mathématicien et logicien qui créa une algèbre

Plus en détail

/HVV\VWqPHVFRPELQDWRLUHV

/HVV\VWqPHVFRPELQDWRLUHV /HVV\VWqPHVFRPELQDWRLUHV I. Définition On ppelle système combintoire tout système numérique dont les sorties sont exclusivement définies à prtir des vribles d entrée (Figure ). = f(x, x 2,,, x n ) x x

Plus en détail

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a Intégrtion Les fonctions considérées ci-dessous sont des fonctions définies sur un intervlle réel I, à vleurs réelles ou complees ou, plus générlement, à vleurs dns un espce vectoriel normé de dimension

Plus en détail

Fonctions de référence

Fonctions de référence Chpitre 7 Clsse de Seconde Fonctions de référence Ce que dit le progrmme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Fonctions de référence Fonctions linéires et fonctions ffines Vritions de l fonction

Plus en détail

Kit de survie - Bac ES

Kit de survie - Bac ES Kit de survie - Bc ES. Étude du signe d une expression ) Signe de x + Ü Ü ½ Ò µ¼ Ò ½ 0) On détermine l vleur de x qui nnule x +, puis on pplique l règle : «signe de près le 0». ) Signe de x + x + c ܾ

Plus en détail

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville Théorème de Lx Milgrm Appliction u problème de Dirichlet pour l éqution de Sturm Liouville Résumé du cours de MEDP Mîtrise de mthémtiques 2000 2001 2001nov18 (medp-lx-milgrm.tex) Dns ce chpitre, on se

Plus en détail

gfaubert septembre 2010 1

gfaubert septembre 2010 1 Notes de cours Pour l e secondire Compiltion et/ou crétion Guyline Fuert Septemre 00 gfuert septemre 00 Géométrie------------------------------------------------------------------------------------------------------------------------

Plus en détail

TP matériel 1: Logique câblée et Algèbre de Boole

TP matériel 1: Logique câblée et Algèbre de Boole TP_mteriel_logique âlée et lgère de BOOLE TP mtériel : Logique âlée et Algère de Boole Ojetifs : - Anlyser l onstitution de se d une UAL. - initier à l oneption en logique lée Compétenes visées : C : Dérire

Plus en détail

Théorie des langages Automates finis

Théorie des langages Automates finis Théorie des lngges Automtes finis Elise Bonzon http://we.mi.prisdescrtes.fr/ onzon/ elise.onzon@prisdescrtes.fr 1 / 51 Automtes finis Introduction Formlistion Représenttion et exemples Automtes complets

Plus en détail

Strasbourg, 12 novembre 2013 (projet) T-CY (2013) 26. Comité de la Convention Cybercriminalité (T-CY)

Strasbourg, 12 novembre 2013 (projet) T-CY (2013) 26. Comité de la Convention Cybercriminalité (T-CY) www.coe.int/tcy Strsourg, 12 novemre 2013 (projet) T-CY (2013) 26 Comité de l Convention Cyercriminlité (T-CY) Note d orienttion n 8 du T-CY Otention, dns le cdre d une enquête pénle, de données reltives

Plus en détail

Automates à états fnis Damien Nouvel

Automates à états fnis Damien Nouvel Automtes Automtes à étts fnis Automtes à étts fnis Pln Représenttion des utomtes (FSA) Défnition formelle (DFA) Équivlence DFA / NFA / ε-nfa Licence Informtique L1 Automtes 2 / 30 Automtes à étts fnis

Plus en détail

Automates temporisés. Amal El Fallah Seghrouchni Amal.Elfallah@lip6.fr

Automates temporisés. Amal El Fallah Seghrouchni Amal.Elfallah@lip6.fr Automtes temporisés Aml El Fllh Seghrouchni Aml.Elfllh@lip6.fr Pln Introduction Définition d un utomte temporisé Composition d utomtes temporisés Automtes hybrides Conclusion Le problème à résoudre monde

Plus en détail

Les équations dans l ensemble des nombres complexes Le degré 1 et le degré 2

Les équations dans l ensemble des nombres complexes Le degré 1 et le degré 2 Les équtions dns l ensemle des nomres complexes Le degré et le degré Eqution du premier degré 3 Eqution du second degré : Résolution de l éqution A 4 Exemples de résolutions d équtions simples (rédction

Plus en détail

Décrire et analyser le comportement d un système

Décrire et analyser le comportement d un système Décrire et nlyser le comportement d un système Cours. Mise en sitution : Prolémtique : Gérer l vnce et l inclinison du tpis en fonction de touches sur son pupitre de commnde. Comment trduire ce chier des

Plus en détail

Fonctions affines ; Equations et inéquations

Fonctions affines ; Equations et inéquations Fonctions ffines ; Equtions et inéqutions I. Fonctions ffines.. Définition Définition d une fonction ffine : on ppelle fonction ffine toute fonction définie sur pr f ( ) où et sont des réels tels que.

Plus en détail

Automates et langages: quelques algorithmes

Automates et langages: quelques algorithmes Automtes et lngges: quelques lgorithmes Eugene Asrin Sddek Benslem Avertissement Dns l étt ctuel ce document est rchi-sec et peut servir seulement d un ide-mémoire. Pour comprendre les lgorithmes ci-dessous

Plus en détail

LOGIQUE COMBINATOIRE

LOGIQUE COMBINATOIRE MPI/PCI LOGIQUE COMBINATOIRE I. VARIABLE LOGIQUE. Rappel : structure d une chaine fonctionnelle d un système automatisé. Les ordres et les informations peuvent être : Analogique (par exemple une tension

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

Automates et langages

Automates et langages Automtes et lngges L exmen corrigé RICM 9 jnvier 22 Grmmire Automte Expression On considère l grmmire régulière G =(Γ,Σ,S,Π) vec Γ = {S,P,R}, Σ={,} et Π={S P,P R,P S,R,R P }.. Construire un utomte A cceptnt

Plus en détail

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON Durée : 4 heures Les clcultrices sont utorisées. Le sujet comprend qutre exercices indépendnts qui peuvent être trités dns l'ordre que

Plus en détail

Des extraits de cette norme seront présentés pour la compréhension de la démarche.

Des extraits de cette norme seront présentés pour la compréhension de la démarche. Estimtion de l incertitude de l mesure : Appliction à l incertitude sur le clcul de l concentrtion d EDTA lors de l détermintion de l dureté d une eu nturelle Pour cette démrche, nous nous ppuierons sur

Plus en détail

Préparation à l'examen écrit de maturité Mathématiques 2013

Préparation à l'examen écrit de maturité Mathématiques 2013 Wechter Loïc Mturité 2013 Mthémtiques Cours de M. Flcoz 2013 Préprtion à l'exmen écrit de mturité Mthémtiques 2013 1.Primitives et intégrles 1.1Primitives (CRM pp.77-80) Une primitive pourrit se définir

Plus en détail

Lycée Faidherbe, Lille MP1 Cours d informatique 2013 2014. Automates

Lycée Faidherbe, Lille MP1 Cours d informatique 2013 2014. Automates Lycée Fidhere, Lille MP Cours d informtique 203 204 Automtes I Déterministes........................... 2 Définitions 2 Exemple 2 Action des mots 3 Lngge reconnu 3 II Incomplets.............................

Plus en détail

Cours de Mathématique - Statistique Calcul Matriciel

Cours de Mathématique - Statistique Calcul Matriciel L - Mth Stt Cours de Mthémtique - Sttistique Clcul Mtriciel F. SEYTE : Mître de conférences HDR en sciences économiques Université de Montpellier I M. TERRZ : Professeur de sciences économiques Université

Plus en détail

Théorie des Langages Épisode 2 Automates finis

Théorie des Langages Épisode 2 Automates finis AFD AFN Opértions Lemme de pompge 1/ 36 Théorie des Lngges Épisode 2 Automtes finis Thoms Pietrzk Université Pul Verline Metz AFD AFN Opértions Lemme de pompge Reconnisseur Définition Configurtion Accepttion

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

Techniques d analyse de circuits

Techniques d analyse de circuits Chpitre 3 Tehniques d nlyse de iruits Ce hpitre présente différentes méthodes d nlyse de iruits. Ces méthodes permettent de simplifier l nlyse de iruits ontennt plusieurs éléments. Bien qu on peut résoudre

Plus en détail

Logique séquentielle La méthode d'huffman

Logique séquentielle La méthode d'huffman A) Introduction. Logique séquentielle L méthode d'huffmn LogHuff L méthode d'huffmn est une méthode de synthèse des systèmes séquentiels qui olige à fire une étude complète du système à réliser et fournit

Plus en détail

Outils de calcul pour la 3 ème

Outils de calcul pour la 3 ème Chpitre I Outils de clcul pour l Ce que nous connissons déjà :! Opértions sur les décimux, les reltifs et les quotients. Puissnces de dix. Nottions scientifiques. Clcul littérl simple. Objectifs de ce

Plus en détail

Cours d informatique théorique de M. Arfi. FMdKdD fmdkdd [à] free.fr

Cours d informatique théorique de M. Arfi. FMdKdD fmdkdd [à] free.fr Cours d informtique théorique de M. Arfi FMdKdD fmdkdd [à] free.fr Université du Hvre Année 2009 2010 Tle des mtières 1 Reltions et lois de composition internes 2 1.1 Reltions.....................................

Plus en détail

Lois de probabilité à densité

Lois de probabilité à densité Lois de probbilité à densité Christophe ROSSIGNOL Année scolire 0/03 Tble des mtières Loi à densité sur un intervlle I. Deux exemples pour comprendre..................................... Densité de probbilité...........................................3

Plus en détail

Calcul intégral. II Intégrale d une fonction 4

Calcul intégral. II Intégrale d une fonction 4 BTS DOMOTIQUE Clcul intégrl 8- Clcul intégrl Tble des mtières I Primitives I. Définitions............................................... I. Clculs de primitives.........................................

Plus en détail

I. Que sont les partitions?

I. Que sont les partitions? Cours de mthémtiques frfelues LES FRACTIONS CASSÉES Prémule Voici un cours de mthémtiques qui n ur jmis s plce dns une slle de clsse un utre jour que le er vril. Son sujet : les frctions cssées, ou prtitions,

Plus en détail

Automates finis. porte

Automates finis. porte utomtes finis Il s git d un modèle très souple, qui s dpte à des domines très différents en informtique. D une fçon générle, il sert à représenter les divers étts d un système (mécnique, électronique ou

Plus en détail

Séquence 7. Intégration. Sommaire

Séquence 7. Intégration. Sommaire Séquence 7 Intégrtion Sommire. Prérequis. Aire et intégrle d une fonction continue et positive sur [ ; ]. Primitives 4. Primitives et intégrles d une fonction continue 5. Synthèse de l séquence Dns ce

Plus en détail

Utiliser l inverse d une matrice pour résoudre un système d équations & courbes polynomiales

Utiliser l inverse d une matrice pour résoudre un système d équations & courbes polynomiales Utiliser l inverse d une mtrice pour résoudre un système d équtions & coures polynomiles Exercice : Dns une ferme, il y des lpins et des poules. On dénomre 58 têtes et 60 pttes. Comien y -t-il de lpins

Plus en détail

LOGIQUE COMBINATOIRE. Sommaire : La logique combinatoire : définition

LOGIQUE COMBINATOIRE. Sommaire : La logique combinatoire : définition LOGIQUE COMBINATOIRE Sommaire : La logique combinatoire : définition Conventions Etats des contacts et des récepteurs Etat d un circuit électrique Définitions Contact NO Contact NC Fonctions logiques Oui

Plus en détail

3 Produit vectoriel. 3.1 Construction. Définition géométrique du produit vectoriel de deux vecteurs. Liens hypertextes

3 Produit vectoriel. 3.1 Construction. Définition géométrique du produit vectoriel de deux vecteurs. Liens hypertextes ProduitVectoriel-Determinnt.n 15 3-ème nnée, mthémtiques niveu vncé 3 Produit vectoriel Edition 2004-2005 Liens hypertextes Produit sclire 3D: http://www.deleze.nme/mrcel/sec2/cours/geom3d/produitsclire3d.pdf

Plus en détail

Algorithmique et Programmation. Automates finis. Chap. I/9

Algorithmique et Programmation. Automates finis. Chap. I/9 Algorithmique et Progrmmtion. Automtes finis. Chp. I/9 Jen-Eric Pin To cite this version: Jen-Eric Pin. Algorithmique et Progrmmtion. Automtes finis. Chp. I/9. J. Akok et I. Comyn-Wttiu. Encyclopédie de

Plus en détail

Transformations géodésiques en France Métropolitaine

Transformations géodésiques en France Métropolitaine Trnsformtions géodésiques en Frnce Métropolitine 1 Processus de chngement de système... 1.1 Définitions... 1. Similitude 3D à 7 prmètres... 1.3 Modèle «à 7 prmètres»... 3 1.4 Coordonnées géogrphiques (,,h)

Plus en détail

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie Exo7 Zéros des fonctions Vidéo prtie 1. L dichotomie Vidéo prtie. L méthode de l sécnte Vidéo prtie 3. L méthode de Newton Dns ce chpitre nous llons ppliquer toutes les notions précédentes sur les suites

Plus en détail

Lasers multicolores pour le diagnostic cellulaire

Lasers multicolores pour le diagnostic cellulaire Lsers multicolores pour le dignostic cellulire Nelly RONGEAT et Philippe NERIN Hori Medicl Vincent COUDERC et Philippe LEPROUX XLIM Guillume HUSS Leukos nelly.ronget@hori.com Le dignostic cellulire est

Plus en détail

Association d opérateurs logiques Date : (+ commentaires prof. à partir d une rédaction élève envoi n 2 ) BEP MEL 1 / 5

Association d opérateurs logiques Date : (+ commentaires prof. à partir d une rédaction élève envoi n 2 ) BEP MEL 1 / 5 Dt : (+ commntirs prof. à prtir d un rédction élèv nvoi n 2 ) BEP MEL / 5 I LOGIGRAMME : Assocition d'opérturs logiqus : L tritmnt logiqu ds informtions put nécssitr l mis n œuvr d'un nomr importnt d'opérturs

Plus en détail

ESTIMER LA PRÉCISION DES MESURES

ESTIMER LA PRÉCISION DES MESURES ESTIMER LA PRÉCISION DES MESURES I. Précision d'une mesure directe Une mesure directe est une mesure lue sur un ppreil de mesure. Le résultt d'une mesure directe n'est jmis connu de fçon prfitement excte.

Plus en détail

DCG session 2011 UE8 Systèmes d information et de gestion Corrigé indicatif. 1. Expliquer les cardinalités des associations NECESSITER, SE DEROULER

DCG session 2011 UE8 Systèmes d information et de gestion Corrigé indicatif. 1. Expliquer les cardinalités des associations NECESSITER, SE DEROULER DCG session 2011 UE8 Systèmes d informtion et de gestion Corrigé indictif DOSSIER 1 : PREPARER ET FORMER LES ENTRAINEURS 1. Expliquer les crdinlités des ssocitions NECESSITER, SE DEROULER Intitulé de l'ssocition

Plus en détail

devant l Université de Rennes 1

devant l Université de Rennes 1 N o d ordre: 3708 THÈSE Présentée devnt devnt l Université de Rennes 1 pour otenir le grde de : Docteur de l Université de Rennes 1 Mention Informtique pr Thoms Gzgnire Équipe d ccueil : DistriCom - IRISA

Plus en détail

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3 Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement

Plus en détail

Continuité - Limites Asymptotes à une courbe

Continuité - Limites Asymptotes à une courbe Continuité - Limites Asymptotes à une cre Continuité - Théorème des vleurs intermédiires Notion de continuité Grphiquement, on peut reconnître une fonction continue sur un intervlle I pr le fit que le

Plus en détail

Contrôle sur le Cours d'algorithme et de langage C

Contrôle sur le Cours d'algorithme et de langage C Déprtement Génie Electrique Automtique NOM: Prénom: Contrôle sur le Cours d'algorithme et de lngge C G.Gteu et J.Régnier Le 15 Jnvier 2008- Durée 2h Documents de cours utorisé. Le contrôle est constitué

Plus en détail

SPONSORING SUPPORTS DE COMMUNICATION LE MARQUE-PAGE GRANDEUR NATURE

SPONSORING SUPPORTS DE COMMUNICATION LE MARQUE-PAGE GRANDEUR NATURE SUPPORTS DE COMMUNICATION SPONSORING Dns s démrche de prtenrit, l ssocition Grndeur Nture dispose d offre de sponsoring. Au-delà de l intérêt personnel que vous pouvez voir pour l culture ou certines ctions

Plus en détail

Chapitre 11 : L inductance

Chapitre 11 : L inductance Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4

Plus en détail

Fractions. 1 Propriété des quotients égaux 1. 2 Addition, soustraction de deux fractions 3. 3 Produit de deux fractions 5

Fractions. 1 Propriété des quotients égaux 1. 2 Addition, soustraction de deux fractions 3. 3 Produit de deux fractions 5 Tle des mtières Frctions 1 Propriété des quotients égux 1 Addition, soustrction de deux frctions Produit de deux frctions Comprison de deux frctions Produit en croix 10 6 Quotient de deux frctions. Inverse

Plus en détail

Rattrapage. 4 ] Quelle est la complexité dans le pire cas de l algorithme de tri fusion (pour trier n éléments)?

Rattrapage. 4 ] Quelle est la complexité dans le pire cas de l algorithme de tri fusion (pour trier n éléments)? IN 02 6 mrs 2009 Rttrpge NOM : Prénom : ucun document n est utorisé. ce QCM outit à une note sur 42 points. L note finle sur 20 ser otenue simplement en divisnt l note sur 42 pr 2. Il suffit donc de donner

Plus en détail

P hotographies aériennes. Photographies aériennes actuelles. La BD ORTHO de l IGN. Les photographies «satellitales»

P hotographies aériennes. Photographies aériennes actuelles. La BD ORTHO de l IGN. Les photographies «satellitales» P hotogrphies ériennes Pr rpport ux crtes, les photogrphies ériennes pportent deux vntges mjeurs : leur mise à jour est eucoup plus fréquente ; leur possiilité d nlyse est ien supérieure : on distingue

Plus en détail

Equations d'état, travail et chaleur

Equations d'état, travail et chaleur Equtions d'étt, trvil et chleur Exercice On donne R 8, SI. ) Quelle est l'éqution d'étt de n moles d'un gz prfit dns l'étt,,? En déduire l'unité de R. ) Clculer numériquement l vleur du volume molire d'un

Plus en détail

Calculs de base (Rappels)

Calculs de base (Rappels) Chpitre I Clculs de bse (Rppels) I.1 Diviseurs et multiples I.1.1 Définitions On : 12=3 4. On dit que 3 et 4 sont des diviseurs de 12, ou que 12 est un multiple de 3 et de 4. DÉFINITION I.1.1 Soit et b

Plus en détail

Chapitre 1 Le Second Degré

Chapitre 1 Le Second Degré Cours de Mthémtiques Première STID Chpitre 1 : Le second degré Chpitre 1 Le Second Degré A) Résolution de l'éqution du second degré 1) Définitions On ppelle polynôme de second degré l expression x² x c

Plus en détail

Solution - TD Feuille 2 - Automates finis et expressions rationnelles

Solution - TD Feuille 2 - Automates finis et expressions rationnelles Solution - TD Feuille 2 - Automtes finis et expressions rtionnelles Informtique Théorique 2 - Unité JINPW Licence 3 - Université Bordeux Solution de l exercice : Pour tout l exercice, on note A = {, }.

Plus en détail

Devoir de physique-chimie n 4bis (2H)

Devoir de physique-chimie n 4bis (2H) TS jn 2014 Devoir de physique-chimie n 4bis (2H) Nom:...... LES EXERIES SNT INDEPENDANTS ALULATRIE AUTRISEE PHYSIQUE : ETILE BINAIRE /20 1. Le télescope 8 Les 3 prties sont indépendntes. Document 1 : L

Plus en détail

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b Les intégrles Introduction Etnt donnée une fonction positive f définie sur un intervlle borné [, b], on veut évluer l ire comprise entre l e des bscisses, l courbe représentnt f et les verticles = et =

Plus en détail

TP 10 : Lois de Kepler

TP 10 : Lois de Kepler TP 10 : Lois de Kepler Objectifs : - Estimer l msse de Jupiter à prtir de l troisième loi de Kepler. - Utiliser Stellrium, un simulteur de plnétrium «photo-réel». Compétences trvillées : - Démontrer que,

Plus en détail

LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL

LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL Préceptort de Mécnique Quntique 1 ère nnée Florent Krzkl, PCT, Bureu F.3-14 LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL I-1/ Soit une brrière de

Plus en détail

Table des matières Dénombrer et sommer Événements et Probabilités

Table des matières Dénombrer et sommer Événements et Probabilités Tble des mtières 1 Dénombrer et sommer 5 1.1 Rppels ensemblistes............................. 5 1.1.1 Opértions ensemblistes....................... 5 1.1.2 Bijections............................... 7 1.2

Plus en détail

Qu'est qu'un ordinateur? Une machine à faire des calculs

Qu'est qu'un ordinateur? Une machine à faire des calculs Qu'est qu'un ordinteur? Une mchine à fire des clculs Une mchine: un ensemle de mécnismes cominés pour recevoir une forme définie d'énergie, l trnsformer et l restituer sous une forme plus ppropriée, ou

Plus en détail

CHAPITRE 4 LA TRANSFORMÉE DE F OURIER

CHAPITRE 4 LA TRANSFORMÉE DE F OURIER CHAPITRE 4 LA TRANSFORMÉE DE F OURIER 4. Fonctions loclement intégrbles Soit I un intervlle de R et soit f : R R une ppliction. Définition 4.. On dit que f est loclement intégrble sur I si f est intégrble

Plus en détail

Option informatique :

Option informatique : Option formtique : l deuxième nnée Lurent Chéno été 1996 Lycée Louis-le-Grnd, Pris Tle des mtières I Arres 13 1 Arres ires 15 1.1 Défitions et nottions... 15 1.1.1 Défition formelle d un rre ire... 15

Plus en détail