STI2D Logique binaire SIN. L' Algèbre de BOOLE

Dimension: px
Commencer à balayer dès la page:

Download "STI2D Logique binaire SIN. L' Algèbre de BOOLE"

Transcription

1 L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole. George Boole est le fondteur de l logique moderne. L'lgère de Boole est une lgère permettnt de trduire des signux (tout ou rien) en expressions mthémtiques en remplçnt chque signl élémentire pr des vriles logiques et leur tritement pr des fonctions logiques. L'lgère de Boole permet de résoudre des équtions logiques fin de réliser des fonctions sur des signux numériques. Ces fonctions seront ppelées fonctions comintoires. L'lgère de Boole des fonctions logiques permet de modéliser des risonnements logiques, en exprimnt un «étt» en fonction de conditions. Un mthémticien ritnnique qui, durnt le milieu du XIXe siècle, restructur complètement l logique en un système formel. Plus spécifiquement, l'lgère ooléenne permet d'utiliser des techniques lgériques pour triter les expressions à deux vleurs. Aujourd'hui, l'lgère de Boole trouve de nomreuses pplictions en informtique et dns l conception des circuits électroniques. Étt des contcts et des récepteurs. Un circuit électrique, électronique ou pneumtique, peut voir étts logiques. Ces étts peuvent prendre les vleurs ou 0. Ces étts sont fonctions de l'étt des composnts en série dns le circuit. Étt 0 : Les ctionneurs tels que : moteurs, vérins sont à l'étt 0 (ou niveu s) lorsqu'ils ne sont ps limentés. Le circuit est lors ouvert. Pour un circuit pneumtique ceci correspond à une sence de pression. Pour un circuit électrique cel correspond à une sence de différence de potentiel entre les ornes du circuit. Pour un contct ou un distriuteur, c'est l sence d'ction physique intervennt sur un contct qui représente l'étt 0. GAMBETTA - CARNOT - ARRAS - pge / 5

2 Étt : Les ctionneurs sont à l'étt (niveu hut) lorsqu'ils sont limentés. Pour un circuit pneumtique ou hydrulique ceci correspond à une pression d ir ou d huile dns le circuit. Pour un circuit électrique cel correspond à une différence de potentiel entre les ornes du circuit. Pour un contct ou un distriuteur ils sont ctionnés, c est à dire qu'une ction physique est prise en compte. Définitions : Contct à fermeture : C'est un contct qui est normlement ouvert (Normlly Open) u repos. Il se ferme lorsqu'il est ctionné. On désigne ce type de contct pr des lettres minuscules,, c... Ses ornes sont repérées pr des chiffres. Symole électrique Contct ouvert u repos (NO) Contct à ouverture : C'est un contct qui est normlement fermé (Normlly Closed) u repos et qui s'ouvre lorsqu'il est ctionné. On désigne ce type de contct pr des lettres /, /, c/ ( / se lit " rre"). Ses ornes sont repérées pr des chiffres, et ici. Symole électrique Contct fermé u repos (NC) GAMBETTA - CARNOT - ARRAS - pge / 5

3 Étt d'un circuit électrique : Un circuit électrique est dit pssnt, ou fermé, lorsqu'un cournt électrique circule dns ce circuit. Cel implique qu'il y it continuité de ce circuit, c est à dire que le contct étlisse le circuit. Un circuit électrique est non pssnt, ou ouvert, si le cournt ne peut ps circuler dns ce circuit. Un circuit électrique comprend u minimum, une source d'énergie, un récepteur et un contct. BATTERIE V LAMPE V BATTERIE V LAMPE V Circuit ouvert, ps de cournt Circuit fermé, circultion d'un cournt Chronogrmme : Un chronogrmme est une représenttion schémtique temporelle de l évolution d un système utomtisé en fonction des vritions d étt d une ou plusieurs entrées. Cette évolution est représentée sous l forme suivnte : GAMBETTA - CARNOT - ARRAS - pge 3 / 5

4 Différents types de signux : Dns les systèmes trois types de signux sont utilisés principlement. Les signux nlogiques, numériques et tout ou rien. Un signl nlogique est un signl qui représente l vrition continue d une certine grndeur (ex : tempérture, vitesse...). Un signl logique (tout ou rien) est un signl qui représente l étt inire (vri, non vri) d une vrile d un système (ex : un contcteur d un circuit électrique est soit ctionné soit non ctionné). Un signl numérique est un signl qui représente l vrition d une grndeur pr succession de vleurs discrètes (ex : une montre à ffichge numérique). GAMBETTA - CARNOT - ARRAS - pge 4 / 5

5 Tle de vérité : Une tle de vérité est l représenttion de l évolution du comportement d un système utomtisé en fonction des vritions de ses entrées. Chcune des vriles est représentée sous une écriture inire. Une tle de vérité s'utilise principlement en logique comintoire. Elle est représentée sous l forme suivnte : Logigrmme : Un logigrmme est un schém représentnt une succession de symoles logiques permettnt d otenir pr cominison de vriles d entrées l sortie recherchée. Attention, les fonctions logiques sont des opérteurs logiques et non des opérteurs mthémtiques. Le résultt otenu ser un résultt logique et non un résultt mthémtique. 0 3 U:A 7400 U:A U3:A GAMBETTA - CARNOT - ARRAS - pge 5 / 5

6 Codes inires : Le code inire pur : Le code inire pur est une représenttion numérique en se deux. Cette représenttion permet de représenter des nomres sous forme de et de 0, ou de décrire l évolution des vriles vries ou non vries d un système utomtisé, c est cette possiilité que nous llons utiliser. Le nomre de cominisons possiles des vriles se clcule de l fçon suivnte : vrile d'entrée ==> = cominisons (0, ) vriles d'entrée ==> = 4 cominisons ( 00, 0, 0, ) 3 3 vriles d'entrée ==> = 8 cominisons (000, 00, ) 4 4 vriles d'entrée ==> = 6 cominisons (0000, ) n n vriles d'entrée ==> cominisons possiles Le code inire réfléchi : Lorsque l on regrde ligne pr ligne l évolution du code inire pur, on remrque que pour psser d une ligne à l utre, plusieurs vriles peuvent être menées à chnger de vleur simultnément. Ceci est très gênnt lorsque l on cherche à nlyser le comportement d un système en fonction de ses entrées. Un utre code inire été mis u point, c est le code inire réfléchi ou code GRAY du nom de son inventeur. Ce code permet de psser d une ligne à l utre de l description d un système vec l évolution d une seule vrile à l fois. Ce code permettr de définir l évolution d un système utomtisé. En ucun cs il ne pourr servir de se de comptge comme le inire pur. On utiliser ce codge ultérieurement dns le cours pour l définition des tleux de Krnugh. GAMBETTA - CARNOT - ARRAS - pge 6 / 5

7 Binire pur Binire réfléchi Le inire réfléchi est construit pr symétrie de lignes. Le groupement "" est reproduit en "" symétriquement pr rpport à l ligne. Les groupements "" et "" sont reproduits en "e" symétriquement pr rpport à l ligne. L même règle prévut pour les groupements "c" et "d". L suite se construit à l identique. On remrque lors qu une seule vrile, l vrile rouge, évolue d une ligne à l utre. Le complément d une vrile Nous vons vu précédemment qu une vrile "e" vit deux étts, l étt 0 et l étt. Si on dmet qu il peut exister une vrile "e/" qui l étt inverse de l vrile "e", lors on pourr dire que "e/" est le complément de "e". GAMBETTA - CARNOT - ARRAS - pge 7 / 5

8 Fonctions logiques Les fonctions logiques sont des opérteurs logiques. C est à dire qu en fonction d une ou plusieurs vriles données, ils vont répondre pr une sortie prticulière. Le symole " Ξ " se lit "équivlent" pour ien distinguer le résultt logique d un résultt mthémtique. Fonction OUI - Éqution : S = ; ==> S - S reproduit l vrile d entrée. Symole électrique 0 S 0 Tle de vérité Chronogrmme S U4:A GAMBETTA - CARNOT - ARRAS - pge 8 / 5

9 Fonction NON - Éqution : S = ( lire S égl rre ) - S reproduit l inverse de l vrile d entrée. Symole électrique Tle de vérité Chronogrmme S 0 0 U4:A GAMBETTA - CARNOT - ARRAS - pge 9 / 5

10 Fonction ET (AND) - Éqution : S =. ( lire S égl ET ) - S reproduit le produit des vriles d entrée et. L sortie S est u niveu hut, si = ET =, sinon S est u niveu s Symole électrique Porte ET à entrées S 0 Porte ET à 3 entrées c 3 74 S c S Tle de vérité S ET à entrées ET à 3 entrées GAMBETTA - CARNOT - ARRAS - pge 0 / 5

11 Chronogrmme remrque: l fonction ET est commuttive. =. l fonction ET est ssocitive (. ). c =. (. c ) =.. c Q: comment réliser une fonction ET à 3 vriles à l'ide de portes ET à entrées? S 7408 U4:A U4:B GAMBETTA - CARNOT - ARRAS - pge / 5

12 Solution c S 7408 S = (c. ). =.. c U4:A U4:B GAMBETTA - CARNOT - ARRAS - pge / 5

13 Fonction OU (OR) - Éqution : S = + ( lire S égl OU ) - S reproduit l somme des vriles d entrée et. L sortie S est u niveu hut, si = OU =, sinon S est u niveu s Symole électrique Porte OU à entrées 3 S 743 c U:A 8 9 S Porte OU à 3 entrées Tle de vérité S OU à entrées 4075 U:A c S OU à 3 entrées GAMBETTA - CARNOT - ARRAS - pge 3 / 5

14 Chronogrmme remrque: l fonction OU est commuttive + = + l fonction OU est ssocitive ( + ) + c = + ( + c ) = + + c Q: comment réliser une fonction OU 4 vriles à l'ide de portes OU à entrées? c d U:B 743 U:C U:D GAMBETTA - CARNOT - ARRAS - pge 4 / 5

15 Solution c d U:B 743 U:C U:D S = ( + ) + (c + d) = + + c + d GAMBETTA - CARNOT - ARRAS - pge 5 / 5

16 Fonction ET-NON (NAND ; No-AND) - Éqution : S =. ; S = (. )/ ( lire S égl ET le tout rre) - S reproduit l inverse du produit logique des vriles d entrée et. L sortie S est u niveu s, si = ET =, sinon S est u niveu hut Symole électrique Porte ET-NON à entrées U:A 3 S = Porte ET-NON à 3 entrées c 3 U:A 740 S =.. c GAMBETTA - CARNOT - ARRAS - pge 6 / 5

17 Tle de vérité S ET-NON à entrées c S ET-NON à 3 entrées Chronogrmme Remrque: L fonction ET-NON, est une fonction universelle, c est à dire que les fonctions OUI, NON, OU, ET peuvent être rélisées vec uniquement des opérteurs ET-NON. Ainsi toute fonction même complexe peut être rélisée vec uniquement des portes NAND. Exemples ) Réliser une porte NON à l'ide d'une porte ET-NON ) Réliser une porte Et à entrées à l'ide de portes ET-NON c) Réliser une porte OU à entrées à l'ide de portes ET-NON GAMBETTA - CARNOT - ARRAS - pge 7 / 5

18 Réliser une porte NON à l'ide de porte ET-NON 4 S = 6 5 U:B 7400 Réliser une porte ET à l'ide de porte ET-NON U:A U:B 6 S = Réliser une porte OU à entrées à l'ide de porte ET-NON 4 5 U3:A 7400 U3:B U3:C S = Remrque: (. ) = + (. )/ = + GAMBETTA - CARNOT - ARRAS - pge 8 / 5

19 Fonction OU-NON (NOR ; No-OR) - Éqution : S = + ; S = ( + )/ ( lire S égl OU le tout rre) - S reproduit l inverse de l somme logique des vriles d entrée et. L sortie S est u niveu s, si = OU =, sinon S est u niveu hut Symole électrique Porte OU-NON à entrées 3 U:A S = +? 740 Porte OU-NON à 3 entrées c 3 U:A 747 S = + + c GAMBETTA - CARNOT - ARRAS - pge 9 / 5

20 Tle de vérité S OU-NON à entrées c S OU-NON à 3 entrées Chronogrmme Remrque: L fonction OU-NON, est ussi une fonction universelle, c est à dire que les fonctions OUI, NON, OU, ET, ET-NON peuvent être rélisées vec uniquement des opérteurs OU-NON. Exemples ) Réliser une porte NON à l'ide d'une porte OU-NON à entrées ) Réliser une porte Et à entrées à l'ide de portes OU-NON c) Réliser une porte OU à entrées à l'ide de portes OU-NON d) Réliser une porte ET-NON à entrées à l'ide de portes OU-NON GAMBETTA - CARNOT - ARRAS - pge 0 / 5

21 Fonction OU-Exclusif (XOR, exclusive OR) - Éqution : S = ; S = + ( lire S égl OU exclusif ) - S reproduit l somme des vriles d entrée et. L sortie S est u niveu hut, si l'une des deux entrées est à, sinon S est u niveu s. Symole électrique Porte OU-Exclusif à entrées U:A = 3 S = 7436 Tle de vérité S OU-exclusif à entrées Remrque: S = S = (. ) + (. ) GAMBETTA - CARNOT - ARRAS - pge / 5

22 exercices montge ) Compléter les chronogrmmes suivnts 4 5 U:B = 6 S S 7436 montge ) 4 5 U:B = 6 S S montge c) 4 5 U:B = 6 S S 7436 GAMBETTA - CARNOT - ARRAS - pge / 5

23 réponses ) réponse ) S = en effet = (. 0) + (. ) = 0 + = réponse c) S = en effet 0 = (. ) + (. 0) = + 0 = S est toujours u niveu s (en théorie) en effet = (. ) + (. ) = = 0 GAMBETTA - CARNOT - ARRAS - pge 3 / 5

24 Reltions crctéristiques de l logique ooléenne : Sommes logiques Produits logiques + =. = + 0 =. 0 = 0 + =. = + =. = =.. = Théorèmes d Augustus De Morgn : Le complément d un produit logique de vriles est égl à l somme logique des compléments de vriles. (. ) = + Le complément d une somme logique de vriles est égl u produit logique des compléments de vriles. ( + ) =. GAMBETTA - CARNOT - ARRAS - pge 4 / 5

25 lien : Auguste De Morgn (7 juin 806 à Mduri (Tmil Ndu) - 8 mrs 87) est un mthémticien et logicien ritnnique, né en Inde. Il est le fondteur vec Boole de l logique moderne ; il notmment formulé les lois de De Morgn Auguste De Morgn lien: George Boole Lien: Bernrd LEWANDOWICZ 6/05/4 logique inire stid.odt GAMBETTA - CARNOT - ARRAS - pge 5 / 5

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états.

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états. ciences Industrielles ystèmes comintoires Ppnicol Roert Lycée Jcques Amyot I - YTEME COMBINATOIRE A. Algère de Boole. Vriles logiques: Un signl réel est une grndeur physique en générl continue, on ssocie

Plus en détail

3 LES OUTILS DE DESCRIPTION D UNE FONCTION LOGIQUE

3 LES OUTILS DE DESCRIPTION D UNE FONCTION LOGIQUE 1GEN ciences et Techniques Industrielles Pge 1 sur 7 Automtique et Informtiques Appliquées Génie Énergétique Première 1 - LA VARIABLE BINAIRE L électrotechnique, l électronique et l mécnique étudient et

Plus en détail

Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.

Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques. Logique binaire I. L'algèbre de Boole L'algèbre de Boole est la partie des mathématiques, de la logique et de l'électronique qui s'intéresse aux opérations et aux fonctions sur les variables logiques.

Plus en détail

SYSTEMES LOGIQUES LOGIQUE COMBINATOIRE

SYSTEMES LOGIQUES LOGIQUE COMBINATOIRE Ch.I Commnde des systèmes logiques ogique comintoire - p1 SYSTEMES OGIQUES OGIQUE COMBINATOIRE I Commnde des systèmes logiques 1. Structure des systèmes utomtisés Reprenons l structure étlie dns le cours

Plus en détail

Systèmes logiques combinatoires

Systèmes logiques combinatoires «'enseignement devrit être insi : celui qui le reçoit le recueille comme un don inestimle mis jmis comme une contrinte pénile.» Alert Einstein Systèmes logiques comintoires Définitions. es vriles inires

Plus en détail

CAP PRO E SCHEMA : LE MOTEUR

CAP PRO E SCHEMA : LE MOTEUR CAP PRO E SCHEMA : E MOTEUR folio folio folio folio folio folio folio 7 folio 8 folio 9 plque signlétique d un moteur puissnce sorée pr un moteur plque à ornes d un moteur triphsé e couplge étoile e couplge

Plus en détail

2.1 Comment implanter en C un reconnaisseur de mots? Aut2 q 0 q 1

2.1 Comment implanter en C un reconnaisseur de mots? Aut2 q 0 q 1 Lngges Automtes Non-déterminisme Grmmires Attiuées et Génértives Expressions régulières Correction Prtielle de Progrmmes Ceci n'est ps un cours de Lngge C++ 2.1 Comment implnter en C un reconnisseur de

Plus en détail

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique.

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique. C39211 Ecole Normle Supérieure de Cchn 61 venue du président Wilson 94230 CACHAN Concours d dmission en 3 ème nnée Informtique Session 2009 INFORMATIQUE 1 Durée : 5 heures «Aucun document n est utorisé»

Plus en détail

gfaubert septembre 2010 1

gfaubert septembre 2010 1 Notes de cours Pour l e secondire Compiltion et/ou crétion Guyline Fuert Septemre 00 gfuert septemre 00 Géométrie------------------------------------------------------------------------------------------------------------------------

Plus en détail

/HVV\VWqPHVFRPELQDWRLUHV

/HVV\VWqPHVFRPELQDWRLUHV /HVV\VWqPHVFRPELQDWRLUHV I. Définition On ppelle système combintoire tout système numérique dont les sorties sont exclusivement définies à prtir des vribles d entrée (Figure ). = f(x, x 2,,, x n ) x x

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville Théorème de Lx Milgrm Appliction u problème de Dirichlet pour l éqution de Sturm Liouville Résumé du cours de MEDP Mîtrise de mthémtiques 2000 2001 2001nov18 (medp-lx-milgrm.tex) Dns ce chpitre, on se

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

Préparation à l'examen écrit de maturité Mathématiques 2013

Préparation à l'examen écrit de maturité Mathématiques 2013 Wechter Loïc Mturité 2013 Mthémtiques Cours de M. Flcoz 2013 Préprtion à l'exmen écrit de mturité Mthémtiques 2013 1.Primitives et intégrles 1.1Primitives (CRM pp.77-80) Une primitive pourrit se définir

Plus en détail

Techniques d analyse de circuits

Techniques d analyse de circuits Chpitre 3 Tehniques d nlyse de iruits Ce hpitre présente différentes méthodes d nlyse de iruits. Ces méthodes permettent de simplifier l nlyse de iruits ontennt plusieurs éléments. Bien qu on peut résoudre

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

edatenq est une application qui permet aux entreprises de compléter et d'envoyer leurs déclarations statistiques par internet.

edatenq est une application qui permet aux entreprises de compléter et d'envoyer leurs déclarations statistiques par internet. Sttistique mensuelle tourisme et hôtellerie Introduction edatenq est une ppliction qui permet ux entreprises de compléter et d'envoyer leurs déclrtions sttistiques pr internet. Il s'git d'une ppliction

Plus en détail

Devoir de physique-chimie n 4bis (2H)

Devoir de physique-chimie n 4bis (2H) TS jn 2014 Devoir de physique-chimie n 4bis (2H) Nom:...... LES EXERIES SNT INDEPENDANTS ALULATRIE AUTRISEE PHYSIQUE : ETILE BINAIRE /20 1. Le télescope 8 Les 3 prties sont indépendntes. Document 1 : L

Plus en détail

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1 Grenoble INP Pgor 1ère nnée Exercices corrigés Anlyse numérique NB : Les exercices corrigés ici sont les exercices proposés durnt les sénces de cours. Les corrections données sont des corrections plus

Plus en détail

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3 Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement

Plus en détail

Notes de révision : Automates et langages

Notes de révision : Automates et langages Préprtion à l grégtion de mthémtiques 2011 2012 Notes de révision : Automtes et lngges Benjmin MONMEGE et Sylvin SCHMITZ LSV, ENS Cchn & CNRS Version du 24 octore 2011 (r66m) CC Cretive Commons y-nc-s

Plus en détail

SYSTEME DE TELEPHONIE

SYSTEME DE TELEPHONIE YTEME DE TELEPHOIE LE OUVEUTE PTIE MOITEU COULEU Le système de téléphonie comporte un moniteur vec un écrn couleurs de intégré u téléphone. Cette prtie est disponile en lnc, nthrcite et Tech. TLE DE MTIEE

Plus en détail

Chapitre 11 : L inductance

Chapitre 11 : L inductance Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4

Plus en détail

Les règles de Descartes et de Budan Fourier

Les règles de Descartes et de Budan Fourier Ojectifs de ce chpitre Mthémtiques ssistées pr ordinteur Chpitre 4 : Rcines des polynômes réels et complexes Michel Eisermnn Mt49, DLST LS4, Année 8-9 www-fourierujf-grenolefr/ eiserm/cours # mo Document

Plus en détail

Cours de «concepts avancés de compilation» Travaux pratiques. Auteur : F. Védrine

Cours de «concepts avancés de compilation» Travaux pratiques. Auteur : F. Védrine Cours de «onepts vnés de ompiltion» Trvux prtiques Auteur : F. Védrine Les utomtes et les expressions régulières Les utomtes sont onstitués d étts et de trnsitions. Un étt définit l vnée dns l reonnissne

Plus en détail

Module 2 : Déterminant d une matrice

Module 2 : Déterminant d une matrice L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté

Plus en détail

Séquence 8. Probabilité : lois à densité. Sommaire

Séquence 8. Probabilité : lois à densité. Sommaire Séquence 8 Proilité : lois à densité Sommire. Prérequis 2. Lois de proilité à densité sur un intervlle 3. Lois uniformes 4. Lois exponentielles 5. Synthèse de l séquence Dns cette séquence, on introduit

Plus en détail

Turbine hydraulique Girard simplifiée pour faibles et très faibles puissances

Turbine hydraulique Girard simplifiée pour faibles et très faibles puissances Turbine hydrulique Girrd simplifiée pour fibles et très fibles puissnces Prof. Ing. Zoltàn Hosszuréty, DrSc. Professeur à l'université technique de Kosice Les sites hydruliques disposnt de fibles débits

Plus en détail

semestre 3 des Licences MISM annnée universitaire 2004-2005

semestre 3 des Licences MISM annnée universitaire 2004-2005 MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................

Plus en détail

Algorithmes sur les mots (séquences)

Algorithmes sur les mots (séquences) Introduction Algorithmes sur les mots (séquences) Algorithmes sur les mots (textes, séquences, chines de crctères) Nomreuses pplictions : ses de données iliogrphiques ioinformtique (séquences de iomolécules)

Plus en détail

Caisse enregistreuse électronique CE-T300 GROCERY DAIRY H.B.A. FROZEN FOOD DELICATESSEN. Mode d emploi. Eu Di U.K.

Caisse enregistreuse électronique CE-T300 GROCERY DAIRY H.B.A. FROZEN FOOD DELICATESSEN. Mode d emploi. Eu Di U.K. Cisse enregistreuse électronique CE-T300 GROCERY DAIRY H.B.A. FROZEN FOOD DELICATESSEN Eu Di U.K. Mode d emploi Introduction et tle des mtières Introduction Toutes nos félicittions pour l cht de cette

Plus en détail

LANGAGES - GRAMMAIRES - AUTOMATES

LANGAGES - GRAMMAIRES - AUTOMATES LANGAGES - GRAMMAIRES - AUTOMATES Mrie-Pule Muller Version du 14 juillet 2005 Ce cours présente et met en oeuvre quelques méthodes mthémtiques pour l informtique théorique. Ces notions de bse pourront

Plus en détail

MATHEMATIQUES GENERALES partim A

MATHEMATIQUES GENERALES partim A Fculté des Sciences MATHEMATIQUES GENERALES prtim A Première nnée de bchelier en Biologie, Chimie, Géogrphie, Géologie, Physique et Informtique, Philosophie Année cdémique 04-05 Frnçoise BASTIN Introduction

Plus en détail

ESTIMER LA PRÉCISION DES MESURES

ESTIMER LA PRÉCISION DES MESURES ESTIMER LA PRÉCISION DES MESURES I. Précision d'une mesure directe Une mesure directe est une mesure lue sur un ppreil de mesure. Le résultt d'une mesure directe n'est jmis connu de fçon prfitement excte.

Plus en détail

Tout ce qu il faut savoir en math

Tout ce qu il faut savoir en math Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion

Plus en détail

1. 1.1. 1.2. 1.3. 1.4. 1.5. 1.6. 2. 2.1.

1. 1.1. 1.2. 1.3. 1.4. 1.5. 1.6. 2. 2.1. T/TR 01-01 Pge 3 r+ 1. EQUIPMENT CONCERNE L interconnexion numerique interntionl pour le service visiophonique et de visioconf&ence necessite l stndrdistion des principux prmttres num&iques tels que d~it,

Plus en détail

Influence du milieu d étude sur l activité (suite) Inhibition et activation

Influence du milieu d étude sur l activité (suite) Inhibition et activation Influence du milieu d étude sur l ctivité (suite) Inhibition et ctivtion Influence de l tempérture Influence du ph 1 Influence de l tempérture Si on chuffe une préprtion enzymtique, l ctivité ugmente jusqu

Plus en détail

Evaluation de la performance des barrages poids basée sur la formalisation et l agrégation des connaissances

Evaluation de la performance des barrages poids basée sur la formalisation et l agrégation des connaissances Evlution de l performnce des brrges poids bsée sur l formlistion et l grégtion des connissnces Curt Corinne 1, Perldi Audrey 1, Félix Huguette 1 1 Irste, UR OHAX Ouvrges Hydruliques et Hydrologie, 375

Plus en détail

Tableau d extension de mise en sécurité pour CMSI type B modulable Réf. : 322 001 Module deux lignes de mise en sécurité Réf.

Tableau d extension de mise en sécurité pour CMSI type B modulable Réf. : 322 001 Module deux lignes de mise en sécurité Réf. Tleu d extension de mise en sécurité pour CMSI type B modulle Réf. : 00 Module deux lignes de mise en sécurité Réf. : 00 DE MISE EN MISE EN 5 7 8 8 PROGRAM. SYSTEME Fus. F, 5H50V MANUEL DE MISE EN ŒUVRE

Plus en détail

Statuts ASF Association Suisse Feldenkrais

Statuts ASF Association Suisse Feldenkrais Sttuts ASF Assocition Suisse Feldenkris Contenu Pge I. Nom, siège, ojectif et missions 1 Nom et siège 2 2 Ojectif 2 3 Missions 2 II. Memres 4 Modes d ffilition 3 5 Droits et oligtions des memres 3 6 Adhésion

Plus en détail

ANALYSE NUMERIQUE NON-LINEAIRE

ANALYSE NUMERIQUE NON-LINEAIRE Université de Metz Licence de Mthémtiques - 3ème nnée 1er semestre ANALYSE NUMERIQUE NON-LINEAIRE pr Rlph Chill Lbortoire de Mthémtiques et Applictions de Metz Année 010/11 1 Tble des mtières Chpitre

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

3- Les taux d'intérêt

3- Les taux d'intérêt 3- Les tux d'intérêt Mishkin (2007), Monnie, Bnque et mrchés finnciers, Person Eduction, ch. 4 et 6 Vernimmen (2005), Finnce d'entreprise, Dlloz, ch. 20 à 22 1- Mesurer les tux d'intérêt comprer les différents

Plus en détail

Paul Horowitz & Winfield HiIl

Paul Horowitz & Winfield HiIl m m Pul Horowitz & Winfield HiIl I l, m VOLUME 1 TECHNIQUES ANALOGIQUES m m m m m m / l E LE KTO R m m m m TABLE DES MATIÈREiS PRÉFACE XVII 1 LES BASES INTRODUCTION 1 TENSION. COURANT ET RÉSISTANCE 1.1

Plus en détail

Le Guide 2012. des logiciels et services EBP. Les 5 BONNES RAISONS DE VOUS ÉQUIPER

Le Guide 2012. des logiciels et services EBP. Les 5 BONNES RAISONS DE VOUS ÉQUIPER Les 5 BONNES RAISONS DE VOUS ÉQUIPER 1. Vous en êtes cpble. 2. C est efficce et vous llez ggner du temps chque jour. 3. Cel fit vendre : vlorisez votre entreprise pr vos documents. 4. C est profitble :

Plus en détail

Cours d Analyse IV Suites et Séries de fonctions

Cours d Analyse IV Suites et Séries de fonctions Université Clude Bernrd, Lyon I Licence Sciences, Technologies & Snté 43, boulevrd 11 novembre 1918 Spécilité Mthémtiques 69622 Villeurbnne cedex, Frnce L. Pujo-Menjouet pujo@mth.univ-lyon1.fr Cours d

Plus en détail

Partie 4 : La monnaie et l'inflation

Partie 4 : La monnaie et l'inflation Prtie 4 : L monnie et l'infltion Enseignnt A. Direr Licence 2, 1er semestre 2008-9 Université Pierre Mendès Frnce Cours de mcroéconomie suite 4.1 Introduction Nous vons vu dns l prtie introductive que

Plus en détail

Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels

Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels Etb=MK2, Timbre=G430, TimbreDnsAdresse=Vri, Version=W2000/Chrte7, VersionTrvil=W2000/Chrte7 Direction des Études et Synthèses Économiques Déprtement des Comptes Ntionux Division des Comptes Trimestriels

Plus en détail

Créer des jeux avec GLUP

Créer des jeux avec GLUP Créer des jeux vec GLUP GLUP (générteur ludopédgogique) est un service en ligne du CRDP de l cdémie de Versilles. Il permet de trnsformer des exercices à se de texte en mini-jeux téléchrgeles. Les jeux

Plus en détail

1ère partie «COMMISSARIAT A L'ENERGIE ATOMIQUE DEFINITIONS ET TRAITEMENTS DES FONCTIONS BINAIRES. René-Louis VALLEE

1ère partie «COMMISSARIAT A L'ENERGIE ATOMIQUE DEFINITIONS ET TRAITEMENTS DES FONCTIONS BINAIRES. René-Louis VALLEE O '.v.v.v.v..v.v.v.v. «' V.V.V.V _ _ - -' """ ^ " " REMIER MINISTRE «OMMISSRIT L'ENERGIE TOMIQUE IU (J E -R. 3534 (I) 9. NLYSE INIRE ère prtie EINITIONS ET TRITEMENTS ES ONTIONS INIRES pr René-Louis VLLEE

Plus en détail

INFORMATIONS TECHNIQUES

INFORMATIONS TECHNIQUES 0 INFORMATIONS TECHNIQUES tle des mtieres 06 Alimenttions et ccessoires 08 Postes extérieurs Sfer Postes extérieurs minisfer 9 Postes internes Accessoires d instlltion Centrux téléphoniques PABX Cmérs

Plus en détail

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO Université Pris-Duphine DUMI2E UFR Mthémtiques de l décision Notes de cours Anlyse 2 Filippo SANTAMBROGIO Année 2008 2 Tble des mtières 1 Optimistion de fonctions continues et dérivbles 5 1.1 Continuité........................................

Plus en détail

L'algèbre de Boole (1)

L'algèbre de Boole (1) L'algèbre de Boole (1) (1) Georges BOOLE Né le 2 novembre 1815 à Lincoln, dans le Lincolnshire (Angletere), décédé le 8 décembre 1864 à Ballintemple (Ireland). Mathématicien et logicien qui créa une algèbre

Plus en détail

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Jen-Pierre Dedieu, Jen-Pierre Rymond ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Institut de Mthémtiques Université Pul Sbtier 31062 Toulouse cedex 09 jen-pierre.dedieu@mth.univ-toulouse.fr jen-pierre.rymond@mth.univ-toulouse.fr

Plus en détail

4. PROTECTION À L OUVERTURE

4. PROTECTION À L OUVERTURE 42 4. PROTECTION À L OUVERTURE 4.1. Générlités Afin de lever l miguïté de l norme NF EN 16005 sur l exigence des prgrphes 4.6.2.1 et 4.6.3.1 (4) qunt à l définition de «lrge proportion», suf nlyse de risque

Plus en détail

Menu outils de navigation mennavi.htm

Menu outils de navigation mennavi.htm Pge de lncement index.htm Voici l représenttion schémtique de l structure du site Wllonie, toutes les crtes en mins... Pge d ccueil win.htm nevs générl menwin.htm À propos de l structure des données :

Plus en détail

Guide de référence installateur

Guide de référence installateur Guide de référence instllteur Dikin Altherm sse tempérture iloc + ERLQ004 006 008CA EHVH04S18CA3VF EHVH08S18CA3VF Guide de référence instllteur Dikin Altherm sse tempérture iloc Frnçis Tle des Mtières

Plus en détail

United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency

United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency XA0101357 IC/IR/2001/8 INTERNAL REPORT (Limite Distriution) Unite Ntions Eutionl Sientifi n Culturl Orgniztion n Interntionl Atomi Energy Ageny THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

Plus en détail

REGLEMENT DU CLASSEMENT NATIONAL

REGLEMENT DU CLASSEMENT NATIONAL REGLEMET DU CLASSEMET ATIOAL / Les règles indiquées ici sont celles utilisées pour clculer les ttributions de points de l sison -. I. PRICIPES DE BASE Le clssement ntionl de l F.F.B. est le seul uquel

Plus en détail

Guide d'utilisation Easy Interactive Tools Ver. 2

Guide d'utilisation Easy Interactive Tools Ver. 2 Guide d'utilistion Esy Interctive Tools Ver. 2 Guide d'utilistion Esy Interctive Tools Ver.2 Présenttion de Esy Interctive Tools 3 Crctéristiques Fonction de dessin Vous pouvez utiliser Esy Interctive

Plus en détail

Introduction à la modélisation et à la vérication p. 1/8

Introduction à la modélisation et à la vérication p. 1/8 Introduction à l modélistion et à l vériction Appliction ux systèmes temporisés Ptrici Bouyer LSV CNRS & ENS de Cchn Introduction à l modélistion et à l vériction p. 1/8 Modélistion & Vériction Introduction

Plus en détail

Le Calcul Intégral. niveau maturité. Daniel Farquet

Le Calcul Intégral. niveau maturité. Daniel Farquet Le Clcul Intégrl niveu mturité Dniel Frquet Eté 8 Tble des mtières Introduction Intégrle indéfinie 3. Définitions et générlités................................ 3.. Déf. d une primitive..............................

Plus en détail

Adaptation spatio-temporelle et hypermédia de documents multimédia

Adaptation spatio-temporelle et hypermédia de documents multimédia Adpttion sptio-temporelle et hypermédi de documents multimédi Séstien Lorie Jérôme Euzent Nil Lyïd INRIA Rhône-Alpes - LIG 655 Avenue de l Europe Montonnot - Sint Mrtin 38334 Sint Ismier Cedex {Sestien.Lorie,Jerome.Euzent,Nil.Lyid}@inrilpes.fr

Plus en détail

- Phénoméne aérospatial non identifié ( 0.V.N.I )

- Phénoméne aérospatial non identifié ( 0.V.N.I ) ENQUETE PRELIMINAIRE ANALYSE ET REFEREWCES : Phénoméne érosptil non identifié ( 0VNI ) B8E 25400 DEF/GEND/OE/DOlRENS du 28/9/1992 Nous soussigné : M D L chef J S, OPJ djoint u commndnt de l brigde en résidence

Plus en détail

Chapitre VI Contraintes holonomiques

Chapitre VI Contraintes holonomiques 55 Chpitre VI Contrintes holonomiques Les contrintes isopérimétriques vues u chpitre précéent ne sont qu un eemple prticulier e contrintes sur les fonctions y e notre espce e fonctions missibles. Dns ce

Plus en détail

EY-BU 292 : interface Ethernet novanet, modunet292

EY-BU 292 : interface Ethernet novanet, modunet292 Fiche technique 96.015 EY-BU 292 : interfce, Votre tout en mtière d'efficcité énergétique SAUTER EY-modulo 2 intégré dns l technologie IP connue Crctéristiques Produit de l fmille de systèmes SAUTER EY-modulo

Plus en détail

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel COURS D ANALYSE Licence d Informtique, première nnée Lurent Michel Printemps 2010 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................

Plus en détail

Logiciel pour le poste de travail Agilent MassHunter

Logiciel pour le poste de travail Agilent MassHunter Logiciel pour le poste de trvil Agilent MssHunter Anlyse qulittive Guide de fmiliristion pour CPG/SM Notices Agilent Technologies, Inc. 2012 Conformément ux lois interntionles reltives à l propriété intellectuelle,

Plus en détail

Licence M.A.S.S. Cours d Analyse S4

Licence M.A.S.S. Cours d Analyse S4 Université Pris I, Pnthéon - Sorbonne Licence MASS Cours d Anlyse S4 Jen-Mrc Brdet (Université Pris 1, SAMM) UFR 27 et Equipe SAMM (Sttistique, Anlyse et Modélistion Multidisiplinire) Université Pnthéon-Sorbonne,

Plus en détail

Compte rendu de la validation d'un observateur cascade pour la MAS sans capteurs mécaniques sur la plate-forme d'essai de l'irccyn

Compte rendu de la validation d'un observateur cascade pour la MAS sans capteurs mécaniques sur la plate-forme d'essai de l'irccyn Compte rendu de l vlidtion d'un oservteur cscde pour l MAS sns cpteurs mécniques sur l plte-forme d'essi de l'irccyn Mlek GHANES, Alin GLUMINEAU et Roert BOISLIVEAU Le 1 vril IRCCyN: Institut de Recherche

Plus en détail

LITE-FLOOR. Dalles de sol et marches d escalier. Information technique

LITE-FLOOR. Dalles de sol et marches d escalier. Information technique LITE-FLOOR Dlles de sol et mrches d esclier Informtion technique Recommndtions pour le clcul et l pose de LITE-FLOOR Générlités Cette rochure reprend les règles de se à respecter pour grntir l rélistion

Plus en détail

Microéconomie de l Incertitude M1 Banque et Marchés Financiers

Microéconomie de l Incertitude M1 Banque et Marchés Financiers Microéconomie de l Incertitude M1 Bnque et Mrchés Finnciers Emmnuel DUGUET Notes de Cours, V1 2 1 Concepts de bse 5 1.1 Les loteries................................ 6 1.2 Le critère d espérnce mthémtique..................

Plus en détail

pouvant être utilisé pour représenter les nombres. Par convention, la base dans laquelle le nombre est exprimé se

pouvant être utilisé pour représenter les nombres. Par convention, la base dans laquelle le nombre est exprimé se psi--a-uomiquesysèmes ominoires- J.Kuhler V4.- CIENCE INDUTRIEE POUR INGÉNIEUR CI-8 pge /8. Auomique A. ysèmes ominoires PCII oopp ioonn II Codge de l informion. Opéreurs logiques fondmenux. Fonions logiques.

Plus en détail

Electrovanne double Dimension nominale Rp 3/8 - Rp 2 DMV-D/11 DMV-DLE/11

Electrovanne double Dimension nominale Rp 3/8 - Rp 2 DMV-D/11 DMV-DLE/11 Electrovnne double Dimension nominle 3/8 - DMV-D/11 DMV-DLE/11 7.30 M Edition 11.13 Nr. 223 926 1 6 Technique L électrovnne double DUNGS DMV intère deux électrovnnes dns un même bloc compct : - vnnes d

Plus en détail

MPI Activité.10 : Logique binaire Portes logiques

MPI Activité.10 : Logique binaire Portes logiques MPI Activité.10 : Logique binaire Portes logiques I. Introduction De nombreux domaines font appel aux circuits logiques de commutation : non seulement l'informatique, mais aussi les technologies de l'asservissement

Plus en détail

Classeur courtier d assurance. Comment organiser son activité et se préparer à un contrôle

Classeur courtier d assurance. Comment organiser son activité et se préparer à un contrôle Clsseur courtier d ssurnce Comment orgniser son ctivité et se préprer à un contrôle 67, venue Pierre Grenier 92517 BOULOGNE-BILLANCOURT CEDEX Tél : 01.46.10.43.80 Fx : 01.47.61.14.85 www.streevocts.com

Plus en détail

Sommaire. 6. Tableau récapitulatif... 10. Sophos NAC intégré Vs. NAC Advanced - 17 Février 2009 2

Sommaire. 6. Tableau récapitulatif... 10. Sophos NAC intégré Vs. NAC Advanced - 17 Février 2009 2 Sommire 1. A propos de Sophos... 3 2. Comprtif des solutions Sophos NAC... 4 3. Sophos NAC pour Endpoint Security nd Control 8.0... 4 3.1. Administrtion et déploiement... 4 3.2. Gestion des politiques

Plus en détail

INSTALLATION DE DETECTION INCENDIE

INSTALLATION DE DETECTION INCENDIE reglement > > instlltion E ETECTON NCENE NSTALLATON E ETECTON NCENE Une instlltion de détection incendie pour objectif de déceler et signler, le plus tôt possible, d une mnière fible, l nissnce d un incendie,

Plus en détail

Chapitre 1 : Fonctions analytiques - introduction

Chapitre 1 : Fonctions analytiques - introduction 2e semestre 2/ UE 4 U : Abrégé de cours Anlyse 3: fonctions nlytiques Les notes suivntes, disponibles à l dresse http://www.iecn.u-nncy.fr/ bertrm/, contiennent les définitions et les résultts principux

Plus en détail

VN-8700PC VN-8600PC VN-8500PC

VN-8700PC VN-8600PC VN-8500PC ENREGISTREUR VOCAL NUMÉRIQUE VN-8700PC VN-8600PC VN-8500PC FR MODE D EMPLOI Merci d voir porté votre choix sur cet enregistreur vocl numérique. Lisez ce mode d emploi pour les informtions concernnt l emploi

Plus en détail

AUTOUR D UN MÉMOIRE INÉDIT : LA CONTRIBUTION D HERMITE AU DÉVELOPPEMENT DE LA THÉORIE DES FONCTIONS ELLIPTIQUES. Bruno BELHOSTE (*)

AUTOUR D UN MÉMOIRE INÉDIT : LA CONTRIBUTION D HERMITE AU DÉVELOPPEMENT DE LA THÉORIE DES FONCTIONS ELLIPTIQUES. Bruno BELHOSTE (*) Revue d histoire des mthémtiques, 2 (1996), p. 1 66. AUTOUR D UN MÉMOIRE INÉDIT : LA CONTRIBUTION D HERMITE AU DÉVELOPPEMENT DE LA THÉORIE DES FONCTIONS ELLIPTIQUES Bruno BELHOSTE (*) RÉSUMÉ. Dns cet rticle,

Plus en détail

Système binaire. Algèbre booléenne

Système binaire. Algèbre booléenne Algèbre booléenne Système binaire Système digital qui emploie des signaux à deux valeurs uniques En général, les digits employés sont 0 et 1, qu'on appelle bits (binary digits) Avantages: on peut utiliser

Plus en détail

Les Dossiers Du Mois. 006 Janvier 2013

Les Dossiers Du Mois. 006 Janvier 2013 Les Dossiers Du Mois No. 006 Jnvier 2013 DÉVELOPPEMENT DE LA POLICE NATIONALE D'HAÏTI: cp sur 2016 Le Gouvernement hïtien doté s police ntionle d'un pln quinquennl de développement pour l période 2012-2016.

Plus en détail

Fiabilité, sécurité et enfichage intégral éprouvés. Tous les connecteurs sont équipés de dispositifs de verrouillage antiarrachement.

Fiabilité, sécurité et enfichage intégral éprouvés. Tous les connecteurs sont équipés de dispositifs de verrouillage antiarrachement. Fibilité, sécurité et enfichge intégrl éprouvés Tous les connecteurs sont équipés de dispositifs de verrouillge ntirrchement. 100% stekerbr Qu est-ce qu une instlltion 100 % enfichble? Mtériel fourni en

Plus en détail

GLMA201 - ALGÈBRE LINÉAIRE ET ANALYSE 2-2013-2014 CONTRÔLE CONTINU 2

GLMA201 - ALGÈBRE LINÉAIRE ET ANALYSE 2-2013-2014 CONTRÔLE CONTINU 2 GLMA -4 GLMA - ALGÈBRE LINÉAIRE ET ANALYSE - -4 CONTRÔLE CONTINU Durée : h Tout doument ou lultrie est interdit Il ser tenu ompte de l lrté et de l préision de l rédtion Il est importnt de justifier hune

Plus en détail

Toyota Assurances Toujours la meilleure solution

Toyota Assurances Toujours la meilleure solution Toyot Assurnces Toujours l meilleure solution De quelle ssurnce vez-vous besoin? Vous roulez déjà en Toyot ou vous ttendez s livrison. Votre voiture est neuve ou d occsion. Vous vlez les kilomètres ou

Plus en détail

Guide des bonnes pratiques

Guide des bonnes pratiques Livret 3 MINISTÈRE DE LA RÉFORME DE L'ÉTAT, DE LA DÉCENTRALISATION ET DE LA FONCTION PUBLIQUE 3 Guide des bonnes prtiques OUTILS DE LA GRH Guide des bonnes prtiques Tble des mtières 1. Introduction p.

Plus en détail

La plateforme Next Generation Mini guide

La plateforme Next Generation Mini guide L plteforme Next Genertion Mini guie Ce guie onis été réé pour vous permettre e vous fmiliriser rpiement ve les nomreuses fontionnlités et outils isponiles sur l plteforme Next Genertion. Apprenez où trouver

Plus en détail

LOGICIEL FONCTIONNEL EMC VNX

LOGICIEL FONCTIONNEL EMC VNX LOGICIEL FONCTIONNEL EMC VNX Améliortion des performnces des pplictions, protection des données critiques et réduction des coûts de stockge vec les logiciels complets d EMC POINTS FORTS VNX Softwre Essentils

Plus en détail

(Chapitre 4) 3 La bourse ou la vie ou Comment faire des ronds

(Chapitre 4) 3 La bourse ou la vie ou Comment faire des ronds Φ (Chpitre 4) 3 L bourse ou l vie ou Comment fire des ronds Imginez que vous possédez un portefeuille de vleurs boursières. Voici le grphe de ses fluctutions en fonction du temps (bscisse, x) et de l rgent

Plus en détail

Guide de l'utilisateur

Guide de l'utilisateur Guide de l'utilisteur Symboles Utilisés Dns ce Guide Indictions de sécurité L documenttion et le projecteur utilisent des symboles grphiques qui indiquent comment utiliser l ppreil en toute sécurité. Veillez

Plus en détail

Détermination des épaisseurs Formule générale

Détermination des épaisseurs Formule générale Formule générle Hors le cs des vitrges pour le bâtiment, trité pr l NF DTU 39 P4, on peut clculer à l ide des formules de Timoshenko : - l épisseur minimle à donner ux vitrges plns monolithiques soumis

Plus en détail

Commencer DCP-7055W / DCP-7057W /

Commencer DCP-7055W / DCP-7057W / Guide d instlltion rpide Commencer DCP-7055W / DCP-7057W / DCP-7070DW Veuillez lire ttentivement le livret Sécurité et réglementtion vnt d'effectuer les réglges de votre ppreil. Consultez ensuite le Guide

Plus en détail

Choix binaires avec influences sociales : mode d emploi et conséquences économiques

Choix binaires avec influences sociales : mode d emploi et conséquences économiques Choix binires vec influences sociles : mode d emploi et conséquences économiques Denis Phn * * CREM UMR CNRS 6, Université de Rennes /3/5 Résumé : Cette note propose une synthèse de quelques trvux conscrés

Plus en détail

Pour développer votre entreprise. Compta LES LOGICIELS EN LIGNE, VOUS ALLEZ DIRE OUI!

Pour développer votre entreprise. Compta LES LOGICIELS EN LIGNE, VOUS ALLEZ DIRE OUI! Pour développer votre entreprise Compt Avec EBP Compt, vous ssurez le suivi de l ensemble de vos opértions et exploitez les données les plus complexes en toute sécurité. Toutes les fonctionnlités essentielles

Plus en détail

Portiers audio et vidéo ABB-Welcome et ABB-Welcome M

Portiers audio et vidéo ABB-Welcome et ABB-Welcome M Portiers udio et vidéo ABB-Welcome et ABB-Welcome M Connectivité Votre regrd vers l'extérieur et ce, où que vous soyez Flexiilité Des esoins les plus simples ux instlltions les plus complexes Gmmes ABB-Welcome

Plus en détail

CHAPITRE 13 : CIRCUIT ELECTRIQUE & ALLUMAGE

CHAPITRE 13 : CIRCUIT ELECTRIQUE & ALLUMAGE CHAPITRE : CIRCUIT ELECTRIQUE CIRCUIT ELECTRIQUE LOCALISATIS DES PIECES ROADSTER CHAPITRE : CIRCUIT ELECTRIQUE 0. Boines et ougies. Démrreur. Alternteur. Relis, mxifusile 0 A. Contcteur point mort, mnocontct

Plus en détail

Clapets coupe-feu. The art of handling air. Type FKA-EU Testé conforme à la norme EN 1366-2. FKA-EU/DE/BE/fr

Clapets coupe-feu. The art of handling air. Type FKA-EU Testé conforme à la norme EN 1366-2. FKA-EU/DE/BE/fr FKA-EU/DE/BE/fr Clpets coupe-feu Type FKA-EU Testé conforme à l norme EN 1366-2 conformément à l Déclrtion de performnce DoP / FKA-EU / DE / 2013 / 001 The rt of hndling ir Contenu Description Description

Plus en détail

Avant d utiliser l appareil, lisez ce Guide de référence rapide pour connaître la procédure de configuration et d installation.

Avant d utiliser l appareil, lisez ce Guide de référence rapide pour connaître la procédure de configuration et d installation. Guide de référence rpide Commencer Avnt d utiliser l ppreil, lisez ce Guide de référence rpide pour connître l procédure de configurtion et d instlltion. NE rccordez PAS le câle d interfce mintennt. 1

Plus en détail

Portes coupe feu EI 2 30 pour tout type de construction

Portes coupe feu EI 2 30 pour tout type de construction L nouvelle génértion de portes coupe feu élégntes Portes coupe feu EI 30 pour tout type de construction L nouvelle génértion de portes métlliques NovoPort Premio devient l référence dns l protection incendie

Plus en détail