Introduction à la modélisation et à la vérication p. 1/8

Dimension: px
Commencer à balayer dès la page:

Download "Introduction à la modélisation et à la vérication p. 1/8"

Transcription

1 Introduction à l modélistion et à l vériction Appliction ux systèmes temporisés Ptrici Bouyer LSV CNRS & ENS de Cchn Introduction à l modélistion et à l vériction p. 1/8

2 Modélistion & Vériction Introduction Introduction à l modélistion et à l vériction p. 2/8

3 Systèmes informtiques ordinteurs personnels, serveurs systèmes embrqués téléphones mobiles vions fusées Lego Mindstorms utomobiles (X-by-wire)... Introduction à l modélistion et à l vériction p. 3/8

4 Systèmes informtiques ordinteurs personnels, serveurs systèmes embrqués téléphones mobiles vions fusées Lego Mindstorms utomobiles (X-by-wire)... Deux tendnces: de plus en plus performnts, de plus en plus miniturisés de plus en plus complexes Introduction à l modélistion et à l vériction p. 3/8

5 Systèmes informtiques ordinteurs personnels, serveurs systèmes embrqués téléphones mobiles vions fusées Lego Mindstorms utomobiles (X-by-wire)... Deux tendnces: de plus en plus performnts, de plus en plus miniturisés de plus en plus complexes Une crctéristique «nouvelle» : systèmes critiques bilité indispensble! Introduction à l modélistion et à l vériction p. 3/8

6 Quelques bogues célèbres Therc 25, tritement ux ryons X des tumeurs cncéreuses «x Up Edit e Enter» en moins de 8s rdition 125 x l dose normle 6 décès ux Étts-Unis en 1986 erreur logicielle! Introduction à l modélistion et à l vériction p. 4/8

7 Quelques bogues célèbres Therc 25, tritement ux ryons X des tumeurs cncéreuses «x Up Edit e Enter» en moins de 8s rdition 125 x l dose normle 6 décès ux Étts-Unis en 1986 erreur logicielle! AT&T un ptch non vérié dns le système d'exploittion une erreur dns un switch (en C) le réseu téléphonique de l côte est des Étts-Unis été bloqué pendnt 9h! Introduction à l modélistion et à l vériction p. 4/8

8 Quelques bogues célèbres Therc 25, tritement ux ryons X des tumeurs cncéreuses «x Up Edit e Enter» en moins de 8s rdition 125 x l dose normle 6 décès ux Étts-Unis en 1986 erreur logicielle! AT&T un ptch non vérié dns le système d'exploittion une erreur dns un switch (en C) le réseu téléphonique de l côte est des Étts-Unis été bloqué pendnt 9h! Le bogue pentium une erreur dns l division ottnte du processeur heureusement, un chercheur en théorie des nombres veillit millions de $ Introduction à l modélistion et à l vériction p. 4/8

9 Une solution prmi d'utres Le système vérie-t-il l propriété? Modélistion Introduction à l modélistion et à l vériction p. 5/8

10 Une solution prmi d'utres Le système vérie-t-il l propriété? Modélistion j= Algorithme de model-checking Introduction à l modélistion et à l vériction p. 5/8

11 Modélistion & Vériction Modèles Introduction à l modélistion et à l vériction p. 6/8

12 Que souhite-t-on modéliser? pour les systèmes à étudier des structures de données (les...) des types de données (entiers...) des cnux de communiction des chngements discrets d'étts des chngements continus d'étts pour les propriétés à exprimer des implictions, des connections logiques des successions temporelles(l'ction b lieu près l'ction ) des propriétés d'étts, de chemins des invrinces(l tempérture est toujours inférieure à 28 degrés) l présence d'un étt bloqunt Introduction à l modélistion et à l vériction p. 7/8

13 Quels modèles? (1) pour les systèmes à nlyser : des systèmes de trnsitions les utomtes nis les utomtes à pile les utomtes à compteur les utomtes temporisés les utomtes hybrides les réseux de Petri les messge sequence chrts les lgèbres de processus... Introduction à l modélistion et à l vériction p. 8/8

14 Quelques exemples Le digicode : * Porte ouverte * 5 * Introduction à l modélistion et à l vériction p. 9/8

15 Quelques exemples Le digicode : * Porte ouverte * 5 Un distributeur * nb_j=4 nb_j++ nb_b > 0, donner_boisson, nb_b-- nb_b = 0, nb_j:=0 rendre_monnie Introduction à l modélistion et à l vériction p. 9/8

16 Composition de systèmes Synchronistion binire signl! signl? Introduction à l modélistion et à l vériction p. 10/8

17 Composition de systèmes Synchronistion binire signl! signl? Introduction à l modélistion et à l vériction p. 10/8

18 Composition de systèmes Synchronistion binire signl! signl? Introduction à l modélistion et à l vériction p. 10/8

19 Composition de systèmes Synchronistion binire signl! signl? Introduction à l modélistion et à l vériction p. 10/8

20 Composition de systèmes Synchronistion binire signl! signl? Exemple : entrée dns un bâtiment de l'ens psser_crte! psser_crte? fermée ouverte referme Introduction à l modélistion et à l vériction p. 10/8

21 Quels modèles? (2) pour les spécictions : des lngges logiques (ex : logique temporelle) Formules de chemin : G «Toujours» F «Un jour» U «Jusqu'à» X «Dns l'étt d'près» Formules d'étts : A E [Pnueli 1977] Introduction à l modélistion et à l vériction p. 11/8

22 Quelques exemples Il est possible d'tteindre l'étt critique. Introduction à l modélistion et à l vériction p. 12/8

23 Quelques exemples Il est possible d'tteindre l'étt critique. EF(étt_critique) Introduction à l modélistion et à l vériction p. 12/8

24 Quelques exemples Il est possible d'tteindre l'étt critique. EF(étt_critique) Deux processus ne peuvent ps être simultnément en section critique. Introduction à l modélistion et à l vériction p. 12/8

25 Quelques exemples Il est possible d'tteindre l'étt critique. EF(étt_critique) Deux processus ne peuvent ps être simultnément en section critique. AG((:section_critique_1) (:section_critique_2)) Introduction à l modélistion et à l vériction p. 12/8

26 Quelques exemples Il est possible d'tteindre l'étt critique. EF(étt_critique) Deux processus ne peuvent ps être simultnément en section critique. AG((:section_critique_1) (:section_critique_2)) Le distributeur de billets ne donne ps d'rgent tnt que le code n'est ps correct. Introduction à l modélistion et à l vériction p. 12/8

27 Quelques exemples Il est possible d'tteindre l'étt critique. EF(étt_critique) Deux processus ne peuvent ps être simultnément en section critique. AG((:section_critique_1) (:section_critique_2)) Le distributeur de billets ne donne ps d'rgent tnt que le code n'est ps correct. A((:donne_rgent)U(code_correct)) Introduction à l modélistion et à l vériction p. 12/8

28 Quelques exemples Il est possible d'tteindre l'étt critique. EF(étt_critique) Deux processus ne peuvent ps être simultnément en section critique. AG((:section_critique_1) (:section_critique_2)) Le distributeur de billets ne donne ps d'rgent tnt que le code n'est ps correct. A((:donne_rgent)U(code_correct)) Si l'scenseur est ppelé u 6 ème étge, lors il s'y rrêter. Introduction à l modélistion et à l vériction p. 12/8

29 Quelques exemples Il est possible d'tteindre l'étt critique. EF(étt_critique) Deux processus ne peuvent ps être simultnément en section critique. AG((:section_critique_1) (:section_critique_2)) Le distributeur de billets ne donne ps d'rgent tnt que le code n'est ps correct. A((:donne_rgent)U(code_correct)) Si l'scenseur est ppelé u 6 ème étge, lors il s'y rrêter. AG(ppel_6 (AF rrêt_6)) Introduction à l modélistion et à l vériction p. 12/8

30 Quelques exemples Il est possible d'tteindre l'étt critique. EF(étt_critique) Deux processus ne peuvent ps être simultnément en section critique. AG((:section_critique_1) (:section_critique_2)) Le distributeur de billets ne donne ps d'rgent tnt que le code n'est ps correct. A((:donne_rgent)U(code_correct)) Si l'scenseur est ppelé u 6 ème étge, lors il s'y rrêter. AG(ppel_6 (AF rrêt_6)) L brrière du pssge à niveu est ouverte inniment souvent. Introduction à l modélistion et à l vériction p. 12/8

31 Quelques exemples Il est possible d'tteindre l'étt critique. EF(étt_critique) Deux processus ne peuvent ps être simultnément en section critique. AG((:section_critique_1) (:section_critique_2)) Le distributeur de billets ne donne ps d'rgent tnt que le code n'est ps correct. A((:donne_rgent)U(code_correct)) Si l'scenseur est ppelé u 6 ème étge, lors il s'y rrêter. AG(ppel_6 (AF rrêt_6)) L brrière du pssge à niveu est ouverte inniment souvent. AG AF(brrière_ouverte) Introduction à l modélistion et à l vériction p. 12/8

32 Quelques exemples (suite) Après l pluie, le beu temps. Introduction à l modélistion et à l vériction p. 13/8

33 Quelques exemples (suite) Après l pluie, le beu temps. G(pluie F beu_temps) Introduction à l modélistion et à l vériction p. 13/8

34 Quelques exemples (suite) Après l pluie, le beu temps. G(pluie F beu_temps) C'est en forgent qu'on devient forgeron. Introduction à l modélistion et à l vériction p. 13/8

35 Quelques exemples (suite) Après l pluie, le beu temps. G(pluie F beu_temps) C'est en forgent qu'on devient forgeron. (F forgeron) (forger U forgeron) Introduction à l modélistion et à l vériction p. 13/8

36 Quelques exemples (suite) Après l pluie, le beu temps. G(pluie F beu_temps) C'est en forgent qu'on devient forgeron. (F forgeron) (forger U forgeron) Qui veut ller loin ménge s monture. Introduction à l modélistion et à l vériction p. 13/8

37 Quelques exemples (suite) Après l pluie, le beu temps. G(pluie F beu_temps) C'est en forgent qu'on devient forgeron. (F forgeron) (forger U forgeron) Qui veut ller loin ménge s monture. G((F ller_loin) ménger_monture) Introduction à l modélistion et à l vériction p. 13/8

38 Quelques exemples (suite) Après l pluie, le beu temps. G(pluie F beu_temps) C'est en forgent qu'on devient forgeron. (F forgeron) (forger U forgeron) Qui veut ller loin ménge s monture. G((F ller_loin) ménger_monture) Tel qui rit vendredi, dimnche pleurer. Introduction à l modélistion et à l vériction p. 13/8

39 Quelques exemples (suite) Après l pluie, le beu temps. G(pluie F beu_temps) C'est en forgent qu'on devient forgeron. (F forgeron) (forger U forgeron) Qui veut ller loin ménge s monture. G((F ller_loin) ménger_monture) Tel qui rit vendredi, dimnche pleurer. G((rire vendredi) (:dimnche U (dimnche pleurer))) Introduction à l modélistion et à l vériction p. 13/8

40 Comment choisir les modèles? Compromis expressivité / fcilité d'nlyse Expressivité : représenter de nombreux systèmes les représenter succinctement Fcilité d'nlyse : méthodes efcces... Introduction à l modélistion et à l vériction p. 14/8

41 Comment choisir les modèles? Compromis expressivité / fcilité d'nlyse Expressivité : représenter de nombreux systèmes les représenter succinctement Fcilité d'nlyse : méthodes efcces si elles existent Introduction à l modélistion et à l vériction p. 14/8

42 ( Introduction à l modélistion et à l vériction p. 15/8

43 Décidbilité? «Dénition» : un problème est dit décidble s'il existe un lgorithme pour le résoudre. Propriété : il existe des problèmes non décidbles Exemple : un progrmme termine-t-il? [Arrêt_progrmme] première réponse : on le lnce et on regrde s'il s'rrête bof, ps très stisfisnt : on ttend combien de temps? considérons le progrmme suivnt : Progrm P { Si P s rrête, lors boucler sinon s rrêter } Introduction à l modélistion et à l vériction p. 16/8

44 Décidbilité? Progrm P { Si P s rrête, lors boucler sinon s rrêter } Si le problème «Arrêt_progrmme» est décidble, lors : si P s'rrête, lors P boucle si P boucle, lors P s'rrête Remrque : il y même «plus» de problèmes non décidbles que de problèmes décidbles. Introduction à l modélistion et à l vériction p. 17/8

45 Un problème indécidble utile L mchine à deux compteurs, ou mchine de Minsky. ensemble ni d'instructions sur deux compteurs, x et y, du type suivnt : Incrémenttion : (p): x := x+1; goto (q) Décrémenttion : (p): if x > 0 then x := x 1; goto (q) else goto (r) Instruction spécile «Arrêt» Théorème [Minsky 67]. L'rrêt d'une mchine à deux compteurs est indécidble. Introduction à l modélistion et à l vériction p. 18/8

46 Notion de réduction Soient P1 et P2 deux problèmes à résoudre. Supposons que l'on it : Algo(P1) { Quelques clculs; Algo(P2); Quelques clculs; } Si P1 est indécidble, lors P2 ussi est indécidble. P1 été réduit à P2 Introduction à l modélistion et à l vériction p. 19/8

47 ) Introduction à l modélistion et à l vériction p. 20/8

48 Modélistion & Vériction Anlyse des systèmes Introduction à l modélistion et à l vériction p. 21/8

49 Un exemple simple Considérons l formule = G( XF) «Toujours, si est vri, lors plus trd, il y ur un» Idée : exprimer : à l'ide d'un utomte, B : vri : Propriété : si A est un utomte ni, A vérie (équiv. tout chemin de A vérie ) ssi A B: n'ccepte ucun mot Introduction à l modélistion et à l vériction p. 22/8

50 Un exemple simple (suite) L'utomte suivnt vérie-t-il? :;: :;: ; :;: Introduction à l modélistion et à l vériction p. 23/8

51 Un exemple simple (suite) L'utomte suivnt vérie-t-il? :;: :;: ; :;: vri : Introduction à l modélistion et à l vériction p. 23/8

52 Un exemple simple (suite) L'utomte suivnt vérie-t-il? :;: :;: :;: ; :;: ; :;: :;: vri : Introduction à l modélistion et à l vériction p. 23/8

53 Ce n'est ps toujours si simple... Le problème élémentire est le clcul du Post*, i.e. tous les étts ccessibles à prtir de l'étt initil. On veut clculer tous les étts s n tels que s 0 s1 s2 sn (équivlent à s0 sn ) si s 0 est l'étt initil. Introduction à l modélistion et à l vériction p. 24/8

54 Ce n'est ps toujours si simple... Le problème élémentire est le clcul du Post*, i.e. tous les étts ccessibles à prtir de l'étt initil. On veut clculer tous les étts s n tels que s 0 s1 s2 sn (équivlent à s0 sn ) si s 0 est l'étt initil. Problèmes potentiels : les systèmes souffrent d'une explosion combintoire l'ensemble des étts ccessibles est (très souvent) inni Introduction à l modélistion et à l vériction p. 24/8

55 Ce n'est ps toujours si simple... Le problème élémentire est le clcul du Post*, i.e. tous les étts ccessibles à prtir de l'étt initil. On veut clculer tous les étts s n tels que s 0 s1 s2 sn (équivlent à s0 sn ) si s 0 est l'étt initil. Problèmes potentiels : les systèmes souffrent d'une explosion combintoire l'ensemble des étts ccessibles est (très souvent) inni Conséquences : sur l décidbilité sur l complexité Introduction à l modélistion et à l vériction p. 24/8

56 Problème de l'explosion combintoire c 4 3 b 1 2,4,3 b,4 b,3 c,4 c,3,1,2 b,1 b,2 c,1 c,2 tille du produit exponentielle en le nombre de composnts Introduction à l modélistion et à l vériction p. 25/8

57 Un simulteur de trin 1421 mchines trnsitions 3204 étts locux étts dns le produit synchronisé Introduction à l modélistion et à l vériction p. 26/8

58 Un simulteur de trin 1421 mchines trnsitions 3204 étts locux étts dns le produit synchronisé Y -t-il un bogue? Introduction à l modélistion et à l vériction p. 26/8

59 Solution : visulistion? Outil de visulistion de gros grphes, exemple de l norme IEEE1394 fvhm/fsm/ Introduction à l modélistion et à l vériction p. 27/8

60 Solution : visulistion? Outil de visulistion de gros grphes, exemple de l norme IEEE1394 fvhm/fsm/ intéressnt sns doute ps sufsnt Introduction à l modélistion et à l vériction p. 27/8

61 Solution : visulistion? Outil de visulistion de gros grphes, exemple de l norme IEEE1394 fvhm/fsm/ intéressnt sns doute ps sufsnt L'explosion combintoire est un spect qu'il ne fudr ps négliger. Introduction à l modélistion et à l vériction p. 27/8

62 L'inni... s 0 y := 0 x := x+1 x := x+1 y := y 2 s 2 s 1 x := 0 x := x 1 y := y+3 Introduction à l modélistion et à l vériction p. 28/8

63 L'inni... s 0 y := 0 x := x+1 x := x+1 y := y 2 s 2 s 1 x := 0 x := x 1 y := y+3 Une innité de congurtions est ccessible à prtir de s 0, pr exemple : (s 0 ;(0;0)) (s1 ;(1;0)) (s1 ;(0; 3)) (s1 ;( 1;6)) (s1 ;( 2;9))::: Introduction à l modélistion et à l vériction p. 28/8

64 L'inni... s 0 y := 0 x := x+1 x := x+1 y := y 2 s 2 s 1 x := 0 x := x 1 y := y+3 Une innité de congurtions est ccessible à prtir de s 0, pr exemple : (s 0 ;(0;0)) (s1 ;(1;0)) (s1 ;(0; 3)) (s1 ;( 1;6)) (s1 ;( 2;9))::: On peut cependnt se psser de l'inni : Post*(s 0 ;(0;0)) = s 0 ((0;0)+(1,0)*) s1 (f(1;0);(0;3)g+f(1;0);(0;3)g*) s2 (f(0;0);(1;1);(2;2)g+f(3;0);(0;3)g*) Introduction à l modélistion et à l vériction p. 28/8

65 représenté pr une expression rtionnelle () Représenttions symboliques Ensemble inni / Représenttion nie dns le pln, une droite représentée pr deux points ensemble de mots,,... ensemble d'entiers, représenttion pr semi-linéires cf exemple précédent ensemble de contrintes, polyèdres Introduction à l modélistion et à l vériction p. 29/8

66 Une technique : l'ccélértion Idée : clculer en une étpe plusieurs (voire une innité d')étpes élémentires de Post* Exemple simple : Au lieu de clculer x := x+1 x = 0 x:=x+1 x = 1 x:=x+1 x = 2 x:=x+1 x = 3 x := 0 on clcule en une seule étpe x = 0 x:=x+1 x Introduction à l modélistion et à l vériction p. 30/8

67 Une technique : l'ccélértion Système producteur/consommteur Vribles entières : i, b, o1, o2 Condition initile : i = 10, b=o1=o2=0 ew : si i>0 lors i:=i-1 et b:=b+1 er1 : si b>0 lors o1:=o1+1 et b:=b-1 er2 : si b>0 lors o2:=o2+1 et b:=b-1 S 0 ew * S 1 er1 ew * S 2 er2 ew * S 3 vec S 1 = f10 = i+b et o1 = o2 = 0g S 2 = f10 = i+b+o1 et o2 = 0g S 3 = f10 = i+b+o1+o2g Donc Post*(S 0 ) = S 3! [Finkel,Leroux 2002] Introduction à l modélistion et à l vériction p. 31/8

68 Une technique : l'bstrction Idée : «simplier» le modèle M en (M) [Cousot,Cousot 1977] Introduction à l modélistion et à l vériction p. 32/8

69 Une technique : l'bstrction Idée : «simplier» le modèle M en (M) [propriété de correction] si (M) vérie l propriété xée, lors M l vérie ussi [Cousot,Cousot 1977] Introduction à l modélistion et à l vériction p. 32/8

70 Une technique : l'bstrction Idée : «simplier» le modèle M en (M) [propriété de correction] si (M) vérie l propriété xée, lors M l vérie ussi [propriété de complétude] si (M) ne vérie ps l propriété xée, lors M ne l vérie ps [Cousot,Cousot 1977] Introduction à l modélistion et à l vériction p. 32/8

71 Une technique : l'bstrction Idée : «simplier» le modèle M en (M) [propriété de correction] si (M) vérie l propriété xée, lors M l vérie ussi [propriété de complétude] si (M) ne vérie ps l propriété xée, lors M ne l vérie ps bien choisir les prties du modèle que l'on bstrit [Cousot,Cousot 1977] Introduction à l modélistion et à l vériction p. 32/8

72 Un exemple d'bstrction correcte Introduction à l modélistion et à l vériction p. 33/8

73 Un exemple d'bstrction correcte Introduction à l modélistion et à l vériction p. 33/8

74 Un exemple d'bstrction correcte Introduction à l modélistion et à l vériction p. 33/8

75 Un exemple d'bstrction non correcte Introduction à l modélistion et à l vériction p. 34/8

76 Un exemple d'bstrction non correcte Introduction à l modélistion et à l vériction p. 34/8

77 Un exemple d'bstrction non correcte Problème! Introduction à l modélistion et à l vériction p. 34/8

78 Autres exemples en théorie des lngges Déterministion : Introduction à l modélistion et à l vériction p. 35/8

79 Autres exemples en théorie des lngges Déterministion : correcte pour des propriétés telles que l'ccessibilité, les lngges cceptés Introduction à l modélistion et à l vériction p. 35/8

80 Autres exemples en théorie des lngges Déterministion : correcte pour des propriétés telles que l'ccessibilité, les lngges cceptés non correcte pour des propriétés telles que l longueur du plus petit cycle, pour des propriétés de blocge... Introduction à l modélistion et à l vériction p. 35/8

81 Autres exemples en théorie des lngges Déterministion : correcte pour des propriétés telles que l'ccessibilité, les lngges cceptés non correcte pour des propriétés telles que l longueur du plus petit cycle, pour des propriétés de blocge... Minimistion : Introduction à l modélistion et à l vériction p. 35/8

82 Autres exemples en théorie des lngges Déterministion : correcte pour des propriétés telles que l'ccessibilité, les lngges cceptés non correcte pour des propriétés telles que l longueur du plus petit cycle, pour des propriétés de blocge... Minimistion : correcte pour des propriétés telles que l'ccessibilité, etc... Introduction à l modélistion et à l vériction p. 35/8

83 Autres exemples en théorie des lngges Déterministion : correcte pour des propriétés telles que l'ccessibilité, les lngges cceptés non correcte pour des propriétés telles que l longueur du plus petit cycle, pour des propriétés de blocge... Minimistion : correcte pour des propriétés telles que l'ccessibilité, etc... non correcte pour des propriétés de plus courts chemins, de blocge... Introduction à l modélistion et à l vériction p. 35/8

84 Exercice Exercice : Peut-on bstrire (de mnière effective) des utomtes communicnts en remplçnt les cnux de communiction pr des cnux bornés tout en restnt correct pour les propriétés d'ccessibilité? Introduction à l modélistion et à l vériction p. 36/8

85 Exercice Exercice : Peut-on bstrire (de mnière effective) des utomtes communicnts en remplçnt les cnux de communiction pr des cnux bornés tout en restnt correct pour les propriétés d'ccessibilité? 1. utomtes communicnts bstrction utomtes à compteurs écrire dns le cnl c c := c+1 lire dns le cnl c si c > 0 lors c := c 1 Introduction à l modélistion et à l vériction p. 36/8

86 Exercice Exercice : Peut-on bstrire (de mnière effective) des utomtes communicnts en remplçnt les cnux de communiction pr des cnux bornés tout en restnt correct pour les propriétés d'ccessibilité? 1. utomtes communicnts bstrction utomtes à compteurs écrire dns le cnl c c := c+1 lire dns le cnl c si c > 0 lors c := c 1 L'bstrction est complète pour les propriétés d'ccessibilité! Introduction à l modélistion et à l vériction p. 36/8

87 Exercice Exercice : Peut-on bstrire (de mnière effective) des utomtes communicnts en remplçnt les cnux de communiction pr des cnux bornés tout en restnt correct pour les propriétés d'ccessibilité? 1. utomtes communicnts bstrction utomtes à compteurs écrire dns le cnl c c := c+1 lire dns le cnl c si c > 0 lors c := c 1 L'bstrction est complète pour les propriétés d'ccessibilité! les utomtes communicnts sont indécidbles Introduction à l modélistion et à l vériction p. 36/8

88 Exercice Exercice : Peut-on bstrire (de mnière effective) des utomtes communicnts en remplçnt les cnux de communiction pr des cnux bornés tout en restnt correct pour les propriétés d'ccessibilité? 1. utomtes communicnts bstrction utomtes à compteurs écrire dns le cnl c c := c+1 lire dns le cnl c si c > 0 lors c := c 1 L'bstrction est complète pour les propriétés d'ccessibilité! les utomtes communicnts sont indécidbles 2. utomtes vec cnux bornés = utomtes nis Introduction à l modélistion et à l vériction p. 36/8

89 Exercice Exercice : Peut-on bstrire (de mnière effective) des utomtes communicnts en remplçnt les cnux de communiction pr des cnux bornés tout en restnt correct pour les propriétés d'ccessibilité? 1. utomtes communicnts bstrction utomtes à compteurs écrire dns le cnl c c := c+1 lire dns le cnl c si c > 0 lors c := c 1 L'bstrction est complète pour les propriétés d'ccessibilité! les utomtes communicnts sont indécidbles 2. utomtes vec cnux bornés = utomtes nis il ne peut ps y voir d'bstrction correcte (pour l'ccessibilité) bornnt l tille des cnux de communiction Introduction à l modélistion et à l vériction p. 36/8

90 Une technique : l'bstrction pr prédicts Introduction à l modélistion et à l vériction p. 37/8

91 Une technique : l'bstrction pr prédicts Introduction à l modélistion et à l vériction p. 37/8

92 Une technique : l'bstrction pr prédicts Introduction à l modélistion et à l vériction p. 37/8

93 Une technique : l'bstrction pr prédicts Introduction à l modélistion et à l vériction p. 37/8

94 Une technique : l'bstrction pr prédicts bstrction trop grossière Introduction à l modélistion et à l vériction p. 37/8

95 Une technique : l'bstrction pr prédicts Introduction à l modélistion et à l vériction p. 38/8

96 Une technique : l'bstrction pr prédicts Introduction à l modélistion et à l vériction p. 38/8

97 Une technique : l'bstrction pr prédicts Introduction à l modélistion et à l vériction p. 38/8

98 Une technique : l'bstrction pr prédicts Introduction à l modélistion et à l vériction p. 38/8

99 Une technique : l'bstrction pr prédicts bstrction correcte Introduction à l modélistion et à l vériction p. 38/8

100 Un exemple, l'bstrction de progrmmes [BLAST Henzinger, Jhl, Mjumdr, Sutre 2002] Introduction à l modélistion et à l vériction p. 39/8

101 Un exemple, l'bstrction de progrmmes [BLAST Henzinger, Jhl, Mjumdr, Sutre 2002] Introduction à l modélistion et à l vériction p. 39/8

102 Un exemple, l'bstrction de progrmmes Prédict de déprt : LOCK = 0 ou LOCK = 1 Introduction à l modélistion et à l vériction p. 40/8

103 Un exemple, l'bstrction de progrmmes Prédict de déprt : LOCK = 0 ou LOCK = 1 Introduction à l modélistion et à l vériction p. 40/8

104 Un exemple, l'bstrction de progrmmes Prédict de déprt : LOCK = 0 ou LOCK = 1 On peut continuer en rfnnt à l'ide du prédict new = old ou new!= old ps d'erreur Introduction à l modélistion et à l vériction p. 40/8

105 Un outil : les simultions Ce que l'on souhite : pouvoir comprer des systèmes entre eux, en prticulier système concret / système bstrit Introduction à l modélistion et à l vériction p. 41/8

106 Un outil : les simultions Ce que l'on souhite : pouvoir comprer des systèmes entre eux, en prticulier système concret / système bstrit Lngges : ok pour les lngges rtionnels, mis quid pour les lngges vec des compteurs, des horloges, etc...? Introduction à l modélistion et à l vériction p. 41/8

107 Un outil : les simultions Ce que l'on souhite : pouvoir comprer des systèmes entre eux, en prticulier système concret / système bstrit Lngges : ok pour les lngges rtionnels, mis quid pour les lngges vec des compteurs, des horloges, etc...? bof Introduction à l modélistion et à l vériction p. 41/8

108 Un outil : les simultions Ce que l'on souhite : pouvoir comprer des systèmes entre eux, en prticulier système concret / système bstrit Lngges : ok pour les lngges rtionnels, mis quid pour les lngges vec des compteurs, des horloges, etc...? bof Comprison plus structurelle (équivlence observtionnelle) : une reltion = f( ; )g est une simultion si Introduction à l modélistion et à l vériction p. 41/8

109 Un outil : les simultions Ce que l'on souhite : pouvoir comprer des systèmes entre eux, en prticulier système concret / système bstrit Lngges : ok pour les lngges rtionnels, mis quid pour les lngges vec des compteurs, des horloges, etc...? bof Comprison plus structurelle (équivlence observtionnelle) : une reltion = f( ; )g est une simultion si Introduction à l modélistion et à l vériction p. 41/8

110 Un outil : les simultions Ce que l'on souhite : pouvoir comprer des systèmes entre eux, en prticulier système concret / système bstrit Lngges : ok pour les lngges rtionnels, mis quid pour les lngges vec des compteurs, des horloges, etc...? bof Comprison plus structurelle (équivlence observtionnelle) : une reltion = f( ; )g est une simultion si Onditlorsque simule. Introduction à l modélistion et à l vériction p. 41/8

111 Un outil : les simultions Ce que l'on souhite : pouvoir comprer des systèmes entre eux, en prticulier système concret / système bstrit Lngges : ok pour les lngges rtionnels, mis quid pour les lngges vec des compteurs, des horloges, etc...? bof Comprison plus structurelle (équivlence observtionnelle) : une reltion = f( ; )g est une simultion si Onditlorsque simule. Une reltion est une bisimultion si et 1 sont des simultions. Introduction à l modélistion et à l vériction p. 41/8

112 Exemples Les systèmes suivnts sont-ils en bisimultion? Si non, qui simule qui? Introduction à l modélistion et à l vériction p. 42/8

113 Exemples Les systèmes suivnts sont-ils en bisimultion? Si non, qui simule qui? c b c b Introduction à l modélistion et à l vériction p. 42/8

114 Exemples Les systèmes suivnts sont-ils en bisimultion? Si non, qui simule qui? c b c b Introduction à l modélistion et à l vériction p. 42/8

115 Exemples Les systèmes suivnts sont-ils en bisimultion? Si non, qui simule qui? c b c b Introduction à l modélistion et à l vériction p. 42/8

116 Exemples Les systèmes suivnts sont-ils en bisimultion? Si non, qui simule qui? c b c b Introduction à l modélistion et à l vériction p. 42/8

117 Exemples Les systèmes suivnts sont-ils en bisimultion? Si non, qui simule qui? c b c b Introduction à l modélistion et à l vériction p. 42/8

118 Exemples Les systèmes suivnts sont-ils en bisimultion? Si non, qui simule qui? c b c b Introduction à l modélistion et à l vériction p. 42/8

119 Exemples Les systèmes suivnts sont-ils en bisimultion? Si non, qui simule qui? c b c b Introduction à l modélistion et à l vériction p. 42/8

120 Exemples Les systèmes suivnts sont-ils en bisimultion? Si non, qui simule qui? c b c b Introduction à l modélistion et à l vériction p. 42/8

121 Exemples Les systèmes suivnts sont-ils en bisimultion? Si non, qui simule qui? b c c b Introduction à l modélistion et à l vériction p. 42/8

122 Exemples b b b b b Introduction à l modélistion et à l vériction p. 43/8

123 Exemples b b b b b Introduction à l modélistion et à l vériction p. 43/8

124 Exemples b b b b b Exercice : quelle(s) reltion(s) y -t-il entre un utomte et son déterminisé? et entre un utomte et son utomte miniml? Introduction à l modélistion et à l vériction p. 43/8

125 Exemples b b b b b Exercice : quelle(s) reltion(s) y -t-il entre un utomte et son déterminisé? et entre un utomte et son utomte miniml? le déterminisé simule l'utomte originl le miniml simule l'utomte originl ucun n'est en bisimultion vec l'utomte originl Introduction à l modélistion et à l vériction p. 43/8

126 Intérêt de l (bi)simultion L bisimultion préserve les propriétés telles que : l'ccessibilité le blocge l vivcité le lngge reconnu... bref, presque tout! L simultion préserve moins de propriétés, pr exemple elle ne préserve ps : le blocge l vivcité Introduction à l modélistion et à l vériction p. 44/8

127 Systèmes temporisés Introduction à l modélistion et à l vériction p. 45/8

128 Les systèmes temporisés systèmes dns lesquels le temps joue un rôle primordil Exemple : l'lrme se déclenche moins de 2 minutes près le début de l'incendie Introduction à l modélistion et à l vériction p. 46/8

129 Les systèmes temporisés systèmes dns lesquels le temps joue un rôle primordil Exemple : l'lrme se déclenche moins de 2 minutes près le début de l'incendie AG (incendie AF<2lrme) Introduction à l modélistion et à l vériction p. 46/8

130 Les systèmes temporisés systèmes dns lesquels le temps joue un rôle primordil Exemple : l'lrme se déclenche moins de 2 minutes près le début de l'incendie AG (incendie AF<2lrme) AG (incendie x in AF(x < 2 lrme)) Introduction à l modélistion et à l vériction p. 46/8

131 Les systèmes temporisés systèmes dns lesquels le temps joue un rôle primordil Exemple : l'lrme se déclenche moins de 2 minutes près le début de l'incendie AG (incendie AF<2lrme) AG (incendie x in AF(x < 2 lrme)) mx(x; X []X (incendie x in mx(y;lrme (x < 2 Y Y)))) Introduction à l modélistion et à l vériction p. 46/8

132 Le digicode Le digicode : * Porte ouverte * 5 * Introduction à l modélistion et à l vériction p. 47/8

133 Le digicode Le digicode : * 5, x:=0 5, x:=0 4 0, x<5 Porte ouverte * 5, x:=0 * Introduction à l modélistion et à l vériction p. 47/8

134 Le digicode Le digicode : * 5, x:=0 5, x:=0 4 0, x<5 Porte ouverte * 5, x:=0 * 0; x 5 Introduction à l modélistion et à l vériction p. 47/8

135 Le cuit-œuf Le cuit-œuf : on souhite fire cuire un œuf dur (donc 5 minutes ) et on ne dispose que d'un sblier de 7 minutes et d'un sblier de 10 minutes. Comment fire? Introduction à l modélistion et à l vériction p. 48/8

136 Le cuit-œuf Le cuit-œuf : on souhite fire cuire un œuf dur (donc 5 minutes ) et on ne dispose que d'un sblier de 7 minutes et d'un sblier de 10 minutes. Comment fire? x i = m i ; x j := 0; t := 0 x 1 = m 1 ; t = 5 x i = m i ; x j := 0 x 2 = m 2 ; t = 5 x 1 horloge pour le minuteur de 7 minutes (m 1 = 7) x 2 horloge pour le minuteur de 10 minutes (m 2 = 10) t horloge pour mesurer les 5 minutes Introduction à l modélistion et à l vériction p. 48/8

137 Les venturiers Qutre venturiers souhitent trverser un pont en muvis étt. Ils ne mettent ps tous le même temps à fire l trversée. L'un met 5 minutes, un utre 10 minutes, un utre encore 20 minutes et le dernier met 25 minutes. Question : Peuvent-ils tous trverser le pont en moins de 60 minutes, schnt qu'il fut obligtoirement l torche pour trverser et que le pont ne peut ps supporter le poids de plus de deux personnes en même temps. Introduction à l modélistion et à l vériction p. 49/8

138 Les venturiers Un venturier (t, temps de trversée) : dnger = 0, prend!, y := 0 y t, lâche! y t, lâche! = 1, prend!, y := 0 sécurité Introduction à l modélistion et à l vériction p. 50/8

139 Les venturiers Un venturier (t, temps de trversée) : dnger = 0, prend!, y := 0 y t, lâche! y t, lâche! = 1, prend!, y := 0 sécurité L torche : prend? lâche?, := 1 prend? lâche? Introduction à l modélistion et à l vériction p. 50/8

140 Les venturiers Introduction à l modélistion et à l vériction p. 51/8

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique.

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique. C39211 Ecole Normle Supérieure de Cchn 61 venue du président Wilson 94230 CACHAN Concours d dmission en 3 ème nnée Informtique Session 2009 INFORMATIQUE 1 Durée : 5 heures «Aucun document n est utorisé»

Plus en détail

2.1 Comment implanter en C un reconnaisseur de mots? Aut2 q 0 q 1

2.1 Comment implanter en C un reconnaisseur de mots? Aut2 q 0 q 1 Lngges Automtes Non-déterminisme Grmmires Attiuées et Génértives Expressions régulières Correction Prtielle de Progrmmes Ceci n'est ps un cours de Lngge C++ 2.1 Comment implnter en C un reconnisseur de

Plus en détail

STI2D Logique binaire SIN. L' Algèbre de BOOLE

STI2D Logique binaire SIN. L' Algèbre de BOOLE L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole.

Plus en détail

LANGAGES - GRAMMAIRES - AUTOMATES

LANGAGES - GRAMMAIRES - AUTOMATES LANGAGES - GRAMMAIRES - AUTOMATES Mrie-Pule Muller Version du 14 juillet 2005 Ce cours présente et met en oeuvre quelques méthodes mthémtiques pour l informtique théorique. Ces notions de bse pourront

Plus en détail

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états.

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états. ciences Industrielles ystèmes comintoires Ppnicol Roert Lycée Jcques Amyot I - YTEME COMBINATOIRE A. Algère de Boole. Vriles logiques: Un signl réel est une grndeur physique en générl continue, on ssocie

Plus en détail

/HVV\VWqPHVFRPELQDWRLUHV

/HVV\VWqPHVFRPELQDWRLUHV /HVV\VWqPHVFRPELQDWRLUHV I. Définition On ppelle système combintoire tout système numérique dont les sorties sont exclusivement définies à prtir des vribles d entrée (Figure ). = f(x, x 2,,, x n ) x x

Plus en détail

CAP PRO E SCHEMA : LE MOTEUR

CAP PRO E SCHEMA : LE MOTEUR CAP PRO E SCHEMA : E MOTEUR folio folio folio folio folio folio folio 7 folio 8 folio 9 plque signlétique d un moteur puissnce sorée pr un moteur plque à ornes d un moteur triphsé e couplge étoile e couplge

Plus en détail

SYSTEMES LOGIQUES LOGIQUE COMBINATOIRE

SYSTEMES LOGIQUES LOGIQUE COMBINATOIRE Ch.I Commnde des systèmes logiques ogique comintoire - p1 SYSTEMES OGIQUES OGIQUE COMBINATOIRE I Commnde des systèmes logiques 1. Structure des systèmes utomtisés Reprenons l structure étlie dns le cours

Plus en détail

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1 Grenoble INP Pgor 1ère nnée Exercices corrigés Anlyse numérique NB : Les exercices corrigés ici sont les exercices proposés durnt les sénces de cours. Les corrections données sont des corrections plus

Plus en détail

Cours de «concepts avancés de compilation» Travaux pratiques. Auteur : F. Védrine

Cours de «concepts avancés de compilation» Travaux pratiques. Auteur : F. Védrine Cours de «onepts vnés de ompiltion» Trvux prtiques Auteur : F. Védrine Les utomtes et les expressions régulières Les utomtes sont onstitués d étts et de trnsitions. Un étt définit l vnée dns l reonnissne

Plus en détail

Notes de révision : Automates et langages

Notes de révision : Automates et langages Préprtion à l grégtion de mthémtiques 2011 2012 Notes de révision : Automtes et lngges Benjmin MONMEGE et Sylvin SCHMITZ LSV, ENS Cchn & CNRS Version du 24 octore 2011 (r66m) CC Cretive Commons y-nc-s

Plus en détail

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville Théorème de Lx Milgrm Appliction u problème de Dirichlet pour l éqution de Sturm Liouville Résumé du cours de MEDP Mîtrise de mthémtiques 2000 2001 2001nov18 (medp-lx-milgrm.tex) Dns ce chpitre, on se

Plus en détail

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3 Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

3 LES OUTILS DE DESCRIPTION D UNE FONCTION LOGIQUE

3 LES OUTILS DE DESCRIPTION D UNE FONCTION LOGIQUE 1GEN ciences et Techniques Industrielles Pge 1 sur 7 Automtique et Informtiques Appliquées Génie Énergétique Première 1 - LA VARIABLE BINAIRE L électrotechnique, l électronique et l mécnique étudient et

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

Chapitre 11 : L inductance

Chapitre 11 : L inductance Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4

Plus en détail

Influence du milieu d étude sur l activité (suite) Inhibition et activation

Influence du milieu d étude sur l activité (suite) Inhibition et activation Influence du milieu d étude sur l ctivité (suite) Inhibition et ctivtion Influence de l tempérture Influence du ph 1 Influence de l tempérture Si on chuffe une préprtion enzymtique, l ctivité ugmente jusqu

Plus en détail

ANALYSE NUMERIQUE NON-LINEAIRE

ANALYSE NUMERIQUE NON-LINEAIRE Université de Metz Licence de Mthémtiques - 3ème nnée 1er semestre ANALYSE NUMERIQUE NON-LINEAIRE pr Rlph Chill Lbortoire de Mthémtiques et Applictions de Metz Année 010/11 1 Tble des mtières Chpitre

Plus en détail

Guide d'utilisation Easy Interactive Tools Ver. 2

Guide d'utilisation Easy Interactive Tools Ver. 2 Guide d'utilistion Esy Interctive Tools Ver. 2 Guide d'utilistion Esy Interctive Tools Ver.2 Présenttion de Esy Interctive Tools 3 Crctéristiques Fonction de dessin Vous pouvez utiliser Esy Interctive

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

Toyota Assurances Toujours la meilleure solution

Toyota Assurances Toujours la meilleure solution Toyot Assurnces Toujours l meilleure solution De quelle ssurnce vez-vous besoin? Vous roulez déjà en Toyot ou vous ttendez s livrison. Votre voiture est neuve ou d occsion. Vous vlez les kilomètres ou

Plus en détail

Pour développer votre entreprise. Compta LES LOGICIELS EN LIGNE, VOUS ALLEZ DIRE OUI!

Pour développer votre entreprise. Compta LES LOGICIELS EN LIGNE, VOUS ALLEZ DIRE OUI! Pour développer votre entreprise Compt Avec EBP Compt, vous ssurez le suivi de l ensemble de vos opértions et exploitez les données les plus complexes en toute sécurité. Toutes les fonctionnlités essentielles

Plus en détail

Les règles de Descartes et de Budan Fourier

Les règles de Descartes et de Budan Fourier Ojectifs de ce chpitre Mthémtiques ssistées pr ordinteur Chpitre 4 : Rcines des polynômes réels et complexes Michel Eisermnn Mt49, DLST LS4, Année 8-9 www-fourierujf-grenolefr/ eiserm/cours # mo Document

Plus en détail

Sommaire. 6. Tableau récapitulatif... 10. Sophos NAC intégré Vs. NAC Advanced - 17 Février 2009 2

Sommaire. 6. Tableau récapitulatif... 10. Sophos NAC intégré Vs. NAC Advanced - 17 Février 2009 2 Sommire 1. A propos de Sophos... 3 2. Comprtif des solutions Sophos NAC... 4 3. Sophos NAC pour Endpoint Security nd Control 8.0... 4 3.1. Administrtion et déploiement... 4 3.2. Gestion des politiques

Plus en détail

ESTIMER LA PRÉCISION DES MESURES

ESTIMER LA PRÉCISION DES MESURES ESTIMER LA PRÉCISION DES MESURES I. Précision d'une mesure directe Une mesure directe est une mesure lue sur un ppreil de mesure. Le résultt d'une mesure directe n'est jmis connu de fçon prfitement excte.

Plus en détail

Algorithmes sur les mots (séquences)

Algorithmes sur les mots (séquences) Introduction Algorithmes sur les mots (séquences) Algorithmes sur les mots (textes, séquences, chines de crctères) Nomreuses pplictions : ses de données iliogrphiques ioinformtique (séquences de iomolécules)

Plus en détail

Devoir de physique-chimie n 4bis (2H)

Devoir de physique-chimie n 4bis (2H) TS jn 2014 Devoir de physique-chimie n 4bis (2H) Nom:...... LES EXERIES SNT INDEPENDANTS ALULATRIE AUTRISEE PHYSIQUE : ETILE BINAIRE /20 1. Le télescope 8 Les 3 prties sont indépendntes. Document 1 : L

Plus en détail

Systèmes logiques combinatoires

Systèmes logiques combinatoires «'enseignement devrit être insi : celui qui le reçoit le recueille comme un don inestimle mis jmis comme une contrinte pénile.» Alert Einstein Systèmes logiques comintoires Définitions. es vriles inires

Plus en détail

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO Université Pris-Duphine DUMI2E UFR Mthémtiques de l décision Notes de cours Anlyse 2 Filippo SANTAMBROGIO Année 2008 2 Tble des mtières 1 Optimistion de fonctions continues et dérivbles 5 1.1 Continuité........................................

Plus en détail

semestre 3 des Licences MISM annnée universitaire 2004-2005

semestre 3 des Licences MISM annnée universitaire 2004-2005 MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................

Plus en détail

Tout ce qu il faut savoir en math

Tout ce qu il faut savoir en math Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion

Plus en détail

Le Guide 2012. des logiciels et services EBP. Les 5 BONNES RAISONS DE VOUS ÉQUIPER

Le Guide 2012. des logiciels et services EBP. Les 5 BONNES RAISONS DE VOUS ÉQUIPER Les 5 BONNES RAISONS DE VOUS ÉQUIPER 1. Vous en êtes cpble. 2. C est efficce et vous llez ggner du temps chque jour. 3. Cel fit vendre : vlorisez votre entreprise pr vos documents. 4. C est profitble :

Plus en détail

MATHEMATIQUES GENERALES partim A

MATHEMATIQUES GENERALES partim A Fculté des Sciences MATHEMATIQUES GENERALES prtim A Première nnée de bchelier en Biologie, Chimie, Géogrphie, Géologie, Physique et Informtique, Philosophie Année cdémique 04-05 Frnçoise BASTIN Introduction

Plus en détail

VN-8700PC VN-8600PC VN-8500PC

VN-8700PC VN-8600PC VN-8500PC ENREGISTREUR VOCAL NUMÉRIQUE VN-8700PC VN-8600PC VN-8500PC FR MODE D EMPLOI Merci d voir porté votre choix sur cet enregistreur vocl numérique. Lisez ce mode d emploi pour les informtions concernnt l emploi

Plus en détail

Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels

Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels Etb=MK2, Timbre=G430, TimbreDnsAdresse=Vri, Version=W2000/Chrte7, VersionTrvil=W2000/Chrte7 Direction des Études et Synthèses Économiques Déprtement des Comptes Ntionux Division des Comptes Trimestriels

Plus en détail

Le Calcul Intégral. niveau maturité. Daniel Farquet

Le Calcul Intégral. niveau maturité. Daniel Farquet Le Clcul Intégrl niveu mturité Dniel Frquet Eté 8 Tble des mtières Introduction Intégrle indéfinie 3. Définitions et générlités................................ 3.. Déf. d une primitive..............................

Plus en détail

Avant d utiliser l appareil, lisez ce Guide de référence rapide pour connaître la procédure de configuration et d installation.

Avant d utiliser l appareil, lisez ce Guide de référence rapide pour connaître la procédure de configuration et d installation. Guide de référence rpide Commencer Avnt d utiliser l ppreil, lisez ce Guide de référence rpide pour connître l procédure de configurtion et d instlltion. NE rccordez PAS le câle d interfce mintennt. 1

Plus en détail

12Planet ConferenceServer

12Planet ConferenceServer Présenttion solution 12Plnet ConferenceServer Orgniser des conférences, débts ou interviews en temps réel sur le Web ou sur votre Intrnet ConferenceServer principles fonctionnlités Fonction de modértion

Plus en détail

Couche réseau. Circuits virtuels. Modèle de service de la couche réseau. Circuits virtuels : protocoles de signalisation

Couche réseau. Circuits virtuels. Modèle de service de la couche réseau. Circuits virtuels : protocoles de signalisation ouche réseu Fonctionnlités de l couche réseu Objectifs : omprendre les principes sous-jcents de l couche réseu : routge (choix du chemin) Pssge à l échelle omment fonctionne un routeur escription du routge

Plus en détail

edatenq est une application qui permet aux entreprises de compléter et d'envoyer leurs déclarations statistiques par internet.

edatenq est une application qui permet aux entreprises de compléter et d'envoyer leurs déclarations statistiques par internet. Sttistique mensuelle tourisme et hôtellerie Introduction edatenq est une ppliction qui permet ux entreprises de compléter et d'envoyer leurs déclrtions sttistiques pr internet. Il s'git d'une ppliction

Plus en détail

Pour développer votre entreprise LES LOGICIELS EN LIGNE, VOUS ALLEZ DIRE OUI!

Pour développer votre entreprise LES LOGICIELS EN LIGNE, VOUS ALLEZ DIRE OUI! Pour développer votre entreprise Gestion Commercile Gérez le cycle complet des chts (demnde de prix, fcture fournisseur), des stocks (entrée, sortie mouvement, suivi) et des ventes (devis, fcture, règlement,

Plus en détail

Techniques d analyse de circuits

Techniques d analyse de circuits Chpitre 3 Tehniques d nlyse de iruits Ce hpitre présente différentes méthodes d nlyse de iruits. Ces méthodes permettent de simplifier l nlyse de iruits ontennt plusieurs éléments. Bien qu on peut résoudre

Plus en détail

Guide des bonnes pratiques

Guide des bonnes pratiques Livret 3 MINISTÈRE DE LA RÉFORME DE L'ÉTAT, DE LA DÉCENTRALISATION ET DE LA FONCTION PUBLIQUE 3 Guide des bonnes prtiques OUTILS DE LA GRH Guide des bonnes prtiques Tble des mtières 1. Introduction p.

Plus en détail

Microéconomie de l Incertitude M1 Banque et Marchés Financiers

Microéconomie de l Incertitude M1 Banque et Marchés Financiers Microéconomie de l Incertitude M1 Bnque et Mrchés Finnciers Emmnuel DUGUET Notes de Cours, V1 2 1 Concepts de bse 5 1.1 Les loteries................................ 6 1.2 Le critère d espérnce mthémtique..................

Plus en détail

3- Les taux d'intérêt

3- Les taux d'intérêt 3- Les tux d'intérêt Mishkin (2007), Monnie, Bnque et mrchés finnciers, Person Eduction, ch. 4 et 6 Vernimmen (2005), Finnce d'entreprise, Dlloz, ch. 20 à 22 1- Mesurer les tux d'intérêt comprer les différents

Plus en détail

Préparation à l'examen écrit de maturité Mathématiques 2013

Préparation à l'examen écrit de maturité Mathématiques 2013 Wechter Loïc Mturité 2013 Mthémtiques Cours de M. Flcoz 2013 Préprtion à l'exmen écrit de mturité Mthémtiques 2013 1.Primitives et intégrles 1.1Primitives (CRM pp.77-80) Une primitive pourrit se définir

Plus en détail

LOGICIEL FONCTIONNEL EMC VNX

LOGICIEL FONCTIONNEL EMC VNX LOGICIEL FONCTIONNEL EMC VNX Améliortion des performnces des pplictions, protection des données critiques et réduction des coûts de stockge vec les logiciels complets d EMC POINTS FORTS VNX Softwre Essentils

Plus en détail

Séquence 8. Probabilité : lois à densité. Sommaire

Séquence 8. Probabilité : lois à densité. Sommaire Séquence 8 Proilité : lois à densité Sommire. Prérequis 2. Lois de proilité à densité sur un intervlle 3. Lois uniformes 4. Lois exponentielles 5. Synthèse de l séquence Dns cette séquence, on introduit

Plus en détail

Turbine hydraulique Girard simplifiée pour faibles et très faibles puissances

Turbine hydraulique Girard simplifiée pour faibles et très faibles puissances Turbine hydrulique Girrd simplifiée pour fibles et très fibles puissnces Prof. Ing. Zoltàn Hosszuréty, DrSc. Professeur à l'université technique de Kosice Les sites hydruliques disposnt de fibles débits

Plus en détail

Statuts ASF Association Suisse Feldenkrais

Statuts ASF Association Suisse Feldenkrais Sttuts ASF Assocition Suisse Feldenkris Contenu Pge I. Nom, siège, ojectif et missions 1 Nom et siège 2 2 Ojectif 2 3 Missions 2 II. Memres 4 Modes d ffilition 3 5 Droits et oligtions des memres 3 6 Adhésion

Plus en détail

Model checking temporisé

Model checking temporisé Model checking temporisé Béatrice Bérard LAMSADE Université Paris-Dauphine & CNRS berard@lamsade.dauphine.fr ETR 07, 5 septembre 2007 1/44 Nécessité de vérifier des systèmes... 2/44 Nécessité de vérifier

Plus en détail

Chapitre VI Contraintes holonomiques

Chapitre VI Contraintes holonomiques 55 Chpitre VI Contrintes holonomiques Les contrintes isopérimétriques vues u chpitre précéent ne sont qu un eemple prticulier e contrintes sur les fonctions y e notre espce e fonctions missibles. Dns ce

Plus en détail

Commencer HL-2135W / Guide d installation rapide HL-2270DW. l imprimante et vérifiez les composants AVERTISSEMENT

Commencer HL-2135W / Guide d installation rapide HL-2270DW. l imprimante et vérifiez les composants AVERTISSEMENT Guide d instlltion rpide Commencer HL-2135W / HL-2270DW (UE uniquement) Avnt s première utilistion, lisez ce Guide d'instlltion rpide puis instllez votre imprimnte. Pour consulter le Guide d'instlltion

Plus en détail

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel COURS D ANALYSE Licence d Informtique, première nnée Lurent Michel Printemps 2010 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................

Plus en détail

Guide de l'utilisateur

Guide de l'utilisateur Guide de l'utilisteur Symboles Utilisés Dns ce Guide Indictions de sécurité L documenttion et le projecteur utilisent des symboles grphiques qui indiquent comment utiliser l ppreil en toute sécurité. Veillez

Plus en détail

Raffinement de modèles comportementaux UML, vérification des relations d implantation et d extension sur les machines d états

Raffinement de modèles comportementaux UML, vérification des relations d implantation et d extension sur les machines d états Rffinmnt d modèls comportmntux UML, vérifiction ds rltions d implnttion t d xtnsion sur ls mchins d étts Thoms Lmolis Ann-Lis Couris Hong-Vit Luong févrir 2009 1 Motivtions L dévloppmnt d SLP (SIS ---

Plus en détail

Menu outils de navigation mennavi.htm

Menu outils de navigation mennavi.htm Pge de lncement index.htm Voici l représenttion schémtique de l structure du site Wllonie, toutes les crtes en mins... Pge d ccueil win.htm nevs générl menwin.htm À propos de l structure des données :

Plus en détail

Logiciel pour le poste de travail Agilent MassHunter

Logiciel pour le poste de travail Agilent MassHunter Logiciel pour le poste de trvil Agilent MssHunter Anlyse qulittive Guide de fmiliristion pour CPG/SM Notices Agilent Technologies, Inc. 2012 Conformément ux lois interntionles reltives à l propriété intellectuelle,

Plus en détail

Commencer DCP-J4110DW

Commencer DCP-J4110DW Guide d instlltion rpide Commencer DCP-J40DW Veuillez lire le Guide de sécurité du produit vnt d'instller l'ppreil. Lisez ensuite ce Guide d'instlltion rpide pour connître l procédure de configurtion et

Plus en détail

1. 1.1. 1.2. 1.3. 1.4. 1.5. 1.6. 2. 2.1.

1. 1.1. 1.2. 1.3. 1.4. 1.5. 1.6. 2. 2.1. T/TR 01-01 Pge 3 r+ 1. EQUIPMENT CONCERNE L interconnexion numerique interntionl pour le service visiophonique et de visioconf&ence necessite l stndrdistion des principux prmttres num&iques tels que d~it,

Plus en détail

Module 2 : Déterminant d une matrice

Module 2 : Déterminant d une matrice L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté

Plus en détail

WEBDOC DEMANDE D ASSURANCE SOCIALE EN CAS DE FAILLITE OU DE CESSATION FORCÉE

WEBDOC DEMANDE D ASSURANCE SOCIALE EN CAS DE FAILLITE OU DE CESSATION FORCÉE WEBDOC DEMANDE D ASSURANCE SOCIALE EN CAS DE FAILLITE OU DE CESSATION FORCÉE FORMULAIRE À RENVOYER PAR RECOMMANDÉ À : ACERTA CAS, BP 24000, 1000 Bruxelles (Centre de Monnie) Cse destinée à Acert Dte de

Plus en détail

Guide de l'utilisateur

Guide de l'utilisateur Guide de l'utilisteur Symboles Utilisés Dns ce Guide Indictions de sécurité L documenttion et le projecteur utilisent des symboles grphiques qui indiquent comment utiliser l ppreil en toute sécurité. Veillez

Plus en détail

Commencer DCP-7055W / DCP-7057W /

Commencer DCP-7055W / DCP-7057W / Guide d instlltion rpide Commencer DCP-7055W / DCP-7057W / DCP-7070DW Veuillez lire ttentivement le livret Sécurité et réglementtion vnt d'effectuer les réglges de votre ppreil. Consultez ensuite le Guide

Plus en détail

Créer des jeux avec GLUP

Créer des jeux avec GLUP Créer des jeux vec GLUP GLUP (générteur ludopédgogique) est un service en ligne du CRDP de l cdémie de Versilles. Il permet de trnsformer des exercices à se de texte en mini-jeux téléchrgeles. Les jeux

Plus en détail

(Chapitre 4) 3 La bourse ou la vie ou Comment faire des ronds

(Chapitre 4) 3 La bourse ou la vie ou Comment faire des ronds Φ (Chpitre 4) 3 L bourse ou l vie ou Comment fire des ronds Imginez que vous possédez un portefeuille de vleurs boursières. Voici le grphe de ses fluctutions en fonction du temps (bscisse, x) et de l rgent

Plus en détail

Conseils et astuces pour les structures de base de la Ligne D30

Conseils et astuces pour les structures de base de la Ligne D30 Conseils et stuces pour les structures de bse de l Ligne D30 Conseils et stuces pour l Ligne D30 Ligne D30 - l solution élégnte pour votre production. Rentbilité optimle et méliortion continue des séquences

Plus en détail

Thèse Présentée Pour obtenir le diplôme de doctorat en sciences En génie civil Option : structure

Thèse Présentée Pour obtenir le diplôme de doctorat en sciences En génie civil Option : structure République Algérienne Démocrtique et Populire Ministère de l enseignement supérieur et de l recherche scientifique Université Mentouri de Constntine Fculté des sciences et sciences de l ingénieur Déprtement

Plus en détail

Cours d Analyse IV Suites et Séries de fonctions

Cours d Analyse IV Suites et Séries de fonctions Université Clude Bernrd, Lyon I Licence Sciences, Technologies & Snté 43, boulevrd 11 novembre 1918 Spécilité Mthémtiques 69622 Villeurbnne cedex, Frnce L. Pujo-Menjouet pujo@mth.univ-lyon1.fr Cours d

Plus en détail

Tableau d extension de mise en sécurité pour CMSI type B modulable Réf. : 322 001 Module deux lignes de mise en sécurité Réf.

Tableau d extension de mise en sécurité pour CMSI type B modulable Réf. : 322 001 Module deux lignes de mise en sécurité Réf. Tleu d extension de mise en sécurité pour CMSI type B modulle Réf. : 00 Module deux lignes de mise en sécurité Réf. : 00 DE MISE EN MISE EN 5 7 8 8 PROGRAM. SYSTEME Fus. F, 5H50V MANUEL DE MISE EN ŒUVRE

Plus en détail

Licence M.A.S.S. Cours d Analyse S4

Licence M.A.S.S. Cours d Analyse S4 Université Pris I, Pnthéon - Sorbonne Licence MASS Cours d Anlyse S4 Jen-Mrc Brdet (Université Pris 1, SAMM) UFR 27 et Equipe SAMM (Sttistique, Anlyse et Modélistion Multidisiplinire) Université Pnthéon-Sorbonne,

Plus en détail

ManSafe. pour les Utilitiés. La Protection antichute pour les Industries de l'energie. Français. TowerLatch LadderLatch

ManSafe. pour les Utilitiés. La Protection antichute pour les Industries de l'energie. Français. TowerLatch LadderLatch MnSfe pour les Utilitiés L Protection ntichute pour les Industries de l'energie Frnçis TowerLtch LdderLtch Les questions de protection nti-chute Les chutes de huteur sont l cuse de mortlité l plus importnte

Plus en détail

Evaluation de la performance des barrages poids basée sur la formalisation et l agrégation des connaissances

Evaluation de la performance des barrages poids basée sur la formalisation et l agrégation des connaissances Evlution de l performnce des brrges poids bsée sur l formlistion et l grégtion des connissnces Curt Corinne 1, Perldi Audrey 1, Félix Huguette 1 1 Irste, UR OHAX Ouvrges Hydruliques et Hydrologie, 375

Plus en détail

Caisse enregistreuse électronique CE-T300 GROCERY DAIRY H.B.A. FROZEN FOOD DELICATESSEN. Mode d emploi. Eu Di U.K.

Caisse enregistreuse électronique CE-T300 GROCERY DAIRY H.B.A. FROZEN FOOD DELICATESSEN. Mode d emploi. Eu Di U.K. Cisse enregistreuse électronique CE-T300 GROCERY DAIRY H.B.A. FROZEN FOOD DELICATESSEN Eu Di U.K. Mode d emploi Introduction et tle des mtières Introduction Toutes nos félicittions pour l cht de cette

Plus en détail

EY-BU 292 : interface Ethernet novanet, modunet292

EY-BU 292 : interface Ethernet novanet, modunet292 Fiche technique 96.015 EY-BU 292 : interfce, Votre tout en mtière d'efficcité énergétique SAUTER EY-modulo 2 intégré dns l technologie IP connue Crctéristiques Produit de l fmille de systèmes SAUTER EY-modulo

Plus en détail

- Phénoméne aérospatial non identifié ( 0.V.N.I )

- Phénoméne aérospatial non identifié ( 0.V.N.I ) ENQUETE PRELIMINAIRE ANALYSE ET REFEREWCES : Phénoméne érosptil non identifié ( 0VNI ) B8E 25400 DEF/GEND/OE/DOlRENS du 28/9/1992 Nous soussigné : M D L chef J S, OPJ djoint u commndnt de l brigde en résidence

Plus en détail

Magister en : Génie Mécanique

Magister en : Génie Mécanique الجمهورية الجزاي رية الديمقراطية الشعبية République Algérienne Démocrtique et Populire وزارة التعليم العالي و البحث العلمي Ministère de l enseignement supérieur et de l recherche scientifique Université

Plus en détail

Paul Horowitz & Winfield HiIl

Paul Horowitz & Winfield HiIl m m Pul Horowitz & Winfield HiIl I l, m VOLUME 1 TECHNIQUES ANALOGIQUES m m m m m m / l E LE KTO R m m m m TABLE DES MATIÈREiS PRÉFACE XVII 1 LES BASES INTRODUCTION 1 TENSION. COURANT ET RÉSISTANCE 1.1

Plus en détail

Adaptation spatio-temporelle et hypermédia de documents multimédia

Adaptation spatio-temporelle et hypermédia de documents multimédia Adpttion sptio-temporelle et hypermédi de documents multimédi Séstien Lorie Jérôme Euzent Nil Lyïd INRIA Rhône-Alpes - LIG 655 Avenue de l Europe Montonnot - Sint Mrtin 38334 Sint Ismier Cedex {Sestien.Lorie,Jerome.Euzent,Nil.Lyid}@inrilpes.fr

Plus en détail

gfaubert septembre 2010 1

gfaubert septembre 2010 1 Notes de cours Pour l e secondire Compiltion et/ou crétion Guyline Fuert Septemre 00 gfuert septemre 00 Géométrie------------------------------------------------------------------------------------------------------------------------

Plus en détail

Choix binaires avec influences sociales : mode d emploi et conséquences économiques

Choix binaires avec influences sociales : mode d emploi et conséquences économiques Choix binires vec influences sociles : mode d emploi et conséquences économiques Denis Phn * * CREM UMR CNRS 6, Université de Rennes /3/5 Résumé : Cette note propose une synthèse de quelques trvux conscrés

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Chapitre 1 : Fonctions analytiques - introduction

Chapitre 1 : Fonctions analytiques - introduction 2e semestre 2/ UE 4 U : Abrégé de cours Anlyse 3: fonctions nlytiques Les notes suivntes, disponibles à l dresse http://www.iecn.u-nncy.fr/ bertrm/, contiennent les définitions et les résultts principux

Plus en détail

Les Dossiers Du Mois. 006 Janvier 2013

Les Dossiers Du Mois. 006 Janvier 2013 Les Dossiers Du Mois No. 006 Jnvier 2013 DÉVELOPPEMENT DE LA POLICE NATIONALE D'HAÏTI: cp sur 2016 Le Gouvernement hïtien doté s police ntionle d'un pln quinquennl de développement pour l période 2012-2016.

Plus en détail

Partie 4 : La monnaie et l'inflation

Partie 4 : La monnaie et l'inflation Prtie 4 : L monnie et l'infltion Enseignnt A. Direr Licence 2, 1er semestre 2008-9 Université Pierre Mendès Frnce Cours de mcroéconomie suite 4.1 Introduction Nous vons vu dns l prtie introductive que

Plus en détail

Transfert. Logistique. Stockage. Archivage

Transfert. Logistique. Stockage. Archivage Trnsfert Logistique Stockge Archivge Trnsfert, logistique, stockge Pour fire fce ux nouveux enjeux, il est importnt de pouvoir compter sur l'expertise d'un spéciliste impliqué à vos côtés, en toute confince.

Plus en détail

GLMA201 - ALGÈBRE LINÉAIRE ET ANALYSE 2-2013-2014 CONTRÔLE CONTINU 2

GLMA201 - ALGÈBRE LINÉAIRE ET ANALYSE 2-2013-2014 CONTRÔLE CONTINU 2 GLMA -4 GLMA - ALGÈBRE LINÉAIRE ET ANALYSE - -4 CONTRÔLE CONTINU Durée : h Tout doument ou lultrie est interdit Il ser tenu ompte de l lrté et de l préision de l rédtion Il est importnt de justifier hune

Plus en détail

Clapets coupe-feu. The art of handling air. Type FKA-EU Testé conforme à la norme EN 1366-2. FKA-EU/DE/BE/fr

Clapets coupe-feu. The art of handling air. Type FKA-EU Testé conforme à la norme EN 1366-2. FKA-EU/DE/BE/fr FKA-EU/DE/BE/fr Clpets coupe-feu Type FKA-EU Testé conforme à l norme EN 1366-2 conformément à l Déclrtion de performnce DoP / FKA-EU / DE / 2013 / 001 The rt of hndling ir Contenu Description Description

Plus en détail

AUTOUR D UN MÉMOIRE INÉDIT : LA CONTRIBUTION D HERMITE AU DÉVELOPPEMENT DE LA THÉORIE DES FONCTIONS ELLIPTIQUES. Bruno BELHOSTE (*)

AUTOUR D UN MÉMOIRE INÉDIT : LA CONTRIBUTION D HERMITE AU DÉVELOPPEMENT DE LA THÉORIE DES FONCTIONS ELLIPTIQUES. Bruno BELHOSTE (*) Revue d histoire des mthémtiques, 2 (1996), p. 1 66. AUTOUR D UN MÉMOIRE INÉDIT : LA CONTRIBUTION D HERMITE AU DÉVELOPPEMENT DE LA THÉORIE DES FONCTIONS ELLIPTIQUES Bruno BELHOSTE (*) RÉSUMÉ. Dns cet rticle,

Plus en détail

Solutions IHM. Gammes Graphite et G3 Outils pour l'usine connectée

Solutions IHM. Gammes Graphite et G3 Outils pour l'usine connectée Solutions IHM Gmmes Grphite et G3 Outils pour l'usine connectée Des IHM ux fonctions étendues : > Conversion de plus de 250 protocoles > Serveur Web intégré > Enregistreur de données sécurisées > Modules

Plus en détail

LITE-FLOOR. Dalles de sol et marches d escalier. Information technique

LITE-FLOOR. Dalles de sol et marches d escalier. Information technique LITE-FLOOR Dlles de sol et mrches d esclier Informtion technique Recommndtions pour le clcul et l pose de LITE-FLOOR Générlités Cette rochure reprend les règles de se à respecter pour grntir l rélistion

Plus en détail

INFORMATIONS TECHNIQUES

INFORMATIONS TECHNIQUES 0 INFORMATIONS TECHNIQUES tle des mtieres 06 Alimenttions et ccessoires 08 Postes extérieurs Sfer Postes extérieurs minisfer 9 Postes internes Accessoires d instlltion Centrux téléphoniques PABX Cmérs

Plus en détail

Les formations professionnelles Livret d information des services Application

Les formations professionnelles Livret d information des services Application ² Services "Utilisteur" Confince, Expertise, Performnce Les formtions professionnelles Livret d informtion des services Appliction Answers for Life (*) (*) Des réponses pour l vie Sommire 3 L formtion

Plus en détail

Traitement multicritère des résultats d ACV, adaptation de la méthode ScanActor

Traitement multicritère des résultats d ACV, adaptation de la méthode ScanActor Triteent ulticritère des résultts d ACV, dpttion de l éthode ScnActor RECRD 991010/1A rs 2000 RECRD ETUDE N 991010/1A TRAITEMENT MULTICRITERE DES RESULTATS D ACV, ADAPTATIN DE LA METHDE SCANACTR RAPPRT

Plus en détail

ROBOTUNITS - THE MODULAR AUTOMATION SYSTEM. 16x40 40x40 40x80 80x80 40x40 40x80 50x50 50x100 50x200 100x100 100x200 25x200 lean lean

ROBOTUNITS - THE MODULAR AUTOMATION SYSTEM. 16x40 40x40 40x80 80x80 40x40 40x80 50x50 50x100 50x200 100x100 100x200 25x200 lean lean ROBOTUNITS - THE MODULAR AUTOMATI SYSTEM Prox Technologies is the uthorized distriutor of Rootunits in Cnd, providing wide rnge of extrusions, technicl support nd design engineering. We hve the tem expertise

Plus en détail

REGLEMENT DU CLASSEMENT NATIONAL

REGLEMENT DU CLASSEMENT NATIONAL REGLEMET DU CLASSEMET ATIOAL / Les règles indiquées ici sont celles utilisées pour clculer les ttributions de points de l sison -. I. PRICIPES DE BASE Le clssement ntionl de l F.F.B. est le seul uquel

Plus en détail

4. PROTECTION À L OUVERTURE

4. PROTECTION À L OUVERTURE 42 4. PROTECTION À L OUVERTURE 4.1. Générlités Afin de lever l miguïté de l norme NF EN 16005 sur l exigence des prgrphes 4.6.2.1 et 4.6.3.1 (4) qunt à l définition de «lrge proportion», suf nlyse de risque

Plus en détail

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Jen-Pierre Dedieu, Jen-Pierre Rymond ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Institut de Mthémtiques Université Pul Sbtier 31062 Toulouse cedex 09 jen-pierre.dedieu@mth.univ-toulouse.fr jen-pierre.rymond@mth.univ-toulouse.fr

Plus en détail