Chapitre 1 : Fonctions analytiques - introduction

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 1 : Fonctions analytiques - introduction"

Transcription

1 2e semestre 2/ UE 4 U : Abrégé de cours Anlyse 3: fonctions nlytiques Les notes suivntes, disponibles à l dresse bertrm/, contiennent les définitions et les résultts principux du cours. Elles ne remplcent ni un polycopié complet, ni le cours lui-même. Un polycopié du cours de F. Géndier donné en 29/2 se trouve à l dresse : gendier/ Chpitre : Fonctions nlytiques - introduction Les fonctions dites nlytiques sont des fonctions qui ont des propriétés encore meilleures que celles des fonctions différentibles. Rppelons que les fonctions différentibles dmettent une pproximtion, en un point x donné, pr une fonction polynomile : c est l fmeuse formule de Tylor f(x + h) = f(x ) + f (x )h + 2 f (x )h k! f (k) (x )h k + R k (x, h). Le point essentiel du théorème de Tylor est de fournir un bon contrôle du terme reste R k (x, h) (que l on peut écrire sous forme d une intégrle, ou sous d utres formes). En clcul différentiel, on s intéresse principlement u comportement de ce terme qund h tend vers : s contribution (pour k fixé) est négligeble envers les utres termes qui sont polynomiles en h, insi f est pprochée, u voisinge de x, pr le polynôme p(h) = + h + 2 h k h k, vec i = i! f (i) (x ). Une utre question importnte concerne le comportement du terme reste qund k tend vers l infini (et h et x restent fixés). Les fonctions nlytiques sont précisément celles pour lesquelles le terme reste tend vers :.. Définition. Une fonction f : I R définie sur un intervlle I est dite nlytique si elle est de clsse C et si, pour tout x I, et pour tout h dns un voisinge de, on lim R k(x, h) =. k On écrit lors f(x) = i= i(x x ) i (vec i = i! f (i) (x )), pour x u voisinge de x. Cette dernière écriture suggère un utre point de vue :.2. Définition. Une série entière convergente est l donnée d une suite,,... telle que, pour tout x dns un voisinge de, l limite suivnte existe j= j x j := lim k k j x j. j=

2 Un vntge de cette définition est qu elle un sens tout ussi bien pour les nombres complexes que réelles. On peut lors démontrer l équivlence suivnte :.3. Théorème. Pour une fonction f : I R sont équivlents : () f est nlytique ; (2) pour tout x I, il existe une série entière convergente telle que, u voisinge de x, f(x) = j (x x ) j. j= Comme dit ci-dessus, l vntge de l formultion (2) est qu elle un sens ussi bien pour une fonction f : U C définie sur un ouvert U de C. On dit lors que f est (complexe) nlytique. Un objectif principl du cours ser l étude des séries entières et des fonctions nlytiques. On montrer que prtiquement toutes les fonctions élémentires sont en effet nlytiques, ce qui permettr de les définir et étudier de fçon rigoureuse, non seulement sur les domines réelles, mis ussi sur des domines complexes..4.exemple. Supposons qu il existe une fonction nlytique telle que f = f et f() =. Alors, pr récurrence, on f (k) = f pour tout k, et donc les coefficients de Tylor de f u point x = sont k = f (k) () =, et insi f est donnée pr l série entière k! k! f(x) = j= j! xj. Nous llons montrer que cette formule définit en effet une fonction nlytique, l fonction exponentielle c est l fonction l plus importnte en mthémtiques. De fçon similire on étudier d utres fonctions élémentires. Voici une liste de telles fonctions et de leurs séries entières : exp(x) = sin(x) = cos(x) = sh(x) = ch(x) = log( + x) = ( + x) α = j= j= j= j= j! xj ( ) j (2j + )! x2j+ ( ) j (2j)! x2j (2j + )! x2j+ j= (2j)! x2j j= ( ) j j + xj+ = x x2 2 + x j= ( ) ( ) α α x j α(α ) (α j + ) où = j j j! 2

3 Pour toutes ces formules, il fut bien vérifier pour quels x R, resp. pour quels x C, elles sont vlbles. Afin de définir des fonctions nlytiques un peu moins élémentires, nous urons besoin d intégrles générlisées (qui portent sur des intervlles quelconques), comme pr exemple Γ(z) := qui définit l importnte fonction Gmm. t z e t dt Il ne fut ps croire que toute fonction différentible est nlytique : les exemples suivnts donnent des contre-exemples (cf. TD)..5. Exemple. L fonction f : R R, f(x) := { x si x > si x est de clsse C (= continue), mis non de clsse C. L fonction f : R R, f(x) := { x 2 si x > si x est de clsse C, mis non de clsse C 2, etc. Exercice : l fonction f : R R, f(x) := { e x si x > si x est de clsse C, mis non C ω (on écrit C ω pour l clsse des fonctions nlytiques). Ainsi l chine d inclusions de clsses C C C 2... C C ω est stricte. Un utre point de vue sur les fonctions nlytiques consiste à remplcer les monômes f n (x) = x n, qui pprissent dns le développement n nx n, pr d utres fonctions f n, pr exemple pr d utres polynômes, ou pr des fonctions trigonométriques comme f n (x) = sin(nx). Ce dernier choix est prticulièrement dpté us fonctions périodiques, et il mène à l notion de séries de Fourier que nous llons étudier à l fin du cours. Chpitre 2 : Séries notions de bse 2.. Définition. Une série numérique (réelle ou complexe), de terme générl u n, est une suite (S n ) n N, de l forme n S n = u k. k= On dit qu elle est convergente si l suite (S n ) converge u sens usuel, et dns ce cs on écrit u k := lim S n. n k= 2.2. Exemple : l série géométrique. Soit h C et u n = h n. On sit qu lors S n = + h h n = hn+ h, 3

4 et cette suite converge ssi h <, et dns ce cs s limite est k= hk = lim S n = h Exemple : l série hrmonique. Soit u =, u n = n. Alors l série n u n ne converge ps (elle diverge). En effet, les sommes } {{ 4} } {{ 8} } {{ 6} 2/4 4/8 8/6 ne sont ps bornées, donc ne définissent ps une suite convergente (nous encourgeons le lecteur de fire une similtion numérique du tbleu (n, S n )) Exemple : l série hrmonique lternée. Soit u =, u n = ( ) n+. Alors l série n n u n converge (exercice ; pproche systémtique plus trd) Exemple : les sommes télescopiques. Soit b n une suite quelconque et u := b et u n := b n b n si n. Alors S n = b + (b b ) + (b 2 b ) (b n b n ) = b n, et insi l suite b n converge ssi l série k u k converge. Plus générlement, cet exemple montre que toute suite numérique peut être vue comme une série, et réciproquement : il s git u fond du même objet. Ainsi, les preuves des résultts suivnts sont simplement des ré-interpréttions de resultts connus pour les suites : 2.6. Théorème (Critère de Cuchy pour les séries). Une série (réelle ou complexe) un converge si, et seulement si, pour tout ε >, il existe N N tel que pour tout m n N, m u k < ε. k=n Rppelons que l impliction non-trivile de ce théorème repose sur l complétude des nombres réels. Remrquons ussi que, si l série converge, pour m = n, il s ensuit que u n < ε, insi u n converge nécessirement vers. L exemple de l série hrmonique montre que l réciproque est fusse : n converge vers, mis n= diverge. n 2.7. Théorème (Somme et multiples). L somme n (u n + v n ) de deux séries convergentes n u n et n v n est convergente, et un multiple sclire n cu n d une série convergente est convergente. Pour les limites on (u k + v k ) = k= u k + v k, k= k= cu k = c u k. k= k= Ainsi V := {(u n ) n N n u n converge} est un espce vectoriel sur R, resp. sur C Théorème (Monotonie) Soit u n pour tout n. Alors l série n u n converge si, et seulement si, l suite des sommes prtielles S n = n k= u n est bornée Définition. Une série réelle ou complexe n u n est dite bsolument convergente si l série des vleurs bsolues u n converge. Exemple. L série hrmonique lternée converge, mis elle ne converge ps bsolument. 4

5 2.. Théorème (Convergence bsolue). Toute série bsolument convergente est convergente, et de plus on u n u n. 2.. Théorème (Comprison de séries). Soit c n une suite telle que c n converge. Si (u n ) n N est une suite réelle ou complexe telle que u n c n pour (presque) tout n N, lors n u n converge bsolument. Remrque. Le mot presque veut dire ici : à un nombre fini d exceptions près (on peut toujours modifier, rjouter ou enlever un nombre fini de termes dns une série sns chnger l nture convergente ou non de cette série!) Théorème ( Règle de Cuchy ). Soit (u n ) n N une suite réelle ou complexe. S il existe q R vec q < et C > tels que u n Cq n pour (presque) tout n N, lors l série n u n converge bsolument Théorème ( Règle de D Alembert ). Soit (u n ) n N une suite réelle ou complexe. S il existe q R vec q < tel que u n+ q u n pour (presque) tout n N, lors l série n u n converge bsolument Exemple. Soit u n =. Alors u n+ n! u n = n! = < q = /2 pour tout n > 2, (n+)! n+ donc l série n converge bsolument. L limite s ppelle le nombre d Euler, noté e. n! Clculer les sommes prtielles S, S 2, S 3,... à l ide d une clcultrice! Chpitre 3 : L fonction exponentielle Le lecteur oublier temporirement ses connissnces éventuelles sur l fonction exponentielle : motivé pr l exemple.4, nous llons l (re-)définir et étudier de fçon rigoureuse. 3.. Théorème (L série exponentielle). Pour tout x R et tout x C, l série n! xn converge bsolument. S limite est notée exp(x) ou e x. Remrque. À l pge on trouve une belle illustrtion montrnt comment les sommes prtielles S,..., S 8 pprochent e x Théorème (Éqution fonctionelle). Pour tout z, w C, e z+w = e z e w Corollire (Homomorphisme de groupes). Pour tout z C, e z e z =, insi e z. Les pplictions suivntes sont donc bien définies: exp C : C C, z e z, exp R : R R, t e t, et ce sont des homomorphismes de groupes (de (K, +) vers (K, ), où K = R ou C). Le théorème 3.2 est le résultt clé de ce chpitre. Pour le prouver, il fut multiplier les deux séries n n! zn et n n! wn, puis comprer le résultt vec n (z + n! w)n. Cette comprison repose sur des propriétés générles des séries bsolument convergentes que nous llons triter plus en détil dns le chpitre suivnt Théorème (Positivité de l exponentielle). Pour tout t R et z C, on exp(t) >, exp z = exp(z). 5

6 Exercice. Montrer que e x = lim n ( + x n )n Théorème (Dérivée de l exponentielle réelle). () L fonction exp R : R R est continue. (b) L fonction exp R : R R est différentible, et exp = exp. (c) L fonction exp R : R R est de clsse C et exp (k) = exp. L preuve repose de fçon essentielle sur l éqution fonctionelle, et elle donne une excellente occsion de revoir les définitions d une fonction continue et d une fonction différentible. De plus, les mêmes rguments montrent: 3.6. Théorème (Dérivée de l exponentielle complexe). () L fonction exp C : C C est continue. (b) L fonction f := exp C : C C est C-différentible (on dit ussi : holomorphe) u sens suivnt : pour tout z C, l limite f (z) := f(z + w) f(z) lim C w,w w existe, et vec cette définition, on (exp C ) (z) = exp C (z) Corollire. L fonction exp R : R R + est monotone et bijective. Attention : on verr plus trd que exp C : C C est surjective, mis non injective Théorème (Solution d éqution différentielle). Soient, c R. Alors il existe une unique fonction différentible f : R R telle que f = f et f() = c, à svoir f(x) = ce x. L exponentielle mtricielle. L exponentielle réelle ou complexe dmet plusieures générlistions importntes, souvent liées à des équtions différentielles ordinires Théorème (Exponentielle d une mtrice). Soit A M(m, m; R) une mtrice crrée. Alors chque coefficient (S n ) ij de l suite de mtrices S n := n k= k! Ak est une série bsolument convergente, et insi l limite e A := A k k= existe dns k! M(m, m; R). Si AB = BA (i.e., A et B commutent), lors e A+B = e A e B. En prticulier, e A e A = m (mtrice unité), et insi l mtrice e A est inversible vec mtrice inverse e A. L ppliction exp : M(m, m; R) GL(m, R), A e A est donc bien définie. Pour comprendre l exponentielle mtricielle, il est indispensble de clculer e A pour quelques exmples de mtrices prticulières (pr exemple, digonles, tringulires, etc. cf. TD). 6

7 Chpitre 4 : Séries bsolument convergentes En générl, il fut être prudent en effectunt une opértion qui consiste à intervertir deux limites. Heureusement, pour les séries bsolument convergentes, prtiquement toutes ces opértions sont licites : 4.. Théorème (Permuttion d indices). Soit u n une série (réelle ou complexe) bsolument convergente, et soit σ : N N une permuttion (i.e., une bijection). Alors l série u σ(n) est, elle ussi, bsolument convergente, et les deux limites coïncident Remrque. Si l série est convergente, mis ps bsolument convergente (i.e., semi-convergente), le résultt devient fux (cf. TD). On peut même montrer que, dns ce cs, et si K = R, n importe quel nombre réel r peut être tteint comme limite u σ(n) pour une permuttion convenble Définition. Rppelons qu un ensemble I est dit dénombrble s il existe un dénombrement, i.e., une bijection φ : N I. Si φ : N I est un utre dénombrement, lors σ := φ φ est une permuttion de N. Ainsi, si (u i ) i I est une fmille de nombres réels ou complexes indexée pr I, l série i= u φ(i) converge bsolument si, et seulement si, c est le cs de i= u φ (i). Nous écrivons lors i I u i pour s limite, et nous dirons que l série i I u i converge bsolument. Rppelons ussi que N N (l ensemble des points à coordonnées entières non-négtives dns le pln) est dénombrble. Essentiellement, choisir un dénombrement revient à choisir une fmille A A A 2... de prties finies de N N qui est exhustive (i.e., pour tout (i, j) N N, il existe k N tel que (i, j) A k ; représenter plusieurs tel choix grphiquement!). Une fmille de nombres réels ou complexes (u n,m ) (n,m) N N indexée pr N N s ppelle une suite double Théorème (Théorème de Fubini pour les séries doubles). Soit (u n,m ) (n,m) N N une suite double. Alors sont équivlentes : () L série double (m,n) N N u n,m converge bsolument vers une limite L; (2) pour tout n N fixé, l série m= u n,m converge vers une limite notée A n, et l série A n converge (lors les limites n = m= u n,m et S := n existent); (3) pour tout m N fixé, l série u n,m converge vers une limite notée B m, et l série m= B m converge (lors les limites m = u n,m et S := m= b m existent). Si ces propriétés sont vérifiées, lors les trois limites coïncident : L = S = S, i.e., (m,n) N N u n,m = ( u n,m ) = m= ( u n,m ). Ce résultt est à voir en nlogie vec l importnt théorème de Fubini en théorie d intégrtion, qui dit que (sous une hypothèse de convergence) ( f(, b) ddb = f(, b) db ) ( d = f(, b) d ) db. m= A B A B B A 7

8 Attention : pour une série double semi-convergente, comme pr exemple de terme générl u n,m =, les limites dns (2) et (3) peuvent exister sns être égles (ou encore, l une m 2 n 2 existe, mis non l utre) Théorème (Produit de séries bsolument convergentes). Soient n u n et n v n deux séries bsolument convergentes, et posons w n := n k= u kv n k. Alors l série n w n converge bsolument, et s limite est w n = ( u n ) ( v n ). Pour l preuve, il suffit d ppliquer le théorème de Fubini à l suite double u n,m := u n v m, en utilisnt un dénombrement φ : N N N, n (φ (n), φ 2 (n)) ynt l propriété que n n implique φ (n) + φ 2 (n) φ (n ) + φ 2 (n ). Finlement, dns le cs prticulier u n = x n!, v m = y m!, ce théorème ensemble vec l formule du binôme pour (x + y)n nous donne l éqution fonctionelle e x+y = e x e y. Chpitre 5 : Les fonctions hyperboliques et trigonométriques A. Fonctions hyperboliques. Heuristique. Ces fonctions sont des solutions de l éqution différentielle f = f. Si on pose g := f, l condition f = f est équivlente ux deux conditions f = g } g. = f 5.. Théorème (Solution de f = f). Soient, b R. Alors il existe une unique fonction f : R R de clsse C 2 telle que f = f et f() =, f () = b, à svoir f(x) = + b 2 ex + b 2 e x. Preuve. Unicité : étnt donnée f, poser φ := f + f et ψ = f f. Alors φ = f + f = f + f = φ, φ() = + b, et ψ = ψ, ψ() = b. Le théorème 3.8 implique que φ(x) = ( + b)e x et ψ(x) = ( b)e x, ce qui donne f comme dns l énoncé. Existence : vérifiction immédite! 5.2. Définition. Les fonctions sinus hyperbolique et cosinus hyperbolique sont définies pr sh : C C, sh(x) := ex e x, ch : C C, ch(x) := ex + e x Théorème. Les fonctions sh et ch sont données pr les séries sh(x) = j= (2j + )! x2j+, ch(x) = j= (2j)! x2j qui convergent bsolument pour tout x C, elles sont C-différentibles et elles stisfont le système d équtions différentielles ch = sh, sh = ch vec condition initile ch() =, sh() =. Remrque : les règles bsiques du clcul différentiel sur C sont les mêmes que sur R, pr exemple, (f + g) = f + g, (f g) (x) = f (g(x))g (x), etc., de sorte que les équtions ch = sh et ch = sh sont bien vérifiées sur C. 8

9 Étude des fonctions ch et sh sur R : sh est impire, monotone, et bijective R R ; ch est pire, et s restriction à R + (resp. à R ) est monotone et bijective R ± [, [. B. Fonctions trigonométriques. Heuristique. L éqution différentielle f = f joue un rôle fondmentl en physique cr elle décrit l oscillteur hrmonique. Elle équivut u système f = g } g. = f Mlheureusement, ucune des fonctions f(x) = e cx vec c R n en est une solution, insi on ne peut ps recopier l preuve donnée ci-dessus Théorème (Solution de f = f). Soient, b R. Alors il existe une unique fonction f : R R de clsse C 2 telle que f = f et f() =, f () = b. Preuve. Unicité. Si f et f 2 sont deux solutions, posons u := f f 2 et v := u. Alors v = u, u() =, v() =. On définit le wronskien de u, v pr w(t) := u (t)v(t) v (t)u(t) = v 2 (t) + u 2 (t). Alors w = 2vv + 2uu = 2uv 2uv =, insi w est constnte sur R. L constnte est = w() = v 2 () + u 2 () =, donc v 2 (t) + u 2 (t) = pour tout t, donc v(t) = = u(t), donc f = f 2. Existence. Le plus simple est d utiliser l exponentielle complexe : pour x R, l prtie réelle de e ix est cos(x) := eix +e ix = eix +e ix, et s prtie imginire 2 2 sin(x) := eix e ix. En utilisnt le théorème 3.6 (b), on trouve que sin = cos et cos = sin, 2i d où cos = cos, et comme cos() =, sin() =, f := cos +b sin est une solution Définition. Les fonctions sinus et cosinus sont définies pr sin : C C, x eix e ix 2i = i sh(ix), cos : C C, x eix + e ix 5.6. Théorème. Les fonctions sin et cos sont données pr les séries sin(x) = j= ( ) j (2j + )! x2j+, cos(x) = j= ( ) j (2j)! x2j 2 = ch(ix). qui convergent bsolument pour tout x C, et elles stisfont le système d équtions différentielles cos = sin, sin = cos vec condition initile cos() =, sin() =. Elles vérifient, pour tout x C, les reltions cos x + i sin x = e ix, cos 2 x + sin 2 x = Théorème. Pour tout t R, cos t et sin t sont réelles, et on R(e it ) = cos(t), I(e it ) = sin(t) et e it =. L ppliction Φ : R S := {z C z = }, t e it est un homomorphisme de groupes : Φ(t + s) = Φ(t) Φ(s), Φ() =. Nous llons déterminer le noyu de l homomorphisme Φ, ker Φ = {t R Φ(t) = } = {t R e it = } = {t R cos t =, sin t = }, 9

10 et en déduire l périodicité des fonctions sin et cos. Le lecteur est prié d oublier temporirement ses connissnces sur l décomposition polire des nombres complexes : celle-ci ser rigoureusement étblie en même temps. On n dmetter que les fits bsiques sur C (écriture R ir, vleur bsolue donnée pr z = z z). Avnt tout, nous devons donner une définition rigoureuse du nombre π! Nous suivons ici l définition l plus cournte en nlyse (voir pour plus d informtion : ou encore, plus encyclopédique, le livre Autour du nombre pi pr Pierre Eymrd (un éminent mthémticien nncéin) et Jen-Pierre Lfon, éd. Hermnn, Pris 999, ISBN : ) Lemme. Il existe un unique nombre ρ ], 2[ tel que cos(ρ) =. On peut donner plusieurs preuves différentes : l une consiste en une mnipultion directe des séries de sin et de cos pour montrer que sin(t) > pour tout t ], 2] et que cos(2) < ; on conclut lors en utilisnt le théorème des vleurs intermédiires et un rgument de monotonie. De plus, l reltion cos 2 ρ + sin 2 ρ = implique lors que sin(ρ) =, et donc e iρ = i Définition. On pose π := 2ρ vec ρ comme dns le lemme. 5.. Définition. Une fonction f : R C est dite périodique (de période T ) si, pour tout t R, on f(t + T ) = f(t), et T est le plus petit nombre réel strictement positif vec cette propriété. 5.. Théorème. On e iπ = et e 2πi =. Le noyu de Φ est ker φ = {2πn n Z}, et les fonctions Φ, sin et cos sont périodiques de période 2π Théorème. Les pplictions suivntes sont bijectives : [, 2π[ S, t e it [, 2π[ R C, (t, r) e it e r {z C Iz < 2π} C, z e z. L homomorphisme exp C : C C est surjectif, et son noyu est 2πiZ. Il est mintennt fcile de déduire de ces résultts d utres propriétés élémentires, comme pr exemple les formules pour sin(z + w), cos(z + w), l formule cos(z + π 2 ) = sin( z), etc. On peut ussi montrer que l circonférence du cercle S, définie comme l longueur d rc de l rc [, 2π[ S, t e it, vut 2π. Ainsi les résultts bsiques de l géométrie élémentire sont mintennt étblies sur une bse nlytique rigoureuse. Chpitre 6 : Remrques sur les fonctions logrithme, puissnce, tngente Ces fonctions sont en lien étroit vec l exponentielle complexe, mis leur théorie est plus compliquée, dû u fit qu elles ne peuvent ps être définies sur C tout entier. Elles peuvent être étudiées à l ide de séries, mis ces séries ne convergent plus pour tout z C. Nous llons donc compléter l étude de ces fonctions plus trd, près voir développé l théorie générle des fonctions nlytiques. A. Le logrithme. Rppelons l définition connue dns le cs réel : 6.. Définition. L fonction réciproque de l fonction bijective exp R : R R + s ppelle le logrithme réel, notée log := log R : R + R.

11 Qu en est-il sur C? Comme exp C : C C n est ps une bijection, l définition d une fonction réciproque pose un problème. Nous pouvons élborer le théorème 5.2 pour définir un logrithme sur une prtie de C, mis le choix de cette prtie reste rbitrire : 6.2. Définition. Soit φ [, 2π[. Le pln coupé (selon l ngle φ) est l prtie C φ := {w C w = re it, r >, t [, 2π[, t φ} Théorème et Définition. Pr restriction, l exponentielle définit une bijection {z C φ < Iz < φ + 2π} C φ, z e z. L ppliction réciproque, définie sur C φ, s ppelle un logrithme complexe. Elle ssocie à z C φ le nombre complexe log(z) = log R ( z ) + i rg(z), rg(z) ]φ, φ + 2π[. Comme le choix de φ est rbitrire (même si souvent on choisit φ = π : vleur principle ), nous n utilisons ps l rticle défini ( le logrithme). L question se pose lors si un logrithme complexe peut être décrit pr une série convergente. Revenons d bord u logrithme réel : un résultt connu de clcul différentiel dit que, comme exp R est différentible, lors l fonction réciproque log : R + R l est elle ussi, et que s dérivée est log (x) = exp (log(x) = exp(log(x)) = x. Pr récurrence on trouve (log) (k) (x) = ( ) k+ (k+)!. Ainsi le développement de Tylor x k u point x = est : log(x) = n k= ( ) k (k )! (x ) k + R n (x) = k! n ( ) k (x ) k + R n (x). k k= En utilisnt le règle de Cuchy, on voit que l série S(x) := ( ) k (x ) k ( x) k = k k k= k= converge si x <, mis pour x =, c est le négtif de l série hrmonique, qui diverge! Ceci indique encore une foix qu il n est ps possible de définir un logrithme sur C entier. B. L fonction puissnce. Rppelons, là ussi, l définition connue dns le cs réel : 6.4. Définition. Pour α R, l fonction puissnce est définie pr f α : R + R, x x α := e α log(x). Elle est différentible et vérifie f α = αf α,..., f (k) α f (k) α () k! = α(α ) (α k + ) k! = α(α )... (α k + )f α k, et = ( ) α k

12 est le coefficient binomil α sur k, et on ppelle série binomile (d exposnt α) l série k= ( ) α (x ) k. k Si x <, l série converge. Soit mintennt K = C et distinguons quelques cs : ) si α = n N, l série s rrète u rng n, et elle définit insi une fonction polynomile sur C tout entier, à svoir f n (z) = z n = ( + (z )) n ; b) si α =, l série binomile devient l série géométrique = x xn qui donne une série pour f α ( x), mis elle ne converge ps pour x = ; c) si α =, on sit qu il existe toujours deux rcines complexes de z C si z, et en 2 générl il n y ucun choix préféré de rcine. Un tel choix est toujours plus u moins rbitrire pr exemple, nous pouvons définir l vleur principle pour z C π : z α := exp C (α log(z)). Si α = n, on prend insi l rcine n-ième dont l rgument est compris entre π n et π n. C. L fonction tngente. Elle est définie pr tn(z) := sin(z) cos(z) pour tout z C tel que cos(z). Remrquons que cos(z) = ssi e iz = e iz, ssi e 2iz = = e πi, insi le théorème 5.2 implique que pour z C: cos(z) = z π 2 + Zπ. Ainsi l fonction tngente ne peut ps être définie sur C entier, et s il existe un développement en série, ce développement ne peut ps converger sur C tout entier. Motivé pr ces exemples, nous llons étudier l théorie générle de fonctions définies pr des séries qui convergent sur une prtie de C seulement. Chpitre 7 : Séries entières 7.. Définition. Une série entière (réelle ou complexe) est une série de l forme S(x) = k= k(x c) k, vec k K, où K = R, resp. K = C. On ppelle le point c K le centre de développement. Noter que les sommes prtielles S n (x) = n k= k(x c) k sont des polynômes Théorème (Ryon de convergence). Soit k= k(x c) k une série entière, et ρ := sup{t [, [: l suite ( k t k ) k N est bornée } [, ]. (i) Si x c < ρ, lors l série converge bsolument. (ii) si x c > ρ, lors l série diverge Définition. L quntité ρ := ρ S [, ] s ppelle le ryon de convergence de l série entière S, et l ensemble D S := {z C z c < ρ} 2

13 son disque de convergence (si K = R on prle d intervlle de convergence). Remrque : le théorème ne dit rien sur le comportement de l série sur le bord du disque de convergence (i.e., si z c = ρ). Voir le chpitre 9 à ce sujet Théorème (Formule de Hdmrd). Soit k= k(x c) k une série entière, et posons n σ := lim sup n [, ]. n Alors le ryon de convergence est donnée pr : ρ = si σ = ; ρ = si σ = ; ρ = σ sinon. Rppel. L limite supérieure d une suite réelle (c n ) n N est définie pr lim c ( n := lim sup c n := lim sup{ck : k n} ). n n n De fçon nlogue, on définit l limite inférieure ; lors on un encdrement de tous les points d ccumultion de l suite entre ces deux limites. Exemples. En prtique, on utilise souvent le critère suivnt : si l := lim n n+ n existe, lors σ = l. Ainsi, on trouve fcilement : le ryon de convergence de l série ( ) k k= (x ) k et celui de l série binomile est, celui des séries exp, sin, cos est k, celui de n n!xn est. Nous llons montrer que, sur son disque ou intervlle de convergence, une série entière toujours d excellentes propriétés : continuité, différentibilité, etc. Les preuves sont essentiellement les mêmes que celles déj utilisées dns le cs de l exponentielle ; techniquement, elles sont un peu plus compliquées, dû u fit qu on ne dispose plus d éqution fonctionnelle, et qu il fut préciser sous quelles conditions les séries convergent. Pour simplifier les énoncés suivnts, nous llons supposer que c = ; le cs générl s en déduit lors pr trnsltion. Voici l idée pour montrer que l fonction S(x) = n nx n est différentible dns son disque de convergence : on développe le quotient de différences S(x + h) S(x) h = n n(x + h) n n nx n, h on simplifie le nominteur, on le fctorise pr h, on simplifie vec le dénominteur ; près, on peut psser sns problème à l limite. L étpe crucile ici est le développement de S(x + h), qui fit l objet du résultt suivnt : 7.5. Théorème (Chngement du centre de développement). Soit S = n nx n une série entière de ryon de convergence ρ > et soit D S son disque de convergence. Alors, pour x D S fixé, l fonction h S(x + h) = b n h n est donnée pr une série S(h) = n b nh n dont le ryon de convergence est supérieur ou égl à ρ x (qui est positif). Les coefficients b n sont obtenus pr le développement de S(x + h) en puissnces de h ; en prticulier, on trouve que b = S(x) et b = n= n nx n. 3

14 L preuve utilise le théorème de Fubini (thm. 4.4) pour justifier le développement S(x + h) = n (x + h) n = k= n ( ) n n h k x n k = k k= h k n=k n ( n k ) x n k Théorème ( Dérivbilitée terme à terme ). Soit S = n nx n une série entière et D S son disque de convergence. Alors l fonction S : D S C est de clsse C (u sens usuel, si K = R, et u sens commplexe-différentible, si K = C). L dérivée k-ième est donnée, pour tout x D S, pr l série bsolument convergente S (k) (x) := n(n )... (n k + ) n x n k. n=k L preuve est simple en utilisnt le théorème 7.5. : pour h, S(x + h) S(x) h = S(h) S() h = b h + b 2 h h = b + b 2 h + b 3 h et on montre fcilement que lim h n= b nh n existe et vut b. Ainsi S est différentible vec dérivée S = S () ; l série de (S ) = S (2) s en déduit, etc. (récurrence) Corollire. Avec les nottions du théorème, nous vons S (k) () = k! k, et insi k = S(k) (). Ainsi, si K = R, l série k! k kx k coïncide donc vec l série de Tylor usuelle de S (i.e., pour n, le terme reste R n (x) du développement de Tylor converge vers, pour tout x D S ) Corollire. Les coefficients k d une série entière convergente sont uniquement déterminés pr l fonction S : D S C : si n nx n = n c nx n pour x u voisinge de, lors n = c n pour tout n N. Exercice. L conclusion du corollire reste vrie si on suppose seulement n nx n k = n c nx n k pour une suite x k vec x k et lim k x k =. Ainsi, comme pour les fonctions polynomiles, on peut déduire pr comprison des fonctions que les coefficients sont les mêmes. Ceci donne lieu à des reltions intéressntes (pr exemple, en ppliqunt à l fonction puissnce (ci-dessous), le théorème de Vndermonde : pour tout, b C, n k= ( ) ( ) b = k n k ( ) + b n ou des reltions concernnt l célèbre suite de Fiboncci) Corollire. Soit S = n nx n une série entière et D S son disque de convergence. Alors l fonction S : D S C dmet une primitive, i.e., une fonction f : D S C telle que f = S. Pr exemple, une primitive est donnée pr l série convergente f(x) = n n + xn+. On sit que, sur un intervlle réel, une primitive est unique à une constnte près. Il en est de même sur un disque complexe : 4

15 7.. Lemme. Soit B r (x ) = {z C z x < r} le disque de centre x et de ryon r >, et f : B r (x ) C une fonction holomorphe (C-différentible) telle que f (z) = pour tout z B r (x ). Alors f est constnte. L preuve consiste à se rmener u cs réel : d bord, en déclnt, on se rmène u cs x =. Ensuite, soit w B r (x ), et on pose γ(t) := f(tw) et u(t) := Rγ(t), v(t) := Iγ(t) pour t [, ]. Alors, pour h, l limite γ(t + h) γ(t) h = f(tw + hw) f(tw) h = w f(tw + hw) f(tw) hw existe cr f est C-différentible, et elle vut w f (tw) =. Il s ensuit que u (t) = et v (t) =, donc γ(t) est constnte = γ(), donc f(w) = f(), et f est constnte. Le lemme implique clirement que deux primitives de S sur D S se distinguent seulement pr une constnte. Ces résultts donnent une méthode simple pour développer des fonctions élémentires en une série, dès qu on connit l série de l dérivée, ou une éqution différentielle en lien vec l fonction en question : A. Le logrithme. L série géométrique S(z) := ( z)n converge pour tout z D = {z C z < }, et lors S(z) =. Ainsi f(z) := ( ) n +z n+ zn+ est une primitive de S. Or, l vleur principle du logrithme log : C π C donne une utre primitive : z log( + z), et comme f() = = log(), l unicité de l primitive sur D entrine que f(z) = log( + z), d où : 7.. Théorème. Pour tout x D = B (), on log( + x) = ( ) n n+ xn+ (série bsolument convergente), où log est l vleur principle définie sur le pln coupé C π. B. L ( fonction ) puissnce. Le procédé suit de près l exemple précédent : soit S α (x) := α x n n l série binomile. Elle converge bsolument pour x D. En clculnt S α(x) et en utilisnt des propriétés des coefficients binomiux, on trouve que ( + x)s α(x) = αs α (x). Or, l fonction f α (x) = x α stisfit l même éqution différentielle : ( + x)f α( + x) = αf α ( + x). Ainsi, si on pose F (x) := Sα(x), on trouve que F f α(+x) (x) = sur D, insi F est constnte ; cette constnte vut, d où finlement 7.2. Théorème. Pour tout x D = B (), on ( + x) α = ( ) α x n n (série bsolument convergente), où x α est l vleur principle définie sur C π. C. Les fonctions rctngente et rcsin. Soit K = R. On montre comme clssiquement que les fonctions tn :] π/2, π/2[ R et sin :] π/2, π/2[ ], [ sont bijectives, et que les fonctions réciproques, rctn et rcsin, fournissent des primitives de ( + x 2 ), 5

16 resp. de ( x 2 ) /2. En développnt ces dernières fonctions en séries (sur ], [ l série géométrique donne ( + x 2 ) = ( x2 ) n, et dns l utre cs on utilise l série binomile vec α = /2), et en intégrnt terme à terme, on trouve rctn(x) = ( ) n 2n + x2n+ = x 3 x3 + 5 x et similirement pour le développement de rcsin (sur ], [) ; cf. TD. On noter que, bien que l fonction rctn puisse être définie sur R entier, l série ne converge ps sur R tout entier. Pour K = C, ces séries convergent sur D, et on peut fire une étude plus fine pour montrer que, là ussi, elles définissent des fonctions réciproques à l tngente, resp. u sinus. Chpitre 8 : Fonctions nlytiques Une fonction nlytique est une function qui, loclement (i.e., u voisinge de chque point où elle est définie), est donnée pr une série entière convergente. Dns l suite, soit K = C ou R et f : U K une fonction définie sur une prtie ouverte U K. (Rppel : une prtie U K est dite ouverte si, pour tout x U, il existe ε > tel que le disque (resp. l intervlle) B ε (x ) = {x K x x < ε} pprtient à U. Exemples de prties ouvertes : U = B r (c) ; le pln coupé ; C.) 8.. Définition. Une fonction f : U K est dite K-nlytique (ou : de clsse C ω ) si, pour tout x U, il existe une série entière et r > tel que B r (x ) U et pour tout x B r (x ), cette série converge vers f(x) : f(x) = n (x x ) n. Les propriétés locles d une fonction nlytique f sont donc les mêmes que celles d une série entière convergente; pr exemple : 8.2. Théorème ( C ω C ). Toute fonction nlytique est de clsse C sur K. Nous vons vu (exemple.5) que l réciproque est fusse si K = R. Il se pose donc l question de svoir comment on peut reconnitre les fonctions C ω prmi les fonctions C voir remrques à l fin du chpitre Exemples. () L prtie C := C \ {} est ouverte dns C, et l fonction C C, x x est nlytique. En effet, soit x = c C. Alors on (vec ryon de convergence égl à c > ) : x = c + (x c) = c + x c c = c (x c c ) n = ( ) n c n+ ( x x ) n (2) L fonction exponentielle exp C est nlytique. En effet, pour obtenir le son développement pr rpport u centre c, on écrit exp C (x) = exp C (c + (x c)) = exp C (c) exp C (x c) = e c 6 n! (x c)n.

17 Exercice : procéder de fçon nloge pour sin, cos, sh, ch (en utilisnt leurs équtions fonctionnelles). (3) Le logrithme log π : C π C est nlytique. Remrquons d bord que le pln coupé C φ est ouvert dns C, insi pour tout x = c C φ il existe ε > (forcément ε < c ), tel que B ε (c) C φ. Ainsi on peut intégrer terme à terme le développement, centré en c, de donné ci-dessus. L constnte d intégrtion est déterminée en prennt l vleur de x l série u point x = c. Pr unicité de l primitive sur le disque B ε (c) (Lemme 7.), il s ensuit que log(x) = log R ( c ) + i rg(c) (x c) n+, rg(c) ]φ, φ + 2π[. n + c Le point crucil est, dns tous les cs, le chngement du centre du développement. En générl, c est une question délicte. Mis si U est un disque de convergence, le théorème 7.5 implique directement : 8.4. Théorème. Soit S(x) := n n(x c) n une série entière de ryon de convergence ρ >. Alors l fonction S : D S K est nlytique Exemples. () On retrouve le fit que exp, cos, sin sont nlytiques sur C (cr ρ = ). (2) Tout polynôme (= série entière finie) est nlytique sur C (cr ρ = ). (3) Le ryon de convergence de f(x) := n nlytique sur C. Pour x, elle vut ex. x (4) De même, on constte que l série f(x) := n (n+)! xn est ègl à. Cette fonction est donc ( ) n (2n+)! x2n définit une fonction nlytique sur C. Pour x, elle vut sin(x) x. (5) L fonction puissnce f α (z) = z α est nlytique dns le disque B (). Pour montrer qu elle est même nlytique dns le pln coupé C π, il fut trviller un peu plus. Commençons pr montrer que les produits, sommes, composées de fonctions nlytiques sont encore nlytiques : A. Sommes et multiples. Soient f, g : U K deux fonctions K-nlytiques et λ K. Alors les fonctions f + g : U K et λf : U K le sont ussi, et si f(x) = n n(x c) n, g(x) = n b b(x c) n, on (f + g)(x) = n ( n + b n )(x c) n et λf(x) = n λ n(x c) n. Ainsi les fonctions nlytiques forment un espce vectoriel sur K, noté C ω (U, K). B. Produits. Soient f, g comme ci-dessus. D près le théorème 4.5, le produit (prfois ppelé produit de Cuchy) (f g)(x) = n (x c) n b n (x c) n = c n (x c) n, c n = n k b n k, k= converge bsolument si c est le cs de chque fcteur. Ainsi le produit f g est nlytique. On dit ussi que l espce C ω (U, K) des fonctions K-nlytiques est une K-lgèbre. (Exercice : montrer que si f g =, lors f = et g = ; on dit que l lgèbre C ω (U) est intègre. Montrer ussi que ceci est en défut pour les fonctions C (R, R).) 7

18 C. Crrées, cubes,... Du point B on déduit que les fonctions f 2 = f f et f 3 = f 2 f, etc., sont nlytiques, et on le développement en série f k (x) = (k) n (x c) n, vec (k) n = (m,...,m k ): P k i= m i=k m mk. Remrquons que, si f(c) =, i.e., =, lors le plus bs terme de f k est d ordre k, et lors l somme porte en rélité sur n = k,...,. D. Composée (substitution). 8.6 Théorème (Composée de fonctions nlytiques). Soient f : U K et g : U K deux fonctions K-nlytiques telles que f(u) U. Alors l fonction g f : U K est K-nlytique. En effet, soit c U, f(x) = n n(x c) n, donc f(c) = =: d, et g(y) = n b n(y d) n, lors on développe, en utilisnt le théorème de Fubini (4.4), g(f(x)) = = = = = b k (f(x) d) k k= b k ( n (x c) n d) k k= b k ( n (x c) n ) k k= k= b k n= m=k (k) m (x c) m c m (x c) m vec c m = m= m j= b j (j) m Exemple : L fonction x α = e α log(x) est une composée des fonctions nlytiques f(x) = α log(x) et g(y) = e y, et elle est donc nlytique sur C π. E. Quotients Théorème (Quotient de fonctions nlytiques). Soient f, g : U K nlytiques et f(x) pour tout x U. Alors et sont nlytiques sur U. g(x) f(x) f(x) En effet, on vu que h(x) := est nlytique sur x K, et d près le théorème 8.6, h f(x) = est nlytique sur U, et donc g (x) = g(x) l est ussi. De plus, l f(x) f f(x) preuve donne le développement (nottions cf. point D, où h(x) = n ( x)n et c = d = ) f(x) = c l (x ) l, c l = l= l j= ( ) j (j) l. Cependnt, en prtique, on détermine souvent les coefficients de g f (x) = n c n(x c) n à prtir de f(x) = n n(x c) n et g(x) = n b n(x c) n pr comprison : b n (x c) n = n n c n (x c) n n (x c) n, 8 n

19 donc b n = n k= c k n k. Ceci donne un système tringulire d équtions c = b, c + c = b, c 2 + c + c 2 = b 2,... qu on peut résoudre de proche en proche pour trouver c, c, Exemples. () Toute frction rtionnelle p(x) (p, q polynômes) est nlytique (sur le domine de q(x) définition U = {z C q(z) }). On développer, pr exemple (exercice : TD), f(x) := x x = c 2 n x n en une série utour de x = : on trouve une reltion de récurrence remrquble pour les coefficients c n (suite de Fiboncci). En fctorisnt le polynôme q(x) = x x 2 = (x )(x b), on peut écrire f ussi sous l forme f(x) = c( ) vec une constnte x x b c, et en développnt ceci, on trouve une formule explicite pour c n, à svoir c n = ( ( + 5) n ( 5) ) n (2) L fonction tngente tn(x) = sin(x) cos(x) : elle est nlytique sur U = {z C z / π 2 + Zπ}. En écrivnt cos(x) tn(x) = sin(x), pr comprison on trouve les premiers coefficients (exercice : clculer les 2 coefficients suivnts) tn(x) = sin(x) cos(x) = x + 3 x x (3) Nous vons vu que l fonction f(x) = (n+)! xn = ex est nlytique sur C. Il x s ensuit que l fonction = x est nlytique sur C \ f(x) e x 2πiZ x. Soit = e x n c nx n son développement u voisinge de. On pose B n := n! c n (nombre de Bernoulli). Ainsi les coefficients B n sont déterminés pr (n + )! xn B n n! xn =. En fisnt le produit de Cuchy, et en multiplint pr n!, on obtient l formule de récurrence n ( ) n B n = B k k. k= On obtient insi B =, B = 2, B 2 = 6, B 3 =, B 4 = 3, B 5 =. On remrque que x e x + 2 = x ch(x/2) 2 sh(x/2), et pr un rgument de prité on déduit que B 2n+ = pour n. De plus, on obtient insi une formule explicite pour les coefficients du développement des fonctions x coth(x) et x cotn(x). Finlement, en utilisnt que tn(x) = cotn(x) 2cotn(2x), on en déduit que tn(x) = ( ) n 22n (2 2n )B 2n (2n)! 9 x 2n.

20 8.9. Compléments. Le sujet des fonctions nlytiques est riche et donne lieu à des développements mthémtiques plus vncés et qu on ne pourr ps triter dns ce cours pour en donner une idée, indiquons simplement quelques grndes lignes de ces théories. () Le rôle prticulier de l théorie complexe. L théorie complexe se distingue profondement de l théorie réelle pr le résultt suivnt : Toute fonction C-différentible de clsse C est nlytique. L preuve ser donnée dns le cours d nlyse complexe en L3. L nlogue de ce résultt pour K = R est fux puisqu il existent des fonctions différentibles, mis non R-nlytiques (exemple.5). Ainsi, pour K = C, il est très fcile de reconnitre des fonctions nlytiques : il suffit de démontrer qu une fonction est différentible. Pour K = R, c est plus difficile. On peut énoncer une condition suffisnte, qui découle directement de l formule de Tylor vec terme reste de Lgrnge : si f :] r, r[ R est une fonction de clsse C telle que les dérivées sont mjorées u sens suivnt : C, M R + : x ] r, r[, n N : f (n) (x) CM n, n! lors f est nlytique sur ] r, r[. On peut montrer que cette condition est ussi nécessire, cf. [AF]: Arnudières-Frysse, Cours de Mths 3, Thm. III.4.2. Il existe d utres critères, plus fciles à vérifier, pour ssurer qu une fonction est R-nlytique (Théorème de Bernstein sur les séries entières: cf. exercices dns [AF].). Une utre différence entre les cs réels et complexes concerne les domines de définition U : dns le cs réel il n y ps de vri lien entre le ryon de convergence et le domine de définition mximl de f (exemple : f(x) = = +x 2 n ( )n x 2n ). Dns le cs complexe, un tel lien existe : le disque de convergence est toujours le plus grnd disque sur lequel l fonction est encore nlytique (pour l exemple : il y des singulrités pour x = ±i, l fonction n est ps nlytique sur un disque de ryon > ). (2) Cs de plusieurs vribles. On peut définir des fonctions nlytiques de plusieurs vribles (réelles ou complexes). Pr exemple, l fonction exponentielle mtricielle exp : M(n, n; K) M(n, n; K) est lors nlytique, et de même l inversion mtricielle J : GL(n, K) M(n, n; K), X X = (E (E X)) = (E X) n. Plus générlement, on peut remplcer dns n importe quelle série entière n nx n l rgument x pr une mtrice crrée X, et étudier l convergence de l série insi obtenue. Cel donne lieu à un clcul fonctionnel ynt beucoup d pplictions. (3) Groupes d pplictions ; inversion locle. On peut montrer que, si U et U sont deux ouverts de K et si f : U U est bijective et nlytique, lors son ppliction inverse f : U U est églement nlytique (cf. [AF], Thm. III..5). Ainsi les pplictions bijectives et nlytiques f : U U forment un groupe pr rpport à l composition. En dmettnt ce résultt, il n est ps difficile de clculer les coefficients de f à prtir de ceux de f pr un lgorithme tringulire. Une forme explicite de cet lgorithme est connue sous le nom de théorème de Lgrnge-Bürmnn. De plus, il existe un critère simple pour décider si f est, loclement, u voisinge de x, une bijection : une condition nécessire est que f (x ), i.e.,. C est condition est ussi suffisnte : ceci est une version nlytique du théorème d inversion locle (cf. cours Clcul Différentiel en L3). 2

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

semestre 3 des Licences MISM annnée universitaire 2004-2005

semestre 3 des Licences MISM annnée universitaire 2004-2005 MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................

Plus en détail

Cours d Analyse IV Suites et Séries de fonctions

Cours d Analyse IV Suites et Séries de fonctions Université Clude Bernrd, Lyon I Licence Sciences, Technologies & Snté 43, boulevrd 11 novembre 1918 Spécilité Mthémtiques 69622 Villeurbnne cedex, Frnce L. Pujo-Menjouet pujo@mth.univ-lyon1.fr Cours d

Plus en détail

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3 Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville Théorème de Lx Milgrm Appliction u problème de Dirichlet pour l éqution de Sturm Liouville Résumé du cours de MEDP Mîtrise de mthémtiques 2000 2001 2001nov18 (medp-lx-milgrm.tex) Dns ce chpitre, on se

Plus en détail

Tout ce qu il faut savoir en math

Tout ce qu il faut savoir en math Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion

Plus en détail

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1 Grenoble INP Pgor 1ère nnée Exercices corrigés Anlyse numérique NB : Les exercices corrigés ici sont les exercices proposés durnt les sénces de cours. Les corrections données sont des corrections plus

Plus en détail

ANALYSE NUMERIQUE NON-LINEAIRE

ANALYSE NUMERIQUE NON-LINEAIRE Université de Metz Licence de Mthémtiques - 3ème nnée 1er semestre ANALYSE NUMERIQUE NON-LINEAIRE pr Rlph Chill Lbortoire de Mthémtiques et Applictions de Metz Année 010/11 1 Tble des mtières Chpitre

Plus en détail

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO Université Pris-Duphine DUMI2E UFR Mthémtiques de l décision Notes de cours Anlyse 2 Filippo SANTAMBROGIO Année 2008 2 Tble des mtières 1 Optimistion de fonctions continues et dérivbles 5 1.1 Continuité........................................

Plus en détail

Licence M.A.S.S. Cours d Analyse S4

Licence M.A.S.S. Cours d Analyse S4 Université Pris I, Pnthéon - Sorbonne Licence MASS Cours d Anlyse S4 Jen-Mrc Brdet (Université Pris 1, SAMM) UFR 27 et Equipe SAMM (Sttistique, Anlyse et Modélistion Multidisiplinire) Université Pnthéon-Sorbonne,

Plus en détail

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel COURS D ANALYSE Licence d Informtique, première nnée Lurent Michel Printemps 2010 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................

Plus en détail

Le Calcul Intégral. niveau maturité. Daniel Farquet

Le Calcul Intégral. niveau maturité. Daniel Farquet Le Clcul Intégrl niveu mturité Dniel Frquet Eté 8 Tble des mtières Introduction Intégrle indéfinie 3. Définitions et générlités................................ 3.. Déf. d une primitive..............................

Plus en détail

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique.

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique. C39211 Ecole Normle Supérieure de Cchn 61 venue du président Wilson 94230 CACHAN Concours d dmission en 3 ème nnée Informtique Session 2009 INFORMATIQUE 1 Durée : 5 heures «Aucun document n est utorisé»

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

Les règles de Descartes et de Budan Fourier

Les règles de Descartes et de Budan Fourier Ojectifs de ce chpitre Mthémtiques ssistées pr ordinteur Chpitre 4 : Rcines des polynômes réels et complexes Michel Eisermnn Mt49, DLST LS4, Année 8-9 www-fourierujf-grenolefr/ eiserm/cours # mo Document

Plus en détail

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Jen-Pierre Dedieu, Jen-Pierre Rymond ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Institut de Mthémtiques Université Pul Sbtier 31062 Toulouse cedex 09 jen-pierre.dedieu@mth.univ-toulouse.fr jen-pierre.rymond@mth.univ-toulouse.fr

Plus en détail

Préparation à l'examen écrit de maturité Mathématiques 2013

Préparation à l'examen écrit de maturité Mathématiques 2013 Wechter Loïc Mturité 2013 Mthémtiques Cours de M. Flcoz 2013 Préprtion à l'exmen écrit de mturité Mthémtiques 2013 1.Primitives et intégrles 1.1Primitives (CRM pp.77-80) Une primitive pourrit se définir

Plus en détail

MATHEMATIQUES GENERALES partim A

MATHEMATIQUES GENERALES partim A Fculté des Sciences MATHEMATIQUES GENERALES prtim A Première nnée de bchelier en Biologie, Chimie, Géogrphie, Géologie, Physique et Informtique, Philosophie Année cdémique 04-05 Frnçoise BASTIN Introduction

Plus en détail

gfaubert septembre 2010 1

gfaubert septembre 2010 1 Notes de cours Pour l e secondire Compiltion et/ou crétion Guyline Fuert Septemre 00 gfuert septemre 00 Géométrie------------------------------------------------------------------------------------------------------------------------

Plus en détail

Intégrale et primitives

Intégrale et primitives Chpitre 5 Intégrle et primitives 5. Ojetif On herhe dns e hpitre à onstruire l opérteur réiproue de l opérteur de dérivtion. Les deux uestions suivntes sont lors nturelles. Question : Soit f une pplition

Plus en détail

ESTIMER LA PRÉCISION DES MESURES

ESTIMER LA PRÉCISION DES MESURES ESTIMER LA PRÉCISION DES MESURES I. Précision d'une mesure directe Une mesure directe est une mesure lue sur un ppreil de mesure. Le résultt d'une mesure directe n'est jmis connu de fçon prfitement excte.

Plus en détail

STI2D Logique binaire SIN. L' Algèbre de BOOLE

STI2D Logique binaire SIN. L' Algèbre de BOOLE L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole.

Plus en détail

Module 2 : Déterminant d une matrice

Module 2 : Déterminant d une matrice L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté

Plus en détail

Chapitre VI Contraintes holonomiques

Chapitre VI Contraintes holonomiques 55 Chpitre VI Contrintes holonomiques Les contrintes isopérimétriques vues u chpitre précéent ne sont qu un eemple prticulier e contrintes sur les fonctions y e notre espce e fonctions missibles. Dns ce

Plus en détail

Chapitre 11 : L inductance

Chapitre 11 : L inductance Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Séquence 8. Probabilité : lois à densité. Sommaire

Séquence 8. Probabilité : lois à densité. Sommaire Séquence 8 Proilité : lois à densité Sommire. Prérequis 2. Lois de proilité à densité sur un intervlle 3. Lois uniformes 4. Lois exponentielles 5. Synthèse de l séquence Dns cette séquence, on introduit

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

GLMA201 - ALGÈBRE LINÉAIRE ET ANALYSE 2-2013-2014 CONTRÔLE CONTINU 2

GLMA201 - ALGÈBRE LINÉAIRE ET ANALYSE 2-2013-2014 CONTRÔLE CONTINU 2 GLMA -4 GLMA - ALGÈBRE LINÉAIRE ET ANALYSE - -4 CONTRÔLE CONTINU Durée : h Tout doument ou lultrie est interdit Il ser tenu ompte de l lrté et de l préision de l rédtion Il est importnt de justifier hune

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

Notes de révision : Automates et langages

Notes de révision : Automates et langages Préprtion à l grégtion de mthémtiques 2011 2012 Notes de révision : Automtes et lngges Benjmin MONMEGE et Sylvin SCHMITZ LSV, ENS Cchn & CNRS Version du 24 octore 2011 (r66m) CC Cretive Commons y-nc-s

Plus en détail

LANGAGES - GRAMMAIRES - AUTOMATES

LANGAGES - GRAMMAIRES - AUTOMATES LANGAGES - GRAMMAIRES - AUTOMATES Mrie-Pule Muller Version du 14 juillet 2005 Ce cours présente et met en oeuvre quelques méthodes mthémtiques pour l informtique théorique. Ces notions de bse pourront

Plus en détail

NOMBRES COMPLEXES. Exercice 1 :

NOMBRES COMPLEXES. Exercice 1 : Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1

Plus en détail

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à Intégration et probabilités 212-213 TD3 Intégration, théorèmes de convergence Corrigé xercice ayant été voué à être préparé xercice 1 (Mesure image). Soient (, A, µ) un espace mesuré, (F, B) un espace

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Techniques d analyse de circuits

Techniques d analyse de circuits Chpitre 3 Tehniques d nlyse de iruits Ce hpitre présente différentes méthodes d nlyse de iruits. Ces méthodes permettent de simplifier l nlyse de iruits ontennt plusieurs éléments. Bien qu on peut résoudre

Plus en détail

CAP PRO E SCHEMA : LE MOTEUR

CAP PRO E SCHEMA : LE MOTEUR CAP PRO E SCHEMA : E MOTEUR folio folio folio folio folio folio folio 7 folio 8 folio 9 plque signlétique d un moteur puissnce sorée pr un moteur plque à ornes d un moteur triphsé e couplge étoile e couplge

Plus en détail

Espaces vectoriels. Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires. 2MA01-Licence de Mathématiques

Espaces vectoriels. Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires. 2MA01-Licence de Mathématiques Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires 2MA01-Licence de Mathématiques Espaces vectoriels Exercice 1 Soit E un espace vectoriel. Pour x, y E et λ, µ K, montrer

Plus en détail

Systèmes logiques combinatoires

Systèmes logiques combinatoires «'enseignement devrit être insi : celui qui le reçoit le recueille comme un don inestimle mis jmis comme une contrinte pénile.» Alert Einstein Systèmes logiques comintoires Définitions. es vriles inires

Plus en détail

/HVV\VWqPHVFRPELQDWRLUHV

/HVV\VWqPHVFRPELQDWRLUHV /HVV\VWqPHVFRPELQDWRLUHV I. Définition On ppelle système combintoire tout système numérique dont les sorties sont exclusivement définies à prtir des vribles d entrée (Figure ). = f(x, x 2,,, x n ) x x

Plus en détail

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états.

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états. ciences Industrielles ystèmes comintoires Ppnicol Roert Lycée Jcques Amyot I - YTEME COMBINATOIRE A. Algère de Boole. Vriles logiques: Un signl réel est une grndeur physique en générl continue, on ssocie

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

AUTOUR D UN MÉMOIRE INÉDIT : LA CONTRIBUTION D HERMITE AU DÉVELOPPEMENT DE LA THÉORIE DES FONCTIONS ELLIPTIQUES. Bruno BELHOSTE (*)

AUTOUR D UN MÉMOIRE INÉDIT : LA CONTRIBUTION D HERMITE AU DÉVELOPPEMENT DE LA THÉORIE DES FONCTIONS ELLIPTIQUES. Bruno BELHOSTE (*) Revue d histoire des mthémtiques, 2 (1996), p. 1 66. AUTOUR D UN MÉMOIRE INÉDIT : LA CONTRIBUTION D HERMITE AU DÉVELOPPEMENT DE LA THÉORIE DES FONCTIONS ELLIPTIQUES Bruno BELHOSTE (*) RÉSUMÉ. Dns cet rticle,

Plus en détail

Théorie spectrale. Stéphane Maingot & David Manceau

Théorie spectrale. Stéphane Maingot & David Manceau Théorie spectrale Stéphane Maingot & David Manceau 2 Théorie spectrale 3 Table des matières Introduction 5 1 Spectre d un opérateur 7 1.1 Inversibilité d un opérateur........................... 7 1.2 Définitions

Plus en détail

Microéconomie de l Incertitude M1 Banque et Marchés Financiers

Microéconomie de l Incertitude M1 Banque et Marchés Financiers Microéconomie de l Incertitude M1 Bnque et Mrchés Finnciers Emmnuel DUGUET Notes de Cours, V1 2 1 Concepts de bse 5 1.1 Les loteries................................ 6 1.2 Le critère d espérnce mthémtique..................

Plus en détail

Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels

Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels Etb=MK2, Timbre=G430, TimbreDnsAdresse=Vri, Version=W2000/Chrte7, VersionTrvil=W2000/Chrte7 Direction des Études et Synthèses Économiques Déprtement des Comptes Ntionux Division des Comptes Trimestriels

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

Influence du milieu d étude sur l activité (suite) Inhibition et activation

Influence du milieu d étude sur l activité (suite) Inhibition et activation Influence du milieu d étude sur l ctivité (suite) Inhibition et ctivtion Influence de l tempérture Influence du ph 1 Influence de l tempérture Si on chuffe une préprtion enzymtique, l ctivité ugmente jusqu

Plus en détail

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour

Plus en détail

3 LES OUTILS DE DESCRIPTION D UNE FONCTION LOGIQUE

3 LES OUTILS DE DESCRIPTION D UNE FONCTION LOGIQUE 1GEN ciences et Techniques Industrielles Pge 1 sur 7 Automtique et Informtiques Appliquées Génie Énergétique Première 1 - LA VARIABLE BINAIRE L électrotechnique, l électronique et l mécnique étudient et

Plus en détail

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t 3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes

Plus en détail

Opérateurs non-bornés

Opérateurs non-bornés Master Mathématiques Analyse spectrale Chapitre 4. Opérateurs non-bornés 1 Domaine, graphe et fermeture Soit H un espace de Hilbert. On rappelle que H H est l espace de Hilbert H H muni du produit scalaire

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

SYSTEMES LOGIQUES LOGIQUE COMBINATOIRE

SYSTEMES LOGIQUES LOGIQUE COMBINATOIRE Ch.I Commnde des systèmes logiques ogique comintoire - p1 SYSTEMES OGIQUES OGIQUE COMBINATOIRE I Commnde des systèmes logiques 1. Structure des systèmes utomtisés Reprenons l structure étlie dns le cours

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Cours d Analyse I et II

Cours d Analyse I et II ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Cours d Analyse I et II Sections Microtechnique & Science et génie des matériaux Dr. Philippe Chabloz avril 23 Table des matières Sur les nombres. Les nombres

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Menu outils de navigation mennavi.htm

Menu outils de navigation mennavi.htm Pge de lncement index.htm Voici l représenttion schémtique de l structure du site Wllonie, toutes les crtes en mins... Pge d ccueil win.htm nevs générl menwin.htm À propos de l structure des données :

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Devoir de physique-chimie n 4bis (2H)

Devoir de physique-chimie n 4bis (2H) TS jn 2014 Devoir de physique-chimie n 4bis (2H) Nom:...... LES EXERIES SNT INDEPENDANTS ALULATRIE AUTRISEE PHYSIQUE : ETILE BINAIRE /20 1. Le télescope 8 Les 3 prties sont indépendntes. Document 1 : L

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

2.1 Comment implanter en C un reconnaisseur de mots? Aut2 q 0 q 1

2.1 Comment implanter en C un reconnaisseur de mots? Aut2 q 0 q 1 Lngges Automtes Non-déterminisme Grmmires Attiuées et Génértives Expressions régulières Correction Prtielle de Progrmmes Ceci n'est ps un cours de Lngge C++ 2.1 Comment implnter en C un reconnisseur de

Plus en détail

Sur certaines séries entières particulières

Sur certaines séries entières particulières ACTA ARITHMETICA XCII. 2) Sur certaines séries entières particulières par Hubert Delange Orsay). Introduction. Dans un exposé à la Conférence Internationale de Théorie des Nombres organisée à Zakopane

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

ANALYSE IV 29-06-2009. Informations. (5) Pour rendre l examen il faut signer une feuille de présence disponible avec les assistants responsables.

ANALYSE IV 29-06-2009. Informations. (5) Pour rendre l examen il faut signer une feuille de présence disponible avec les assistants responsables. EXAMEN CORRIGE ANALYSE IV 9-6-9 informations: http://cag.epfl.ch sections IN + SC Prénom : Nom : Sciper : Section : Informations () L épreuve a une durée de 3 heures et 45 minutes. () Les feuilles jaunes

Plus en détail

REGLEMENT DU CLASSEMENT NATIONAL

REGLEMENT DU CLASSEMENT NATIONAL REGLEMET DU CLASSEMET ATIOAL / Les règles indiquées ici sont celles utilisées pour clculer les ttributions de points de l sison -. I. PRICIPES DE BASE Le clssement ntionl de l F.F.B. est le seul uquel

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

Fonctions analytiques

Fonctions analytiques CHAPITRE Fonctions analytiques Les principaux résultats à retenir : soit U un ouvert de C et f : U C. f est analytique sur U si et seulement si f est développable en série entière au voisinage de chaque

Plus en détail

3- Les taux d'intérêt

3- Les taux d'intérêt 3- Les tux d'intérêt Mishkin (2007), Monnie, Bnque et mrchés finnciers, Person Eduction, ch. 4 et 6 Vernimmen (2005), Finnce d'entreprise, Dlloz, ch. 20 à 22 1- Mesurer les tux d'intérêt comprer les différents

Plus en détail

Devoir à la maison : correction

Devoir à la maison : correction Calcul différentiel 2 Sous-variétés : bilan Devoir à la maison : correction Exercice 1. Un exemple de sous-variété : les structures complexes Soit E un R-espace vectoriel. Montrer que la donnée d une structure

Plus en détail

La mesure de Lebesgue sur la droite réelle

La mesure de Lebesgue sur la droite réelle Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Leçon 6. Savoir compter

Leçon 6. Savoir compter Leçon 6. Savoir compter Cette leçon est une introduction aux questions de dénombrements. Il s agit, d une part, de compter certains objets mathématiques (éléments, parties, applications,...) et, d autre

Plus en détail

Turbine hydraulique Girard simplifiée pour faibles et très faibles puissances

Turbine hydraulique Girard simplifiée pour faibles et très faibles puissances Turbine hydrulique Girrd simplifiée pour fibles et très fibles puissnces Prof. Ing. Zoltàn Hosszuréty, DrSc. Professeur à l'université technique de Kosice Les sites hydruliques disposnt de fibles débits

Plus en détail

Suites numériques 4. 1 Autres recettes pour calculer les limites

Suites numériques 4. 1 Autres recettes pour calculer les limites Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Corrigé de l examen partiel du 30 Octobre 2009 L2 Maths

Corrigé de l examen partiel du 30 Octobre 2009 L2 Maths Corrigé de l examen partiel du 30 Octobre 009 L Maths (a) Rappelons d abord le résultat suivant : Théorème 0.. Densité de Q dans R. QUESTIONS DE COURS. Preuve. Il nous faut nous montrer que tout réel est

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Séries de Fourier. T f (x) exp 2iπn x T dx, n Z. T/2 f (x) cos ( ) f (x) dx a n (f) = 2 T. f (x) cos 2πn x )

Séries de Fourier. T f (x) exp 2iπn x T dx, n Z. T/2 f (x) cos ( ) f (x) dx a n (f) = 2 T. f (x) cos 2πn x ) Séries de Fourier Les séries de Fourier constituent un outil fondamental de la théorie du signal. Il donne lieu à des prolongements et des extensions nombreux. Les séries de Fourier permettent à la fois

Plus en détail

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Groupe symétrique. Chapitre II. 1 Définitions et généralités Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Détermination des épaisseurs Formule générale

Détermination des épaisseurs Formule générale Formule générle Hors le cs des vitrges pour le bâtiment, trité pr l NF DTU 39 P4, on peut clculer à l ide des formules de Timoshenko : - l épisseur minimle à donner ux vitrges plns monolithiques soumis

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

Université Joseph Fourier MAT231 2008-2009

Université Joseph Fourier MAT231 2008-2009 Université Joseph Fourier MAT231 2008-2009 mat231-exo-03.tex (29 septembre 2008) Feuille d exercices n o 3 Exercice 3.1 Soit K un corps commutatif et soit {P 0, P 1,... P n } une famille de polynômes de

Plus en détail