Théorème de Poincaré - Formule de Green-Riemann

Dimension: px
Commencer à balayer dès la page:

Download "Théorème de Poincaré - Formule de Green-Riemann"

Transcription

1 Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler lorsqu elles sont exctes. Le théorème de Poincré v nous donner un critère reltivement simple pour s ssurer qu une forme est excte. Toujours à l proposition 1.16, on commencé à générliser le théorème fondmentl de l nlyse en exprimnt l intégrle le long d une courbe γ d une forme différentielle ω en fonction des vleurs d une primitive de ω sur le bord de γ. L formule de Green-Riemnn est une générlistion en dimension 2 de ce résultt. Plus précisément, on v exprimer l intégrle d une fonction sur un ouvert simple de R 2 en fonction de l intégrle d une certine forme différentielle ω qui ser une primitive, en un sens à préciser) sur le bord de qui est une courbe) Dérivée extérieure d une 1-forme On commence pr introduire l dérivée d une 1-forme sur un ouvert de R 2 on verr u chpitre suivnt comment cel se générlise en dimension supérieure). Plus générlement, on définit dns ce prgrphe les 2-formes différentielles. Définition On note dx dy l ppliction { R dx dy : 2 ) 2 R u, v) u 1 v 2 u 2 v 1 detu, v) où on noté u u 1, u 2 ) et v v 1, v 2 ). Plus générlement, si ϕ 1 et ϕ 2 sont deux formes linéires sur R 2, on note ϕ 1 ϕ 2 l ppliction qui u couple u, v) R 2 ) 2 ssocie le réel ϕ 1 u)ϕ 2 v) ϕ 2 u)ϕ 1 v). Remrque En prticulier on dx dx, dy dy et dy dx dx dy. Définition Soit U un ouvert de R 2. On ppelle 2-forme différentielle de clsse C k une ppliction de l forme ω : x, y) fx, y) dx dy, où f est une ppliction de clsse C k de U dns R. ω est en prticulier une ppliction de clsse C k de U dns l espce des formes bilinéires sur R 2. Définition Soient U un ouvert de R 2 et ω fx, y) dx dy une 2-forme continue sur U. Lorsque cel un sens on note ω fx, y) dx dy. U U 75

2 L2 Prcours Spécil - Clcul différentiel et intégrl Définition Soit ω P x, y) dx + Qx, y) dy une 1-forme sur un ouvert U de R 2. On ppelle dérivée extérieure de ω sur U l 2-forme ) Q P dω x, y) x, y) dx dy. Remrque On en fit dω dp dx + dq dy. Exemple Si ω cosx + y) dx + x 2 y dy lors dω 2xy + sinx + y) ) dx dy. Définition On dit que l 1-forme différentielle ω est fermée sur U si dω sur U. Si on note ω P x, y) dx + Qx, y) dy lors ω est fermée sur U si et seulement si pour tout x, y) U on Q P x, y) U, x, y) x, y) Théorème de Poincré Soit U un ouvert de R 2. On fit mintennt le lien entre les 1-formes exctes utiles en prtique) et les 1-formes fermées propriété fcile à vérifier pr un simple clcul de dérivée). Proposition Une 1-forme excte de clsse C 1 sur U est fermée sur U. Démonstrtion. Soit ω P x, y) dx + Qx, y) dy une 1-forme excte sur U. Il existe une fonction f différentible telle que pour tout x, y) U on f x, y) P x, y) et f x, y) Qx, y). Comme P et Q sont de clsse C 1 sur U, f est en fit une fonction de clsse C 2. Pour tout x, y) U on lors pr le théorème de Schwrtz Cel prouve que dω. Q f x, y) x, y) f P x, y) x, y). Bien sûr, il serit plus intéressnt de montrer l contrposée, à svoir qu une forme fermée est excte. Ce n est mlheureusement ps vri en générl, mis le théorème de Poincré nous ssure que c est vri dès que l ouvert U est étoilé : Définition On dit de l ouvert U qu il est étoilé s il existe U tel que pour tout w U on [, w] U. On rppelle que [, w] est pr définition l ensemble {t + 1 t)w, t [, 1]}. Exemples R 2 est un ouvert étoilé de R 2. Une prtie convexe de R 2 est étoilée. L ouvert R 2 \ {, } n est ps étoilé. Théorème Théorème de Poincré). On suppose que U est un ouvert étoilé. Alors toute 1-forme différentielle fermée de clsse C 1 sur U est excte. Démonstrtion. On suppose que l ouvert U est étoilé pr rpport u point, b) et on considère une forme ω fermée sur U. Pour x, y) U on considère l courbe prmétrée { [, 1] U γ x,y : t + tx ), b + ty b)) 76 J. Royer - Université Toulouse 3

3 Théorème de Poincré - Formule de Green-Riemnn Figure 11.1 Domines convexe et donc étoilé, étoilé mis ps convexe et non étoilé. puis on pose fx, y) ω. γ x,y Notnt ω P x, y) dx + Qx, y) dy cel donne fx, y) 1 P γx,y t))x ) + Qγ x,y t))y b) ) dt. Soit x, y ) U. Il existe un voisinge V de x dns R tel que x, y ) pprtient à V pour tout x V, et donc γ x,y t) U pour tous x V et t [, 1]. L ppliction t, x) P γ x,y t))x ) + Qγ x,y t))y b) ) est de clsse C 1 sur [, 1] V et s dérivée prtielle pr rpport à x est donnée pr P P γ x,y t)) + t γx,y t) ) x ) + Q γx,y t) ) ) y b). Pr le théorème de dérivtion sous l intégrle, on obtient que f est dérivble pr rpport à x et f 1 1 P x, y ) P γ x,y t)) dt+ t γx,y t) ) x ) + Q γx,y t) ) ) y b) dt. Soit x, y) U. Pour t [, 1] on note gt) P γ x,y t)). g est de clsse C 1 et pour t [, 1] on g t) P γx,y t) ) x ) + P γx,y t) ) y b). Comme ω est fermée, on églement Ainsi f x, y) g t) P 1 γx,y t) ) x ) + Q γx,y t) ) y b). gt) + tg t) ) dt 1 d ) tgt) dt g1) P x, y). dt De l même fçon on montre que f est dérivble pr rpport à y sur U et pour tout x, y) U on f x, y) Qx, y). Cel prouve que En prticulier ω est une forme excte. df P x, y) dx + Qx, y) dy ω. Année

4 L2 Prcours Spécil - Clcul différentiel et intégrl Remrque On note qu on obtient en outre une expression explicite pour une primitive. Exemple Attention, l forme différentielle ω x x 2 + y 2 dy y x 2 + y 2 dx. est fermée mis n est ps excte sur R 2 \ {, )} Formule de Green-Riemnn On dir qu un ouvert bornée de R 2 un bord C 1 pr morceux si s frontière est union finie de supports de courbes γ i pour i 1, N vec N N) fermées, simples, et C 1 pr morceux. On dir que est orienté de sorte que soit à s guche si pour tout i 1, N et lorsque t croit, le point γ i t) «se déplce en lissnt à s guche». Cel signifie qu en tout point γ i t), l bse ν, γ i t)) est directe, où ν est un vecteur norml sortnt u point γ i t). Figure 11.2 Orienttion du bord d un ouvert de R 2. Si U est un ouvert contennt l dhérence de et ω est une 1-forme continue sur U, on note lors N ω ω. γ i i1 On considère mintennt un ouvert élémentire de R 2 : { x, y) R 2 < x < b, ϕ 1 x) < y < ϕ 2 x) } { x, y) R 2 c < y < d, ψ 1 y) < x < ψ 2 y) }, vec < b, c < d, ϕ 1 et ϕ 2 sont C 1 pr morceux sur [, b], ψ 1 et ψ 2 sont C 1 pr morceux sur [c, d], et on ϕ 1 ϕ 2 et ψ 1 ψ 2. Lemme Soit P x, y) dx et Qx, y) dy deux 1-formes continues sur un ouvert U contennt. Alors on b P x, y) dx P t, ϕ1 t)) P t, ϕ 2 t)) ) dt et Qx, y) dy d c Qt, ψ1 t)) + Qt, ψ 2 t)) ) dt. Démonstrtion. On montre l première églité. L deuxième se montre de fçon nlogue. On prmètre le bord de à l ide des qutres courbes suivntes : γ 1 définie sur [, b] pr γ 1 t) t, ϕ 1 t)), γ 2 définie sur [ϕ 1 b), ϕ 2 b)] pr γ 2 t) b, t), γ 3 définie sur [, b] pr γ 3 t) t, ϕ 2 t)), γ 4 définie sur [ϕ 1 ), ϕ 2 )] pr γ 4 t), t). Pour toute 1-forme continue sur un ouvert contennt on ω ω + ω ω ω. γ 1 γ 2 γ 3 γ 4 78 J. Royer - Université Toulouse 3

5 Théorème de Poincré - Formule de Green-Riemnn En prticulier P x, y) dx b b P t, ϕ 1 t)) 1 dt + b ϕ2b) P t, ϕ 2 t)) 1 dt + P t, ϕ 1 t)) dt b ϕ 1b) ϕ2) P b, t) dt ϕ 1) P t, ϕ 2 t)) dt. P, t) dt On montre mintennt l formule de Green-Riemnn : Théorème [Formule de Green-Riemnn] Soit un ouvert élémentire de R 2 et ω une 1-forme de clsse C 1 sur un ouvert contennt. Alors on dω On rppelle que si on note ω P x, y) dx + Qx, y) dy on dω ω. ) Q P x, y) x, y) dx dy. Démonstrtion. D près le théorème de Fubini et le lemme précédent on dω d c d c x, y) dx dy Q ψ2y) ψ 1y) Q x, y) dx P x, y) dx dy ) b ϕ2x) dy ϕ 1x) ) P x, y) dy dx Qψ2 y), y) Qψ 1 y), y) ) b dy P x, ϕ2 x) P x, ϕ 1 x) ) dx Qx, y) dy + P x, y) dx ω. Remrque Ce résultt peut être étendus à des ouverts plus générux, pr exemple des ouverts simples. Les intégrles sur les frontières communes ux différentes prties élémentires se compensent. L formule de Green-Riemnn est utile dns les deux sens. Selon le problème considéré, on peut vouloir rmener un clcul d intégrle double u clcul d une intégrle curviligne ou l inverse. Exemple L formule de Green-Riemnn peut pr exemple servir à clculer l ire d un ouvert de R 2 vi l une des églités suivntes : Aire) x dy y dx 1 x dy y dx. 2 Année

6 L2 Prcours Spécil - Clcul différentiel et intégrl 11.4 Exercices Exercice 1. On considère sur le demi-pln U {x, y) R 2 x > } l forme différentielle ω x dy y dx x 2 + y 2. Montrer que ω est excte et déterminer ses primitives. Exercice 2. On considère sur le demi-pln U {x, y) R 2 y > } l forme différentielle ω 2x y dx x2 y 2 dy. 1. Montrer que ω est excte et déterminer ses primitives. 2. Soit Γ une courbe C 1 pr morceux llnt de A 1, 2) à B 3, 8). Clculer Exercice 3. On considère l forme différentielle ω y 3 6xy 2 )dx + 3xy 2 6x 2 y)dy. 1. Montrer que ω est excte sur R Clculer l intégrle de ω sur le demi-cercle supérieur de dimètre [AB], llnt de A 1, 2) vers B 3, 4). 3. On considère mintennt l courbe prmétrée γ : [, 1] R 2 définie pr γt) 1 + 3t t 2, 2 + 4t 2t 2 ). Clculer l intégrle de ω le long de γ. Exercice Déterminer l ensemble des fonctions ϕ de clsse C 1 de R dns R telles que ϕ et l forme différentielle ω définie sur R 2 pr ω 2xy 1 + x 2 dx + ϕx)dy, ) 2 est excte. 2. Déterminer lors une primitive de ω. 3. On considère l courbe Γ d éqution 3x 2 7y orientée dns le sens direct. Quelle est l nture de cette courbe? Clculer l intégrle de ω sur Γ. Exercice 5. On considère l nneu A {x, y) R 2 1 x 2 + y 2 4}. Retrouver l ire de A en utilisnt l formule de Green Riemnn. Exercice 6. On note D le contour du domine D défini pr D {x, y) R 2 x, y, x 2 + y 2 1}. Clculer l intégrle curviligne de ω xy 2 dx + 2xydy le long de D prcouru dns le sens direct 1. en utilisnt un prmétrge de D, 2. en utilisnt l formule de Green Riemnn. Exercice 7. Utiliser le théorème de Green Riemnn pour clculer les intégrles curvilignes suivntes les courbes sont prcourues dns le sens trigonométrique) 1. C R x 2 y dx + xy dy où C R est le cercle centré en, ) et de ryon R >, 2. C R x 2 y) dx + y 2 + x) dy où C R est comme précédemment, 3. T 2x2 + y 2 ) dx + x + y) 2 dy où T est le contour du tringle de sommets A 1, 1), B 2, 2) et C 1, 3), prcouru dns le sens direct. Exercice 8. Utiliser le théorème de Green Riemnn pour clculer l ire du domine délimité pr l courbe prmétrée pr θ cos 3 θ, sin 3 θ) pour θ llnt de à 2π. Γ ω. 8 J. Royer - Université Toulouse 3

7 Théorème de Poincré - Formule de Green-Riemnn Exercice 9. Le but de cet exercice est de clculer l vleur de l intégrle 1. Montrer que cette intégrle est convergente. 2. On considère sur R 2 \ {, )} l forme différentielle ω + e y x ) ) ) sinx) y cosx) dx + x cosx) + y sinx) dy x 2 + y 2. Montrer que ω est fermée. 3. Soit R > 1. On considère le domine D R { x, y) R 2 y >, } 1 R 2 < x2 + y 2 < R 2, sinx) x et on note Γ R son contour, orienté de sorte à lisser D R sur s guche. Déterminer l vleur de ω. Γ R 4. Pour r > on note γ r le demi-cercle { x, y) R 2 y >, x 2 + y 2 r } 2, orienté dns le sens trigonométrique, puis I r γ r ω.. Étudier l limite de I r lorsque r tend vers. b. Montrer que I r tend vers lorsque r tend vers +. sinx) 5. En déduire l vleur de x dx. dx. Année

8 L2 Prcours Spécil - Clcul différentiel et intégrl 82 J. Royer - Université Toulouse 3

Résumé du cours d analyse de maths spé MP

Résumé du cours d analyse de maths spé MP 1 TOPOLOGE Résumé du cours d nlyse de mths spé MP 1 Topologie 1) Normes, normes équivlentes Une norme sur l espce vectoriel E est une ppliction N de E dns R vérifint : x E, N(x). x E, (N(x) = x = ) (xiome

Plus en détail

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a Intégrtion Les fonctions considérées ci-dessous sont des fonctions définies sur un intervlle réel I, à vleurs réelles ou complees ou, plus générlement, à vleurs dns un espce vectoriel normé de dimension

Plus en détail

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 28 novembre 2013 Lien vers l dernière mise à jour de ce document Lien vers les exercices de ce chpitre Chpitre 20 Intégrtion Sommire 20.1 Continuité uniforme.................................

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn)

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn) Chpitre 7 Primitives et Intégrles 7. Primitive d une fonction Soit f une fonction définie sur un intervlle K de R. On ppelle primitive de f, une fonction F dont l dérivée est f : F (x) = f(x). On note

Plus en détail

CHAPITRE 9 : PRIMITIVES - INTEGRALES

CHAPITRE 9 : PRIMITIVES - INTEGRALES Primitives et intégrles Cours CHAPITRE 9 : PRIMITIVES - INTEGRALES. Primitives d une fonction Définition Soit f une fonction définie sur un intervlle I. Une fonction F est une primitive de f sur I, si

Plus en détail

Calcul int egral. 15 d ecembre 2008

Calcul int egral. 15 d ecembre 2008 Clcul intégrl. 15 décembre 2008 2 Tble des mtières I Intégrles multiples 5 1 Rppels sur l intégrle définie des fonctions d une vrible. 7 1.1 Motivtions................................ 7 1.1.1 Cs des fonctions

Plus en détail

Mathématiques du signal déterministe

Mathématiques du signal déterministe Conservtoire Ntionl des Arts et Métiers MAA17 Mthémtiques du signl déterministe Nelly POINT 11 octobre 211 Tble des mtières 1 Intégrtion 3 1.1 Méthodes d intégrtion : rppels........................ 3

Plus en détail

Calcul intégral. II Intégrale d une fonction 4

Calcul intégral. II Intégrale d une fonction 4 BTS DOMOTIQUE Clcul intégrl 8- Clcul intégrl Tble des mtières I Primitives I. Définitions............................................... I. Clculs de primitives.........................................

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

2. Formules d addition.

2. Formules d addition. IX. Trigonométrie 1. Rppels 1.1 Définitions : Dns le cercle trigonométrique C ( O, 1 ), si nous fixons un point P correspondnt à un ngle d mplitude nous vons défini : = bscisse du point P sin = ordonnée

Plus en détail

Chapitre 3 Dérivées et Primitives

Chapitre 3 Dérivées et Primitives Cours de Mthémtiques Clsse de Terminle STI - Chpitre : Dérivées et Primitives Chpitre Dérivées et Primitives A) Rppels de première et compléments ) Dérivées usuelles Fonction définie sur Fonction f() =

Plus en détail

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville Théorème de Lx Milgrm Appliction u problème de Dirichlet pour l éqution de Sturm Liouville Résumé du cours de MEDP Mîtrise de mthémtiques 2000 2001 2001nov18 (medp-lx-milgrm.tex) Dns ce chpitre, on se

Plus en détail

Outils Mathématiques 3

Outils Mathématiques 3 Université de Rennes1 Année 2010/2011 Outils Mthémtiques 3 Chpitre 4: Intégrtion curviligne résumé 1 Courbes prmétrées Définition 1.1 Une courbe plne est un ensemble de couples (f(t), g(t)) où f et g sont

Plus en détail

Fonctions définies par une intégrale. On suppose que g et h sont deux fonctions réelles définies sur R d, telles que la fonction

Fonctions définies par une intégrale. On suppose que g et h sont deux fonctions réelles définies sur R d, telles que la fonction Prép. Agrég. écrit d Anlyse, Annexe n o 6. Méthode de Lplce dns R d Fonctions définies pr une intégrle On suppose que g et h sont deux fonctions réelles définies sur R d, telles que l fonction F(t = g(x

Plus en détail

Intégration (suite) 1 Champs de vecteurs et intégrales curvilignes

Intégration (suite) 1 Champs de vecteurs et intégrales curvilignes . Intégrtion (suite) e qui suit comporte trois prties : l première correspond à peu près à ce qui été trité lors du dernier cours, certins exemples du cours et d utres clculs sont présentés dns l deuxième,

Plus en détail

MP1 Janson DS6 du 17 janvier 2014/2015. 1 n x.

MP1 Janson DS6 du 17 janvier 2014/2015. 1 n x. MP Jnson DS6 du 7 jnvier 24/25 Problème (CCP) Toutes les fonctions de ce problème sont à vleurs réelles. PARTE PRÉLMNARE Les résultts de cette prtie seront utilisés plusieurs fois dns le problème.. Fonction

Plus en détail

Cours de mathématiques. Chapitre 12 : Calcul Intégral

Cours de mathématiques. Chapitre 12 : Calcul Intégral Cours de mthémtiques Terminle S1 Chpitre 12 : Clcul Intégrl Année scolire 2008-2009 mise à jour 5 mi 2009 Fig. 1 Henri-Léon Leesgue et Bernhrd Riemnn n les confond prfois 1 Tle des mtières I Chpitre 12

Plus en détail

semestre 3 des Licences MISM annnée universitaire 2004-2005

semestre 3 des Licences MISM annnée universitaire 2004-2005 MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

Université de Marseille Licence de Mathématiques, 1ere année, Analyse (limites, continuité, dérivées, intégration) T. Gallouët

Université de Marseille Licence de Mathématiques, 1ere année, Analyse (limites, continuité, dérivées, intégration) T. Gallouët Université de Mrseille Licence de Mthémtiques, ere nnée, Anlyse (limites, continuité, dérivées, intégrtion) T. Gllouët July 29, 205 Tble des mtières Limites 3. Définition et propriétés......................................

Plus en détail

Théorème de Rolle et formules de Taylor

Théorème de Rolle et formules de Taylor Théorème de Rolle et formules de Tylor 1 Extrémums des fonctions différentibles à vleurs réelles 1. Soient K un compct d un espce vectoriel normé (E, ) et f une fonction définie sur K à vleurs dns R. Montrer

Plus en détail

Primitive et intégrale d une fonction continue

Primitive et intégrale d une fonction continue Primitive et intégrle d une fonction continue O. Simon, Université de Rennes I 24 mi 2005 Avertissement : Ceci n est ps le contenu d une leçon de CAPES. Dns le progrmme 2002 de terminles S, on introduit

Plus en détail

Licence M.A.S.S. Cours d Analyse S4

Licence M.A.S.S. Cours d Analyse S4 Université Pris I, Pnthéon - Sorbonne Licence MASS Cours d Anlyse S4 Jen-Mrc Brdet (Université Pris 1, SAMM) UFR 27 et Equipe SAMM (Sttistique, Anlyse et Modélistion Multidisiplinire) Université Pnthéon-Sorbonne,

Plus en détail

EPUUniversité de Tours

EPUUniversité de Tours DI 3ème nnée EPUUniversité de Tours Déprtement Informtique 007-008 ANALYSE NUMERIQUE Chpitre 3 Intégrtion numérique résumé du cours 1 Introduction Il s git d une mniére générle de déterminer, le mieux

Plus en détail

Espaces métriques, espaces vectoriels normés. Tewfik Sari. L2 Math

Espaces métriques, espaces vectoriels normés. Tewfik Sari. L2 Math Espces métriques, espces vectoriels normés Tewfik Sri L2 Mth Avertissement : ces notes sont l rédction, progressive et provisoire, d un résumé du cours d espces métriques de d espces vectoriels normés

Plus en détail

Cours d Analyse II. Filières : SMP /SMC (Deuxième semestre, première. Notes rédigées par : M. BENELKOURCHI Slimane

Cours d Analyse II. Filières : SMP /SMC (Deuxième semestre, première. Notes rédigées par : M. BENELKOURCHI Slimane Déprtement de Mthémtiques Fculté des Sciences Université Ibn Tofïl Kénitr Cours d Anlyse II S2 Filières : SMP /SMC (Deuxième semestre, première nnée) Notes rédigées pr : M. BENELKOURCHI Slimne Professeur

Plus en détail

Toutes les questions de cours et R.O.C. au bac de T.S. Vincent PANTALONI

Toutes les questions de cours et R.O.C. au bac de T.S. Vincent PANTALONI Toutes les questions de cours et R.O.C. u bc de T.S. Vincent PANTALONI VERSION DU 9 MARS 2012 Tble des mtières Bc 2011 3 Bc 2011 5 Bc 2010 9 Bc 2009 11 Bc 2008 13 Bc 2007 17 Bc 2006 19 Bc 2005 21 ii Remerciements.

Plus en détail

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mthémtiques 2 première prtie : Anlyse 2 DEUG MIAS 1 e nnée, 2 e semestre. Mximilin F. Hsler Déprtement Scientifique Interfcultire B.P. 7209 F 97275 SCHOELCHER CEDEX Fx : 0596 72 73 62 e-mil :

Plus en détail

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mthémtiques 2 première prtie : Anlyse 2 DEUG MIAS 1 e nnée, 2 e semestre. Mximilin F. Hsler Déprtement Scientifique Interfcultire B.P. 7209 F 97275 SCHOELCHER CEDEX Fx : 0596 72 73 62 e-mil :

Plus en détail

ANALYSE APPROFONDIES II MT242

ANALYSE APPROFONDIES II MT242 ALGÈBRE ET ANALYSE APPROFONDIES II MT242 Année 1998-1999 Chpitre 0. Introduction générle Dns cette introduction nous llons commenter les principles notions contenues dns le cours du second semestre, leurs

Plus en détail

Cours d Analyse IV Suites et Séries de fonctions

Cours d Analyse IV Suites et Séries de fonctions Université Clude Bernrd, Lyon I Licence Sciences, Technologies & Snté 43, boulevrd 11 novembre 1918 Spécilité Mthémtiques 69622 Villeurbnne cedex, Frnce L. Pujo-Menjouet pujo@mth.univ-lyon1.fr Cours d

Plus en détail

Table des matières. Avant propos

Table des matières. Avant propos Tble des mtières Avnt propos ii 1 Intégrle de Riemnn 1 1.1 Intégrle des fonctions en esclier............ 2 1.2 Fonctions intégrbles u sens de Riemnn........ 6 1.3 Propriétés générles de l intégrle de Riemnn......

Plus en détail

Lois de probabilité à densité

Lois de probabilité à densité Lois de probbilité à densité Christophe ROSSIGNOL Année scolire 0/03 Tble des mtières Loi à densité sur un intervlle I. Deux exemples pour comprendre..................................... Densité de probbilité...........................................3

Plus en détail

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers Chpitre 5 Intégrtion Nous llons construire l intégrle pr un procédé de pssge à l limite. D bord on définit l intégrle des fonctions en escliers, ensuite on psse à l limite pour intégrer des fonctions plus

Plus en détail

Cours d Analyse Mathématique II

Cours d Analyse Mathématique II Année 22-23 Cours d Anlyse Mthémtique II F. Bstin Prise de notes rédigée pr Alice Slmon. Avec l prticiption de : Nicols Ghye (schéms) Sndy Assent (relecture) Préfce Avertissement Ce texte résulte d une

Plus en détail

Outils Mathématiques 4

Outils Mathématiques 4 Université de Rennes1 Année 5/6 1 Courbes prmétrées Outils Mthémtiques 4 Intégrtion résumé éfinition 1.1 Une courbe plne est un ensemble de couples (f(t), g(t)) où f et g sont des fonctions continues sur

Plus en détail

Séries, intégrales et probabilités

Séries, intégrales et probabilités Séries, intégrles et probbilités Thierry MEYRE Préprtion à l grégtion interne. Année 2014-2015. Université Pris Diderot. IREM. http://www.prob.jussieu.fr/pgeperso/meyre 2 BIBLIOGRAPHIE. Les ouvrges de

Plus en détail

Chapitre 1 : Fonctions analytiques - introduction

Chapitre 1 : Fonctions analytiques - introduction 2e semestre 2/ UE 4 U : Abrégé de cours Anlyse 3: fonctions nlytiques Les notes suivntes, disponibles à l dresse http://www.iecn.u-nncy.fr/ bertrm/, contiennent les définitions et les résultts principux

Plus en détail

Chapitre 9: Primitives et intégrales

Chapitre 9: Primitives et intégrales PRIMITIVES ET INTEGRALES 7 Chpitre 9: Primitives et intégrles Prérequis: Limites, dérivées Requis pour: Emen de mturité 9. «À quoi ç sert?» Un peu d histoire Isc Newton (64-77) Les clculs d ire de figures

Plus en détail

Théorie de la mesure et intégration. J.C. Pardo

Théorie de la mesure et intégration. J.C. Pardo Feuille de TD 6. Théorie de l mesure et intégrtion. J.C. Prdo Exercices. Exo. 72 Soit f une fonction sur. On considère muni de l tribu B des boréliens et d une mesure λ sur B. On suppose que f est λ-loclement

Plus en détail

EB - INTEGRALES DEPENDANT D UN PARAMETRE

EB - INTEGRALES DEPENDANT D UN PARAMETRE EB - INTEGRALES DEPENDANT D UN PARAMETRE Définition 1 Soit (f x ) x A une fmille de fonctions continues à vleurs dns C, définies sur un intervlle [, b[ de R. On considère l intégrle impropre g(x) = que

Plus en détail

Séquence 7. Intégration. Sommaire

Séquence 7. Intégration. Sommaire Séquence 7 Intégrtion Sommire. Prérequis. Aire et intégrle d une fonction continue et positive sur [ ; ]. Primitives 4. Primitives et intégrles d une fonction continue 5. Synthèse de l séquence Dns ce

Plus en détail

Résumé de cours sur les intégrales dépendant d un paramètre

Résumé de cours sur les intégrales dépendant d un paramètre Résumé de cours sur les intégrles dépendnt d un prmètre On v considérer une fonction à deux vribles ' puis on étudier l existence, l continuité, dérivbilité,...de l fonction F dé nie pr x! F (x) = F est

Plus en détail

Le Calcul Intégral. niveau maturité. Daniel Farquet

Le Calcul Intégral. niveau maturité. Daniel Farquet Le Clcul Intégrl niveu mturité Dniel Frquet Eté 8 Tble des mtières Introduction Intégrle indéfinie 3. Définitions et générlités................................ 3.. Déf. d une primitive..............................

Plus en détail

Développements limités. Motivation. Exo7

Développements limités. Motivation. Exo7 Eo7 Développements limités Vidéo prtie. Formules de Tlor Vidéo prtie 2. Développements limités u voisinge d'un point Vidéo prtie 3. Opértions sur les DL Vidéo prtie 4. Applictions Eercices Développements

Plus en détail

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO Université Pris-Duphine DUMI2E UFR Mthémtiques de l décision Notes de cours Anlyse 2 Filippo SANTAMBROGIO Année 2008 2 Tble des mtières 1 Optimistion de fonctions continues et dérivbles 5 1.1 Continuité........................................

Plus en détail

Intégrale curviligne et applications aux fonctions holomorphes

Intégrale curviligne et applications aux fonctions holomorphes Chpitre 2 Intérle curviline et pplictions ux fonctions holomorphes 2. Intérle curviline - Indice d un point pr rpport à un lcet 2.. Définitions et propriétés de bses Soit f : [, b] R! C une fonction, on

Plus en détail

LEÇON N 67 : Formules de Taylor. Applications.

LEÇON N 67 : Formules de Taylor. Applications. LEÇON N 67 : Formules de Tylor. Applictions. Pré-requis : Théorème de Rolle, théorème des Accroissements Finis ; Intégrtion pr prties ; Nottions de Lndu. 67. Résultts globux 67.. Formule de Tylor-Lgrnge

Plus en détail

Théorie des Langages Formels Chapitre 5 : Automates minimaux

Théorie des Langages Formels Chapitre 5 : Automates minimaux 1/29 Théorie des Lngges Formels Chpitre 5 : Automtes minimux Florence Levé Florence.Leve@u-picrdie.fr Année 2014-2015 2/29 Introduction Les lgorithmes vus précédemment peuvent mener à des utomtes reltivement

Plus en détail

Intégration sur un intervalle quelconque MP

Intégration sur un intervalle quelconque MP ntégrtion sur un intervlle quelconque MP 9 décembre 22 Dns ce chpitre, on définit l notion de fonction continue pr morceu et intégrble sur un intervlle quelconque. Cel nous permettr de donner un sens à

Plus en détail

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie Exo7 Zéros des fonctions Vidéo prtie 1. L dichotomie Vidéo prtie. L méthode de l sécnte Vidéo prtie 3. L méthode de Newton Dns ce chpitre nous llons ppliquer toutes les notions précédentes sur les suites

Plus en détail

CHAPITRE 4 LA TRANSFORMÉE DE F OURIER

CHAPITRE 4 LA TRANSFORMÉE DE F OURIER CHAPITRE 4 LA TRANSFORMÉE DE F OURIER 4. Fonctions loclement intégrbles Soit I un intervlle de R et soit f : R R une ppliction. Définition 4.. On dit que f est loclement intégrble sur I si f est intégrble

Plus en détail

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006 Mjortions de l erreur dns les clculs clssiques de vleurs pprochées d intégrle Notes pour l préprtion u CAPES - Strsbourg- février 00 On trouve dns différents ouvrges élémentires des démonstrtions à coup

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

Chapitre I Introduction aux problèmes variationnels

Chapitre I Introduction aux problèmes variationnels Chpitre I Introduction ux problèmes vritionnels I.1. Introduction. Le clcul des vritions concerne l recherche d extrems (minimums ou mximums), et peut être considéré comme une brnche de l optimistion.

Plus en détail

Fonctions de référence

Fonctions de référence Chpitre 7 Clsse de Seconde Fonctions de référence Ce que dit le progrmme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Fonctions de référence Fonctions linéires et fonctions ffines Vritions de l fonction

Plus en détail

Synthèse de cours (Terminale S) Dérivation : rappels et compléments

Synthèse de cours (Terminale S) Dérivation : rappels et compléments Synthèse de cours (Terminle S) Dérivtion : rppels et compléments Rppels de 1ère Nombre dérivé Soit f une fonction définie sur un intervlle I et un élément de I. f ( + h) f ( ) Si l limite lim existe, on

Plus en détail

3 Produit vectoriel. 3.1 Construction. Définition géométrique du produit vectoriel de deux vecteurs. Liens hypertextes

3 Produit vectoriel. 3.1 Construction. Définition géométrique du produit vectoriel de deux vecteurs. Liens hypertextes ProduitVectoriel-Determinnt.n 15 3-ème nnée, mthémtiques niveu vncé 3 Produit vectoriel Edition 2004-2005 Liens hypertextes Produit sclire 3D: http://www.deleze.nme/mrcel/sec2/cours/geom3d/produitsclire3d.pdf

Plus en détail

5. Intégration complexe

5. Intégration complexe 49 5. Intégrtion complexe 1. Intégrles définies d une fonction complexe d une vrible réelle Les intégrles sont extrêmement importntes dns l étude des fonctions d une vrible complexe. Nous étblirons l équivlence

Plus en détail

2008 2010 MODULE M4 MATHEMATIQUES TERMINALE STAV

2008 2010 MODULE M4 MATHEMATIQUES TERMINALE STAV LEGTHP Sint Nicols STAV Promotion 8 MODULE M4 MATHEMATIQUES TERMINALE STAV Fiches de cours S. FLOQUET Septemre 9 Lycée Sint Nicols Igny Promotion 8 SOMMAIRE STAV PARTIE : RESUMES DE COURS Équtions de droites

Plus en détail

Intégration, probabilités

Intégration, probabilités prép-greg 7-8 Intégrtion, probbilités Dns tous les exercices probbilistes, les vribles létoires sont supposées définies sur le même espce probbilisé (Ω, A, P). I Questions de cours L fonction t sin t t

Plus en détail

Mathématiques, Semestre S1

Mathématiques, Semestre S1 Polytech Pris-Sud PeiP1 2011/2012 Notes de cours Mthémtiques, Semestre S1 Filippo SANTAMBROGIO 2 Tble des mtières 1 Les fonctions dns R et leurs limites 7 1.1 Fonctions réelles d une vrible réelle.........................

Plus en détail

Kit de survie - Bac S

Kit de survie - Bac S Kit de survie - Bc S. Inéglités - Étude du signe d une expression Opértions sur les inéglités Règles usuelles : Pour tout x < y x + < y + même sens Pour tout k > : x < y kx < ky même sens Pour tout k

Plus en détail

Analyse 1 L1-mathématiques

Analyse 1 L1-mathématiques Anlyse L-mthémtiques Renud Leplideur Année 3-4 UBO Tble des mtières Inéglités et clculs 3. Nombres..................................... 3.. Les ensembles N, Z, Q et R...................... 3.. Les intervlles

Plus en détail

THÉORIE DE LA MESURE. Notes de cours de B.Demange

THÉORIE DE LA MESURE. Notes de cours de B.Demange THÉORIE DE LA MESURE Notes de cours de B.Demnge Cours donné en 212-213 2 INTRODUCTION Ce cours pour but de donner une bonne définition de l intégrle de fonctions d une ou plusieurs vribles réelles, qui

Plus en détail

LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL

LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL Préceptort de Mécnique Quntique 1 ère nnée Florent Krzkl, PCT, Bureu F.3-14 LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL I-1/ Soit une brrière de

Plus en détail

STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS

STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS CHAPITRE 1 STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS Objectifs Comme les liquides et les gz, les solides jouent un rôle très importnt en chimie. Or l pluprt des solides sont des solides cristllins.

Plus en détail

COMPARAISON DE FONCTIONS

COMPARAISON DE FONCTIONS Lurent Grcin MPSI Lycée Jen-Bptiste Corot COMPARAISON DE FONCTIONS 1 Notion de voisinge Définition 1.1 Voisinge Soit R = R {± }. On ppelle voisinge de une prtie de R contennt un intervlle de l forme :

Plus en détail

Chapitre VI Contraintes holonomiques

Chapitre VI Contraintes holonomiques 55 Chpitre VI Contrintes holonomiques Les contrintes isopérimétriques vues u chpitre précéent ne sont qu un eemple prticulier e contrintes sur les fonctions y e notre espce e fonctions missibles. Dns ce

Plus en détail

Résumé sur les Intégrales Impropres & exercices supplémentaires

Résumé sur les Intégrales Impropres & exercices supplémentaires L-MATH II-(25-26). Résumé sur les Intégrles Impropres & eercices supplémentires Une fonction définie sur un intervlle I est dite loclement intégrble sur I si f est Riemnnintégrble sur tout intervlle [,

Plus en détail

Stage olympique de Cachan Géométrie

Stage olympique de Cachan Géométrie Stge olympique de chn Géométrie Exercices du vendredi 20 février 2015 1 Quelques définitions et résultts utiles éfinition (Nottions) Soit un tringle non plt. On utiliser usuellement les nottions suivntes

Plus en détail

COURS D ANALYSE. Licence de Mathématiques, première. Laurent Michel

COURS D ANALYSE. Licence de Mathématiques, première. Laurent Michel COURS D ANALYSE Licence de Mthémtiques, première nnée Lurent Michel Automne 2011 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................

Plus en détail

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel COURS D ANALYSE Licence d Informtique, première nnée Lurent Michel Printemps 2010 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................

Plus en détail

ANALYSE NUMERIQUE NON-LINEAIRE

ANALYSE NUMERIQUE NON-LINEAIRE Université de Metz Licence de Mthémtiques - 3ème nnée 1er semestre ANALYSE NUMERIQUE NON-LINEAIRE pr Rlph Chill Lbortoire de Mthémtiques et Applictions de Metz Année 010/11 1 Tble des mtières Chpitre

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Cours de Mthémtiques TS Lycée Henri IV Tble des mtières I Les nombres complexes 7 Rcines n ième d un nombre complexe non nul 7. Définition.................................................... 7.2 Représenttion

Plus en détail

Table des matières Dénombrer et sommer Événements et Probabilités

Table des matières Dénombrer et sommer Événements et Probabilités Tble des mtières 1 Dénombrer et sommer 5 1.1 Rppels ensemblistes............................. 5 1.1.1 Opértions ensemblistes....................... 5 1.1.2 Bijections............................... 7 1.2

Plus en détail

Kit de survie - Bac ES

Kit de survie - Bac ES Kit de survie - Bc ES. Étude du signe d une expression ) Signe de x + Ü Ü ½ Ò µ¼ Ò ½ 0) On détermine l vleur de x qui nnule x +, puis on pplique l règle : «signe de près le 0». ) Signe de x + x + c ܾ

Plus en détail

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique.

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique. C39211 Ecole Normle Supérieure de Cchn 61 venue du président Wilson 94230 CACHAN Concours d dmission en 3 ème nnée Informtique Session 2009 INFORMATIQUE 1 Durée : 5 heures «Aucun document n est utorisé»

Plus en détail

Lycée Faidherbe, Lille MP1 Cours d informatique 2013 2014. Automates

Lycée Faidherbe, Lille MP1 Cours d informatique 2013 2014. Automates Lycée Fidhere, Lille MP Cours d informtique 203 204 Automtes I Déterministes........................... 2 Définitions 2 Exemple 2 Action des mots 3 Lngge reconnu 3 II Incomplets.............................

Plus en détail

BROCHURE D'EXERCICES D'ANALYSE MATHEMATIQUE 2

BROCHURE D'EXERCICES D'ANALYSE MATHEMATIQUE 2 MINISTERE DE L 'ENSEIGNEMENT SUPERIEUR FACULTE DES SCIENCES. DEPARTEMENT DE MATHEMATIQUES OSMANOV Hmid KHELIFATI Sddek BROCHURE D'EXERCICES D'ANALYSE MATHEMATIQUE PARTIE : INTEGRATION. INTEGRALE INDEFINIE

Plus en détail

DISTANCES DE LA TERRE A LA LUNE ET AU SOLEIL

DISTANCES DE LA TERRE A LA LUNE ET AU SOLEIL Première Distnces de l Terre à l Lune et u Soleil Pge 1 TRAVAUX DIRIGES DISTANCES DE LA TERRE A LA LUNE ET AU SOLEIL -80 II ème siècle p J-C 153 1609 1666 1916 199 ARISTARQUE de Smos donne une mesure de

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Cours de Mathématique - Statistique Calcul Matriciel

Cours de Mathématique - Statistique Calcul Matriciel L - Mth Stt Cours de Mthémtique - Sttistique Clcul Mtriciel F. SEYTE : Mître de conférences HDR en sciences économiques Université de Montpellier I M. TERRZ : Professeur de sciences économiques Université

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Cours de Mthémtiques Bcclurét 20 Résumé Ce document contient les principles définitions, théorèmes et propriétés du cours de mthémtiques du tronc commun de mthémtiques de Terminle S. Je tiens à remercier

Plus en détail

Cours de Terminale S Lycée Camille Pissarro 2013-2014. Sébastien Andrieux

Cours de Terminale S Lycée Camille Pissarro 2013-2014. Sébastien Andrieux Cours de Terminle S Lycée Cmille Pissrro 203-204 Sébstien Andrieux 7 juin 204 Tble des mtières I Cours de Terminle S 5 Risonnement pr récurrence 6 2 Suites et limites des suites 8 I Suite convergente,

Plus en détail

Intégrales curvilignes.

Intégrales curvilignes. Chapitre 1 Intégrales curvilignes. 1.1 Généralités 1.1.1 Courbes paramétrées dans le plan. Motivations, exemples. L exemple basique de courbe est la trajectoire décrite par un objet assimilée à un point

Plus en détail

Intégrale et primitives

Intégrale et primitives Chpitre 5 Intégrle et primitives 5. Ojetif On herhe dns e hpitre à onstruire l opérteur réiproue de l opérteur de dérivtion. Les deux uestions suivntes sont lors nturelles. Question : Soit f une pplition

Plus en détail

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1 Grenoble INP Pgor 1ère nnée Exercices corrigés Anlyse numérique NB : Les exercices corrigés ici sont les exercices proposés durnt les sénces de cours. Les corrections données sont des corrections plus

Plus en détail

(b). Calculons les dérivées partielles de f. Nous obtenons f x (x, y) = 2x(1 + x2 + y 2 ) 4x(x 2 + y 2 ) (1 + x 2 + y 2 ) 3 4x 2

(b). Calculons les dérivées partielles de f. Nous obtenons f x (x, y) = 2x(1 + x2 + y 2 ) 4x(x 2 + y 2 ) (1 + x 2 + y 2 ) 3 4x 2 CORRECTION DU MODÈLE D EXAMEN 2 Exercice 1 (). L fonction f est un quotient de deux fonctions polynomiles et le dénominteur ne s nnulle ps sur R 2, donc f est de clsse C et en prticulier de clsse C 2.

Plus en détail

Cours de Mathématiques L1. Résumé des chapitres. Hassan Emamirad

Cours de Mathématiques L1. Résumé des chapitres. Hassan Emamirad Cours de Mthémtiques L1 Résumé des chpitres Hssn Emmird Université de Poitiers Version 29/21 TABLE DES MATIÈRES 3 Tble des mtières 1 Nombres complexes 5 1.1 Le corps C.....................................

Plus en détail

Chapitre 7 Intégrale et primitive. Table des matières. Chapitre 7 Intégrale et primitive TABLE DES MATIÈRES page -1

Chapitre 7 Intégrale et primitive. Table des matières. Chapitre 7 Intégrale et primitive TABLE DES MATIÈRES page -1 Chpitre 7 Intégrle et primitive TABLE DES MATIÈRES pge - Chpitre 7 Intégrle et primitive Tble des mtières I Exercices I-................................................ I- Clcul pproché d une intégrle

Plus en détail

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON Durée : 4 heures Les clcultrices sont utorisées. Le sujet comprend qutre exercices indépendnts qui peuvent être trités dns l'ordre que

Plus en détail

3.2 Succession d intégrales simples - Théorème de Fubini

3.2 Succession d intégrales simples - Théorème de Fubini 8 Intégrle oule. Suession intégrles simples - Théorème e Fuini Soit R = [, [, (

Plus en détail

CCP 2007. Filière MP. Mathématiques 1. Corrigé pour serveur UPS de JL. Lamard (jean-louis.lamard@prepas.org)

CCP 2007. Filière MP. Mathématiques 1. Corrigé pour serveur UPS de JL. Lamard (jean-louis.lamard@prepas.org) CCP 27. Filière MP. Mthémtiques. Corrigé pour serveur UPS de JL. Lmrd (jen-louis.lmrd@preps.org EXERCCE.. f est continue (en tnt de frction rtionnelle dont le dénominteur ne s nnule ps sur le compct F

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Enoncés 1 Topologie Ouverts et fermés Exercice 6 [ 118 ] [correction] On muni le R-espce vectoriel des suites réelles bornées de l norme u = sup u n

Plus en détail

Mathématiques Différentielle - Intégrale

Mathématiques Différentielle - Intégrale Mthémtiques Différentielle - Intégrle F. Richrd 1 1 Institut PPRIME - UPR 3346 CNRS Déprtement Fluides, Thermique, Combustion Frnce Institut des Risques Industriels Assurntiels et Finnciers IRIAF F. Richrd

Plus en détail

Tout ce qu il faut savoir en math

Tout ce qu il faut savoir en math Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion

Plus en détail

LE RESEAU RECIPROQUE solution

LE RESEAU RECIPROQUE solution LE RESEU RECIPROQUE solution L pge 85 de votre poly de physique est conscrée à l définition du réseu réciproque, un concept initilement introduit pr J.W. Gibbs (189-190). Ce concept, plutôt bstrit, est

Plus en détail