Turbine hydraulique Girard simplifiée pour faibles et très faibles puissances

Dimension: px
Commencer à balayer dès la page:

Download "Turbine hydraulique Girard simplifiée pour faibles et très faibles puissances"

Transcription

1 Turbine hydrulique Girrd simplifiée pour fibles et très fibles puissnces Prof. Ing. Zoltàn Hosszuréty, DrSc. Professeur à l'université technique de Kosice Les sites hydruliques disposnt de fibles débits sous des chutes moyennes et élevées (Q «; 0, 1 m%, H :> 50 m) sont rrement équipés, à cuse du mnque de turbines hydruliques correspondnt à ces crctéristiques, ou de leur prix élevé. Les turbines Pelton et Frncis de si fibles puissnces ne sont ps fbriquées en Tchécoslovquie, leur production n'étnt ps rentble; leur fbriction rtisnle ne peut être non plus envisgée. De tels sites sont nombreux dns les instlltions industrielles, en prticulier dns les mines; leur équipement conduirit à une indépendnce énergétique,.et souvent une économie; l'existence de turbines qui le permettrit serit d'illeurs profitble illeurs qu'en Tchécoslovquie. D'où l'intérêt que représenterit l possibilité d'une construction rtisnle simplifiée, même u prix d'un rendement inférieur. Ces considértions nous ont mené à exminer l construction simplifiée d'une turbine hydrulique Girrd de fible puissnce. L construction clssique d'une telle turbine n'est ps simple (fig. 1). Elle comporte des pièces de forme complexe obtenues pr coulée, qui ne peuvent prtiquement être rélisées qu'en usine, et contribuent à leur prix élevé. Notre effort s'est porté en premier lieu sur l roue à ubes, dont les ubes sont des surfces guches hélicoïdles, qui sont remplcées dns notre modèle pr des surfces cylindriques, obtenues en découpnt des tubes (fig. 2) ou en plint une tôle (fig. 3) Possible simplifiction of the Girrd turbine Possible simplifiction ofthe Girrd turbine is described in the rticle. It cn be used for smll nd micro hydrogenerting sttions. The results of the model tests,.crried out on the simplified turbine. LA HOUILLE BLA CHEIN" Article published by SHF nd vilble t or

2 Z. HOSSZURÉTY VUE A-A P 5 [MW) t 4 3 Q15L-,--r-Tlil [m~sj t ll+-t---t, 1 D [ml D [m) 1.3 [k~[nrs) 1.2 4t t L-+-t---t-rn-:;;~. Il L--l--tI- ~t1i- 0.8 L---j-J-J7'r-rT 0.7 l H!m] LA HOUILLE BLANCHEN 1-1 t)l)2

3 00 "1. ' 0,9'68 L simplifiction suivnte concerne l forme de l boîte d'limenttion d'eu et le réglge du débit. L figure 4 représente une turbine Girrd simplifiée dns lquelle l bâche est cylindrique, et où le réglge du débit s'effectue u moyen d'un disque, ce qui l rpproche insi d'une turbine Bnki (fig. 5), pr rpport à lquelle ses dimensions sont encore réduites. Pour les turbines de puissnce plus élevée, il fut prendre soin de l forme des ubes insi que de celle de l distribution d'eu (fig. 6). On peut réliser celle dernière en forme de spirle Reiffenstein munie d'un clpet de réglge à l'entrée de l spirle (fig. 7). C'est une solution plus simple que l précédente; elle évite les ubes distributrices onéreuses, et requiert seulement une forme correcte de l bâche spirle et de son clpet de réglge. Celle simplifiction est d'illeurs pplicble ux turbines hydruliques de puissnce moyenne et élevée, utilisnt une trnsmission pr courroie, même pour des rpports de vitesses ssez importnts (fig. 8 et 9). L suite de l'étude montré que l diminution de rendement de l turbine due à ces simplifictions n'est ps prohibitive, u moyen de clculs théoriques et de mesures sur modèles réduits. Les conséquences de ces simplifictions sont les suivntes: - l'eu quille l roue de distribution, sur toute l longueur de l'ube, à l même vitesse e 0 et sous le même ngle (fig. 0); - les ngles des ubes ~1 et ~2 sont égux sur toute l lrgeur du cnl; - les vleurs de l vitesse circonférencielle, de l composnte d'ction et de l vitesse reltive à l'entrée de l roue dns les tringles de vitesses vrient en fonction de l distnce à l'xe de rottion; - on choisit de rencontrer les conditions optimles (entrée à composnte d'ction nulle, pertes minimles à l sortie) sur le dimètre extérieur de l roue, lors que pour l turbine Girrd clssique elles sont rélisées sur le dimètre moyen. Pr suite, l composnte d'ction est prtout dirigée dns le sens de l rottion; u contrire, pour l turbine clssique, celle composnte d'ction est' en sens inverse sur l moitié du ryon. Ainsi, le rendement hydrulique moyen Tl,... = Q 1 f"'". dq 10. ~h,~ s 1 0,9 0, ,6 0,5 0,3 0,2 o 11. \ \V \ 0,1 "l,0,>05' ci oo 0\.05 ~d.om '13'$ =3,,,, "1,. 31$ 13.," ' ~k R ~hk,,'. OO.l.22 R", ils R~lml 0,6 conserve une vleur cceptble, mlgré le fit que s vleur locle Tlok diminue rdilement de fçon rpide (voir jïg., trcée pour des dimètres extérieur et intérieur D" = 0,5 m et D; = 0,2 m). Ces déductions théoriques ont été confirmées pr les essis sur modèles, u cours desquels on obtenu les crctéristiques générles des turbines Girrd, y compris des turbines simplifiées. L figure 2 montre les vritions du rendement hydrulique clculé Tl". dns des hypothèses différentes reltivement ux pertes dns le distributeur e = erie 0* et dns l roue E = VIV 1 insi que celles du rendement globl mesuré Tlo' En négligent les pertes volumétriques et mécniques, qui sont fibles, on trouve que le rendement globl mesuré Tl() correspond ux pertes e=e=0,935. "1 0,9 0,8 0,7 0,6 0,5 u, 0,3 0,5 0,6 0, ~ CO 12.

4 Z. HOSSZURÉTY V ~ 110 t L il\b 0 "1" ~ Il ~[\ 0.4 U 03- -"l04. Co ' 0 V- ~ "" k b ~ ~ LA HOUILLE BLANCHEN"

5 TURBINE GIRARD SIMPLIFIÉE A B A B AXE DE ROTATION c c A-A = s-s = c-c A-A 80 t'\h~',+ '1',' ".1<,5 ~ A-",:71" B-~~71"44' ~ 1-._.-. 1.,kSIAI \ ~-"'., t---- h,k,5(bi 0 1-'-'-' I-..J..t-.~l. "'-... =::::::::= ' f}---+_...c ;f--j.."-i t...l 0,. 04' OS' o. -7- or Ce type de turbine hydrulique est bien entendu très sensible à l'étt de surfce des cnux de l roue de distribution, où l vitesse Co est élevée; ussi en vonsnous fit vrier l rugosité. En ugmentnt l rugosité de l couronne et du moyeu pr ponçge u ppier brsif, sns chnger celle des ubes en tôle, on obtenu les vritions de Tlo représentées pr l figure 13. Cette sensibilité du rendement à l rugosité du distributeur pourrit être à l'origine de l bisse rpide de rendement des turbines Girrd en service, pr suite de l'ençrssement des pièces brutes de fonderie. Les turbines Girrd clssiques ont un -utre inconvénient: les pertes dues u réglge du débit, effectué pr obturtion de plusieurs ouvertures disposées symétriquement sur l périphérie du distributeur; leur nombre ugmente vec le degré de fermeture, ccroissnt les pertes hydruliques (fig. 14), et diminunt pr suite le rendement, comme le montre l figure 15. L'inconvénient lié à celte obturtion prtielle conduit l'uteur à chercher l possibilité d'ppliquer à l turbine simplifiée le système de Reiffenstein (réglge «R-r»). L vrition du débit est lors obtenue en fisnt vrier le nombre de lignes de cournt dns l spirle (fig. 16). L'exmen de cette possibilité consisté à vérifier gue l'on obtenit les prmètres cinémtiques désirés à l sortie de l spirle, en prennt en considértion les composntes des vitesses et leurs ngles à l sortie de l spirle (fig. J 7), à l'ide des reltions mthémtiques relint ces différents prmètres. L vérifiction été effectuée lors d'essis sur modèles (fig. 18 el 19). Pour une turbine simplifiée munie du réglge «R-r», dont les ubes sont représentées pr l figure 20, les résultts de mesure du rendement sont données sur l figu re 21. Cette recherche prouvé qu'il étit possible d'obtenir, sur une turbine Girrd simplifiée munie du réglge «R r», un rendement globl supérieur à 0,7, ce qui est stisfisnt pour une mchine de fible puissnce. L portée de ces résultts est plus étendue, ce système de réglge pouvnt être étendu à d'utres types de turbines à réction. Il s'git de résultts originux de l'uteur, qui dépssent lrgement ceux publiés ntérieurement pr Reiffenstein. Ils restent vlides même pour un réglge du débit pr une ouverture imprfitement xisymétrique. LA HOUILLE I3LANCHEN 1 1l)l)2 X3

Mesure de résistances

Mesure de résistances GEL 1002 Trvux prtiques Lortoire 2 1 Trvux prtiques Lortoire 2 (1 sénce) Mesure de résistnces Ojectifs Les ojectifs de cette phse des trvux prtiques sont : ) d utiliser déqutement l plquette de montge

Plus en détail

LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL

LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL Préceptort de Mécnique Quntique 1 ère nnée Florent Krzkl, PCT, Bureu F.3-14 LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL I-1/ Soit une brrière de

Plus en détail

Recherche des paramètres de préréglage en injection. 1 COURS SUR LA RECHERCHE DES PARAMETRES POUR LE CHOIX ET LE PREREGLAGE DES PRESSES A INJECTER

Recherche des paramètres de préréglage en injection. 1 COURS SUR LA RECHERCHE DES PARAMETRES POUR LE CHOIX ET LE PREREGLAGE DES PRESSES A INJECTER Recherche des prmètres de préréglge en injection. 1 COURS SUR LA RECHERCHE DES PARAMETRES POUR LE CHOIX ET LE PREREGLAGE DES PRESSES A INJECTER Appliction et utilistion des préréglges : Les données de

Plus en détail

Notion de qualité de l énergie

Notion de qualité de l énergie BULLEIN DE L UNION DES PHYSICIENS 509 Notion de qulité de l énergie pr Pul ROUX et JenRobert SEIGNE Lycée Clude Furiel 42022 SintÉtienne Cedex RÉSUMÉ L conservtion de l énergie est insuffisnte pour ustifier

Plus en détail

Assemblages angulaires de plans de travail de cuisine d'une largeur de 60 cm

Assemblages angulaires de plans de travail de cuisine d'une largeur de 60 cm N 529 Assemlges ngulires de plns de trvil de cuisine d'une lrgeur de 60 cm A Description Le grit de frisge APS 900 et une défonceuse Festool, p. ex. l défonceuse OF 1400, permettent de réliser rpidement

Plus en détail

6.1 STRUCTURES PLANES FORMEES DE POUTRES RELATIONS ENTRE CHARGES ET ELEMENTS DE REDUCTION

6.1 STRUCTURES PLANES FORMEES DE POUTRES RELATIONS ENTRE CHARGES ET ELEMENTS DE REDUCTION 6.1 STRUTURES PLES FOREES DE POUTRES RELTIOS ETRE HRGES ET ELEETS DE REDUTIO Les vritions des éléments de réduction,,, lorsqu'on psse d'une section à l'utre, sont liées pr des reltions fondmentles que

Plus en détail

Cours de Mathématique - Statistique Calcul Matriciel

Cours de Mathématique - Statistique Calcul Matriciel L - Mth Stt Cours de Mthémtique - Sttistique Clcul Mtriciel F. SEYTE : Mître de conférences HDR en sciences économiques Université de Montpellier I M. TERRZ : Professeur de sciences économiques Université

Plus en détail

2. Formules d addition.

2. Formules d addition. IX. Trigonométrie 1. Rppels 1.1 Définitions : Dns le cercle trigonométrique C ( O, 1 ), si nous fixons un point P correspondnt à un ngle d mplitude nous vons défini : = bscisse du point P sin = ordonnée

Plus en détail

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON Durée : 4 heures Les clcultrices sont utorisées. Le sujet comprend qutre exercices indépendnts qui peuvent être trités dns l'ordre que

Plus en détail

Calcul de la rugosité surfacique

Calcul de la rugosité surfacique VI èmes Journées d Etudes Techniques 200 The Interntionl congress for pplied mechnics L mécnique et les mtériux, moteurs du développement durble du 05 u 07 mi 200, Mrrkech Mroc Clcul de l rugosité surfcique

Plus en détail

Stage olympique de Cachan Géométrie

Stage olympique de Cachan Géométrie Stge olympique de chn Géométrie Exercices du vendredi 20 février 2015 1 Quelques définitions et résultts utiles éfinition (Nottions) Soit un tringle non plt. On utiliser usuellement les nottions suivntes

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

ESTIMER LA PRÉCISION DES MESURES

ESTIMER LA PRÉCISION DES MESURES ESTIMER LA PRÉCISION DES MESURES I. Précision d'une mesure directe Une mesure directe est une mesure lue sur un ppreil de mesure. Le résultt d'une mesure directe n'est jmis connu de fçon prfitement excte.

Plus en détail

1. Contribution au raccordement

1. Contribution au raccordement TARIFS 215 CHAUFFAGE A DISTANCE CONTRIBUTIONS AU RACCORDEMENT 1. Contribution u rccordement 1.1 L contribution u rccordement est clculée en fonction des kw th souscrits dns le cdre des puissnces normlisées.

Plus en détail

STI2D Logique binaire SIN. L' Algèbre de BOOLE

STI2D Logique binaire SIN. L' Algèbre de BOOLE L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole.

Plus en détail

DISTANCES DE LA TERRE A LA LUNE ET AU SOLEIL

DISTANCES DE LA TERRE A LA LUNE ET AU SOLEIL Première Distnces de l Terre à l Lune et u Soleil Pge 1 TRAVAUX DIRIGES DISTANCES DE LA TERRE A LA LUNE ET AU SOLEIL -80 II ème siècle p J-C 153 1609 1666 1916 199 ARISTARQUE de Smos donne une mesure de

Plus en détail

Chapitre 3 Dérivées et Primitives

Chapitre 3 Dérivées et Primitives Cours de Mthémtiques Clsse de Terminle STI - Chpitre : Dérivées et Primitives Chpitre Dérivées et Primitives A) Rppels de première et compléments ) Dérivées usuelles Fonction définie sur Fonction f() =

Plus en détail

S il ne peut être déterminé en raison d'excavations et de remblais antérieurs, la référence est le terrain naturel environnant.

S il ne peut être déterminé en raison d'excavations et de remblais antérieurs, la référence est le terrain naturel environnant. Annexe A MESSAGE TYPE 8. COMMENTAIRES DES DEFINITIONS DE L ANNEXE NOTIONS ET METHODES DE MESURE 1. TERRAIN DE RÉFÉRENCE 1.1 Terrin de référence Le terrin de référence équivut u terrin nturel. S il ne peut

Plus en détail

Le football et ses trajectoires

Le football et ses trajectoires Le footll et ses trjectoires Guillume Dupeux (guillume.dupeux@espci.fr), Croline Cohen, Anne Le Goff, Dvid Quéré et Christophe Clnet (clnet@ldhyx.polytechnique.fr) LdHyX, MR CNRS 7646, École polytechnique,

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

2.1 Comment implanter en C un reconnaisseur de mots? Aut2 q 0 q 1

2.1 Comment implanter en C un reconnaisseur de mots? Aut2 q 0 q 1 Lngges Automtes Non-déterminisme Grmmires Attiuées et Génértives Expressions régulières Correction Prtielle de Progrmmes Ceci n'est ps un cours de Lngge C++ 2.1 Comment implnter en C un reconnisseur de

Plus en détail

Equations d'état, travail et chaleur

Equations d'état, travail et chaleur Equtions d'étt, trvil et chleur Exercice On donne R 8, SI. ) Quelle est l'éqution d'étt de n moles d'un gz prfit dns l'étt,,? En déduire l'unité de R. ) Clculer numériquement l vleur du volume molire d'un

Plus en détail

Prospection électrique. Guy Marquis, EOST Strasbourg

Prospection électrique. Guy Marquis, EOST Strasbourg Prospection électrique Guy Mrquis, EOST Strsbourg Le 9 Avril 005 Chpitre Bses physiques L prospection électrique est l une des plus nciennes méthodes de prospection géophysique. S mise en oeuvre est reltivement

Plus en détail

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a Intégrtion Les fonctions considérées ci-dessous sont des fonctions définies sur un intervlle réel I, à vleurs réelles ou complees ou, plus générlement, à vleurs dns un espce vectoriel normé de dimension

Plus en détail

Outils de calcul pour la 3 ème

Outils de calcul pour la 3 ème Chpitre I Outils de clcul pour l Ce que nous connissons déjà :! Opértions sur les décimux, les reltifs et les quotients. Puissnces de dix. Nottions scientifiques. Clcul littérl simple. Objectifs de ce

Plus en détail

1 Projection tache Airy sur mode propre capillaire

1 Projection tache Airy sur mode propre capillaire 1 Projection tche Airy sur mode propre cpillire Dns l pproximtion prxile (petits ngles) le chmp électrique d une onde de fréquence ω polrisée rectilignement suivnt ~u x se propgent à l intérieur d un cpillire

Plus en détail

uanacia pour le trimestre terminé le 31 décembre 2013

uanacia pour le trimestre terminé le 31 décembre 2013 * I1 # Office ntionl Ntionl Energy Bord Rpport finncier trimestriel Compte rendu soulignnt les résultts, les risques et les chngements importnts qunt u fonctionnement, u personnel et ux progrmmes Introduction

Plus en détail

Calibration absolue par la mesure du faisceau direct

Calibration absolue par la mesure du faisceau direct DNPA Clibrtion 16-01-04 1 Clibrtion bsolue pr l mesure du fisceu direct 1- Introduction Les différentes méthodes permettnt de fire des mesures bsolues en diffusion de neutrons ux petits ngles (DNPA) sont

Plus en détail

Développement d un Code de Calcul Permettant l Optimisation des Systèmes de Chauffage de Planchers ou Sols à l Aide de Tubes Enterrés 1.

Développement d un Code de Calcul Permettant l Optimisation des Systèmes de Chauffage de Planchers ou Sols à l Aide de Tubes Enterrés 1. Rev Ener Ren : Journées de Thermique (001) 85-90 éveloppement d un Code de Clcul Permettnt l Optimistion des Systèmes de Chuffe de Plnchers ou Sols à l Aide de Tubes Enterrés O Guerri 1, A Hrhd et K Bouhdef

Plus en détail

CAP PRO E SCHEMA : LE MOTEUR

CAP PRO E SCHEMA : LE MOTEUR CAP PRO E SCHEMA : E MOTEUR folio folio folio folio folio folio folio 7 folio 8 folio 9 plque signlétique d un moteur puissnce sorée pr un moteur plque à ornes d un moteur triphsé e couplge étoile e couplge

Plus en détail

gfaubert septembre 2010 1

gfaubert septembre 2010 1 Notes de cours Pour l e secondire Compiltion et/ou crétion Guyline Fuert Septemre 00 gfuert septemre 00 Géométrie------------------------------------------------------------------------------------------------------------------------

Plus en détail

LE RESEAU RECIPROQUE solution

LE RESEAU RECIPROQUE solution LE RESEU RECIPROQUE solution L pge 85 de votre poly de physique est conscrée à l définition du réseu réciproque, un concept initilement introduit pr J.W. Gibbs (189-190). Ce concept, plutôt bstrit, est

Plus en détail

Théorie des Langages Épisode 2 Automates finis

Théorie des Langages Épisode 2 Automates finis AFD AFN Opértions Lemme de pompge 1/ 36 Théorie des Lngges Épisode 2 Automtes finis Thoms Pietrzk Université Pul Verline Metz AFD AFN Opértions Lemme de pompge Reconnisseur Définition Configurtion Accepttion

Plus en détail

Tout ce qu il faut savoir en math

Tout ce qu il faut savoir en math Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion

Plus en détail

5. Intégration complexe

5. Intégration complexe 49 5. Intégrtion complexe 1. Intégrles définies d une fonction complexe d une vrible réelle Les intégrles sont extrêmement importntes dns l étude des fonctions d une vrible complexe. Nous étblirons l équivlence

Plus en détail

Chapitre 11 : L inductance

Chapitre 11 : L inductance Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4

Plus en détail

D O S S I E R L IMPACT MÉTÉOROLOGIQUE DE L ÉCLIPSE DU 11 AOÛT 1999 QUELQUES EXEMPLES D OBSERVATIONS DANS LA BANDE DE TOTALITÉ RÉSUMÉ ABSTRACT

D O S S I E R L IMPACT MÉTÉOROLOGIQUE DE L ÉCLIPSE DU 11 AOÛT 1999 QUELQUES EXEMPLES D OBSERVATIONS DANS LA BANDE DE TOTALITÉ RÉSUMÉ ABSTRACT L Météorologie 8 e série - n 28 - décemre 1999 57 D O S S I E R L IMPACT MÉTÉOROLOGIQUE DE L ÉCLIPSE DU 11 AOÛT 1999 QUELQUES EXEMPLES D OBSERVATIONS DANS LA BANDE DE TOTALITÉ Guy Crochrd et Didier Renut

Plus en détail

(surface d'un cercle : S = pd2 4 )

(surface d'un cercle : S = pd2 4 ) Les cordes sont de dimètres vribles. Si on les remplce pr deux cordes de même dimètre, le dimètre moyen, le résultt devrit être le même. Ici le résultt, c est sns doute l résistnce qui est proportionnelle

Plus en détail

Des extraits de cette norme seront présentés pour la compréhension de la démarche.

Des extraits de cette norme seront présentés pour la compréhension de la démarche. Estimtion de l incertitude de l mesure : Appliction à l incertitude sur le clcul de l concentrtion d EDTA lors de l détermintion de l dureté d une eu nturelle Pour cette démrche, nous nous ppuierons sur

Plus en détail

Module 2 : Déterminant d une matrice

Module 2 : Déterminant d une matrice L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté

Plus en détail

METHADOSE MC Dépendance aux opiacés

METHADOSE MC Dépendance aux opiacés METHADOSE MC Dépendnce ux opicés OCTOBRE 2013 Mrque de commerce : Methdose Dénomintion commune : Méthdone (chlorhydrte de) Fbricnt : Mllinckro Forme : Solution Orle Teneur : Ajout ux listes de médicments

Plus en détail

ICNA - SESSION 2009 ÉPREUVE OPTIONNELLE DE PHYSIQUE CORRIGÉ

ICNA - SESSION 2009 ÉPREUVE OPTIONNELLE DE PHYSIQUE CORRIGÉ ICNA - SESSION 9 ÉPREUVE OPTIONNEE DE PHYSIQUE CORRIGÉ Diffusion thermique dns un câble électrique.. puissnce volumique dissipée pr effet Joule dns le conducteur est donnée pr P. Je J J.E e γ I e vecteur

Plus en détail

Etude du comportement mécanique du gypse

Etude du comportement mécanique du gypse Etude du comportement mécnique du gypse Les essis mécniques rélisés en lbortoire sur des éprouvettes homogènes constituent le principl outil de détermintion des lois de comportement des solides en générl

Plus en détail

FAQ sur l utilisation d Ecoline-solo

FAQ sur l utilisation d Ecoline-solo FAQ sur l utilistion d Ecoline-solo De quel mtériel i-je esoin pour compléter les informtions demndées dns Ecoline-solo? Pour remplir rpidement toutes les informtions demndées dns Ecoline-solo, vous devez,

Plus en détail

Théorème de Rolle et formules de Taylor

Théorème de Rolle et formules de Taylor Théorème de Rolle et formules de Tylor 1 Extrémums des fonctions différentibles à vleurs réelles 1. Soient K un compct d un espce vectoriel normé (E, ) et f une fonction définie sur K à vleurs dns R. Montrer

Plus en détail

Chapitre I Introduction aux problèmes variationnels

Chapitre I Introduction aux problèmes variationnels Chpitre I Introduction ux problèmes vritionnels I.1. Introduction. Le clcul des vritions concerne l recherche d extrems (minimums ou mximums), et peut être considéré comme une brnche de l optimistion.

Plus en détail

Fonctions de référence

Fonctions de référence Chpitre 7 Clsse de Seconde Fonctions de référence Ce que dit le progrmme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Fonctions de référence Fonctions linéires et fonctions ffines Vritions de l fonction

Plus en détail

Chapitre 9: Primitives et intégrales

Chapitre 9: Primitives et intégrales PRIMITIVES ET INTEGRALES 7 Chpitre 9: Primitives et intégrles Prérequis: Limites, dérivées Requis pour: Emen de mturité 9. «À quoi ç sert?» Un peu d histoire Isc Newton (64-77) Les clculs d ire de figures

Plus en détail

TP 10 : Lois de Kepler

TP 10 : Lois de Kepler TP 10 : Lois de Kepler Objectifs : - Estimer l msse de Jupiter à prtir de l troisième loi de Kepler. - Utiliser Stellrium, un simulteur de plnétrium «photo-réel». Compétences trvillées : - Démontrer que,

Plus en détail

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006 Mjortions de l erreur dns les clculs clssiques de vleurs pprochées d intégrle Notes pour l préprtion u CAPES - Strsbourg- février 00 On trouve dns différents ouvrges élémentires des démonstrtions à coup

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

TOUT SUR LE TRIANGLE

TOUT SUR LE TRIANGLE PROBLEME de niveu sup rédigé pr R. Ferreol ferreol@mthcurve.com TOUT SUR LE TRIANGLE. DONNÉES ET NOTATIONS 3 points A, B, C non lignés d un pln ffine euclidien P orienté de fçon à ce que (AB, AC ) soit

Plus en détail

Production des rayons X en imagerie par projection et en scanographie

Production des rayons X en imagerie par projection et en scanographie 5-050--0 Production des ryons X en imgerie pr projection et en scnogrphie D. Régent, D. Mndry, V. Croise-Lurent,. Oliver, F. Jusset, V. Lombrd Le tube rdiogène reste le fcteur limitnt dns les techniques

Plus en détail

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie Exo7 Zéros des fonctions Vidéo prtie 1. L dichotomie Vidéo prtie. L méthode de l sécnte Vidéo prtie 3. L méthode de Newton Dns ce chpitre nous llons ppliquer toutes les notions précédentes sur les suites

Plus en détail

LOIS A DENSITE (Partie 1)

LOIS A DENSITE (Partie 1) LOIS A DENSITE (Prtie ) I. Loi de probbilité à densité ) Rppel Eemple : Soit l'epérience létoire : "On lnce un dé à si fces et on regrde le résultt." L'ensemble de toutes les issues possibles Ω = {; ;

Plus en détail

STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS

STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS CHAPITRE 1 STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS Objectifs Comme les liquides et les gz, les solides jouent un rôle très importnt en chimie. Or l pluprt des solides sont des solides cristllins.

Plus en détail

Electromagne tisme 2 : Induction

Electromagne tisme 2 : Induction Electromgne tisme : Induction Induction de Neumnn Eercice 1 : Clcul d une force électromotrice induite n dispose d'un cdre crré fie de côté comportnt N spires d'un fil conducteur d'etrémités A et C dns

Plus en détail

Roulements à une rangée de billes à contact oblique

Roulements à une rangée de billes à contact oblique Roulements à une rngée de billes à contct oblique Roulements à une rngée de billes à contct oblique 232 Définition et ptitudes 232 Séries 233 Vrintes 233 Tolérnces et jeux 234 Eléments de clcul 236 Crctéristiques

Plus en détail

Cours de mathématiques. Chapitre 12 : Calcul Intégral

Cours de mathématiques. Chapitre 12 : Calcul Intégral Cours de mthémtiques Terminle S1 Chpitre 12 : Clcul Intégrl Année scolire 2008-2009 mise à jour 5 mi 2009 Fig. 1 Henri-Léon Leesgue et Bernhrd Riemnn n les confond prfois 1 Tle des mtières I Chpitre 12

Plus en détail

Réalisation d'un chauffe eau solaire

Réalisation d'un chauffe eau solaire élistion d'un chuffe eu solire En vue de réliser un chuffe eu solire, on conçoit un cpteur de l mnière suivnte: un cisson en forme de prllélépipède est prfitement clorifugé sur ses fces inférieure et ltérles.

Plus en détail

Transformations géodésiques en France Métropolitaine

Transformations géodésiques en France Métropolitaine Trnsformtions géodésiques en Frnce Métropolitine 1 Processus de chngement de système... 1.1 Définitions... 1. Similitude 3D à 7 prmètres... 1.3 Modèle «à 7 prmètres»... 3 1.4 Coordonnées géogrphiques (,,h)

Plus en détail

I. Que sont les partitions?

I. Que sont les partitions? Cours de mthémtiques frfelues LES FRACTIONS CASSÉES Prémule Voici un cours de mthémtiques qui n ur jmis s plce dns une slle de clsse un utre jour que le er vril. Son sujet : les frctions cssées, ou prtitions,

Plus en détail

Notice d instructions originales 11/2010. à conserver pour une utilisation ultérieure. Bac de rangement. Réf. 583010000. Les techniciens du coffrage

Notice d instructions originales 11/2010. à conserver pour une utilisation ultérieure. Bac de rangement. Réf. 583010000. Les techniciens du coffrage 11/2010 Notice d instructions originles 999281403 fr à conserver pour une utilistion ultérieure c de rngement Réf. 583010000 escription du produit escription e c de rngement ok est un ccessoire de levge

Plus en détail

Intégration (suite) 1 Champs de vecteurs et intégrales curvilignes

Intégration (suite) 1 Champs de vecteurs et intégrales curvilignes . Intégrtion (suite) e qui suit comporte trois prties : l première correspond à peu près à ce qui été trité lors du dernier cours, certins exemples du cours et d utres clculs sont présentés dns l deuxième,

Plus en détail

GUIDE DE POSE_Fib-Air 9/11/04 11:10 Page 1

GUIDE DE POSE_Fib-Air 9/11/04 11:10 Page 1 GUIDE DE POSE_Fi-Air 9/11/04 11:10 Pge 1 GUIDE DE POSE_Fi-Air 9/11/04 11:10 Pge 2 SOMMAIRE A/ PRÉSENTATION Rélistion de conduits utoportnts pré-isolés à prtir de pnneux de l gmme Fi-Air. A/ PRÉSENTATION

Plus en détail

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville Théorème de Lx Milgrm Appliction u problème de Dirichlet pour l éqution de Sturm Liouville Résumé du cours de MEDP Mîtrise de mthémtiques 2000 2001 2001nov18 (medp-lx-milgrm.tex) Dns ce chpitre, on se

Plus en détail

CARACTÉRISTIQUES MÉTHODES DE RÉPARATION

CARACTÉRISTIQUES MÉTHODES DE RÉPARATION CARACTÉRISTIQUES Générlités - Trin vnt de type pseudo McPherson vec ressorts hélicoïdux et mortisseurs hydruliques. Brre ntidévers - Dimètre de l rre ntidévers (mm)... Couples de serrge (en dn.m) - Ecrou

Plus en détail

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3 Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement

Plus en détail

Kit de survie - Bac ES

Kit de survie - Bac ES Kit de survie - Bc ES. Étude du signe d une expression ) Signe de x + Ü Ü ½ Ò µ¼ Ò ½ 0) On détermine l vleur de x qui nnule x +, puis on pplique l règle : «signe de près le 0». ) Signe de x + x + c ܾ

Plus en détail

Détermination des épaisseurs Formule générale

Détermination des épaisseurs Formule générale Formule générle Hors le cs des vitrges pour le bâtiment, trité pr l NF DTU 39 P4, on peut clculer à l ide des formules de Timoshenko : - l épisseur minimle à donner ux vitrges plns monolithiques soumis

Plus en détail

Théorie des Langages Formels Chapitre 5 : Automates minimaux

Théorie des Langages Formels Chapitre 5 : Automates minimaux 1/29 Théorie des Lngges Formels Chpitre 5 : Automtes minimux Florence Levé Florence.Leve@u-picrdie.fr Année 2014-2015 2/29 Introduction Les lgorithmes vus précédemment peuvent mener à des utomtes reltivement

Plus en détail

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états.

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états. ciences Industrielles ystèmes comintoires Ppnicol Roert Lycée Jcques Amyot I - YTEME COMBINATOIRE A. Algère de Boole. Vriles logiques: Un signl réel est une grndeur physique en générl continue, on ssocie

Plus en détail

Savoir-faire expérimentaux.

Savoir-faire expérimentaux. LYCEE LOUIS DE CORMONTAIGNE. 12 Plce Cormontigne BP 70624. 57010 METZ Cedex 1 Tél.: 03 87 31 85 31 Fx : 03 87 31 85 36 Sciences Appliquées. Svoir-fire expérimentux.. Référentiel.. :. S5 Sciences. Appliquées......

Plus en détail

2.1 L'automate minimal

2.1 L'automate minimal CH.2 Minimistion 2.1 L'utomte miniml 2.2 L'lgorithme de minimistion Automtes ch2 1 2.1 L'utomte miniml Le lngge L définit sur Σ* l reltion d'équivlence R L : x R L y ssi ( z, xz L yz L). L'AFD M définit

Plus en détail

= L.a DVD 2.D et l = L.a BR. l DVD 2.D. .l BR. = 4,8 3,0 405 = 6,5 102 nm. 1 = 3,5.10 4 m 1 ; = 2,0.10 2 rad) 2.D L BR = L DVD. l BR 2.D.

= L.a DVD 2.D et l = L.a BR. l DVD 2.D. .l BR. = 4,8 3,0 405 = 6,5 102 nm. 1 = 3,5.10 4 m 1 ; = 2,0.10 2 rad) 2.D L BR = L DVD. l BR 2.D. Corretion exerie. Évolution des idées sur l lumière.. es ondes méniques néessitent un milieu mtériel (solide, liquide ou gz) pour se propger tndis que les ondes lumineuses peuvent se propger en l bsene

Plus en détail

Module 2 Équilibres en solutions (acidobasiques et solubilité) Tro (Chapitres 3-4-5)

Module 2 Équilibres en solutions (acidobasiques et solubilité) Tro (Chapitres 3-4-5) Module 2 Équilibres en solutions (cidobsiques et solubilité) Tro (Chpitres 3-4-5) FASCICUE #5 Chpitre 5 : Équilibre ionique dns les solutions queuses 5.1 Dnger de l ntigel 5.2 Tmpons : solutions qui résistent

Plus en détail

Formation et Analyse d'images. Stéreo et la Géometrie Epipolaire

Formation et Analyse d'images. Stéreo et la Géometrie Epipolaire Formtion et Anlyse d'imges Jmes L. Crowley ENSIMAG 3 Premier Bimestre 2002/2003 Sénce 7 21 novmre 2002 Stéreo et l Géometrie Epipolire Pln de l Sénce: L Vision Stéréoscopique...2 Les Techniques d'appriement...2

Plus en détail

L effet de la position du seuil d injection sur le refroidissement d un polymère dans un moule d injection

L effet de la position du seuil d injection sur le refroidissement d un polymère dans un moule d injection L effet de l position du seuil d injection sur le d un polymère dns un moule d injection Hmdy HASSAN, Nicols REGNIER, Cédric LEBOT, Guy DEFAYE Université Bordeux I ; CNRS ; UMR 8508, Lbortoire TREFLE,

Plus en détail

Convention européenne sur la responsabilité civile en cas de dommages causés par des véhicules automoteurs

Convention européenne sur la responsabilité civile en cas de dommages causés par des véhicules automoteurs Série des trités européens - n 79 Convention européenne sur l responsilité civile en cs de dommges cusés pr des véhicules utomoteurs Strsourg, 14.V.1973 Prémule Les Etts memres du Conseil de l'europe,

Plus en détail

Théorie de langages, TD3

Théorie de langages, TD3 Théorie de lngges, TD3 Octoer 6, 25 Automtes finis. Definitions Un utomte fini déterministe (DFA deterministic finite utomton) est une mchine de clcul A qui peut être définie pr les cinq éléments suivnts.

Plus en détail

2008 2010 MODULE M4 MATHEMATIQUES TERMINALE STAV

2008 2010 MODULE M4 MATHEMATIQUES TERMINALE STAV LEGTHP Sint Nicols STAV Promotion 8 MODULE M4 MATHEMATIQUES TERMINALE STAV Fiches de cours S. FLOQUET Septemre 9 Lycée Sint Nicols Igny Promotion 8 SOMMAIRE STAV PARTIE : RESUMES DE COURS Équtions de droites

Plus en détail

Formation et Analyse d'images. La Vision Stéréoscopique

Formation et Analyse d'images. La Vision Stéréoscopique Formtion et Anlyse d'imges Jmes L. Crowley ENSIMAG 3 Premier Bimestre 2007/2008 Sénce 11 21 décemre 2007 Pln de l Sénce : L Vision Stéréoscopique L Vision Stéréoscopique...2 Les Techniques d'appriement...2

Plus en détail

Petit utilitaire de l apprenti marin

Petit utilitaire de l apprenti marin Petit utilitire de l pprenti mrin Voilà des phrses bien étrnges qui peuvent être dites pr: Le cpitine: - u second : un grin rrive, fites reduire l voilure - u cnonnier : chrgez l btterie bâbord à mitrille,

Plus en détail

Promat. Canaux de ventilation, désenfumage selon les dispositions de l'aeai/sia

Promat. Canaux de ventilation, désenfumage selon les dispositions de l'aeai/sia Promt Cnux de ventiltion, désenfumge selon les dispositions de l'aeai/sia Protection contre l'incendie pour des cnux de ventiltion Cnux de ventiltion et de désenfumge utonome; revêtements pour cnux de

Plus en détail

Ater Lucis. La lumière maîtrisée

Ater Lucis. La lumière maîtrisée Ater Lucis L lumière mîtrisée 09/2009 Contenu A propos de Bonhomme Bâtiments Industriels Ater Lucis Démrche Qulités Focus pr modèle Circeo Xelios Arboris A propos de Bonhomme Bâtiments Industriels Bonhomme

Plus en détail

Mémo de cours n 4. Intégrales

Mémo de cours n 4. Intégrales Mémo de cours n 4 Intégrles v.0 4. Primitive 4.. Définition Si l fonction f (x) est l dérivée de l fonction F(x), c est à dire que f (x) = df(x) dx, lors nous ppelons l fonction F une primitive de f. On

Plus en détail

Fonctions : variations et extremums. Fonctions affines

Fonctions : variations et extremums. Fonctions affines Fonctions : vritions et extremums. Fonctions ffines Clsse de seconde I. Sens de vrition d'une fonction... 1) Fonctions croissntes... ) Fonctions décroissntes... II. Tbleu de vritions...3 III. Mximum, minimum...3

Plus en détail

Marc Chemillier Master M2 Atiam (Ircam), 2011-2012

Marc Chemillier Master M2 Atiam (Ircam), 2011-2012 MMIM Modèles mthémtiques en informtique musicle Mrc Chemillier Mster M2 Atim (Ircm), 2011-2012 Notions théoriques sur les lngges formels - Définitions générles o Mots, lngges o Monoïdes - Notion d utomte

Plus en détail

GDA CANALISATION MOYENNE PUISSANCE DE 63 À 2500 A

GDA CANALISATION MOYENNE PUISSANCE DE 63 À 2500 A GDA CANALISATION MOYENNE PUISSANCE DE 63 À 2500 A Une conception prticulièrement innovnte pour une cnlistion de moyenne puissnce. L enveloppe en luminium plus légère est pte à résister ux environnements

Plus en détail

Caractères et Glyphes

Caractères et Glyphes Crctères et Glyphes Le texte est obtenu pr l frppe u clvier des différents crctères désirés, crctères représentés à l écrn pr leur forme, les glyphes, représenttions des crctères. Ces crctères peuvent

Plus en détail

Examen Final Corrigé rédigé par Paul Brunet et Laure Gonnord

Examen Final Corrigé rédigé par Paul Brunet et Laure Gonnord Mster Info - 2014-2015 MIF15 Complexité et Clculbilité Exmen Finl Corrigé rédigé pr Pul Brunet et Lure Gonnord Durée 1H30 Notes de cours et de TD utorisées. Livres et ppreils électroniques interdits. Le

Plus en détail

LUMINAIRES D EXTÉRIEUR À LED SÉRIE OL/AOL ET PROJECTEURS À LED SÉRIE OFR/AFR

LUMINAIRES D EXTÉRIEUR À LED SÉRIE OL/AOL ET PROJECTEURS À LED SÉRIE OFR/AFR ÉCLAIRAGES À LED CH OL/AOL ET OFR/AFR LUMINAIRES D EXTÉRIEUR À LED SÉRIE OL/AOL ET PROJECTEURS À LED SÉRIE OFR/AFR NOUVELLES SÉRIES D ÉCLAIRAGES À LED PUISSANCE LUMINEUSE ET DESIGN INGÉNIEUX PERFORMANTS,

Plus en détail

Caractérisation de l épaisseur et du module d élasticité du béton des dalles par des techniques acoustiques

Caractérisation de l épaisseur et du module d élasticité du béton des dalles par des techniques acoustiques 1 ème Congrès Frnçis de Mécnique Bordeux, 6 u 30 oût 013 Crctéristion de l épisseur et du module d élsticité du éton des dlles pr des techniques coustiques N. RENAULT, P. PLIYA, J-L. GALLIAS. Lortoire

Plus en détail

Influence du milieu d étude sur l activité (suite) Inhibition et activation

Influence du milieu d étude sur l activité (suite) Inhibition et activation Influence du milieu d étude sur l ctivité (suite) Inhibition et ctivtion Influence de l tempérture Influence du ph 1 Influence de l tempérture Si on chuffe une préprtion enzymtique, l ctivité ugmente jusqu

Plus en détail

Évaluation de la chaîne acoustique CARMEN de IESTA sur des essais en phase de décollage

Évaluation de la chaîne acoustique CARMEN de IESTA sur des essais en phase de décollage CFA 014 Poitiers -5 Avril 014, Poitiers Évlution de l chîne coustique CARMEN de IESTA sur des essis en phse de décollge I. Le Griffon Oner, 9 venue Division Leclerc, 930 Chtillon, Frnce ingrid.legriffon@oner.fr

Plus en détail

201-NYC SOLUTIONS CHAPITRE 8

201-NYC SOLUTIONS CHAPITRE 8 Chpitre 8 Nombres complexes 7 -NYC SOUTIONS CHAPITRE 8 8. EXERCICES. ) Re() 5, Im() b) Re(), Im() 8 c) Re() 5, Im() d) Re(), Im() e) Re(), Im() f) Re(), Im() 6. ) x + i et x i b) x + i et x i c) x + i

Plus en détail

Exercices sur le calcul algébrique. Petits problèmes

Exercices sur le calcul algébrique. Petits problèmes Exercices sur le clcul lgébrique Les exercices ou questions précédés d un stérisque pourront être trités vec profit à l ide d un logiciel de clcul formel, tel que Xcs, qui ser vu en Trvux Prtiques, ou

Plus en détail

DÉCLARATION CE DE CONFORMITÉ PRÉCAUTIONS POUR L INSTALLATEUR

DÉCLARATION CE DE CONFORMITÉ PRÉCAUTIONS POUR L INSTALLATEUR DÉCLRTION CE DE CONFORMITÉ Frint: resse: Délre que: FC S.p.. Vi Benini, 1-40069 Zol Preos BOLOGN - ITLIE L opérteur mo. TM 58 M est onforme ux exigenes essentielles es iretives CEE suivntes: - 73/23/CEE

Plus en détail

La lumière : une onde

La lumière : une onde P g e TS Physique Exercice résolu Enoncé Remrque : les 3 prties sont indépendntes. e texte ci-dessous retrce succinctement l évolution de quelques idées à propos de l nture de l lumière : Pr nlogie à l

Plus en détail

9 Annexe III : Analyse du risque foudre et étude technique

9 Annexe III : Analyse du risque foudre et étude technique MEDOC ENERGIES Réf : MET.ICPE.13.002 Dossier de demnde d Autoristion ICPE Dte : 30/12/2013 Issue : 2 9 Annexe III : Anlyse du risque foudre et étude technique 93 Document confidentiel propriété du MOA.

Plus en détail