COURS D ANALYSE. Licence d Informatique, première. Laurent Michel

Dimension: px
Commencer à balayer dès la page:

Download "COURS D ANALYSE. Licence d Informatique, première. Laurent Michel"

Transcription

1 COURS D ANALYSE Licence d Informtique, première nnée Lurent Michel Printemps 2010

2 2

3 Tble des mtières 1 Éléments de logique Fbriquer des énoncés Enoncés élémentires Enoncés complexes Nier un énoncé Prouver ou infirmer un énoncé Démonstrtion directe Démonstrtion pr contrposition Démonstrtion pr l bsurde Démonstrtion pr récurrence Notion de limite Cs des fonctions Limite en un point Limites infinies Limites en l infini Pssge à l limite dns les inéglités Limite à guche et à droite Cs des suites Limite finie Limite infinie Monotonie et limite Critère de Cuchy Continuité et dérivbilité des fonctions numériques Rppels sur les fonctions Injectivité, surjectivité Monotonie Continuité Propriétés élémentires Théorème de l vleur intermédiire Notion d extremum Résultts globux Dérivbilité Définition et propriétés élémentires Théorèmes de Rolle et des ccroissements finis Représenttion grphique Dérivées d ordre superieur

4 4 TABLE DES MATIÈRES 3.4 Rppels sur les fonctions usuelles L fonction exponentielle Les fonctions trigonométriques Intégrtion des fonctions continues morceux Introduction Définition de l intégrle Cs des fonctions en esclier Cs des fonction continues pr morceux Théorème fondmentl de l Anlyse Intégrtion pr prties Chngement de vrible Formule de Tylor, développements limités Ordre de grndeur Générlités Cs des puissnces Formule de Tylor Développements limités Développements limités usuels Appliction u clcul de limites

5 Chpitre 1 Éléments de logique Dns cette première prtie du cours, on introduit très rpidement quelques outils permettnt de formliser les idées mthémtiques et d obtenir des moyens systémtiques de triter les problèmes. 1.1 Fbriquer des énoncés Enoncés élémentires Dns cette prtie, on tente de donner les outils nécessires à l formultion précise d énoncés mthémtiques. On veut pr exemple formliser des phrses du type suivnt : l somme de deux nombres positifs quelconques est un nombre positif le crré de n importe quel nombre réel est un nombre positif. tout nombre réel positif est le crré d un nombre réel. etc. Plus précisément, on cherche une mnière systémtique décrire des énoncés utilisnt le moins de mots possible (de mnière à éliminer toute mbiguité et de rccourcir les énoncés. On introduit donc les nottions suivntes (ou quntificteurs) : Définition pour tout se note il existe se note pprtient se note tel que se note tq On ppeler énoncé élémentire toute phrse fbriquée l ide des symboles précédents, ynt un sens. Exemple Avec ces nottions on peut trduire de l mnière suivnte : l somme de deux nombres positifs quelconques est un nombre positif se trduit pr [0, + [, b [0, + [, + b 0 le crré de n importe quel nombre réel est un nombre positif se trduit pr x R, x 2 0 5

6 6 CHAPITRE 1. ÉLÉMENTS DE LOGIQUE tout nombre réel positif est le crré d un nombre réel se trduit x R +, y R, tq x = y 2 Exercice Trduire il existe un nombre rtionnel dont le crré vut deux. Exercice Soit f : E F. On dit que f est surjective si tout élément de F est l imge pr f d u moins un élément de E. Trduire cette définition vec des quntificteurs. Remrque (importnte) Les quntificteurs et ne commutent ps. Pr exemple les énoncés suivnt ne sont ps du tout équivlents : x R, y R, x y y R, x R, x y. Les quntificteurs permettent de fbriquer des énoncés élémentires. Pour obtenir des énoncés plus complexes, on peut utiliser des mots de liison entre énoncés : et, ou, implique, contrire Enoncés complexes Disposnt d énoncés élémentires, il possible de fbriquer des énoncés plus compliqués. Pr exemple, si A et B sont deux ssertions, on voudr prler des enoncés : A et B, A ou B, etc. Définition A et B se note A B A ou B se note A B A implique B se note A = B contrire de A se note A. Exemple Soit f : E F. On dit que f est injective si deux éléments quelconques de E et différents ont des imges différentes. Avec l ide des quntificteurs, cel se trduit x R, y R, (x y = f(x) f(y)) Exercice Soit f : R R une ppliction. On dit que f est croissnte si deux éléments quelconques de R ordonnés ont leurs imges pr f rngées dns le même ordre. Trduire cette phrse vec des quntificteurs. Définition On ppeler énoncé mthémtique ou ssertion toute phrse fbriquée l ide des symboles précédents, ynt un sens. Si l on une informtion à priori sur l vércité des ssertions A et B on peut conclure sur l vercité d ssertions fbriquées vec A et B, en utilisnt les tbles de vérité. Dns les tbleux suivnts on note V une ssertion vrie et F une ssertion fusse. 1. Tble de vérité du contrire A = V A = F A = F A = V

7 1.2. NIER UN ÉNONCÉ 7 2. Tble de vérité du et B = V B = F A = V A B = V A B = F A = F A B = F A B = F 3. Tble de vérité du ou B = V B = F A = V A B = V A B = V A = F A B = V A B = F 4. Tble de vérité du implique B = V B = F A = V A = B = V A = B = F A = F A = B = V A = B = V Exercice Ecrire l tble de vérité de A ou B. Comprer vec celle de A = B. 1.2 Nier un énoncé Tout énoncé mthémtique peut être nié en utilisnt les règles suivntes : ÉNONCÉ Pour tout élément x de l ensemble E, l propriété P(x) est vérifiée Il existe un élément x de l ensemble E tel que l propriété P(x) est vérifiée L ssertion A et l ssertion B sont vries L ssertion A est vrie ou (non exclusif) l ssertion B est vrie. Si l ssertion A est vrie lors l ssertion B est vrie ÉNONCÉ CONTRAIRE Il existe un élément x de l ensemble E tel que l propriété P(x) n est ps vérifiée Pour tout élément x de l ensemble E, l propriété P(x) n est ps vérifiée L ssertion A est fusse ou (non exclusif) l ssertion B est fusse. L ssertion A et l ssertion B sont fusses. L ssertion A est vrie ET l ssertion B n est ps vrie En utilisnt les quntificteurs, les règles précédentes prennent l forme suivnte : ÉNONCÉ x E, P(x) x E, tq P(x) A B A B A = B ÉNONCÉ CONTRAIRE x E, tq P(x) x E, P(x) A B A B A et B Remrque On noter que l négtion trnsforme les quntificteurs en et en.

8 8 CHAPITRE 1. ÉLÉMENTS DE LOGIQUE Exemple Considérons l ssertion A suivnte L ssertion contrire de A est x Q, tq x 2 = 2. x Q, x 2 2. Exemple On rppelle qu une fonction f : E F est injective si x E, y E, (x y = f(x) f(y)). Avec les règles précédentes, on obtient l négtion de f est injective : x E, y E, tq x y et f(x) = f(y). Exercice Nier les énoncés suivnts : f : E F est surjective. R, b R, c R, x R, x 2 + bx + c = 0. Exercice On dit qu une fonction f : R R est croissnte si l propriété suivnte est vérifiée : Nier cet énoncé. x R, y R, (x y = f(x) f(y)). 1.3 Prouver ou infirmer un énoncé Démonstrtion directe Les règles élémentires pour démontrer une ssertion sont les suivntes : 1. Enoncé du type x E, A(x). On se donne x u hsrd dns E (on ne prend surtout ps de vleur prticulière pour x) et on démontre l propriété A(x) en utilisnt des propriétés connues. 2. Enoncé du type x E, A(x). On doit prouver l existence d un x E tel que A(x) est vrie (il n est ps nécessire et souvent ps possible de montrer A(x) pour tout x). 3. Enoncé du type A et B. On démontre A puis on démontre B (ou inversement). 4. Enoncé du type A ou B. On suppose que A est fux et on en déduit que B est vrie (ou inversement). 5. Enoncé du type A = B. On suppose que A est vrie et on démontre B. A l ide de ces règles bsiques et en procédnt inductivement on peut tenter de démontrer n importe quel énoncé. Pour infirmer un énoncé A, on doit démontrer A. Exemple L énoncé A suivnt : x [0, 2], x < 6 est vri.

9 1.3. PROUVER OU INFIRMER UN ÉNONCÉ 9 Preuve. L énoncé est de l forme x [0, 2], A(x) vec l propriété A(x) : x < 6. On fit ppel à l première des règles ci-dessus. On se donne x [0, 2] et on démontre A(x). Comme x [0, 2], x 2 4 et donc x Pr suite x 2 < 6. Exemple L fonction f : R R + définie pr f(x) = (x 1) 2 est surjective. Preuve. On doit démontrer l propriété suivnte : y R +, x R, tq f(x) = y. Soit y R +. On cherche x R tel que f(x) = y. Autrement dit, on cherche x R tel que (x 1) 2 = y. Comme y 0, x = y + 1 est bien défini et on bien sur (x 1) 2 = y. Exercice Soient f : R R et g : R R deux fonctions croissntes. Montrer que f g est croissnte. On suppose en outre que f et g ne prennent que des vleurs positives. Montrer que fg est croissnte Démonstrtion pr contrposition Ce type de démonstrtion s utilise pour les ssertions du type A = B. Une ssertion du type A = B est vrie si et seulement si s contrposée B = A est vrie. 1 Pour démontrer A = B, on peut donc supposer que B est vrie et étblir A. Exemple L fonction f : R R définie pr f(x) = 2x 5 est injective. Preuve. On doit démontrer l ssertion suivnte : x R, y R, (x y = f(x) f(y)). D près l règle 2, on commence pr se donner x R et y R u hsrd. On doit montrer l impliction suivnte : (x y = f(x) f(y)). On montre plutot s contrposée, qui s écrit : f(x) = f(y) = x = y. On invoque ensuite l règle 1. On suppose que f(x) = f(y) et on doit démontrer que x = y. Or f(x) = f(y) implique 2x 5 = 2y 5. On retrnche 5 ux deux membres de l éqution et on divise pr deux. Il vient x = y. Ceci montre bien que f est injective Exercice Soient f : R R et g : R R deux fonctions injectives. Montrer que f g est injective. Exercice Soit p un entier nturel. Montrer que si p 2 est pir lors p est pir. 1 En effet, l ssertion A = B est équivlente à A ou B qui est lui même équivlent à ( B) ou A. Or cette dernière ssertion est exctement B = A.

10 10 CHAPITRE 1. ÉLÉMENTS DE LOGIQUE Démonstrtion pr l bsurde Pour démontrer une ssertion A on peut supposer que son contrire A est vri et boutir à une contrdiction. Exercice Démontrer que 2 n est ps rtionnel. On pourr procéder pr l bsurde et supposer qu il existe deux entiers et b premiers entre eux tels que b = Démonstrtion pr récurrence Ce type de preuve s utilise pour étblir des ssertions du type n N, A n. Le schém de l démonstrtion est le suivnt. Etpe 1 On démontre A n pour n = 0. Etpe 2 On se donne n N quelconque, on suppose que A n est vrie on démontre A n+1. Attention, dns l étpe 2, on doit prendre un entier n quelconque. Il est interdit de prendre une vleur prticuliere pour n. L vlidité de ce type de preuves découle de l construction xiomtique des entiers nturels pr le mthémticien Giuseppe Peno. Exercice Démontrer pr récurrence les propriétés suivntes : 1. Démontrer que pour tout n N on n k=1 1 p(p + 1) = 2. Démontrer que pour tout n N, on n n n 2 = n(n + 1)(2n + 1). 6

11 Chpitre 2 Notion de limite 2.1 Cs des fonctions Limite en un point Soit f une fonction et x 0, l deux réels fixés. On veut donner un sens précis à l phrse suivnte : lorsque x devient proche de x 0, les vleurs de f(x) deviennent proches de l. Dns ce cs on dir que f tend vers l lorsque x tend vers x 0, ou encore que f pour limite l lorsque x tend vers x 0. Pour se fire une idée intuitive de l limite d une fonction en un point x 0, on peut clculer des vleurs successives de f(x) pour x de plus en plus proche de x 0. Ceci ne constitue en rien une démonstrtion. Pr exemple, si on pose f(x) = x 2, lors f(0.1) = 0.01, f(0.01) = , f(10 3 ) = 10 6, etc. Ceci suggère que lim x 0 x 2 = 0. On en verr une démonstrtion pr l suite. Si on pose f(x) = sin( 1 x ) pour x > 0, lors f(1/π) = 0, f(1/(2π)) = 0, f(1/(3π)) = 0, etc. On donc des points x k = 1 kπ de plus en plus proches de 0 tels que f(x k) = 0. Pourtnt f ne tend ps vers 0 qund x tend vers 0. En effet, on peut clculer f en d utres point proches de 0 : f(2/π) = 1, f(2/(5π)) = 1, f(2/(9π)) = 1, etc. Il est donc nécessire de donner une définition rigoureuse de l notion de limite. On introduit d bord quelques nottions. Soit I R un intervlle fini ou infini (ex : I = [0, 1], I =], 3],..). On note I l fermeture de I définie de l mniere suivnte : si I = [, b], ], b], [, b[ ou ], b[ vec, b R, lors I = [, b]. si I = [, + [ ou ], + [ vec R, lors I = [, + [ 11

12 12 CHAPITRE 2. NOTION DE LIMITE si I =], ] ou ]], [ vec R, lors I =], ]. L intervlle I s obtient prtir de I en fermnt les crochets lorsque c est possible. Définition Soit l R. On dit que l fonction f pour limite l qund x tend vers x 0 si : ǫ > 0, δ > 0 tq x I, ( x x 0 < δ = f(x) l < ǫ) (2.1) Dns ce cs, on note lim x x0 f(x) = l. f(x) l + ǫ l l ǫ x 0 x 0 δ x 0 + δ b x Lien entre ǫ et δ Remrque Dns l définition de l limite (2.1), il fut comprendre ǫ comme un écrt mximum entre f(x) et l ; et δ comme un écrt entre x et x 0. L définition demnde donc que l écrt (c..d. ǫ) entre f(x) et l puisse être rendu ussi petit que voulu, pourvu que l écrt (c..d. δ) entre x et x 0 soit petit. Remrque Avec cette définition, il est clir que si x 0 I et lim x x0 f(x) = l, on nécessirement f(x 0 ) = l. On urit pu prendre une utre définition de l limite, exclunt le comportement de f en x 0. Pr exemple, on dit que f pour limite l qund x tend vers x 0 en étnt different de x 0 si ǫ > 0, δ > 0, ( x x 0 < δ et x x 0 = f(x) l < ǫ). (2.2) Exemple Soit f : [ 1, 1] R définie pr x [ 1, 1], f(x) = x 2. Alors lim x 0 f(x) = 0. Preuve. On doit prouver que (2.1) est vérifiée. Pour cel on se donne ǫ > 0 et on cherche δ > 0 tel que (2.1) soit vérifiée. Prenons δ = ǫ et supposons que x [ 1, 1] est tel que x < δ = ǫ. Pr définition de f, on f(x) = x 2 < δ 2 = ǫ 2 = ǫ. Ceci montre bien (2.1).

13 2.1. CAS DES FONCTIONS 13 Exemple Soit f : [0, 2] R définie pr x [0, 1], f(x) = x Alors lim x 1 f(x) = 2. Preuve. On doit vérifier l ssertion (2.1) pour l fonction f(x) = x Soit ǫ > 0. On cherche δ > 0 tel que x 1 < δ = f(x) 2 < ǫ. Or f(x) 2 < ǫ x 2 1 < ǫ 1 ǫ < x 2 < 1 + ǫ 1 ǫ 1 < x 1 < 1 + ǫ 1 (2.3) Prenons δ = min( 1 + ǫ 1, 1 1 ǫ). Comme ǫ > 0 lors δ > 0 et on évidement x 1 < δ = 1 ǫ 1 < x 1 < 1 + ǫ 1. En tennt compte de (2.3), il vient x 1 < δ = f(x) 2 < ǫ. Proposition Soit f : I R une ppliction et x 0 I. On suppose que f une limite en x 0, lors cette limite est unique. Preuve. Supposons pr l bsurde que f possède deux limites différentes l et l lorsque x tend vers x 0. Quitte à intervertir leurs roles, on peut supposer que l < l. Posons ǫ = l l 4 > 0. Pr définition de l limite, il existe δ > 0 et δ > 0 tels que x I, x x 0 < δ = f(x) l < ǫ et x I, x x 0 < δ = f(x) l < ǫ. Soit x I tel que x x 0 < min(δ, δ ). D près les ssertions ci-dessus, on f(x) < l + ǫ et f(x) > l ǫ. En prticulier, l ǫ < l+ǫ. D où ǫ > l l 2. Or on choisit ǫ = l l 4, on en déduit une contrdiction. Exercice Montrer que lim x x = 1 et que lim x 1(x 2 x 1) = 1 Exercice Trduire à l ide de quntificteurs l propriété suivnte : l fonction f ne tend ps vers l qund x tend vers x 0. En déduire que l fonction f(x) = sin( 1 x ) ne tend ps vers 0 qund x tend vers 0. Exercice Soient f : I R et x 0 I. On suppose que lim x x0 f(x) = l et l 0. Montrer qu il existe δ > 0 tel que x ]x 0 δ, x 0 + δ[ I, f(x) 0. Proposition (Propriétés élémentires) Soient f : I R et g : I R deux fonctions et x 0 I. On suppose que lim x x0 f(x) = l 1 et lim x x0 g(x) = l 2. On les résultts suivnts : i) lim x x0 (f + g)(x) = l 1 + l 2

14 14 CHAPITRE 2. NOTION DE LIMITE ii) lim x x0 (fg)(x) = l 1 l 2 iii) Supposons que l 2 0, lors l fonction f g de x 0 et on lim x x0 ( f l1 g )(x) = l 2 est bien définie pour x proche Preuve. Preuve de i) On se donne ǫ > 0. Il existe α > 0 et β > 0 tels que x x 0 < α = f(x) l 1 < ǫ/2 et x x 0 < β = g(x) l 2 < ǫ/2. Soit γ = min(α, β), lors γ > 0. Supposons que x I vérifie x x 0 < γ. Alors f(x) + g(x) (l 1 + l 2 ) f(x) l 1 + g(x) l 2 < ǫ/2 + ǫ/2 = ǫ. (2.4) Ceci montre que lim x x0 (f + g)(x) = l 1 + l 2. Preuve de ii) On se donne ǫ > 0. On définit ǫ 1 = ǫ 2 = min( ǫ 3, ǫ Alors, il existe α 1 > 0 et α 2 > 0 tels que 3(1+l 1), x x 0 < α 1 = f(x) l 1 < ǫ 1 et x x 0 < α 2 = g(x) l 2 < ǫ 2. ǫ 3(1+l 1) ). Soit γ = min(α, β), lors γ > 0. Supposons que x I vérifie x x 0 < γ. Alors f(x)g(x) l 1 l 2 = g(x)(f(x) l 1 ) + l 1 (g(x) l 2 ) g(x) l 2 f(x) l 1 + l 2 f(x) l 1 + l 1 g(x) l 2 ǫ 1 ǫ 2 + l 2 ǫ 1 + l 1 ǫ 2 ǫ (2.5) grce ux choix fit pour ǫ 1, ǫ 2. Preuve de iii) Le fit que f g est bien définie près de x 0 est une conséquence de l exercice Le reste de l preuve est lissé en exercice. Corollire Soit f : R R une fonction polynomile (c est à dire f(x) = N k=0 kx k ). Soit x 0 R. Alors lim f(x) = f(x 0 ). x x 0 Preuve. Soit f une polynômile. Elle peut s ecrire f = N k=0 f k vec f k (x) = k x k. D près le i) de l proposition 2.1.2, il suffit donc de montrer que pour tout k N, on bien lim x k = x k x x 0 (2.6) 0 Or, on évidemment lim x x0 x = x 0, de sorte que (2.6) est une conséquence immédite du ii) de l proposition Exemple Soit f : R R définie pr f(x) = x x 2 +x+1. Alors lim x 1 f(x) = 2 3 Preuve. En effet, lim x 1 x x + 1 = 3 donc (d près iii)) lim x 1 x 2 +x+1 = 1 3. Comme pr illeurs lim x 1 x 2 = 1 on obtient le résultt nnoncé en joutnt les deux limites (d près i)).

15 2.1. CAS DES FONCTIONS 15 Proposition (Composition) Soient f : I R et g : J R où I et J sont deux intervlles. On suppose que f(i) J de sorte que g f est bien définie. On suppose qu il existe x 0 I, y 0 J et l R tels que lim x x0 f(x) = y 0, lim y y0 g(y) = l. Alors lim x x0 (g f)(x) = l. Preuve. Soit ǫ > 0. Comme g tend vers l lorsque y tend vers y 0, il existe α > 0 tel que y J ]y 0 α, y 0 + α[, g(y) l < ǫ. (2.7) De même comme f tend vers y 0 lorsque x tend vers x 0, en ppliqunt l définition de l limite vec ǫ = α, on peut ffirmer qu il existe δ > 0 tel que Autrement dit, x I ]x 0 δ, x 0 + δ[, f(x) y 0 < α. (2.8) x I ]x 0 δ, x 0 + δ[, f(x) ]y 0 α, y 0 + α[. (2.9) Comme f(i) J, quel que soit x I ]x 0 δ, x 0 + δ[, on y := f(x) J ]y 0 α, y 0 + α[. Pr conséquent en ppliqunt (2.7), on obtient g(y) l < ǫ. En résumé, on vient de prouver que x I ]x 0 δ, x 0 + δ[, g(f(x)) l < ǫ ce qui chève l démonstrtion. Exemple Soit f(x) = (x 2) (x 2) 2 pour tout x R. Alors lim x 3 f(x) = 1 2. Preuve. En effet f(x) = g h(x) vec h(x) = x 2 et g(y) = y y. Or 2 lim x 3 h(x) = 1 et lim y 1 g(y) = 1 2. Le résultt découle donc de l proposition précédente. Proposition Soient f, g, h trois fonctions de I dns R. Soient x 0 I et l R. On suppose que x I, g(x) f(x) h(x) et Alors, lim g(x) = l = lim h(x). x x 0 x x 0 lim x x 0 f(x) = l. Preuve. Soit ǫ > 0. Comme lim x x0 g(x) = l, lors δ > 0, x I, ( x x 0 < δ = l ǫ < g(x)).

16 16 CHAPITRE 2. NOTION DE LIMITE Comme lim x x0 h(x) = l, lors δ > 0, x I, ( x x 0 < δ = h(x) < l + ǫ). Soit δ = min(δ, δ ). Supposons que x I vérifie x x 0 < δ. En utilisnt les deux ssertions ci dessus et le fit que g(x) f(x) h(x), il vient l ǫ < g(x) f(x) h(x) < l + ǫ. D où f(x) l < ǫ Limites infinies On se donne f : I R et x 0 I. On veut formliser l énoncé suivnt : lorsque x se rpproche de x 0 l vleur de f(x) devient de plus en plus grnde. Définition On dit que f tend vers + qund x tend vers x 0 si : M R +, δ > 0, tq x I, ( x x 0 < δ = f(x) M) (2.10) Dns ce cs on note lim x x0 f(x) = +. On dir que f tend vers qund x tend vers x 0 si : M R +, δ > 0, tq x I, ( x x 0 < δ = f(x) M) (2.11) Dns ce cs on note lim x x0 f(x) =. f(x) M x 0 x 0 δ x 0 + δ b x Fonction ynt une limite infinie en un point Remrque Dns l définition précédente, il fut comprendre M comme une vleur minimle pour f(x) qund x est proche de x 0. En d utres termes, l définition (2.10) ffirme que f(x) peut être rendu ussi grnd que voulu (c..d. plus grnd que M), pourvu que x soit proche de x 0 (c..d. x x 0 < δ).

17 2.1. CAS DES FONCTIONS 17 Remrque Il est évident que lim f(x) = lim ( f(x)) = +. x x 0 x x 0 Exercice Soit f l fonction définie sur ]1, + [ pr f(x) = 1 x 1. Montrer que lim x 1 f(x) = +. Exercice Soit f l fonction définie sur R \ {1} pr f(x) = 1 x 1. Montrer que f n ps de limite en 1. Comprer à l exercice précédent. Définition Soit f : I R. On dit que f est mjorée sur I si On dit que f est minorée sur I si On dit que f est bornée sur I si M R, x I, f(x) M. m R, x I, f(x) m. M 0, x I, f(x) M. Remrque Une fonction est bornée si et seulement si elle est mjorée et minorée. Exercice Soit f définie pr f(x) = 1 x+1. Montrer que f est bornée sur R +. Montrer que f n est ps bornée sur ] 1, + [. Proposition Soient f : I R et g : I R deux fonctions. Soit x 0 I. On suppose que lim x x0 f(x) = + et que g est minorée sur I lors lim x x0 (f + g)(x) = +. Preuve. On doit montrer que M R, δ > 0, x I, ( x x 0 < δ = (f + g)(x) M). (2.12) Soit M R quelconque. Comme g est minorée, il existe A R tel que pour tout x I, g(x) A. Pr illeurs, comme lim x x0 f(x) = +, on sit que R R, δ > 0, x I, ( x x 0 < δ = f(x) R). (2.13) En ppliqunt cette propriété vec R = M A, on trouve δ > 0 tel que pour tout x I ]x 0 δ, x 0 + δ[ on f(x) M A. On en déduit que pour tout x I ]x 0 δ, x 0 + δ[, on (f + g)(x) M A + A = M.

18 18 CHAPITRE 2. NOTION DE LIMITE Limites en l infini On veut formliser l notion suivnte : lorsque x devient de plus en plus grnd, f(x) prend des vleurs de plus en plus proches d une vleur l fixée. Définition Soient R, l R et f : (, + [ R. On dit que f tend vers l lorsque x tend vers plus l infini (noté lim x + f(x) = l) si ǫ > 0, M R, x M, f(x) l < ǫ (2.14) On dit que f tend vers l lorsque x tend vers moins l infini (noté lim x f(x) = l) si ǫ > 0, M R, x M, f(x) l < ǫ (2.15) f(x) l + ǫ l l ǫ M x Fonction ynt une limite en plus l infini Remrque Dns l définition précédente, il fut comprendre M comme une vleur de x à prtir de lquelle on est certin que f(x) ser proche de l. Exercice Soit f : R R définie pr f(x) = 1 1+x 2. Montrer que f tend vers 0 en ±. Exercice Soit f : R R une fonction et g : R R définie pr x R, g(x) = f( x). Montrer que lim f(x) = l lim g(x) = l. x x + Définition Soient R et f : (, + [ R. On dit que f tend vers + (resp. ) lorsque x tend vers l infini (noté lim x + f(x) = +, resp. lim x + f(x) = ) si M R, A R, x A, f(x) M (resp. f(x) M) (2.16)

19 2.1. CAS DES FONCTIONS 19 Exercice Donner une bonne définition de : lim x f(x) = ±. Exercice Soit f : R R définie pr f(x) = xsin(x). Montrer que f n est ps bornée. Montrer que f n ps de limite en l infini. Proposition (Propriétés élémentires) Soient f : (, + [ R et g : (, + [ R deux fonctions. On suppose que lim x + f(x) = l 1 et lim x + g(x) = l 2. On les résultts suivnts : i) lim x + (f + g)(x) = l 1 + l 2 ii) lim x + (fg)(x) = l 1 l 2 iii) Supposons que l 2 0, lors l fonction f g grnd et on lim x + ( f l1 g )(x) = l 2 est bien définie pour x ssez Preuve. C est une vrition de l preuve de l proposition Exemple Soit f(x) = 5x3 +x 1 2x 3 +x 2 pour x > 0. Alors, lim x + f(x) = 5 2. Preuve. En effet, f(x) = x3 (5 + 1 x 2 1 x 3 ) x 3 (2 + 1 x ) = f 1(x) f 2 (x) vec f 1 (x) = x 2 1 x 3 et f 2 (x) = x. Or lim x + f 1 (x) = 5 et lim x + f 2 (x) = 2. Pr suite, lim x + f(x) = 5 2. Proposition Soient f : (, + [ R et g : (, + [ R deux fonctions. On suppose que lim x + f(x) = + et que g est minorée. Alors lim (f + g)(x) = +. x + Preuve. Soit M R. Comme g est minorée, il existe m R tel que x (, + [, g(x) m. Comme lim x + f(x) = +, il existe A tel que x A, f(x) M m. Pr suite, x A, (f + g)(x) M m + m = M. Corollire Soient f : (, + [ R et g : (, + [ R deux fonctions. On suppose que lim x + f(x) = + et lim x + g(x) = +. Alors lim (f + g)(x) = +. x +

20 20 CHAPITRE 2. NOTION DE LIMITE Preuve. Il suffit de vérifier qu une fonction tendnt vers + qund x tend vers + est nécessirement minorée pour x ssez grnd. Exemple L fonction f(x) = x 2 + sin(x) vérifie lim x + f(x) = +. Remrque Attention, il n y ps de règle qund on retrnche des limites infinies. Pr exemple on lim x = +, x + lim x + x2 = +, lim x 1 = + x + et lim x + (x2 x) = +, lim x (x 1) = 1. x + Proposition Soient f, g, h trois fonction de (, + [ à vleurs dns R et soit l R. On suppose que x (, + [, g(x) f(x) h(x) et Alors lim g(x) = l = lim h(x). x + x + lim f(x) = l. x + Preuve. L démonstrtion est similire à celle de l proposition Pssge à l limite dns les inéglités Proposition Soit f : I R une ppliction. On suppose qu il existe x 0 I et l R tels que lim x x0 f(x) = l. i) Supposons qu il existe m R tel que x I, f(x) m. Alors l m. ii) Supposons qu il existe M R tel que x I, f(x) M. Alors l M. Preuve. Preuve de i) On suppose pr l bsurde que l < m. Posons ǫ = m l 2 > 0. Pr définition de l limite, il existe δ > 0 tel que x I ]x 0 δ, x 0 + δ[, f(x) l < ǫ. En prticulier, on pour tout x I ]x 0 δ, x 0 + δ[, f(x) < l + ǫ = m + l 2 ce qui contredit l définition de m. Preuve de ii) Identique. Lissée en exercice. < l, Remrque Il n y ps de théorème nlogue vec des inéglités strictes. Pour s en rendre compte, il suffit de prendre f(x) = x pour x ]0, 1[. On bien f(x) > 0 pour tout x ]0, 1[ mis lim x 0 f(x) = 0.

21 2.1. CAS DES FONCTIONS 21 Proposition Soit I = (, + [ (ou ], b)). Soit f : I R une ppliction. On suppose qu il existe l R tels que lim x ± f(x) = l. Supposons qu il existe m R tel que x I, f(x) m. Alors l m. Supposons qu il existe M R tel que x I, f(x) M. Alors l M. Preuve. L démonstrtion est identique à celle de l Proposition Limite à guche et à droite Pour illuster le propos de cette prtie, commencons pr l étude d un exemple. Soit f :] 1, 1[ R définie pr f(x) = x + 1 si x < 0 et f(x) = x 1 si x 0. Alors f n ps de limite lorsque x tend vers 0. En effet,pour tout n N, f(1/n) = 1+1/n et f( 1/n) = 1 1/n. Donc pour n grnd f(1/n) s pproche de 1, lors que f( 1/n) s pproche de 1. En fit il est possible démontrer que si l on considère seulement les vleurs positives de x, lors f(x) tend vers 1 qund x tend vers 0. De même, si l on considère seulement les vleurs négtives de x, lors f(x) tend vers 1 qund x tend vers 0. Ceci nous pousse à introduire les définitions suivntes. Définition Soit f : I R une fonction et J I. On ppelle restriction de f à J l fonction f J : J R définie pr x J, f J (x) = f(x). Remrque L restriction de f à J n est rien d utre que l fonction f où l on utorise x à ne prcourir que J. Exemple Soit f : [ 1, 1] R définie pr f(x) = x 2 si x 0 et f(x) = x 2 si x 0. Soit J = [0, 1], lors f [0,1] est l fonction f [0,1] : [0, 1] R définie pr f [0,1] (x) = x 2 pour tout x [0, 1]. Définition Soit f :], b[ R une fonction et x 0 ], b[. Soit l R {+ } { }. On dir que f tend vers l lorsque x tend vers x 0 à guche (ou pr vleurs inferieures) si lim x x0 f ],x0[(x) = l. Dns ce cs, on note lim x x0,x<x 0 f(x) = l (ou lim x x f(x) = l). 0 On dir f tend vers l lorsque x tend vers x 0 à droite (ou pr vleurs superieures) si lim x x0 f ]x0,b[(x) = l. Dns ce cs, on note lim x x0,x>x 0 f(x) = l (ou lim x x + f(x) = l). 0 Remrque On peut trduire cette définition vec des ǫ. Pr exemple, si l R, lors lim x x f(x) = l si et seulement si 0 ǫ > 0, δ > 0, x ]x 0 δ, x 0 [, f(x) l < ǫ. On peut fire de même vec les limites infinies. Exemple Soit f : R R définie pr f(x) = 1 x si x 0 et f(0) = 0. Alors f(x) = et lim f(x) = +. + lim x 0 x 0

22 22 CHAPITRE 2. NOTION DE LIMITE Exemple Soit f : R R définie pr f(x) = sin((1/x) si x > 0 et f(x) = xsin(1/x) si x < 0. Alors lim x 0 f(x) = 0 mis f n ps de limite en 0 pr vleurs superieures. Proposition Soit f :], b[ R et x 0 ], b[. Alors lim f(x) = l f(x 0 ) = l, lim f(x) = l et lim f(x) = l. x x 0 x x 0 x x + 0 Preuve. Découper en morceux. 2.2 Cs des suites Une suite numérique u est une ppliction de l ensemble des entiers nturels N vleurs dns R. Cel peut ussi être vu comme une collection de nombres réels indéxée pr N. On note u = (u n ) n N une telle collection. Cel signifie que le premier élément de l collection est u 1, le second u 2, etc. Définition (Opértions élémentires)soient u = (u n ) n N et v = (v n ) n N deux suites numériques. i) On définit l suite w = u + v pr n N, w n = u n + v n. ii) On définit l suite w = u.v pr n N, w n = u n.v n. ii) On suppose que n N, v n 0. On définit l suite w = u v pr n N, w n = un v n. Remrque Si on sit seulement que v n 0 pour n n 0 pour un certin n 0 (pr exemple n 0 = 34), il est possible de définir l suite quotient pour des indices superieurs n 0.On note cette suite ( un v n ) n n Limite finie On veut donner une définition précise de l notion suivnte : les termes de l suite ssociés à des entiers de plus en plus grnds sont de plus en plus proches d une vleur fixe. Définition Soient u = (u n ) n N une suite numérique et l R. On dit que l suite (u n ) n N converge vers l qund n tend vers l infini si : Dns ce cs on note lim n + u n = l. ǫ > 0, N N, n N u n l < ǫ (2.17) Exercice Montrer que (u n ) n N tend vers l qund n tend vers l infini dns les cs suivnts : 1. u n = n et l = u n = n et l = 2. 2

COURS D ANALYSE. Licence de Mathématiques, première. Laurent Michel

COURS D ANALYSE. Licence de Mathématiques, première. Laurent Michel COURS D ANALYSE Licence de Mthémtiques, première nnée Lurent Michel Automne 2011 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................

Plus en détail

Université de Marseille Licence de Mathématiques, 1ere année, Analyse (limites, continuité, dérivées, intégration) T. Gallouët

Université de Marseille Licence de Mathématiques, 1ere année, Analyse (limites, continuité, dérivées, intégration) T. Gallouët Université de Mrseille Licence de Mthémtiques, ere nnée, Anlyse (limites, continuité, dérivées, intégrtion) T. Gllouët July 29, 205 Tble des mtières Limites 3. Définition et propriétés......................................

Plus en détail

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 28 novembre 2013 Lien vers l dernière mise à jour de ce document Lien vers les exercices de ce chpitre Chpitre 20 Intégrtion Sommire 20.1 Continuité uniforme.................................

Plus en détail

Calcul intégral. II Intégrale d une fonction 4

Calcul intégral. II Intégrale d une fonction 4 BTS DOMOTIQUE Clcul intégrl 8- Clcul intégrl Tble des mtières I Primitives I. Définitions............................................... I. Clculs de primitives.........................................

Plus en détail

Calcul int egral. 15 d ecembre 2008

Calcul int egral. 15 d ecembre 2008 Clcul intégrl. 15 décembre 2008 2 Tble des mtières I Intégrles multiples 5 1 Rppels sur l intégrle définie des fonctions d une vrible. 7 1.1 Motivtions................................ 7 1.1.1 Cs des fonctions

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

Chapitre 3 Dérivées et Primitives

Chapitre 3 Dérivées et Primitives Cours de Mthémtiques Clsse de Terminle STI - Chpitre : Dérivées et Primitives Chpitre Dérivées et Primitives A) Rppels de première et compléments ) Dérivées usuelles Fonction définie sur Fonction f() =

Plus en détail

Cours de mathématiques. Chapitre 12 : Calcul Intégral

Cours de mathématiques. Chapitre 12 : Calcul Intégral Cours de mthémtiques Terminle S1 Chpitre 12 : Clcul Intégrl Année scolire 2008-2009 mise à jour 5 mi 2009 Fig. 1 Henri-Léon Leesgue et Bernhrd Riemnn n les confond prfois 1 Tle des mtières I Chpitre 12

Plus en détail

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn)

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn) Chpitre 7 Primitives et Intégrles 7. Primitive d une fonction Soit f une fonction définie sur un intervlle K de R. On ppelle primitive de f, une fonction F dont l dérivée est f : F (x) = f(x). On note

Plus en détail

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a Intégrtion Les fonctions considérées ci-dessous sont des fonctions définies sur un intervlle réel I, à vleurs réelles ou complees ou, plus générlement, à vleurs dns un espce vectoriel normé de dimension

Plus en détail

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3 Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement

Plus en détail

CHAPITRE 9 : PRIMITIVES - INTEGRALES

CHAPITRE 9 : PRIMITIVES - INTEGRALES Primitives et intégrles Cours CHAPITRE 9 : PRIMITIVES - INTEGRALES. Primitives d une fonction Définition Soit f une fonction définie sur un intervlle I. Une fonction F est une primitive de f sur I, si

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Tout ce qu il faut savoir en math

Tout ce qu il faut savoir en math Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion

Plus en détail

Le Calcul Intégral. niveau maturité. Daniel Farquet

Le Calcul Intégral. niveau maturité. Daniel Farquet Le Clcul Intégrl niveu mturité Dniel Frquet Eté 8 Tble des mtières Introduction Intégrle indéfinie 3. Définitions et générlités................................ 3.. Déf. d une primitive..............................

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

MP1 Janson DS6 du 17 janvier 2014/2015. 1 n x.

MP1 Janson DS6 du 17 janvier 2014/2015. 1 n x. MP Jnson DS6 du 7 jnvier 24/25 Problème (CCP) Toutes les fonctions de ce problème sont à vleurs réelles. PARTE PRÉLMNARE Les résultts de cette prtie seront utilisés plusieurs fois dns le problème.. Fonction

Plus en détail

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Jen-Pierre Dedieu, Jen-Pierre Rymond ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Institut de Mthémtiques Université Pul Sbtier 31062 Toulouse cedex 09 jen-pierre.dedieu@mth.univ-toulouse.fr jen-pierre.rymond@mth.univ-toulouse.fr

Plus en détail

semestre 3 des Licences MISM annnée universitaire 2004-2005

semestre 3 des Licences MISM annnée universitaire 2004-2005 MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................

Plus en détail

Mathématiques, Semestre S1

Mathématiques, Semestre S1 Polytech Pris-Sud PeiP1 2011/2012 Notes de cours Mthémtiques, Semestre S1 Filippo SANTAMBROGIO 2 Tble des mtières 1 Les fonctions dns R et leurs limites 7 1.1 Fonctions réelles d une vrible réelle.........................

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

mémento de mathématiques pour les ECE1

mémento de mathématiques pour les ECE1 mémento de mthémtiques pour les ECE1 Abdellh Becht Résumé L objectif de ce mémento est de permettre ux élèves de première nnée des clsses préprtoires ux Ecoles de Commerces, option économique, d voir un

Plus en détail

Analyse 1 L1-mathématiques

Analyse 1 L1-mathématiques Anlyse L-mthémtiques Renud Leplideur Année 3-4 UBO Tble des mtières Inéglités et clculs 3. Nombres..................................... 3.. Les ensembles N, Z, Q et R...................... 3.. Les intervlles

Plus en détail

2008 2010 MODULE M4 MATHEMATIQUES TERMINALE STAV

2008 2010 MODULE M4 MATHEMATIQUES TERMINALE STAV LEGTHP Sint Nicols STAV Promotion 8 MODULE M4 MATHEMATIQUES TERMINALE STAV Fiches de cours S. FLOQUET Septemre 9 Lycée Sint Nicols Igny Promotion 8 SOMMAIRE STAV PARTIE : RESUMES DE COURS Équtions de droites

Plus en détail

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO Université Pris-Duphine DUMI2E UFR Mthémtiques de l décision Notes de cours Anlyse 2 Filippo SANTAMBROGIO Année 2008 2 Tble des mtières 1 Optimistion de fonctions continues et dérivbles 5 1.1 Continuité........................................

Plus en détail

Toutes les questions de cours et R.O.C. au bac de T.S. Vincent PANTALONI

Toutes les questions de cours et R.O.C. au bac de T.S. Vincent PANTALONI Toutes les questions de cours et R.O.C. u bc de T.S. Vincent PANTALONI VERSION DU 9 MARS 2012 Tble des mtières Bc 2011 3 Bc 2011 5 Bc 2010 9 Bc 2009 11 Bc 2008 13 Bc 2007 17 Bc 2006 19 Bc 2005 21 ii Remerciements.

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1 Grenoble INP Pgor 1ère nnée Exercices corrigés Anlyse numérique NB : Les exercices corrigés ici sont les exercices proposés durnt les sénces de cours. Les corrections données sont des corrections plus

Plus en détail

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mthémtiques 2 première prtie : Anlyse 2 DEUG MIAS 1 e nnée, 2 e semestre. Mximilin F. Hsler Déprtement Scientifique Interfcultire B.P. 7209 F 97275 SCHOELCHER CEDEX Fx : 0596 72 73 62 e-mil :

Plus en détail

Résumé du cours d analyse de maths spé MP

Résumé du cours d analyse de maths spé MP 1 TOPOLOGE Résumé du cours d nlyse de mths spé MP 1 Topologie 1) Normes, normes équivlentes Une norme sur l espce vectoriel E est une ppliction N de E dns R vérifint : x E, N(x). x E, (N(x) = x = ) (xiome

Plus en détail

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville Théorème de Lx Milgrm Appliction u problème de Dirichlet pour l éqution de Sturm Liouville Résumé du cours de MEDP Mîtrise de mthémtiques 2000 2001 2001nov18 (medp-lx-milgrm.tex) Dns ce chpitre, on se

Plus en détail

Fonctions définies par une intégrale. On suppose que g et h sont deux fonctions réelles définies sur R d, telles que la fonction

Fonctions définies par une intégrale. On suppose que g et h sont deux fonctions réelles définies sur R d, telles que la fonction Prép. Agrég. écrit d Anlyse, Annexe n o 6. Méthode de Lplce dns R d Fonctions définies pr une intégrle On suppose que g et h sont deux fonctions réelles définies sur R d, telles que l fonction F(t = g(x

Plus en détail

Fonctions de référence

Fonctions de référence Chpitre 7 Clsse de Seconde Fonctions de référence Ce que dit le progrmme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Fonctions de référence Fonctions linéires et fonctions ffines Vritions de l fonction

Plus en détail

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mthémtiques 2 première prtie : Anlyse 2 DEUG MIAS 1 e nnée, 2 e semestre. Mximilin F. Hsler Déprtement Scientifique Interfcultire B.P. 7209 F 97275 SCHOELCHER CEDEX Fx : 0596 72 73 62 e-mil :

Plus en détail

Mathématiques du signal déterministe

Mathématiques du signal déterministe Conservtoire Ntionl des Arts et Métiers MAA17 Mthémtiques du signl déterministe Nelly POINT 11 octobre 211 Tble des mtières 1 Intégrtion 3 1.1 Méthodes d intégrtion : rppels........................ 3

Plus en détail

EPUUniversité de Tours

EPUUniversité de Tours DI 3ème nnée EPUUniversité de Tours Déprtement Informtique 007-008 ANALYSE NUMERIQUE Chpitre 3 Intégrtion numérique résumé du cours 1 Introduction Il s git d une mniére générle de déterminer, le mieux

Plus en détail

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique.

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique. C39211 Ecole Normle Supérieure de Cchn 61 venue du président Wilson 94230 CACHAN Concours d dmission en 3 ème nnée Informtique Session 2009 INFORMATIQUE 1 Durée : 5 heures «Aucun document n est utorisé»

Plus en détail

Kit de survie - Bac ES

Kit de survie - Bac ES Kit de survie - Bc ES. Étude du signe d une expression ) Signe de x + Ü Ü ½ Ò µ¼ Ò ½ 0) On détermine l vleur de x qui nnule x +, puis on pplique l règle : «signe de près le 0». ) Signe de x + x + c ܾ

Plus en détail

Cours de Terminale S Lycée Camille Pissarro 2013-2014. Sébastien Andrieux

Cours de Terminale S Lycée Camille Pissarro 2013-2014. Sébastien Andrieux Cours de Terminle S Lycée Cmille Pissrro 203-204 Sébstien Andrieux 7 juin 204 Tble des mtières I Cours de Terminle S 5 Risonnement pr récurrence 6 2 Suites et limites des suites 8 I Suite convergente,

Plus en détail

DEUG MIAS 1 Année 2002-2003 Premier et deuxième semestres Feuilles de Cours

DEUG MIAS 1 Année 2002-2003 Premier et deuxième semestres Feuilles de Cours Deug Mis 1 Année 2002-2003 J.-F. Burnol Université Lille 1 1 DEUG MIAS 1 Année 2002-2003 Premier et deuxième semestres Feuilles de Cours Toutes les fiches de cours distribuées ux étudints pendnt l nnée

Plus en détail

Développements limités. Motivation. Exo7

Développements limités. Motivation. Exo7 Eo7 Développements limités Vidéo prtie. Formules de Tlor Vidéo prtie 2. Développements limités u voisinge d'un point Vidéo prtie 3. Opértions sur les DL Vidéo prtie 4. Applictions Eercices Développements

Plus en détail

2. Formules d addition.

2. Formules d addition. IX. Trigonométrie 1. Rppels 1.1 Définitions : Dns le cercle trigonométrique C ( O, 1 ), si nous fixons un point P correspondnt à un ngle d mplitude nous vons défini : = bscisse du point P sin = ordonnée

Plus en détail

Cours de Mathématique - Statistique Calcul Matriciel

Cours de Mathématique - Statistique Calcul Matriciel L - Mth Stt Cours de Mthémtique - Sttistique Clcul Mtriciel F. SEYTE : Mître de conférences HDR en sciences économiques Université de Montpellier I M. TERRZ : Professeur de sciences économiques Université

Plus en détail

ANALYSE NUMERIQUE NON-LINEAIRE

ANALYSE NUMERIQUE NON-LINEAIRE Université de Metz Licence de Mthémtiques - 3ème nnée 1er semestre ANALYSE NUMERIQUE NON-LINEAIRE pr Rlph Chill Lbortoire de Mthémtiques et Applictions de Metz Année 010/11 1 Tble des mtières Chpitre

Plus en détail

Intégration sur un intervalle quelconque MP

Intégration sur un intervalle quelconque MP ntégrtion sur un intervlle quelconque MP 9 décembre 22 Dns ce chpitre, on définit l notion de fonction continue pr morceu et intégrble sur un intervlle quelconque. Cel nous permettr de donner un sens à

Plus en détail

Cours d Analyse IV Suites et Séries de fonctions

Cours d Analyse IV Suites et Séries de fonctions Université Clude Bernrd, Lyon I Licence Sciences, Technologies & Snté 43, boulevrd 11 novembre 1918 Spécilité Mthémtiques 69622 Villeurbnne cedex, Frnce L. Pujo-Menjouet pujo@mth.univ-lyon1.fr Cours d

Plus en détail

Kit de survie - Bac S

Kit de survie - Bac S Kit de survie - Bc S. Inéglités - Étude du signe d une expression Opértions sur les inéglités Règles usuelles : Pour tout x < y x + < y + même sens Pour tout k > : x < y kx < ky même sens Pour tout k

Plus en détail

Séquence 7. Intégration. Sommaire

Séquence 7. Intégration. Sommaire Séquence 7 Intégrtion Sommire. Prérequis. Aire et intégrle d une fonction continue et positive sur [ ; ]. Primitives 4. Primitives et intégrles d une fonction continue 5. Synthèse de l séquence Dns ce

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Cours de Mthémtiques Bcclurét 20 Résumé Ce document contient les principles définitions, théorèmes et propriétés du cours de mthémtiques du tronc commun de mthémtiques de Terminle S. Je tiens à remercier

Plus en détail

COURS DE MATHÉMATIQUES

COURS DE MATHÉMATIQUES COURS DE MATHÉMATIQUES Terminle S Vlère BONNET vlere.bonnet@gmil.com) 9 mi Lycée PONTUS DE TYARD rue des Gillrdons 7 CHALON SUR SAÔNE Tél. : ) 85 46 85 4 Fx : ) 85 46 85 59 FRANCE ii LYCÉE PONTUS DE TYARD

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Cours de Mthémtiques TS Lycée Henri IV Tble des mtières I Les nombres complexes 7 Rcines n ième d un nombre complexe non nul 7. Définition.................................................... 7.2 Représenttion

Plus en détail

ANALYSE APPROFONDIES II MT242

ANALYSE APPROFONDIES II MT242 ALGÈBRE ET ANALYSE APPROFONDIES II MT242 Année 1998-1999 Chpitre 0. Introduction générle Dns cette introduction nous llons commenter les principles notions contenues dns le cours du second semestre, leurs

Plus en détail

Cours de Mathématiques L1. Résumé des chapitres. Hassan Emamirad

Cours de Mathématiques L1. Résumé des chapitres. Hassan Emamirad Cours de Mthémtiques L1 Résumé des chpitres Hssn Emmird Université de Poitiers Version 29/21 TABLE DES MATIÈRES 3 Tble des mtières 1 Nombres complexes 5 1.1 Le corps C.....................................

Plus en détail

Chapitre 13 : intégration sur un intervalle quelconque : théorie

Chapitre 13 : intégration sur un intervalle quelconque : théorie Mth Spé MP Chpitre 13 : intégrtion sur un intervlle quelconque : théorie 19/1/2012 1 Cs des onctions à vleurs dns R + Déinition : onction continue pr morceux sur un intervlle : Une onction : K où (K =

Plus en détail

Les règles de Descartes et de Budan Fourier

Les règles de Descartes et de Budan Fourier Ojectifs de ce chpitre Mthémtiques ssistées pr ordinteur Chpitre 4 : Rcines des polynômes réels et complexes Michel Eisermnn Mt49, DLST LS4, Année 8-9 www-fourierujf-grenolefr/ eiserm/cours # mo Document

Plus en détail

Table des matières Dénombrer et sommer Événements et Probabilités

Table des matières Dénombrer et sommer Événements et Probabilités Tble des mtières 1 Dénombrer et sommer 5 1.1 Rppels ensemblistes............................. 5 1.1.1 Opértions ensemblistes....................... 5 1.1.2 Bijections............................... 7 1.2

Plus en détail

Chapitre 9: Primitives et intégrales

Chapitre 9: Primitives et intégrales PRIMITIVES ET INTEGRALES 7 Chpitre 9: Primitives et intégrles Prérequis: Limites, dérivées Requis pour: Emen de mturité 9. «À quoi ç sert?» Un peu d histoire Isc Newton (64-77) Les clculs d ire de figures

Plus en détail

Préparation à l'examen écrit de maturité Mathématiques 2013

Préparation à l'examen écrit de maturité Mathématiques 2013 Wechter Loïc Mturité 2013 Mthémtiques Cours de M. Flcoz 2013 Préprtion à l'exmen écrit de mturité Mthémtiques 2013 1.Primitives et intégrles 1.1Primitives (CRM pp.77-80) Une primitive pourrit se définir

Plus en détail

Continuité - Limites Asymptotes à une courbe

Continuité - Limites Asymptotes à une courbe Continuité - Limites Asymptotes à une cre Continuité - Théorème des vleurs intermédiires Notion de continuité Grphiquement, on peut reconnître une fonction continue sur un intervlle I pr le fit que le

Plus en détail

Licence MIMP Semestre 1. Math 12A : Fondements de l Analyse 1. http ://math.univ-lille1.fr/ mimp/math12.html

Licence MIMP Semestre 1. Math 12A : Fondements de l Analyse 1. http ://math.univ-lille1.fr/ mimp/math12.html Licence MIMP Semestre 1 Math 12A : Fondements de l Analyse 1 http ://math.univ-lille1.fr/ mimp/math12.html Septembre 2013 Table des matières Chapitre I. Les nombres réels et les suites numériques 1 1

Plus en détail

LOIS A DENSITE (Partie 1)

LOIS A DENSITE (Partie 1) LOIS A DENSITE (Prtie ) I. Loi de probbilité à densité ) Rppel Eemple : Soit l'epérience létoire : "On lnce un dé à si fces et on regrde le résultt." L'ensemble de toutes les issues possibles Ω = {; ;

Plus en détail

Intégration (suite) 1 Champs de vecteurs et intégrales curvilignes

Intégration (suite) 1 Champs de vecteurs et intégrales curvilignes . Intégrtion (suite) e qui suit comporte trois prties : l première correspond à peu près à ce qui été trité lors du dernier cours, certins exemples du cours et d utres clculs sont présentés dns l deuxième,

Plus en détail

Licence M.A.S.S. Cours d Analyse S4

Licence M.A.S.S. Cours d Analyse S4 Université Pris I, Pnthéon - Sorbonne Licence MASS Cours d Anlyse S4 Jen-Mrc Brdet (Université Pris 1, SAMM) UFR 27 et Equipe SAMM (Sttistique, Anlyse et Modélistion Multidisiplinire) Université Pnthéon-Sorbonne,

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Enoncés 1 Topologie Ouverts et fermés Exercice 6 [ 118 ] [correction] On muni le R-espce vectoriel des suites réelles bornées de l norme u = sup u n

Plus en détail

Cours d Analyse Mathématique II

Cours d Analyse Mathématique II Année 22-23 Cours d Anlyse Mthémtique II F. Bstin Prise de notes rédigée pr Alice Slmon. Avec l prticiption de : Nicols Ghye (schéms) Sndy Assent (relecture) Préfce Avertissement Ce texte résulte d une

Plus en détail

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON Durée : 4 heures Les clcultrices sont utorisées. Le sujet comprend qutre exercices indépendnts qui peuvent être trités dns l'ordre que

Plus en détail

Outils de calcul pour la 3 ème

Outils de calcul pour la 3 ème Chpitre I Outils de clcul pour l Ce que nous connissons déjà :! Opértions sur les décimux, les reltifs et les quotients. Puissnces de dix. Nottions scientifiques. Clcul littérl simple. Objectifs de ce

Plus en détail

Chapitre 1 : Fonctions analytiques - introduction

Chapitre 1 : Fonctions analytiques - introduction 2e semestre 2/ UE 4 U : Abrégé de cours Anlyse 3: fonctions nlytiques Les notes suivntes, disponibles à l dresse http://www.iecn.u-nncy.fr/ bertrm/, contiennent les définitions et les résultts principux

Plus en détail

Intégrale et primitives

Intégrale et primitives Chpitre 5 Intégrle et primitives 5. Ojetif On herhe dns e hpitre à onstruire l opérteur réiproue de l opérteur de dérivtion. Les deux uestions suivntes sont lors nturelles. Question : Soit f une pplition

Plus en détail

Séquence 8. Probabilité : lois à densité. Sommaire

Séquence 8. Probabilité : lois à densité. Sommaire Séquence 8 Proilité : lois à densité Sommire. Prérequis 2. Lois de proilité à densité sur un intervlle 3. Lois uniformes 4. Lois exponentielles 5. Synthèse de l séquence Dns cette séquence, on introduit

Plus en détail

2.1 L'automate minimal

2.1 L'automate minimal CH.2 Minimistion 2.1 L'utomte miniml 2.2 L'lgorithme de minimistion Automtes ch2 1 2.1 L'utomte miniml Le lngge L définit sur Σ* l reltion d'équivlence R L : x R L y ssi ( z, xz L yz L). L'AFD M définit

Plus en détail

3.8. 1 Estimation de l aire d une région curviligne. Exemple 1 Estimer l aire de la région sous une hyperbole. Solution

3.8. 1 Estimation de l aire d une région curviligne. Exemple 1 Estimer l aire de la région sous une hyperbole. Solution .8 Aperçu de l intégrle.8 APERÇU DE L INTÉGRALE Estimtion de l ire d une région curviligne Erreur d pproimtion Aire ecte d une région curviligne 4 Intégrle définie 5 Intégrle définie négtive 6 Propriétés

Plus en détail

UNIVERSITE PARIS 1 PANTHEON SORBONNE UFR DE GESTION

UNIVERSITE PARIS 1 PANTHEON SORBONNE UFR DE GESTION UNIVERSITE PRIS PNTHEON SORBONNE UFR DE GESTION MTHEMTIQUES PPLIQUEES L ECONOMIE ET L GESTION LICENCE nnée Cours de Thierry LFY TRVUX DIRIGES semestre 7-8 Thème n : Rppels Eercice Déterminez l ensemble

Plus en détail

ESTIMER LA PRÉCISION DES MESURES

ESTIMER LA PRÉCISION DES MESURES ESTIMER LA PRÉCISION DES MESURES I. Précision d'une mesure directe Une mesure directe est une mesure lue sur un ppreil de mesure. Le résultt d'une mesure directe n'est jmis connu de fçon prfitement excte.

Plus en détail

Intégration, probabilités

Intégration, probabilités prép-greg 7-8 Intégrtion, probbilités Dns tous les exercices probbilistes, les vribles létoires sont supposées définies sur le même espce probbilisé (Ω, A, P). I Questions de cours L fonction t sin t t

Plus en détail

1 Projection tache Airy sur mode propre capillaire

1 Projection tache Airy sur mode propre capillaire 1 Projection tche Airy sur mode propre cpillire Dns l pproximtion prxile (petits ngles) le chmp électrique d une onde de fréquence ω polrisée rectilignement suivnt ~u x se propgent à l intérieur d un cpillire

Plus en détail

Option informatique :

Option informatique : Option formtique : l deuxième nnée Lurent Chéno été 1996 Lycée Louis-le-Grnd, Pris Tle des mtières I Arres 13 1 Arres ires 15 1.1 Défitions et nottions... 15 1.1.1 Défition formelle d un rre ire... 15

Plus en détail

Stage olympique de Cachan Géométrie

Stage olympique de Cachan Géométrie Stge olympique de chn Géométrie Exercices du vendredi 20 février 2015 1 Quelques définitions et résultts utiles éfinition (Nottions) Soit un tringle non plt. On utiliser usuellement les nottions suivntes

Plus en détail

Chapitre 11 : L inductance

Chapitre 11 : L inductance Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4

Plus en détail

École de technologie supérieure Service des enseignements généraux Local B-2500 514-396-8938 Site internet : http://www.etsmtl.ca/ MAT145.

École de technologie supérieure Service des enseignements généraux Local B-2500 514-396-8938 Site internet : http://www.etsmtl.ca/ MAT145. École de technologie supérieure Service des enseignements généru Locl B-500 54-96-898 Site internet : http://www.etsmtl.c/ MAT45 CALCUL DIFFÉRENTIEL ET INTÉGRAL NOTES DE COURS e PARTIE PAR GENEVIÈVE SAVARD,

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

gfaubert septembre 2010 1

gfaubert septembre 2010 1 Notes de cours Pour l e secondire Compiltion et/ou crétion Guyline Fuert Septemre 00 gfuert septemre 00 Géométrie------------------------------------------------------------------------------------------------------------------------

Plus en détail

Kit de survie - Bac ES

Kit de survie - Bac ES Kit de survie - c E Etude du signe d une eression - igne de + b ( 0) On détermine l vleur de qui nnule + b, uis on lique l règle : "signe de rès le 0". +b b/ + signe de ( ) signe de - igne de + b + c (

Plus en détail

Cours d informatique théorique de M. Arfi. FMdKdD fmdkdd [à] free.fr

Cours d informatique théorique de M. Arfi. FMdKdD fmdkdd [à] free.fr Cours d informtique théorique de M. Arfi FMdKdD fmdkdd [à] free.fr Université du Hvre Année 2009 2010 Tle des mtières 1 Reltions et lois de composition internes 2 1.1 Reltions.....................................

Plus en détail

TP 10 : Lois de Kepler

TP 10 : Lois de Kepler TP 10 : Lois de Kepler Objectifs : - Estimer l msse de Jupiter à prtir de l troisième loi de Kepler. - Utiliser Stellrium, un simulteur de plnétrium «photo-réel». Compétences trvillées : - Démontrer que,

Plus en détail

Rattrapage. 4 ] Quelle est la complexité dans le pire cas de l algorithme de tri fusion (pour trier n éléments)?

Rattrapage. 4 ] Quelle est la complexité dans le pire cas de l algorithme de tri fusion (pour trier n éléments)? IN 02 6 mrs 2009 Rttrpge NOM : Prénom : ucun document n est utorisé. ce QCM outit à une note sur 42 points. L note finle sur 20 ser otenue simplement en divisnt l note sur 42 pr 2. Il suffit donc de donner

Plus en détail

/HVV\VWqPHVFRPELQDWRLUHV

/HVV\VWqPHVFRPELQDWRLUHV /HVV\VWqPHVFRPELQDWRLUHV I. Définition On ppelle système combintoire tout système numérique dont les sorties sont exclusivement définies à prtir des vribles d entrée (Figure ). = f(x, x 2,,, x n ) x x

Plus en détail

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à Intégration et probabilités 212-213 TD3 Intégration, théorèmes de convergence Corrigé xercice ayant été voué à être préparé xercice 1 (Mesure image). Soient (, A, µ) un espace mesuré, (F, B) un espace

Plus en détail

3 LES OUTILS DE DESCRIPTION D UNE FONCTION LOGIQUE

3 LES OUTILS DE DESCRIPTION D UNE FONCTION LOGIQUE 1GEN ciences et Techniques Industrielles Pge 1 sur 7 Automtique et Informtiques Appliquées Génie Énergétique Première 1 - LA VARIABLE BINAIRE L électrotechnique, l électronique et l mécnique étudient et

Plus en détail

MATHS Rappels Suites, Fonctions, Développements limités

MATHS Rappels Suites, Fonctions, Développements limités INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE MATHS Rappels Suites, Fonctions, Développements limités Pascal Floquet Xuân Meyer Première Année à Distance Septembre 006 Jean-Claude Satge Table des matières

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

GLMA201 - ALGÈBRE LINÉAIRE ET ANALYSE 2-2013-2014 CONTRÔLE CONTINU 2

GLMA201 - ALGÈBRE LINÉAIRE ET ANALYSE 2-2013-2014 CONTRÔLE CONTINU 2 GLMA -4 GLMA - ALGÈBRE LINÉAIRE ET ANALYSE - -4 CONTRÔLE CONTINU Durée : h Tout doument ou lultrie est interdit Il ser tenu ompte de l lrté et de l préision de l rédtion Il est importnt de justifier hune

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

zz' = z. z' ; Si z' # 0 1 z' Re(z) = z + z z est réel z = z ; z est imaginaire pur z = - z

zz' = z. z' ; Si z' # 0 1 z' Re(z) = z + z z est réel z = z ; z est imaginaire pur z = - z Nomres complexes Module et conjugué d'un nomre complexe Définition - Propriétés Un nomre complexe z s'écrit de fçon unique sous l forme + i ; IR, IR On dit que + i est l forme lgérique du nomre complexe

Plus en détail

CH.1 Automates finis

CH.1 Automates finis CH.1 Automtes finis 1.1 Les utomtes finis déterministes 1.2 Les utomtes finis non déterministes 1. Les utomtes vec -trnsitions 1.4 Les expressions régulières 1.5 L'équivlence des modèles Automtes ch1 1

Plus en détail

DISTANCES DE LA TERRE A LA LUNE ET AU SOLEIL

DISTANCES DE LA TERRE A LA LUNE ET AU SOLEIL Première Distnces de l Terre à l Lune et u Soleil Pge 1 TRAVAUX DIRIGES DISTANCES DE LA TERRE A LA LUNE ET AU SOLEIL -80 II ème siècle p J-C 153 1609 1666 1916 199 ARISTARQUE de Smos donne une mesure de

Plus en détail

Prospection électrique. Guy Marquis, EOST Strasbourg

Prospection électrique. Guy Marquis, EOST Strasbourg Prospection électrique Guy Mrquis, EOST Strsbourg Le 9 Avril 005 Chpitre Bses physiques L prospection électrique est l une des plus nciennes méthodes de prospection géophysique. S mise en oeuvre est reltivement

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Terminale S3 Année 2009-2010 Table des matières I Les fonctions. 4 1 Les limites (suite du cours) 5 IV Limites par comparaison....................................... 5 V Fonctions

Plus en détail

TOUT SUR LE TRIANGLE

TOUT SUR LE TRIANGLE PROBLEME de niveu sup rédigé pr R. Ferreol ferreol@mthcurve.com TOUT SUR LE TRIANGLE. DONNÉES ET NOTATIONS 3 points A, B, C non lignés d un pln ffine euclidien P orienté de fçon à ce que (AB, AC ) soit

Plus en détail