A11 : La représentation chaînée (1ère partie)

Dimension: px
Commencer à balayer dès la page:

Download "A11 : La représentation chaînée (1ère partie)"

Transcription

1 A11 : L représettio chîée (1ère prtie) - Défiitio et schéms de cosulttio - Schéms de mise à jour (isertio, suppressio) - Exemples J-P. Peyri - L représettio chîée (première prtie) 0 Pricipe de l représettio chîée Représettio de l liste : [A, B, C, D, E] B A C E D J-P. Peyri - L représettio chîée (première prtie) 1 1

2 Compriso etre chîge et cotiguïté L représettio cotiguë : -l foctio de successio est clculée : l'élémet suivt est à l'emplcemet l suivt. écessité de déclges pour ue mise à jour (séqueces ordoées). i <T[i], i+1> L représettio chîée : -l foctio de successio est tbulée : < ifo(), () suc()> () les élémets sot dispersés ds l mémoire. modifictio de l foctio de successio pour ue mise à jour (séqueces ordoées). J-P. Peyri - L représettio chîée (première prtie) 2 Expressio à l'ide de poiteurs Fire bstrctio de l structurtio de l'espce mémoire : mécismes d'lloctio dymique - llouer l'espce demdé - libérer l'espce iutilisé Ne ps se soucier de l'implttio effective des uités llouées. Chque uité est désigée pr u poiteur qui permet de l mipuler ss coître exctemet l vleur de so dresse d'implttio. Le mot clef poiteur sert à défiir u type d'iformtio. Le mot clef fnil désige ue costte t pprtet t à tout ttype décrit vec le costructeur poiteur (e "poite" ulle prt). Nottio : p {poiteur} [p] {vleur désigée} Alogie : i {idice} MEM[i] {vleur désigée} J-P. Peyri - L représettio chîée (première prtie) 3 2

3 Lexique & ccès séquetiel Lexique : doublet : le type < ifo : u élémet ; suc : ue dresse > dresse : le type poiteur de doublet ; Nil: ue costte de type poiteur : ue dresse Allouer : ue ctio (le résultt P:upoiteur) {P est ue dresse utilisble} Libérer : ue ctio (l doée P : u poiteur) {P est restituée à l'espce libre} Modèle 1 : Démrrer : p : ue dresse Avcer : ElémetCourt : ifo de [p] FiDeSéquece : p = Nil Modèle 2 : Amorcer : p, ec : des dresses Avcer : ec p ; ElémetCourt : ifo de [ec] EstDerier : p = Nil J-P. Peyri - L représettio chîée (première prtie) 4 Prcours et Recherche (modèle 1) Schém P1 : { Prcours du modèle 1 } Acc v ttque p Nil : { Acc = Résultt(pg) } Acc f (Acc, ifo de [p]) { Acc = Résultt(séquece) } Schém R1 : { Recherche du modèle 1 } ttque p Nil etpuis o P (ifo de [p]) : { e pg, o P(e) } { p Nil Trouvé } J-P. Peyri - L représettio chîée (première prtie) 5 3

4 Vrite du prcours Schém de Prcours lorsque le tritemet de l liste cosiste à modifier s structure. Le tritemet de l'élémet court peut fire perdre l'iformtio sur so successeur. Schém P1 : { Prcours du modèle 1 } Acc v ttque p Nil : { Acc = Résultt(pg) } S {Mémoristio du successeur de p} Acc f (Acc, p ) p Sp { Acc = Résultt(séquece) } J-P. Peyri - L représettio chîée (première prtie) 6 Isertio Isertio e tête : suc de [] Isertio près : suc de [] suc de [] suc de [] Isertio vt : ttque suc de [p] suc de [] ; suc de [p] p J-P. Peyri - L représettio chîée (première prtie) 7 4

5 Suppressio Suppressio e tête : x suc de [] libérer (x) Suppressio près : s suc de [] suc de [] suc de [s] libérer (s) s Suppressio de : ttque suc de [p] suc de [p] suc de [] libérer () p J-P. Peyri - L représettio chîée (première prtie) 8 Isertio & Suppressio ss recherche du précédet. Isertio vt : suc de [] suc de [] suc de [] [] ifo de [] ifo de [] Suppressio de : s suc de [] ifo de [] ifo de [s] sucde[] suc de [s] libérer (s) s Techique dgereuse s'il y plusieurs chemis d'ccès à u même élémet! J-P. Peyri - L représettio chîée (première prtie) 9 5

6 Exemple 1 : Iversio d'ue liste chîée Schém de l'ivrit : Cour Suiv lexique, Cour, Suiv : des poiteurs de doublet lgorithme Cour Nil {Iverse ([ ]) = [ ]} ttque Cour Nil : Suiv sucde[cour] {mémoristio du successeur} suc de [Cour] ; Cour {isertio e tête : } {Iverse (S. e) = e o Iverse (S)} Cour Suiv J-P. Peyri - L représettio chîée (première prtie) 10 Exemple 2 : Compressio d'u texte (1/2) Pr exemple (rppel) : Compressio ('bbbgffgggdjjf') = 'bgfgdjf' Représettio (schém de l'ivrit) : Der Cour Compressio (pg) pd J-P. Peyri - L représettio chîée (première prtie) 11 6

7 Exemple 2 : Compressio d'u texte (2/2) Comprimer : l'ctio (l doée-résultt : u poiteur de doublet) {é.i. : désige ue séquece de lettres S représetée pr chîge ; é.f. : désige l séquece Compressio(S) représetée pr chîge} lexique : lgorithme : Der, Cour, Suiv : des poiteurs de doublet si Nil : Der ; Cour suc de [] ttque Cour Nil : Suiv suc de [Cour] si ifo de [Der] = ifo de [Cour] : Libérer (Cour) {Cour doit être supprimé du texte} sio suc de [Der] Cour ; Der Cour Cour Suiv Cour Suiv suc de [Der] Nil Der J-P. Peyri - L représettio chîée (première prtie) 12 7

Cours (Terminale S) Limite d une fonction

Cours (Terminale S) Limite d une fonction Cours (Termile S) Limite d ue octio Limite d ue octio e + ou Foctio déiie u voisige de + (resp ) Soit ue octio d esemble de déiitio D O dir que «l octio est déiie u voisige de + (resp )» s il eiste u réel

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

Augmentation de capital - Comptabilisation

Augmentation de capital - Comptabilisation Ctluppi & Hug AG Softwre d Augmettio de cpitl - Comptbilistio Descriptio Ue ugmettio de cpitl est ue ugmettio du cpitl ctio d'ue société oyme pr émissio de ouvelles ctios. Il existe différetes formes d'ugmettio

Plus en détail

Baccalauréat S Nouvelle - Calédonie Mars 2009

Baccalauréat S Nouvelle - Calédonie Mars 2009 Bcclurét S Nouvelle - Clédoie Mrs 009 Exercice Commu à tous les cdidts (5 poits) r r Le pl est rpporté à u repère orthoorml direct ( O, u, v) d uité grphique cm O cosidère les poits et B d ffixes respectives

Plus en détail

Intégration et primitives

Intégration et primitives DERNIÈRE IMPRESSIN LE 8 mrs 24 à 4:2 Itégrtio et primitives Tle des mtières Notio d itégrle 2. Défiitio................................. 2.2 Exemple de clcul d itégrle : l qudrture de l prole.... 3.3 Itégrle

Plus en détail

Fiche 2 : les fonctions

Fiche 2 : les fonctions Nº : 300 Fice : les foctios Pl de l fice I - Limites, comportemet symptotique II - Dérivtio III - Cotiuité I - Limites, comportemet symptotique Défiitios Ue foctio f pour ite e lorsque : l foctio f est

Plus en détail

1. Limites. Les limites dans la vie courante. Vitesse instantanée. Pente d'une courbe en un point LIMITES

1. Limites. Les limites dans la vie courante. Vitesse instantanée. Pente d'une courbe en un point LIMITES LIMITES. Limites.. Les ites ds l vie courte Vitesse isttée L otio de vitesse, et e prticulier l vitesse d'u objet à u istt précis, est, étommet, subtile et difficile à défiir précisémet. Cosidérez cette

Plus en détail

2 Exercice 15 : les intégrales de Wallis

2 Exercice 15 : les intégrales de Wallis Exercice sur les itégrles Exercice 5 : les itégrles de Wllis O pose si xdx ) Clculer I et I ) Motrer que l suite ( ) coverge 3) Etblir ue formule de récurrece etre et 4) Motrer que le produit ( + ) + est

Plus en détail

Chapitre 1 Calculs algébriques dans... 3. Chapitre 2 Logique... 27. Chapitre 3 Fonctions numériques... 41. Chapitre 4 Calcul intégral...

Chapitre 1 Calculs algébriques dans... 3. Chapitre 2 Logique... 27. Chapitre 3 Fonctions numériques... 41. Chapitre 4 Calcul intégral... Avt-propos Cet ouvrge est coçu pour permettre u étudits des clsses préprtoires ECE d order leur première ée ds les meilleures coditios e fcilitt l trsitio vec l eseigemet secodire Aisi, l ojectif est i

Plus en détail

4. Puissances et racines

4. Puissances et racines PUISSANCES ET RACINES 4. Puissces et rcies 4.. Puissces à exposts etiers Défiitio L puissce ième d'u ombre réel est u produit de fcteurs tous égux à : =, =, etc. O dit que est l bse de l puissce et l'expost.

Plus en détail

Éléments finis de joint mécaniques et éléments finis de joint couplés hydromécanique

Éléments finis de joint mécaniques et éléments finis de joint couplés hydromécanique Titre : Élémets fiis de joit mécaiques et élémets fi[...] Date : 28/10/2014 Pae : 1/10 Élémets fiis de joit mécaiques et élémets fiis de joit couplés hydromécaique Résumé : Cette documetatio porte sur

Plus en détail

Chapitre 7: Calculs approchés d intégrale

Chapitre 7: Calculs approchés d intégrale Lycée Mssé Chpitre 7: Clculs pprochés d itégrle 1 Itroductio Les foctios usuelles qu o mipule possèdet souvet des primitives que l o peut exprimer à l ide des foctios usuelles. Cepedt, ce est ps le cs

Plus en détail

1 Convergence simple et convergence uniforme

1 Convergence simple et convergence uniforme Mster Métiers de l Eseigemet, Mthémtiques - ULCO, L Mi-Voi, 0/03 ANALYSE Fiche de Mthémtiques 5 - Suites et séries de foctios Soiet E et F deu espces métriques quelcoques et (f ) ue suite d pplictios de

Plus en détail

Centrale PSI 1 un corrigé

Centrale PSI 1 un corrigé Cetrle PSI u corrigé L foctio Γ. I.A. f : t t e t est cotiue sur R + ; les seuls problèmes d itégrbilité sot u voisiges de et de +. - Au voisige de, f (t) t est itégrble si et seulemet si < (foctios de

Plus en détail

MATHÉMATIQUES. 3 ème. v.2.5 programme 2008 édition 2015

MATHÉMATIQUES. 3 ème. v.2.5 programme 2008 édition 2015 MATHÉMATIQUES 3 ème 1 er trimestre v..5 progrmme 008 éditio 015 Cours Pi Etblissemet privé hors cotrt d eseigemet à distce SARL u cpitl de 17 531,86 euros - RCS PARIS B 391 71 1 - APE 8559B siège socil

Plus en détail

Exemple 89. Définition 51. point d inflexion de Exemple Tracé du graphe d une fonction

Exemple 89. Définition 51. point d inflexion de Exemple Tracé du graphe d une fonction 59 Eemple 89. L foctio f : 2 est deu fois dérivle sur R, et pour dérivée et dérivée secode sur R : f ) = 2 et f ) = 2 Puisque s dérivée secode est positive sur R, l foctio f est covee sur R. E u poit 0

Plus en détail

MECANIQUE QUANTIQUE Chapitre 6 : Oscillateur Harmonique Quantique

MECANIQUE QUANTIQUE Chapitre 6 : Oscillateur Harmonique Quantique MECANIQUE QUANTIQUE Cpitre 6 : Oscillteur Hroique Qutique Pr. M. ABD-LEFDIL Uiversité Moed V- Agdl Fculté des Scieces Déprteet de Pysique Aée uiversitire 6-7 Filières SM-SMI Itroductio L'oscillteur roique

Plus en détail

COMPARAISON DE PROPORTIONS. Éric Taillard, Ph. Wälti, J. Zuber EIVD. Haute École spécialisée de Suisse occidentale, Yverdon-les-Bains, Suisse

COMPARAISON DE PROPORTIONS. Éric Taillard, Ph. Wälti, J. Zuber EIVD. Haute École spécialisée de Suisse occidentale, Yverdon-les-Bains, Suisse UN NOUVEAU TEST STATISTIQUE POUR LA COMPARAISON DE PROPORTIONS Éric Tillrd, Ph. Wälti, J. Zuber EIVD Hute École spécilisée de Suisse occidetle, Yverdo-les-Bis, Suisse FRANCORO04, Fribourg, Suisse, 8.2004

Plus en détail

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C. 16 Suites de foctios Suf précisio cotrire, I est u itervlle réel o réduit à u poit et les foctios cosidérées sot défiies sur I à vleurs réelles ou complexes. 16.1 Covergece simple et covergece uiforme

Plus en détail

1.2 Signe de l exposant. (à ne pas confondre avec signe d une puissance!!) = a = a

1.2 Signe de l exposant. (à ne pas confondre avec signe d une puissance!!) = a = a CLASSE DE EME LES PUISSANCES.. Puissce d'u obre o ul.. Défiitio. Soit u obre reltif o ul et u etier Ds ce cs :... fcteurs Se souveir que : 0 ; Et que 0 0 ' ps de ses. Bie sûr : 0 'existe ps!. Sige de l

Plus en détail

Mathématiques. On représente souvent la correspondance entre les deux suites par un tableau. Exemple : 5 12,

Mathématiques. On représente souvent la correspondance entre les deux suites par un tableau. Exemple : 5 12, PROPORTIONNALITE I. Suite de ombres proportioelles 1. Défiitio Deu suites de ombres réels (t le même ombre de termes) sot proportioelles si o peut psser de chque terme de l première suite u terme correspodt

Plus en détail

I. (2 points) III. (2 points)

I. (2 points) III. (2 points) ère S Cotrôle du vedredi 7 mars 05 (0 mi) Préom : Nom : Note : / 0 II ( poits) Soit ABC u triagle isocèle e A tel que AB AC 8 cm et BC 5 cm O ote I le milieu de [AC] Calculer BI (valeur exacte) I ( poits)

Plus en détail

Bulletin officiel spécial n 8 du 13 octobre 2011

Bulletin officiel spécial n 8 du 13 octobre 2011 Bulleti officiel spécil 8 du 13 octobre 2011 Aee Progrmme d eseigemet de mthémtiques Clsse termile des séries techologiques STI2D et STL, spécilité SPCL L eseigemet des mthémtiques u collège et u lycée

Plus en détail

Rattrapage. 4 ] Quelle est la complexité dans le pire cas de l algorithme de tri fusion (pour trier n éléments)?

Rattrapage. 4 ] Quelle est la complexité dans le pire cas de l algorithme de tri fusion (pour trier n éléments)? IN 02 6 mrs 2009 Rttrpge NOM : Prénom : ucun document n est utorisé. ce QCM outit à une note sur 42 points. L note finle sur 20 ser otenue simplement en divisnt l note sur 42 pr 2. Il suffit donc de donner

Plus en détail

Racine carrée inverse par la méthode de Newton. Jorel Raphaël

Racine carrée inverse par la méthode de Newton. Jorel Raphaël Rcie crrée iverse pr l méthode de Newto Jorel Rphël Formule de Newto L défiitio de l suite (x ) vue e cours est : x +1 = x f(x) f (x ) x 0 doé Rcie de 1/ Pour clculer 1/, il ous fut trouver ue foctio f

Plus en détail

Séries de Fourier - Calculs fondamentaux

Séries de Fourier - Calculs fondamentaux Séries de Fourier - Clculs fodmetux I - Série de Fourier ssociée à ue foctio f L série de Fourier ssociée à ue foctio f, périodique de période T, s écrit : S(t) + + cos(ωt) + b si(ωt) où l pulstio ω est

Plus en détail

Les puissances à exposants négatifs

Les puissances à exposants négatifs CHAPITRE Les puissces à exposts égtifs. Itroductio : les puissces de Nous coissos bie l ottio où est u etier positif : E géérl : ( ) 0 8 6 N... fcteurs Rerquos qu'il y ue reltio évidete etre deux puissces

Plus en détail

Dérivées des fonctions de référence Du nombre dérivé à la fonction dérivée. 1 ère S. f a h f a k k h h. Objectifs : f a h f a lim 0

Dérivées des fonctions de référence Du nombre dérivé à la fonction dérivée. 1 ère S. f a h f a k k h h. Objectifs : f a h f a lim 0 ère S Objectifs : Dérivées des foctios de référece Du ombre dérivé à l foctio dérivée Poursuivre l objet d étude des deu cpitres précédets : l tgete à ue courbe Psser de l otio de ombre dérivé à l otio

Plus en détail

Exercices sur les forces, 2 e partie Module 3 : Des phénomènes mécaniques Objectif terminal 4 : La dynamique

Exercices sur les forces, 2 e partie Module 3 : Des phénomènes mécaniques Objectif terminal 4 : La dynamique Dte : No : Groupe : Résultt : / 76 Exercices sur les orces, e prtie Module 3 : Des phéoèes éciques Objecti teril 4 : L dyique. Quelle est l ccélértio de cet objet tiré obliqueet, si o élie le rotteet?

Plus en détail

La puissance nième d une matrice 2X2

La puissance nième d une matrice 2X2 L puissce ième d ue mtrice X L puissce ième d ue mtrice (détils)... Le théorème de CLEY-HMILTON (pour les mtrices x)... lgorithme de clcul de l puissce ième...6 Suite umérique ssociée à l puissce ième...7

Plus en détail

Intégration et calcul de primitives

Intégration et calcul de primitives École polytechique Itégrtio et clcul de primitives Tble des mtières Les foctios usuelles. Foctios primitives et foctios réciproques................... Les foctios logrithme et epoetielle......................3

Plus en détail

Chapitre 1 METHODES DE CALCUL NUMERIQUE

Chapitre 1 METHODES DE CALCUL NUMERIQUE Chpitre METHODES DE CALCUL NUMERIQUE Le clcul umérique, c'est vrimet le b..-b des mthémtiques et c'est pourquoi o vous e fit fire ps ml u collège. Comme il y eu les vcces, e ous leurros ps, il y u risque

Plus en détail

Calcul intégral. 1 Aire sous une courbe 2

Calcul intégral. 1 Aire sous une courbe 2 Clcul itégrl Tble des mtières Aire sous ue courbe 2 2 Défiitios 3 2. Foctio cotiue et positive sur u itervlle.............................. 3 2.2 Foctio cotiue de sige quelcoque..................................

Plus en détail

EXPOSE 73 : FORMULES DE TAYLOR. APPLICATIONS. Pré-requis : Intégrale, intégration par parties Théorème de Rolle Règle de L Hôpital.

EXPOSE 73 : FORMULES DE TAYLOR. APPLICATIONS. Pré-requis : Intégrale, intégration par parties Théorème de Rolle Règle de L Hôpital. ETIENNE Sylvi PLC, groupe EXPOSE 73 : FORMULES DE TAYLOR APPLICATIONS Niveu : Complémetire Pré-requis : Itégrle, itégrtio pr prties Théorème de Rolle Règle de L Hôpitl I INTRODUCTION Ett doé u polyôme

Plus en détail

Algorithmique sur les automates. Recherche de motifs. On cherche toutes les occurrences

Algorithmique sur les automates. Recherche de motifs. On cherche toutes les occurrences Algorithmiqe r le tomte Recherche de motif O cherche tote le occrrece. Algorithme tilit de tomte Recherche de motif. Recherche de réglrité. Compreio.. Algorithme por l étde de tomte Compleité d étt : coût

Plus en détail

Agrégation de Mathématiques 2012-2013. Intégration

Agrégation de Mathématiques 2012-2013. Intégration Agrégtio de Mthémtiques -3 CMI Uiversité d Aix-Mrseille Itégrtio. Itégrles défiies. Subdivisio. Soiet et b deux ombres réels tels que < b. O ppelle subdivisio de l itervlle [, b] toute suite fiie strictemet

Plus en détail

ANALYSE. 4 ème année. 1.1 Calcul intégral 1

ANALYSE. 4 ème année. 1.1 Calcul intégral 1 ANALYSE ème ée. Clcul itégrl.. Le smole Σ.. Défiitios.. Propriétés de l itégrle défiie 7.. Le théorème fodmetl de l lse..5 Primitives..6 Méthodes d itégrtio prticulières *..7 Applictios du clcul itégrl

Plus en détail

Aide Mémoire de Statistique

Aide Mémoire de Statistique Aide Mémoire de Statistique (E, E, P) modèle statistique (E, E, P) modèle probabiliste E probabilité, o coaît la loi P et o fait des calculs E statistique, o e coaît pas la loi (seulemet ue famille de

Plus en détail

Corrigé. Exercice 1 : (5 points)

Corrigé. Exercice 1 : (5 points) Corrigé Exercice : (5 poits) Pour les questios. et. o doera les résultats sous forme de fractios et sous forme décimale par défaut à 0 3 près. U efat joue avec 0 billes, 3 rouges et 7 vertes. Il met 0

Plus en détail

Chapitre 2 LES EMPRUNTS INDIVIS

Chapitre 2 LES EMPRUNTS INDIVIS Chptre LES EMPRUNTS INDIVIS.1 Actulsto de flux Actvté.1.1 : O dspose de chffres cocert l évoluto du chffre d ffres de l socété FLORIS depus 1985. E 1985, le Chffre d ffres étt de 1 Mllo de Frcs, e 1990

Plus en détail

ESTIMER LA PRÉCISION DES MESURES

ESTIMER LA PRÉCISION DES MESURES ESTIMER LA PRÉCISION DES MESURES I. Précision d'une mesure directe Une mesure directe est une mesure lue sur un ppreil de mesure. Le résultt d'une mesure directe n'est jmis connu de fçon prfitement excte.

Plus en détail

5. Puissances et racines

5. Puissances et racines - - Puissces et rcies. Puissces et rcies. Puissces d expost positif Il rrive souvet qu o multiplie u etier plusieurs fois ps lui-même. Pr exemple : est le produit de fcteurs égux à. L ottio «puissce» permet

Plus en détail

INTENTION LES PROCESSUS MATHÉMATIQUES

INTENTION LES PROCESSUS MATHÉMATIQUES INTENTION Adpttios u Cdre commu des progrmmes d études de mthémtiques M-9 telles que reflétées ds le documet Mthémtiques M-9 : Progrmme d études de l Albert (2007) Le coteu du documet Mthémtiques M-9 :

Plus en détail

Suites et séries de fonctions.

Suites et séries de fonctions. Suites et séries de foctios Chp 8 : cours complet 1 Suites de foctios : covergece simple et uiforme, cotiuité Défiitio 11 : Défiitio 12 : Défiitio 13 : Défiitio 14 : Théorème 11 : Théorème 12 : Théorème

Plus en détail

Calculs financiers. Auteur : Philippe GILLET

Calculs financiers. Auteur : Philippe GILLET Clculs fcers Auteur : Phlppe GILLET Le tux d térêt Pour l empruteur qu e dspose ps des fods écessres, l représete le prx à pyer pour ue cosommto mmédte. Pour le prêteur, l représete le prx ecssé pour l

Plus en détail

Optimisation non linéaire

Optimisation non linéaire 8-1-003 Optimistio o liéire Nio Silerio Support e cours proisoire pour l uité e leur Mthémtiques et sttistiques estié ux clsses u BTS Comptbilité-Gestio e l ECG. Itrouctio Au lycée, ue gre prtie u cours

Plus en détail

La spirale de Théodore bis, et la suite «somme=produit».

La spirale de Théodore bis, et la suite «somme=produit». Etde d e vrite de l spirle de Théodore, dot issce à e site dot les sommes prtielles sot égles x prodits prtiels. Mots clés : spirle de Théodore, théorème de Pythgore, site, série, polyôme. L spirle de

Plus en détail

C.1- Lois discrètes- Loi uniforme

C.1- Lois discrètes- Loi uniforme C- Lois usuelles C.1- Lois discrètes- Loi uiforme Loi d ue variable aléatoire X preat ses valeurs das {1,,} avec la même probabilité: 1 P ( X = x ) = x {1,,... } Ex : E=«lacer d u dé régulier» X=uméro

Plus en détail

DEVOIR DE SYNTHESE N 2

DEVOIR DE SYNTHESE N 2 EDUCATION EN LIGNE PARTAGE DU SAVOIR DEVOIR DE SYNTHESE N 2 4ème Ecoomie et Gestio Mthémtique WWW.NETSCHOOL1.NET Bri Power School Lycée secodire Ghzl Devoir de sythése 2 MATHEMATIQUES 4EG M r :WALID Jebli

Plus en détail

Module 3 : Inversion de matrices

Module 3 : Inversion de matrices Math Stat Module : Iversio de matrices M Module : Iversio de matrices Uité. Défiitio O e défiira l iverse d ue matrice que si est carrée. O appelle iverse de la matrice carrée toute matrice B telle que

Plus en détail

Puissances d un nombre relatif

Puissances d un nombre relatif Clsse de ème Chitre 5 I Puissces de Puissces d u ombre reltif I Puissce de d exost etier ositif O sit que Défiitio : ² = = 0 deux zéros 2 fcteurs = = 00 trois zéros fcteurs = = 000 qutre zéros fcteurs

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

Séquence 8. Suites arithmétiques et géométriques. Sommaire

Séquence 8. Suites arithmétiques et géométriques. Sommaire Séquece 8 Suites arithmétiques et géométriques Sommaire Pré-requis Suites arithmétiques Suites géométriques Sythèse du cours Exercices d approfodissemet Séquece 8 MA Ced - Académie e lige Pré-requis A

Plus en détail

SERIE D EXERCICES N 21 : FORMATION DES IMAGES DANS LES CONDITIONS DE GAUSS

SERIE D EXERCICES N 21 : FORMATION DES IMAGES DANS LES CONDITIONS DE GAUSS Nathalie Va de Wiele - Physique Sup PCSI - Lycée les Eucalyptus - Nice Série d exercices SERIE D EXERCICES N : FORMATION DES IMAGES DANS LES CONDITIONS DE GAUSS Propagatio rectilige. Exercice. Das le cas

Plus en détail

Calcul des pertes du distributeur

Calcul des pertes du distributeur Clcul des pertes du dstrbuteur Jver 007 Clcul des pertes du dstrbuteur Tros étpes : Clcul des pertes techques pr tpe d ouvrge Modélsto des pertes o techques (PNT) Modélsto d ue courbe de tpe P²+bP+c ou

Plus en détail

EXERCICES D OPTIQUE GEOMETRIQUE ENONCES

EXERCICES D OPTIQUE GEOMETRIQUE ENONCES EXERCICES D PTIQUE GEMETRIQUE ENNCES Exercice 1 : Vitre Motrer que la lumière est pas déviée par u passage à travers ue vitre. Pour ue vitre d épaisseur 1 cm, que vaut le décalage latéral maximal? Si la

Plus en détail

LES PUISSANCES. a n désigne le produit de n facteurs, tous égaux à a. a n = a a a. a a apparaît n fois Il y a donc n 1 multiplications

LES PUISSANCES. a n désigne le produit de n facteurs, tous égaux à a. a n = a a a. a a apparaît n fois Il y a donc n 1 multiplications LES PUISSANCES I) Défiitios : ) Défiitio : Soit u omre reltif Soit u omre etier positif o ul désige le produit de fcteurs, tous égux à.. pprît fois Il y doc multiplictios est ue puissce du omre et se lit

Plus en détail

1. Justifier que l intégrale I est l aire d une partie du plan que l on hachurera sur le graphique donné en annexe (à rendre avec la copie).

1. Justifier que l intégrale I est l aire d une partie du plan que l on hachurera sur le graphique donné en annexe (à rendre avec la copie). Atilles-ue septembre 0 EXERCICE poits Commu à tous les cdidts O cosidère l foctio f défiie ] 0 ; + [ pr : f () = l Prtie A : Étude d ue foctio Détermier l limite de l foctio f e + b Détermier l limite

Plus en détail

Notions de base pour l analyse d un tableau de contingence

Notions de base pour l analyse d un tableau de contingence Uiversité de Bordeaux - Master MIMSE - 2ème aée Notios de base pour l aalyse d u tableau de cotigece Marie Chavet http://wwwmathu-bordeauxfr/ machave/ 204-205 Notatios et défiitios U tableau de cotigece

Plus en détail

Correction Devoir commun Classes de Secondes concernées : 2nde 10, 2nde 11, 2nde13,

Correction Devoir commun Classes de Secondes concernées : 2nde 10, 2nde 11, 2nde13, LYCEE GRAND AIR Correctio Devoir commu Classes de Secodes cocerées : de 10, de 11, de13, feuilles + papier millimétré. 08/0/013 Exercice 1 : L aée lumière. 1. D après le texte, la vitesse de la lumière

Plus en détail

8. Applications des intégrales définies

8. Applications des intégrales définies APPLICATIONS DES INTÉGRALES DÉFINIES 57 8. Applictios des itégrles défiies 8.1. Aire etre deux coures Prolème Soiet f et g deux foctios cotiues ds l'itervlle [, ] telles que f(x) g(x), pour x. Clculer

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

Chap. 5 : Les intérêts (Les calculs financiers)

Chap. 5 : Les intérêts (Les calculs financiers) Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie

Plus en détail

COURS DE TERMINALE S ENSEIGNEMENT OBLIGATOIRE PROGRAMME 2002. Demaria Philippe : mademi-4@scs-net.org

COURS DE TERMINALE S ENSEIGNEMENT OBLIGATOIRE PROGRAMME 2002. Demaria Philippe : mademi-4@scs-net.org COURS DE TERMINALE S ENSEIGNEMENT OBLIGATOIRE PROGRAMME 2002 Demri Philippe : mdemi-4@scs-et.org Avt - Propos Ce cours de Termile S s ppuie sur le progrmme de 200 de l eseigemet obligtoire. Il s dresse

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

H HACHETTE Supérieur

H HACHETTE Supérieur H HACHETTE Supérieur Créditsphotogrphiques Toutes lesphotogrphies de cet ouvrge provieet de l photothèque HACHETTE LIVRE. Compositio, mise e pge et schéms :Publilog Mquette itérieure :SG CrétioetPscl

Plus en détail

Algorithmes sur les mots (séquences)

Algorithmes sur les mots (séquences) Introduction Algorithmes sur les mots (séquences) Algorithmes sur les mots (textes, séquences, chines de crctères) Nomreuses pplictions : ses de données iliogrphiques ioinformtique (séquences de iomolécules)

Plus en détail

ALGORITHMIQUE & CALCUL NUMÉRIQUE Travaux pratiques résolus Programmation avec les logiciels Scilab et Python

ALGORITHMIQUE & CALCUL NUMÉRIQUE Travaux pratiques résolus Programmation avec les logiciels Scilab et Python ALGORITHMIQUE & CALCUL NUMÉRIQUE Trvux prtques résolus Progrmmto vec les logcels Sclb et Pytho Lcece Préprto ux cocours José OUIN Igéeur INSA Toulouse Professeur grégé de Gée cvl Professeur grégé de Mthémtques

Plus en détail

Primitives de Fonctions Calcul Intégral Site MathsTICE de Adama Traoré Lycée Technique Bamako

Primitives de Fonctions Calcul Intégral Site MathsTICE de Adama Traoré Lycée Technique Bamako Primitives de Foctios Clcul Itégrl Site MthsTICE de Adm Troré Lcée Techique Bmko I Primitives d ue foctio umérique : - Activité : Soit l foctio f : + 3 ; Clculer l dérivée de chcue des foctios F ; G ;

Plus en détail

CHAPITRE V. Suites et séries de fonctions.

CHAPITRE V. Suites et séries de fonctions. CHAPITRE V Suites et séries de foctios. I - Covergece simple d ue suite de foctios : le problème de l iterversio des ites. II - Covergece uiforme d ue suite de foctio : le théorème d iterversio des ites.

Plus en détail

Chapitre 7 : Racines carrées

Chapitre 7 : Racines carrées Chpitre : Rcies crrées. Itroductio, défiitios et eemples Scht que les crreu ci-dessous ot comme dimesios cm, costruisez ) u crré A d ire égle à 9 cm ; c) u crré C d ire égle à cm ; ) u crré B d ire égle

Plus en détail

Théorème de convergence dominée

Théorème de convergence dominée [http://mp.cpgedupuydelome.fr] édité le juillet 4 Eocés Théorème de covergece domiée Eercice [ 9 ] [correctio] Clculer les ites des suites dot les termes gééru sot les suivts : ) u = π/4 t b) v = + e Eercice

Plus en détail

REDUCTION DES ENDOMORPHISMES ET DES MATRICES Exercices

REDUCTION DES ENDOMORPHISMES ET DES MATRICES Exercices REDUCTION DES ENDOMORPHISMES ET DES MATRICES Exercices EXERCICE 1 : Soit E u espace vectoriel et u L(E) tel que u u +u = 0 Motrer que Sp (u) {0, 1, } EXERCICE : 1) Soit A ue matrice carrée telle que A

Plus en détail

Suites arithmétiques et Géométriques. Exemple 1. La suite des nombres 1, 3, 5, 7, 11, 13. ou la suite des nombres 100, 110, 121, 133.1, 146.41...

Suites arithmétiques et Géométriques. Exemple 1. La suite des nombres 1, 3, 5, 7, 11, 13. ou la suite des nombres 100, 110, 121, 133.1, 146.41... Sites arithmétiqes et Géométriqes Nos allos cosidérer des sites de ombres réels Exemple La site des ombres,, 5, 7,, o la site des ombres,,,, 464 Défiitio/Notatio : La site est e gééral oté ( ) (o ( v )

Plus en détail

Exo7. Trigonométrie. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur

Exo7. Trigonométrie. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur Exo7 Trigoométrie Exercices de Je-Louis Rouget Retrouver ussi cette fiche sur wwwmths-frcefr * très fcile ** fcile *** difficulté moyee **** difficile ***** très difficile I : Icotourble T : pour trviller

Plus en détail

Intégration. Calcul d intégrales. Calcul de primitives. [http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

Intégration. Calcul d intégrales. Calcul de primitives. [http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [hp://mp.cpgedupuydelome.r] édié le juille 4 Eocés Iégrio Clcul d iégrles Clcul de primiives Eercice [ 96 ] [correcio] Déermier les primiives suives : e b l c l Eercice [ 79 ] [correcio] Déermier les primiives

Plus en détail

Exercice 1 Exercice 2 Exercice 3 Exercice 4 Exercice 5 Exercice 6

Exercice 1 Exercice 2 Exercice 3 Exercice 4 Exercice 5 Exercice 6 Exercice Ecrire u lgorithme qui pred de l'utilisteur deux etiers puis ffiche le sige du produit ss fire l multiplictio et le sige de l somme ss fire l'dditio. Exercice 2 Ecrire u lgorithme qui pred ue

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

MPLS (& GMPLS) C. Pham RESO-LIP/INRIA Université Lyon 1 http://bat710.univ-lyon1.fr/~cpham Congduc.Pham@ens-lyon.fr

MPLS (& GMPLS) C. Pham RESO-LIP/INRIA Université Lyon 1 http://bat710.univ-lyon1.fr/~cpham Congduc.Pham@ens-lyon.fr MPLS (& GMPLS) C. Phm RESO-LIP/INRIA Uiversité Lyo http://bt7.uiv-lyo.fr/~cphm Cogduc.Phm@es-lyo.fr INTRODUCTION & MPLS Optimiser le routge des pquets Objectifs: iitilemet, logest prefix mtchig étit trop

Plus en détail

Déroulement de l épreuve de mathématiques

Déroulement de l épreuve de mathématiques Dérouleet de l épreuve de thétiques MATHÉMATIQUES Extrit de l ote de service 2012-029 du 24 février 2012 (BOEN 13 du 29-3-2012) Durée de l épreuve : 2 heures Nture de l épreuve : écrite pr le socle cou

Plus en détail

Chapitre 3 : Les matrices

Chapitre 3 : Les matrices Chpitre 3 : Les mtrices Sdrie CHARLES : schrles@biomserv.uiv-lyo1.fr Itroductio...2 1 Défiitios...2 2 Opértios sur les mtrices...3 2.1 Additio de deux mtrices...3 2.2 Multiplictio d ue mtrice pr u sclire...4

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

2.1 Comment implanter en C un reconnaisseur de mots? Aut2 q 0 q 1

2.1 Comment implanter en C un reconnaisseur de mots? Aut2 q 0 q 1 Lngges Automtes Non-déterminisme Grmmires Attiuées et Génértives Expressions régulières Correction Prtielle de Progrmmes Ceci n'est ps un cours de Lngge C++ 2.1 Comment implnter en C un reconnisseur de

Plus en détail

Finance d entreprise. Objectifs

Finance d entreprise. Objectifs Fice d etreprise Cotct Prof. Je Frçois GAJEWSKI je frcois.gjewski@uige.ch Lieu et heures de réceptio des étudits o Bâtimet Ui Pigo o Le ludi de 8h5 à 9h5 o Le mrdi de 4h5 à 5h5 Objectifs Le cours de fice

Plus en détail

LES INDICES D AUTO CORRELATION SPATIALE

LES INDICES D AUTO CORRELATION SPATIALE LES NDCES D AUTO CORRELATON SPATALE L autocorrélatio spatiale est l absece d idépedace etre observatios géographiques. Aisi, o costate très souvet que les variables spatialisées sot soumises à des dépedaces

Plus en détail

Calcul d aire et intégrale

Calcul d aire et intégrale Clcul d ire et itégrle Tle des mtières I Activité d itroductio 1 II Défiitio de l itégrle 2 1 Itégrle d ue foctio cotiue et positive................................ 2 2 Itégrle d ue foctio cotiue et égtive...............................

Plus en détail

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique.

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique. C39211 Ecole Normle Supérieure de Cchn 61 venue du président Wilson 94230 CACHAN Concours d dmission en 3 ème nnée Informtique Session 2009 INFORMATIQUE 1 Durée : 5 heures «Aucun document n est utorisé»

Plus en détail

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités.

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités. PROBABILITÉS I. PROBABILITÉS ( RAPPELS) a. Expérieces aléatoires et modèles Le lacer d ue pièce de moaie, le lacer d u dé sot des expérieces aléatoires, car avat de les effectuer, o e peut pas prévoir

Plus en détail

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON Durée : 4 heures Les clcultrices sont utorisées. Le sujet comprend qutre exercices indépendnts qui peuvent être trités dns l'ordre que

Plus en détail

Intégration sur un intervalle compact de IR

Intégration sur un intervalle compact de IR PREMIERE PARTIE Itégrtio sur u itervlle compct de IR CHAPITRE I PSEUDO-MESURES, MESURES, FONCTIONNELLES SOMMABLES SUR [,b] Comme océ ds l itroductio, ce premier chpitre pour objectif de fourir le plus

Plus en détail

Corrigé de Centrale 2016 PC math 1. I Autour de la fonction Gamma d Euler. f(t)dt existe si et seulement si x > 0.

Corrigé de Centrale 2016 PC math 1. I Autour de la fonction Gamma d Euler. f(t)dt existe si et seulement si x > 0. I.A.) ft) = t x e t doc t t x Puisque Corrigé de Cetrle 26 PC mth I Autour de l foctio Gmm d Euler x + tx+ e t =, ft) = t + o t 2 ) doc Le domie de défiitio de Γ est doc D =], + [. ft)dt existe si et seulemet

Plus en détail

PRENDRE UN BON DÉPART EN SECONDE LES RÈGLES DE PRIORITÉ

PRENDRE UN BON DÉPART EN SECONDE LES RÈGLES DE PRIORITÉ LES RÈGLES DE PRIORITÉ Règle 1 Ds ue suite de clculs, il fut effectuer d bord les clculs etre prethèses. Exemple 1 + (1-4) 1-9 Règle Si, ds ue suite de clculs figuret plusieurs prethèses imbriquées, il

Plus en détail

Suites et séries d applications

Suites et séries d applications Chpitre 3 Suites et séries d pplictios Ds tout ce chpitre,, b R vec < b (ou évetuellemet, et/ou b + ). Pour N, : [, b] R ou C sot des octios déiies sur l itervlle [, b] (ou R ou [, b] ou [, + [). 3. Covergece

Plus en détail

Terminale S Pondichéry, Avril 2009 Sujets de Bac

Terminale S Pondichéry, Avril 2009 Sujets de Bac D PINEL, Sit Mathmitc : http://mathmitcfrfr/idphp Trmial S Podichéry, Avril 009 Sujts d Bac D PINEL, Sit Mathmitc : http://mathmitcfrfr/idphp Trmial S Podichéry, Avril 009 Sujts d Bac D PINEL, Sit Mathmitc

Plus en détail

DERIVES PRIMITIVES - EQUATIONS DIFFERENTIELLES - INTEGRALES

DERIVES PRIMITIVES - EQUATIONS DIFFERENTIELLES - INTEGRALES DERIVES PRIMITIVES - EQUATIONS DIFFERENTIELLES - INTEGRALES I) Dérivés : Propriétés : - Soit I u itervlle et f défiie sur I vec x 0 I : f x f(x f est dérivle sur x 0 : _ Si lim 0 ) x x0 = α, u réel fii.

Plus en détail

question-type-bac.fr

question-type-bac.fr BAC S 4 Mathématiques - Frace métropole Eseigemet spécifique et de spécialité Ce documet est bie plus qu u simple corrigé de sujet de baccalauréat. Grâce aux solutios claires et détaillées, aux démarches

Plus en détail

Calcul approché des intégrales définies

Calcul approché des intégrales définies Clcul pproché des itégrles défiies Pour ce chpitre, I = [, b] est u segmet réel vec < b, C I est l espce vectoriel réel des foctios défiies sur I à vleurs réelles et cotiues et pour toute foctio f C I,

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propositio P() dépedat de l etier () la propositio est

Plus en détail

DÉMONSTRATIONS AU PROGRAMME POUR LE BAC S

DÉMONSTRATIONS AU PROGRAMME POUR LE BAC S DÉMONSTRATIONS AU PROGRAMME POUR LE BAC S 1 SUITES Propriété : Si q > 1 lors lim + q = + D1 - Démostrtio u progrmme (eigible BAC) : Prérequis : Pour tout etier turel, o : ( ) pr récurrece) O suppose que

Plus en détail