Liens entre fonction de transfert et représentations d'état d'un système (formes canoniques de la représentation d'état)

Dimension: px
Commencer à balayer dès la page:

Download "Liens entre fonction de transfert et représentations d'état d'un système (formes canoniques de la représentation d'état)"

Transcription

1 oqe V oqe Cor e ere foco de rfer e repréeo dé d èe fore coqe de l repréeo dé SI

2 Coe oqe! Irodco! e ere le dfféree decrpo d èe! Pge odèle dé " foco de rfer # C d èe oovrle # C d èe lvrle! Pge foco de rfer " odèle dé # Fore coqe de codlé # Fore coqe doervlé # Fore odle

3 Irodco! Eeple : èe écqe e e rlo z F r f z. Erée : F F Sore : z E d èe z z! Eqo dfféreelle! FT r F r γ F z! Repréeo dé z fz F z fz F f F f f F [ ] oqe! Rerqe Sèe dordre Z F f $ De léqo dfféreelle o pe ée à l FT $ De léqo dfféreelle o pe à l repréeo dé Qeo : Pe-o per de l FT à l repréeo dé e veree?

4 e ere le dfféree decrpo d èe! Decrpo d èe # Eqo dfféreelle # Répoe ploelle # Foco o rce de rfer # Repréeo dé B C D! e ere le decrpo Eqo dfféreelle Foco de rfer Répoe ploelle h oqe Repréeo d é B C D 4

5 Pge repréeo dé " FT T! Fore géérle B C D # T de léqo dé Codo le ppoée lle : B R C R p B R D R p B I B R R R p I : rce deé dordre # T de léqo de ore C D C D C I B D oqe Foco de rfer o rce de rfer I B D C 5

6 Pge repréeo dé " FT T! Rerqe I B D C # Clcl de lvere de I I co I de I [ j ] vec j de j T j co I rce de cofcer j : rce ere de I e ppr l èe lge e l j èe coloe # Novelle écrre de C co I de I T B D C co I T de I B de I D e pôle d èe o le rce de léqo de I e vler propre de o olo de léqo crcérqe de I oqe e pôle d èe o le vler propre de. Toe lforo r le ode d èe e coee d l rce 6

7 Pge repréeo dé " FT T! Eeple : èe oo-erée oo-ore R c V c Erée : Sore : V c E d èe V c [ V ] c T odèle dé vor cor 8 [ ] c R I c R Foco de rfer c I de I R c R de I c Rc c co I R c C co I T B [ R ] c / C co I T B c oqe C co I de I T B c Rc 7

8 8 oqe Pge repréeo dé " FT T! Eeple : èe l-erée l-ore vec I I Clcl de l rce de rfer I co 5 4 de I B I co C T 4 B I co C T B I co C T

9 9 oqe Pge repréeo dé " FT T : eeple! Eeple e de I B I co C T D le c de èe l-erée l-ore o prle de rce de rfer T le de foco de rfer. Sgfco de élée de l rce de rfer de leeple

10 Pge repréeo dé " FT T oqe! Rerqe # e repréeo dé d èe e crcérée pr le qdrple B C D # Toe repréeo dé B C D d èe q vérfe C I B D e ppelée e rélo de # e rélo B C D vec d e e rélo le l ee p dre rélo de de deo férere à # D le c d èe oo-erée oo-ore l rélo le correpod à e frco roelle rrédcle p de plfco de pôle e zéro

11 oqe Pge FT " repréeo dé! Poo d prolèe! Fore coqe de codlé # C ple : e prr de FT e-l pole de déerer e repréeo dé e ele o l pl ple pole? Ce prolèe e déoé prolèe de rélo <? D C B pe rover de repréeo dé qo ve. Néo l ee qelqe fore rerqle epoée c-prè Eqo dfféreelle

12 oqe Pge FT " repréeo dé! Fore coqe de codlé : c ple Poo Dérvo Eqo dé Fore coqe de codlé [ ] Rerqe $ Chqe vrle dé e l dérvée de l vrle précédee. prle de vrle de phe $ ce de cee dépedce e f vrer l code o le é o odfé : le èe e codle

13 oqe Pge FT " repréeo dé! Fore coqe de codlé # c ple : ché de lo # C géérl : < e por So v e vrle erédre elle qe V V V V I II

14 4 oqe Pge FT " repréeo dé! Fore coqe de codlé : c géérl $ Eqo I Elle correpod c précéde v v v v $ Eqo II V V v v v Repréeo dé [ ] Cee fore e de copge de l FT codle. e coeffce de l FT o élée de rce d odèle dé

15 Pge FT " repréeo dé! Fore coqe de codlé : c géérl por Sché de lo oqe Noo de codlé : e g r o f évoler p le re é pr effe ccde. e é d èe peve doc êre codé e odfé 5

16 6 oqe Pge FT " repréeo dé! Fore coqe doervlé < Dvo cee éqo pr Deo le ché de lo correpod à cee éqo

17 7 oqe Pge FT " repréeo dé! odèle dé Sché de lo [ ] Co o pe dédre le re é pr dérvo e dfférece : ce loervlé.

18 Pge FT " repréeo dé oqe 8! Rerqe $ codlé e l polé de odfer le é e pplq l code pproprée. Cel e e e évdece pr l fore coqe de codlé $ oervlé e l polé de recorre le é à prr de l ore e de lerée. Cec pprî r le ché de l fore coqe doervlé. Co o déd le re é e prcor le ché à lever e à prr de lerée $ ervlé e codlé o rèqe èe e e dépede p de l rélo! Dlé de fore coqe de codlé e doervlé So B C D : l rélo coqe de codlé c c c c So B C D o o o o : l rélo coqe doervlé coe qe B C D T CT BT D c c c c o o o o

19 9 oqe Pge FT " repréeo dé! Fore odle # C : le èe de pôle dc réel % Décopoo e élée ple % Cho de é... por [ ]

20 Pge FT " repréeo dé! Fore odle # Rerqe r le c $ repréeo f pprîre le pôle o ode d èe $ rce e dgole " clcl plfé de e $ So B C D e rélo. S de vler propre dce e dgolle e l ee e rce de rforo T elle qe T T C CT vec B T B D D T : rce de vecer propre de Sché de lo Chqe é e déped de re oqe

21 Pge FT " repréeo dé! Fore odle # C : le èe de pôle dc réel e coplee So σ jω e σ j le pôle coplee cojgé d èe ω % Décopoo e élée ple % Cho de é j j σ jω σ jω j j j j σ ω σ ω σ j σ jω ω σ j σ jω ω σ jω σ jω oqe por... P de prolèe por le pôle réel oe de é à coeffce coplee q e gfe re phqee!!

22 oqe Pge FT " repréeo dé! Fore odle : c de pôle coplee cojgé % Trforo lére r le é coplee j j σ ω ω σ j j ω σ σ ω Sore σ ω ω σ [ ] Coplge ere le é correpod pôle coplee cojgé

23 oqe Pge FT " repréeo dé! Fore odle : c de pôle lple % Décopoo e élée ple % Cho de é So pôle réel dordre e de pôle réel ple

24 4 oqe Pge FT " repréeo dé! Fore odle : c de pôle lple [ ] Bloc de Jord De fço géérle le èe de r pôle dordre de lplcé r el qe r l fore odle de l rce dé e r r J J J vec J J R Bloc de Jord

25 5 oqe Pge repréeo dé " FT T : eeple R c I R c I c R I de c Rc c I de c R I co c R B I Cco T / ] [ c B I Cco T de I B I Cco T Rc c

26 oqe 6 odélo Vc τ dτ c V c c d d R V d c d V R c

Estimation des incertitudes sur les erreurs de mesure.

Estimation des incertitudes sur les erreurs de mesure. Estmto des certtdes sr les errers de mesre. I. Itrodcto : E sceces epérmetles, l este ps de mesres ectes. Celle-c e pevet être q etchées d errers pls o mos mporttes selo le protocole chos, l qlté des strmets

Plus en détail

II - Estimation et Prévision Ponctuelles

II - Estimation et Prévision Ponctuelles II - Estt et Prévs Pctelles II.. Rppels sr l'estt Mdèle (Y P Θ) (Y X P Θ) Prètre θ sclre (Θ R) vectrel (Θ R K ) Estter : θ* f( ; ) Bs θ -E θ (θ*) θ* est dt ss s s qel qe st θ : E θ (θ*) θ 7 L'estter θ*

Plus en détail

Méthodes «volumes finis»

Méthodes «volumes finis» Méhodes «volmes s» ArGECo MS²F Hydrologe, Hydrodymqe Applqée e Cosrcos Hydrlqes (HACH) Méhodes «volmes s» : rodco Déreces es Dscréso des éqos sr grd srcré crése Méhode smple e rpde Fclé de clcl des dérvées

Plus en détail

Réponse temporelle des systèmes dynamiques continus LTI

Réponse temporelle des systèmes dynamiques continus LTI UV Cour Répoe emporelle de yème dyamique coiu LI ASI 3 Coeu! Iroducio! Eude de yème du premier ordre " Iégraeur " Syème du er ordre! Eude de yème du ème ordre " Syème du ème ordre avec répoe apériodique

Plus en détail

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie VARIABLES ALÉATOIRES déo oco de réro vrble léore dscrèe moyee - vrce - écr ye esérce mhémque vrble léore coue oco d ue vrble léore : rsormo combso lére de vrbles léores Déo E : eérece léore S : esce échllol

Plus en détail

Lignes de transfert d Energie Electrique

Lignes de transfert d Energie Electrique Crcérso e oéso es ges - urée - G Cerc Lges e rsfer Eerge Eecrque 8 Moéso ue ge oopsée e ue ge rpsée Moéso ue ge oopsée c r g r c g Cu e, e, pour f ps rop gr so équo e Mwe Doc r c g Crcérso e oéso es ges

Plus en détail

rrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrr Mhéqs Vos S E Cogés ds épvs Mhs II HEC 004 vos S E Rog Cclè Poss d héqs clsss pépos lcé Ps Nll s S Vo scq Néo 35 Ocob 004 Néo 35 Ocob 004 P I : ésl s cs ss posvs I E s : : ds l églé : l v : psq > 0 o déd

Plus en détail

Chapitre VI. Méthodes d identification

Chapitre VI. Méthodes d identification hpre VI éhdes d def Vers /..00 I.D. Ld, mmde des ssèmes, hpre 6 hpre 6. éhdes d'def 6. éhdes d'def sées sr le lhsseme de l'errer de préd pe I 6.. dres rrés rérsfs..r. 6.. dres rrés éeds..e. 6..3 xmm de

Plus en détail

technologique que fonctionnel. d une fenêtre de La première désig

technologique que fonctionnel. d une fenêtre de La première désig L ho fê o cocé vc u ouvu l o ll ouuv u fl u. Aujou hu, l ou obu u ouvll fo ov focoll ou u o ulo ou écué. Af éo ux bo cl, l ch vo élg. L éloo fê o FAKRO b u l cl, f u hbo lu lu cofobl écué. L ho fê o cocé

Plus en détail

L'impact de la prise en compte des sauts boursiers dans les problématiques d'assurance

L'impact de la prise en compte des sauts boursiers dans les problématiques d'assurance 'mpc de l pre e compe de borer d le problémqe d'rce Frédérc PCHET Perre-E. THEROD α ISF Uveré yo β Joël Wer & océ γ RESUME objecf de ce rvl e de propoer modèle qe opéroel égr de por cf rqé, e géérl le

Plus en détail

Voiron. 18, 19et 20. à o. octobre 2013 TOURNEE AUTEURS. des

Voiron. 18, 19et 20. à o. octobre 2013 TOURNEE AUTEURS. des à 18, 19 20 2013 UN UU l C Cèl C Cl â-d P Pl P-l-Pl P-- é - -l-- -C ---C ---l --- -Nl-- ll l. 5 é à lé é l'é 3 l : Cl Zl, l',, l' l, Cl q, l' éâ. l, l lé é à, l ' l. l : ll l q l é ll l q l l. U ll q è

Plus en détail

CAPES EXTERNE. Partie I : Première approche de la constante d Euler

CAPES EXTERNE. Partie I : Première approche de la constante d Euler SESSION 2 CAPES EXTERNE MATHÉMATIQUES Prie I : Preière roche de l cose d Euler Soi N L focio es coiue e décroisse sur ],+ [ e doc sur [,+] Doc our ou réel de [,+], o + D rès l iéglié, o O e dédui que +

Plus en détail

BANQUE NATIONALE. N otre banque nationale. 7/i. Zi 4. /Æ à. W m M i i 10. W f w f f l. mm. ' ê â f/m jt» i W J / f f t. y / Y ZJ/Â / f/êv/i r» l J.

BANQUE NATIONALE. N otre banque nationale. 7/i. Zi 4. /Æ à. W m M i i 10. W f w f f l. mm. ' ê â f/m jt» i W J / f f t. y / Y ZJ/ / f/êv/i r» l J. _ ê â j j # W jt W j î Æ jj Æ W } " êv Y  z Wâ W w ( w # ë â F ë W Y T w S L 9 W 2 " E ï k x ü D E W W Æ v Wj E  z  z v F À OTQE W  # g L Y F h 6 L 2L NQE NTONLE N oe bnque none W W â W jâ ÿ Æ É w

Plus en détail

Maths. Qles. de la prépa. MPSI Première année PCSI PTSI BCPST. approche différente pour réussir sa Prépa

Maths. Qles. de la prépa. MPSI Première année PCSI PTSI BCPST. approche différente pour réussir sa Prépa Q U CM é o é o é é M MSI è é CSI SI CS Coo é L o o éo M o-l o éo Cooo : IoLo Mq é : No o Mq o : No o www.-o.o HCHEE LIVRE 4 q G 7595 C 5 ISN : 978---84-7 o o o oo o éé o o. L Co oéé o L. 4 L. 5 q «o

Plus en détail

Dynamique du point matériel

Dynamique du point matériel Chaptre III Dynaqe d pont atérel I Généraltés La cnéatqe a por objet l étde des oveents des corps en foncton d teps, sans tenr copte des cases q les provoqent La dynaqe est la scence q étde (o déterne)

Plus en détail

Politique monétaire: Le choix des instruments I

Politique monétaire: Le choix des instruments I Polqe onéare: Le ox des nsrens I Le odèle IS-LM spposa ne nerenon dree de la banqe enrale sr la asse onéare. En reane, le odèle Noea Kenésen se foalse sr le ax d nérê oe oen d nerenon (la asse onéare es

Plus en détail

Calculs financiers. Auteur : Philippe GILLET

Calculs financiers. Auteur : Philippe GILLET Clculs fcers Auteur : Phlppe GILLET Le tux d térêt Pour l empruteur qu e dspose ps des fods écessres, l représete le prx à pyer pour ue cosommto mmédte. Pour le prêteur, l représete le prx ecssé pour l

Plus en détail

, où E est un espace vectoriel réel de dimension finie et φ une forme bilinéaire symétrique sur E définie positive : φ (i)

, où E est un espace vectoriel réel de dimension finie et φ une forme bilinéaire symétrique sur E définie positive : φ (i) Esaces vecorels eucldes Groue orhogoal ESPACES VECTORIELS EUCLIDIENS GROUPE ORTHOGONAL Produ scalare Défo O aelle esace euclde ou coule ( E, φ, où E es u esace vecorel réel de dmeso fe e φ ue forme bléare

Plus en détail

Décoration, équipement. de la Maison. Janvier 2013 sans prix. Printemps / Été. SADY s TRADING WOOD TRADING. www.sadys-trading.com

Décoration, équipement. de la Maison. Janvier 2013 sans prix. Printemps / Été. SADY s TRADING WOOD TRADING. www.sadys-trading.com Dreo Aeropor Mrselle Provee D 9 SADY s TRADING WOOD TRADING Déoro, équpeme de l Mso www.sdys-rd.om Jver 2013 ss prx Premps / Éé ZI Les Bols Dreo Mrselle - Ax ZI Les Esroubls SADY s TRADING Les ouveués

Plus en détail

La filière d assainissement plantée de roseaux : PERFORMANCE ET BIEN-ÊTRE

La filière d assainissement plantée de roseaux : PERFORMANCE ET BIEN-ÊTRE v à é L r A Er, l écr é d ré rfl D r lfé www.r-v.c E r l flèr AEr, v f l chx d cfr N d gré vr à ré cé d r déd dhèr à l chr d lé AEr : Pr l d fr r l Ré Iv : D r fré à l flèr d l cr d fr d Ré Iv r lé d ll

Plus en détail

DES GAZELLES DES GAZELLES. Rallye Aïcha. Elle s engage à :

DES GAZELLES DES GAZELLES. Rallye Aïcha. Elle s engage à : Ry Aïh PARIS U éé I L Ry Aïh Gz éé f yé g é (éé,,, I). C é x R-C, TF1, E, TV5, 2M M, E gz, L x, J Mé, Ché FM... é x f f. Aé Pè 1 j é. U b Ry y éé : éh,, g é, f, b g (é h). NADOR L g f é, g é h, w b, I

Plus en détail

a l e i y m u r o f n v w s j z ou ch oi eu ph gn eau/au on in un en/an oin ain ein ien ill Une lettre qui donne un son que je peux chanter longtemps

a l e i y m u r o f n v w s j z ou ch oi eu ph gn eau/au on in un en/an oin ain ein ien ill Une lettre qui donne un son que je peux chanter longtemps Une lettre qui donne un son que je peux chanter longtemps a l e i y m u r o f n v w s j z Une lettre qui donne un son bref (en valeur de base) d t b p c k q g 2-3 lettres qui donnent ensemble toujours

Plus en détail

Les puissances à exposants négatifs

Les puissances à exposants négatifs CHAPITRE Les puissces à exposts égtifs. Itroductio : les puissces de Nous coissos bie l ottio où est u etier positif : E géérl : ( ) 0 8 6 N... fcteurs Rerquos qu'il y ue reltio évidete etre deux puissces

Plus en détail

La spirale de Théodore bis, et la suite «somme=produit».

La spirale de Théodore bis, et la suite «somme=produit». Etde d e vrite de l spirle de Théodore, dot issce à e site dot les sommes prtielles sot égles x prodits prtiels. Mots clés : spirle de Théodore, théorème de Pythgore, site, série, polyôme. L spirle de

Plus en détail

Exercices P4 : principes de la mécanique classique

Exercices P4 : principes de la mécanique classique S www.piche.e 5 Eecices 4 : picipes e l éciqe clssiqe E. - Déiée. 3, clcle pis. -5 3-8, clcle 3. 8 3 4 5, clcle E. - iiies pis. Qelle es l epessio ééle e l piiie e ocio cose?. Qelle es l epessio ééle e

Plus en détail

La Cible Sommaire F o c u s

La Cible Sommaire F o c u s La Cible Sommaire F o c u s F o n d a t e u r : J e a n L e B I S S O N N A I S D i r e c t e u r d e l a p u b l i c a t i o n : M a r t i n e M I N Y R é d a c t e u r e n c h e f : S e r g e C H A N

Plus en détail

World Wide Web (WWW) F o r m a t i o n A R S

World Wide Web (WWW) F o r m a t i o n A R S Wld Wde Web (WWW) 1 Cbus Cé: Clude Gss (UEC) Mdfcs: Bed Tuy, J.P Guhe (UEC) 2000 : ébse Vuhe (CC) 2 Objecfs du Web bussee d'u pje du CEN e Ms 1989. Espce d'f es -de f- ép. Idefe les dcues de èe uque. ysèe

Plus en détail

MECANIQUE QUANTIQUE Chapitre 6 : Oscillateur Harmonique Quantique

MECANIQUE QUANTIQUE Chapitre 6 : Oscillateur Harmonique Quantique MECANIQUE QUANTIQUE Cpitre 6 : Oscillteur Hroique Qutique Pr. M. ABD-LEFDIL Uiversité Moed V- Agdl Fculté des Scieces Déprteet de Pysique Aée uiversitire 6-7 Filières SM-SMI Itroductio L'oscillteur roique

Plus en détail

Concours des Grandes Ecoles INTEGRALES-Correction. PARTIE A. SUJET INTEGRAL Année universitaire 2009/2010

Concours des Grandes Ecoles INTEGRALES-Correction. PARTIE A. SUJET INTEGRAL Année universitaire 2009/2010 SUJET NTEGRAL Aée uiversiaire 9/ PARTE A. Cocours des Grades Ecoles NTEGRALES-Correcio..La focio f défiie par f : f ( ) ( )cos( ) es bie coiue sur l iervalle fermé boré [ ; ]. Les focios si( ) so de classe

Plus en détail

L affirmation de soi Ni tyran, ni carpette

L affirmation de soi Ni tyran, ni carpette Raphaëlle GIORDaNO IzmI maei-cazali L affrma de N yra, carpee 3 ƒ Smmare p. 6 p. 8 p. 10 PrŽ face d dcer Clze Sade dõ Ž vl de lõ Hm aerv Le 10 cmmademe de lõ Hm aerv dée clef 1 : maëtriser le B.a.-Ba DE

Plus en détail

Étudier si une famille est une base

Étudier si une famille est une base Base raisonnée d exercices de mathématiqes (Braise) Méthodes et techniqes des exercices Étdier si ne famille est ne base Soit E n K-espace vectoriel. Comment décider si ne famille donnée de vecters de

Plus en détail

Université de Picardie Jules Verne 2013-2014 UFR des Sciences

Université de Picardie Jules Verne 2013-2014 UFR des Sciences Uiversié de Picardie Jles Vere 13-14 UFR des Scieces Licece meio Mahémaiqes - Semesre 3 Saisiqe Exame de ldi 7 javier 14 Drée h To docme ierdi - Calclarices aorisées Exercice 1 1) Das e poplaio doée, o

Plus en détail

MODELISATION DES ECOULEMENTS EN RESEAU D ASSAINISSEMENT

MODELISATION DES ECOULEMENTS EN RESEAU D ASSAINISSEMENT RG - Hydroloe rbae ours d Hydroloe rbae Pare 5 MODELIATION DE EOLEMENT EN REEA D AAINIEMENT Jea-Luc BERTRAND-KRAJEWKI OH3 5 MODELIATION DE EOLEMENT - 8//6 J.-L. Berrad-Krajewsk, RG, INA de Lyo TABLE DE

Plus en détail

M A R C H E P U B L I C D E T R A V A U X. P r o c é d u r e a d a p t é e

M A R C H E P U B L I C D E T R A V A U X. P r o c é d u r e a d a p t é e M A R C H E P U B L I C D E T R A V A U X P r o c é d u r e a d a p t é e P a r t i e 2 - C a h i e r d e s C l a u s e s A d m i n i s t r a t i v e s P a r t i c u l i è r e s Université de Technologie

Plus en détail

Richard Lagrange Directeur du Centre national des arts plastiques

Richard Lagrange Directeur du Centre national des arts plastiques -è é. é é, é ôé É é é.,, é é é é.,, -ê à é, é é é ç éé. é éé ç œ,, é - É. é 2010. ç é,. é éé é 2012 é é éé éê é. é é é. = // é,. 38. 13/10/11, 24/11/11 î è é ç, é é., é é é à î é à î, é à è. é à,, ç, -à-.,.,

Plus en détail

Cours (Terminale S) Limite d une fonction

Cours (Terminale S) Limite d une fonction Cours (Termile S) Limite d ue octio Limite d ue octio e + ou Foctio déiie u voisige de + (resp ) Soit ue octio d esemble de déiitio D O dir que «l octio est déiie u voisige de + (resp )» s il eiste u réel

Plus en détail

Calculer comment se constituer un capitale ; Calculer comment rembourser une dette en effectuant des versements réguliers.

Calculer comment se constituer un capitale ; Calculer comment rembourser une dette en effectuant des versements réguliers. CHAP: 8 Objecifs de ce chpire : Clculer comme se cosiuer u cpile ; Clculer comme rembourser ue dee e effecu des versemes réguliers. RAPPELS : Qu'es-ce qu'ue vleur cquise? Qu'es-ce qu'ue vleur cuelle? Le

Plus en détail

D é ce m b re 2 0 0 7 L e ttr e d 'i n fo r m a ti o n n 1 6 E d i to r i al P o u vo i r s p r i vé s, p o u vo i r s p u b li c s P l u s i e u r s é vé n e m e n ts n o u s i n te r p e l l e n t d

Plus en détail

Culture Mômes. PROGRAMMATION CULTURELLE «JEUNE PUBLIC» de 0 à 16 ans Du 11 avril au 11 mai 2015 16 EVENEMENTS JEUNE PUBLIC / FAMILLE

Culture Mômes. PROGRAMMATION CULTURELLE «JEUNE PUBLIC» de 0 à 16 ans Du 11 avril au 11 mai 2015 16 EVENEMENTS JEUNE PUBLIC / FAMILLE Cle Môes VCNC D PRINTMP PROGRMMTION CULTURLL «JUN PUBLIC» e 0 à 16 s D 11 vl 11 2015 16 VNMNT JUN PUBLIC / FMILL RCHOLOGI JUX MULTIMDI MUIQU VIIT XPOITION CONT CINM DN RCHOLOGI MNIFTTION PRIOD DCRIPTIF

Plus en détail

Intégrales généralisées

Intégrales généralisées 3 Iégrles géérlisées Pour ce chpire, les focios cosidérées so priori défiies sur u iervlle réel I o rédui à u poi, à vleurs réelles ou complees e coiues pr morceu. L défiiio e les propriéés de l iégrle

Plus en détail

Systèmes électroniques

Systèmes électroniques Sysèes élecroqes Capre 4 MESE DE COANT Trasdcers CD\SE\Cors\Cap4.doc M. Correvo T A B E D E S M A T I E E S PAGE 4. MESE DE COANT... 4. INTODCTION... 4. MESE DE COANT SANS SÉPAATION GAVANIQE... 4.. Mesre

Plus en détail

Diversité des espèces

Diversité des espèces L bé "T " plè V bé? Dp pp l é l y pè 38 ll é l D pè p ll! L H H p T ll pè 18 ll pè éé é à j. S PEQENIVITEVXMIHIWZIVXqFVqWIXHIWTPERXIWk¾IVW E qxq MHIRXM½qI GIVXEMRW KVSTIW FEGXqVMIW EPKIW...) p. D pl l

Plus en détail

Systèmes séquentiels - Fonction Mémoire

Systèmes séquentiels - Fonction Mémoire Cours - ysèes séqueniels - Foncion Méoire Pge /8 ysèes séqueniels - Foncion Méoire ) EPEENTATION PA UN CONOGAMME...3 2) OBTENTION D UN EFFET MEMOIE PA AUTO-MAINTIEN....3 2) CAIE DE CAGE DE DIFFEENTE MEMOIE...

Plus en détail

Calculs en chromatographie

Calculs en chromatographie Calculs e chroatographe éthode de la oralsato tere... 1 Coeffcet de répose assque relatf... 1 Calcul des pourcetages assques... 2 Calcul des pourcetages olares... 3 xeple d aalyse CG d ue substtuto copéttve

Plus en détail

T E L E C H A R G E M E N T D E S D O C U M E N T S 2 P R O C E D U R E 2 C O N S T I T U T I O N DU D O S S I E R 5

T E L E C H A R G E M E N T D E S D O C U M E N T S 2 P R O C E D U R E 2 C O N S T I T U T I O N DU D O S S I E R 5 SAISIR UNE MUTATION FICHE A L USAGE DES CLUBS ------------- D a t e : 0 3 J u i n 2 0 0 9. --------- A u t e u r s : F é d é r a t i o n F r a n ç a i s e d e H a n d b a l l / M. S o u n a l e i x ( L

Plus en détail

LES ESCALIERS. Du niveau du rez-de-chaussée à celui de l'étage ou à celui du sous-sol.

LES ESCALIERS. Du niveau du rez-de-chaussée à celui de l'étage ou à celui du sous-sol. LES ESCALIERS I. DÉF I NIT I O N Un escalier est un ouvrage constitué d'une suite de marches et de paliers permettant de passer à pied d'un niveau à un autre. Ses caractéristiques dimensionnelles sont

Plus en détail

De quelle couleur est... 1 C. Lemoine pour Maternailes.net-2011. Lʼescargot. Le crabe. La tortue. La baleine. Lʼétoile de mer

De quelle couleur est... 1 C. Lemoine pour Maternailes.net-2011. Lʼescargot. Le crabe. La tortue. La baleine. Lʼétoile de mer De quelle couleur est... C. Lemoine pour Maternailes.net-20 Prendre en main le jeu. Repérer, associer des couleurs identiques De quelle couleur est... 2 C. Lemoine pour Maternailes.net-20 Prendre en main

Plus en détail

Description détaillée du référentiel INTERVENANT

Description détaillée du référentiel INTERVENANT rassemblant les informations sur l eau et les milieux aquatiques. Description détaillée du référentiel INTERVENANT Office National de l Eau et des Milieux Aquatiques Office International de l Eau / Sandre

Plus en détail

2EVHUYDWRLUH. Les services de l automobile

2EVHUYDWRLUH. Les services de l automobile 2EVHUYDWRLUH L v d l oobl Dgo ov 2012 / 2013 C do édé l Aoo Nol o l Foo Aoobl Sv éd ov 2 ll 44483 CARQUEFU CEDEX obvo@f-o.f é à édo : Jol Gobl Av l ollboo d : Mo Vl Phl L Gll Edo 10/2012, Cqfo (44) 41

Plus en détail

L'important C'est la rose

L'important C'est la rose L'important 'est la rose Gilbert ecaud rr: M. de Leon opista: Felix Vela 200 Xiulit c / m F m m 7 9. /. m...... J 1 F m.... m7 ro - se. rois - ro - se. rois - ro - se. rois - ro - se. rois - oi qui oi

Plus en détail

SERVICE de NEWS. F o r m a t i o n A R S. Création 2000 : Sébastien Vautherot (CCR)

SERVICE de NEWS. F o r m a t i o n A R S. Création 2000 : Sébastien Vautherot (CCR) EVICE de NEW Cé 2000 : ébse Vuhe (CC) Pése gééle Qu es ce que les News (UENET)? us de dscuss bd des sujes ès pécs (ces eséux pc, ) déés u. Echge dl de l f à ves le pcle NNTP Bsée su l pcédue ev/écep de

Plus en détail

Les Laboratoires Pharmaceutiques

Les Laboratoires Pharmaceutiques Les Laboratoires Pharmaceutiques Les plus grands laboratoires et les cadres de l'industrie pharmaceutique. Les laboratoires recensés sont les laboratoires pharmaceutiques, parapharmaceutiques et leurs

Plus en détail

Suites arithmétiques et Géométriques. Exemple 1. La suite des nombres 1, 3, 5, 7, 11, 13. ou la suite des nombres 100, 110, 121, 133.1, 146.41...

Suites arithmétiques et Géométriques. Exemple 1. La suite des nombres 1, 3, 5, 7, 11, 13. ou la suite des nombres 100, 110, 121, 133.1, 146.41... Sites arithmétiqes et Géométriqes Nos allos cosidérer des sites de ombres réels Exemple La site des ombres,, 5, 7,, o la site des ombres,,,, 464 Défiitio/Notatio : La site est e gééral oté ( ) (o ( v )

Plus en détail

e c Comment classer les fruit couleur! Histoire Activité

e c Comment classer les fruit couleur! Histoire Activité ! 15 Mé q : P é 1 Qq f x f P é 2 1 v 60 (1/4 ) 60 (1/4 ) é éé P é 3 1 v 60 (1/4 ) y 60 (1/4 ) é éé P é 2 3 2 è 1 q! É 1 À v, - q? S v, f v v. E? S! I, v é. M ù é? Th x q v. R. D q -? R! É 2 É. Aè q è,!

Plus en détail

l Agence Qui sommes nous?

l Agence Qui sommes nous? l Agence Qui soes nous? Co Justine est une agence counication globale dont la ission est prendre en charge l enseble vos besoins et probléatiques counication. Créée en 2011, Co Justine a rapient investi

Plus en détail

Systèmes électromécaniques

Systèmes électromécaniques Hae Ecole d ngénere e de Geson D Canon d Vad Sysèes élecroécanqes Chapre 6 OEURS SYNCRHONES A AANS PERANENS Coplage e odélsaon por les oers rphasés CD\SE\Cors\Chap6. Correvon A B E D E S A E R E S PAGE

Plus en détail

Demande de subsides de formation

Demande de subsides de formation Service des sbsides de formation SSF Amt für Asbildngsbeitrage ABBA Rote-Neve 7, Case postale, 1701 Friborg T +41 26 305 12 51, F +41 26 305 12 54 borses@fr.ch, www.fr.ch/ssf Demande de sbsides de formation

Plus en détail

SYSTEMES LINEAIRES DU PREMIER ORDRE

SYSTEMES LINEAIRES DU PREMIER ORDRE SYSTEMES LINEIRES DU PREMIER ORDRE 1. DEFINITION e(t) SYSTEME s(t) Un système est dit linéaire invariant du premier ordre si la réponse s(t) est liée à l excitation e(t) par une équation différentielle

Plus en détail

Maths en vacances. problèmes de concours récents (tant pour la voie économique que pour la voie scientifique). C est pourquoi

Maths en vacances. problèmes de concours récents (tant pour la voie économique que pour la voie scientifique). C est pourquoi Mahéaques Mahs e vacaces Fraços Delaplace, Perre Grard Professeurs de ahéaques e classes préparaores écooques e coercales (ECS), lcée Nore-Dae du Gradchap (Versalles). Coe chaque aée ous pesos au éudas

Plus en détail

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement.

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement. Choix d ives i s s eme e cer iude 1 Chapire 1 Choix d ivesissemes e ceriude. Défiiio L es décisios d ivesissemes fo parie des décisios sraégiques de l erepris e. Le choix ere différes projes d ivesisseme

Plus en détail

Circuits linéaires en régime transitoire

Circuits linéaires en régime transitoire MPSI - Élecrocnée I - rcs lnéares en régme ransore page 1/8 rcs lnéares en régme ransore 1 ondons nales e conné On va éder ce se passe enre enre dex régmes conns = régme ransore. es granders élecres ne

Plus en détail

2009/2010. Elaboré par : ALI AKIR

2009/2010. Elaboré par : ALI AKIR BAC MATHS 9/ Cors et 8 eercices Elboré pr : ALI AKIR Doe des cors prticliers e mthémtiqes por tos les ive Pls d iformtios : Cotcter à GSM : 4 96 4 Emil : kircm@gmilcom Site Web : http://mths-kirmidiblogscom/

Plus en détail

Simplicité et efficacité

Simplicité et efficacité Migration vers la nouvelle version du logiciel Simplicité et efficacité www.thunderbee.org Plan Pro c é dure Wind o w s Pro c é dure Mac Mis e à jo ur de s mo dule s 17/07/15 www.thunderbee.org 2 Pro c

Plus en détail

des SCPI de rendement

des SCPI de rendement Tble cprtif e perfrnces es e reneent e pls e 2 M Cette éte prte sr les 2 les pls iprtntes en cpitlistin Dcent is à jr : jillet 213 Arel epertise est ne sciété Epertise inépennte, spéciliste es clcls en

Plus en détail

Votre succès notre spécialité!

Votre succès notre spécialité! V ccè pécé! C Cchg Fm Igé Rcm V ccè pécé! L p mbx mché. E MPS I C g démq p ff pé pf d chq c : p é. N Fc: EMPSI Cg éé céé 2010 P Bddd Bchb q pé p d 8 d md d p. I dévpp N cmp xgc d é d. N c pfm mé d q gg

Plus en détail

TD: Transformée de Fourier

TD: Transformée de Fourier TD: Transformée de Forier Définition + Soit ne fonction complee f de la variable réelle Si elle est de carré sommable, c est-à-dire si l intégrale f( d converge (on se reportera a cors de mathématiqes

Plus en détail

La Cible Sommaire F oc us F o n d a t e u r : J e a n L e B I S S O N N A I S

La Cible Sommaire F oc us F o n d a t e u r : J e a n L e B I S S O N N A I S La Cible Sommaire F oc us F o n d a t e u r : J e a n L e B I S S O N N A I S D i r e c t e u r d e l a p u b l i c a t i o n : M a r t i n e M I N Y R é d a c t e u r e n c h e f : S e r g e C H A N T

Plus en détail

Infrastructure à Clé Publique (PKI Public Key Infrastructure)

Infrastructure à Clé Publique (PKI Public Key Infrastructure) Infrastructure à Clé Publique (PKI Public Key Infrastructure) Didier DONSEZ Université Joseph Fourier IMA IMAG/LSR/ADELE Didier.Donsez@imag.fr 2 Rappel sur la certification Besion de confiance sur ce que

Plus en détail

N 3 Janvier 2016. L exploitation et la diffusion des analyses des messages clients au sein des entreprises

N 3 Janvier 2016. L exploitation et la diffusion des analyses des messages clients au sein des entreprises Les blletins de la relation client N 3 Janvier 2016 L exploitation et la diffsion des analyses des messages clients a sein des entreprises En 2015, IPSOS et ERDIL ont mené conjointement ne étde nationale

Plus en détail

Calcul des pertes du distributeur

Calcul des pertes du distributeur Clcul des pertes du dstrbuteur Jver 007 Clcul des pertes du dstrbuteur Tros étpes : Clcul des pertes techques pr tpe d ouvrge Modélsto des pertes o techques (PNT) Modélsto d ue courbe de tpe P²+bP+c ou

Plus en détail

vos TéLéprocédures En pratique

vos TéLéprocédures En pratique OMMERçnt, rtn rfnel lbérx v TéLérédre En rtqe MODE DE TRANMON Délrtn ôt éhéne rédre re Le télérédre fle rfnel Qel nt le trnn? e 3 Qelle délrtn, qel ôt? e 4 En rtqe, t rér? e 5 1- réer n te EF 2- Envyer

Plus en détail

Les 2 roues motorisés (2RM) Quelques résultats issus de l enquête nationale transports et déplacements de 2008 (ENTD)

Les 2 roues motorisés (2RM) Quelques résultats issus de l enquête nationale transports et déplacements de 2008 (ENTD) Journée Concertation 2 RM Paris 16 nov. 2010 Les 2 roues motorisés (2RM) Quelques résultats issus de l enquête nationale transports et déplacements de 2008 (ENTD) CGDD SOeS Marina Robin / Philippe Roussel

Plus en détail

Choix modal: quand la chaîne crée la contrainte

Choix modal: quand la chaîne crée la contrainte Choix modal: quand la chaîne crée la contrainte 5 e colloque annuel de la Chaire Mobilité 26 mai 2015 Gabriel Sicotte, M.Sc.A. Diplômé à la maîtrise Superviseurs : Catherine Morency Bilal Farooq 1 Plan

Plus en détail

Exercices de révision

Exercices de révision Exercices de révisio Exercice U ivesisseur souscri à l émissio d u bille de résorerie do les caracérisiques so les suivaes : - Nomial : 5 M - Taux facial : 3,2% - Durée de vie : 9 mois L ivesisseur doi

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Eo7 Clcls de primitives et d intégrles Eercices de Jen-Lois Roget. Retrover ssi cette fiche sr www.mths-frnce.fr * très fcile ** fcile *** difficlté moyenne **** difficile ***** très difficile I : Incontornle

Plus en détail

ANNEXES...16 Notation...16 Rente financière certaine...16. Mémo d Actuariat - Sophie Terrier @ 2004 1/16

ANNEXES...16 Notation...16 Rente financière certaine...16. Mémo d Actuariat - Sophie Terrier @ 2004 1/16 ÉO TUIT FOULS TUILLS SU TT Probbé ouo 3 dfféré4 ee gère be à ere échu 5 ee gère be à ere échu ueur fo d ée 6 ee gère à ere be d ce7 ee gère à ere be d ce ueur fo d ée8 urce décè 9 urce décè à c rbe cro

Plus en détail

Lot 4: Validation industrielle. Youness LEMRABET Pascal YIM, 19/11/2010

Lot 4: Validation industrielle. Youness LEMRABET Pascal YIM, 19/11/2010 Lot 4: Validation industrielle Youness LEMRABET Pascal YIM, 19/11/2010 Partenaires Lot 1 Modèle du processus métier L4.1 Modèles PSM Lot 2 Guide d implantation L4.2 Développement & Recette prototype Lot

Plus en détail

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL Fiche ors Thème : Elecricié Fiche 5 : Dipôle e dipôle Plan de la fiche Définiions ègles 3 Méhodologie I - Définiions oran élecriqe : déplacemen de charges élecriqes q a mesre d débi de charges donne l

Plus en détail

Montages à plusieurs transistors

Montages à plusieurs transistors etor a men! ontages à plsiers transistors mplificaters à plsiers étages Dans de nombrex amplificaters, on cerce à obtenir n grand gain, ne impédance d entrée élevée (afin de ne pas pertrber la sorce d

Plus en détail

PISTES PÉDAGOGIQUES The School Picture La photo de classe Collec&on Filou & Pixie

PISTES PÉDAGOGIQUES The School Picture La photo de classe Collec&on Filou & Pixie PISTES PÉDAGOGIQUES The School Pictre La photo de classe Collec&on Filo & Pixie Domaine disciplinaire ANGLAIS Nivea Tâche finale / Objec&f Ac&vités langagières travaillées Capacités Cycle 2 cycle 3* Joer

Plus en détail

Chapitre 2. LA BATTERIE

Chapitre 2. LA BATTERIE Chpir 2 LA BATTERIE 21 Fi : Priip d l bri Lrq l plg dx l d éx différ d b id bi d r élriq L bri élriq d vir pr rôl d lr d rir l r élriq D ièr géérl, bri liq i x br d 12 vl ié d 6 élé d 2 vl é éri + - Bri

Plus en détail

TABLE DES MATIÈRES INTRODUCTION...1. Les jus ti fi ca tions des employeurs pour cybersurveiller les salariés...7

TABLE DES MATIÈRES INTRODUCTION...1. Les jus ti fi ca tions des employeurs pour cybersurveiller les salariés...7 TABLE DES MATIÈRES INTRODUCTION...1 PARTIE 1. Les jus ti fi ca tions des employeurs pour cybersurveiller les salariés....7 Chapitre 1. L impératif de sécurité informatique....11 Sec tion 1. La néces saire

Plus en détail

Système isolateur de ligne de haut-parleurs

Système isolateur de ligne de haut-parleurs Systèmes de commnications Système isolater de ligne de hat-parlers Système isolater de ligne de hat-parlers www.boschsecrity.fr Fornit des bocles de hat-parler redondantes por les systèmes de sonorisation

Plus en détail

Offre n... e-liberty Services Formation B2C Admin des Ventes Convention de formation professionnelle

Offre n... e-liberty Services Formation B2C Admin des Ventes Convention de formation professionnelle Offre n... e-liberty Services Formation B2C Admin des Ventes Convention de formation professionnelle (Article L. 6353-2 et R. 6353-1 du code du travail) Entre d une part : Désigné par «le bénéficiaire»

Plus en détail

a g c d n d e s e s m b

a g c d n d e s e s m b PPrrooppoossiittiioo 22001111JJPP 22770055 000011 uu 0088 fféévvrriirr 22001111 VVlliiiittéé jjuussqquu uu 3300//0044//22001111 tim c ir tv é p g c h u i rè s G A Z iv lu s IC.G R é c lo y m ip s 9 r7

Plus en détail

[ Aire ] représente l aire algébrique comprise entre la courbe et l axe des temps sur un intervalle d une période. T : période en secondes (s)

[ Aire ] représente l aire algébrique comprise entre la courbe et l axe des temps sur un intervalle d une période. T : période en secondes (s) AIDE-MEMOIRE REGIME PERIODIQE Grdeur périodique : e grdeur périodique es ue grdeur qui se répèe ideiqueme à elle même e régulièreme ds le emps. Période : durée cose oée, exprimée e secode (s) qui sépre

Plus en détail

Aménagement Ville de Montpellier Voirie pour tous. Présentation 07 octobre 2008

Aménagement Ville de Montpellier Voirie pour tous. Présentation 07 octobre 2008 Aménagement Ville Montpellier Voirie pour tous 01/10/08 1 Présentation 07 octobre 2008 Le contexte Ville 01/10/08 2 Le développement Ville 01/10/08 3 Aménagement Ville Montpellier Voirie pour tous LE PATRIMOINE

Plus en détail

L M B C O T D U G R A N D D A N S Q U A R T D VIVE LE H! IM EU LE LLEC IF H LE IER E FIR M IN Y -VER T Rapport de fin de recherche pour l Office public d H L M de F irm iny PAR NO Ë L JO U EN N E M AI

Plus en détail

T.P. Le redressement commandé : le pont mixte.

T.P. Le redressement commandé : le pont mixte. I Introdcton : T.P. Le redressement commandé : le pont mxte. Précédemment, nos avons v qe nos povons réalser la converson d'ne tenson alternatve snsoïdale t =U 2sn t en ne tenson contne grâce à l'tlsaton

Plus en détail

La fiction américaine dans les audiences des grands pays européens en 2010

La fiction américaine dans les audiences des grands pays européens en 2010 La fiction américaine dans les audiences des grands pays européens en 2010 1 Objectifs de travail L objet de ce document est d expertiser la place occupée, en 2010, par les fictions américaines dans les

Plus en détail

ILT. Interfacultair Instituut voor Levende Talen. T@@lvaardig. Fautes fréquentes. Ann Bertels en taalgroep Frans. Katholieke Universiteit Leuven

ILT. Interfacultair Instituut voor Levende Talen. T@@lvaardig. Fautes fréquentes. Ann Bertels en taalgroep Frans. Katholieke Universiteit Leuven IL Ic I oo L A B op Khok U L 30/01/02 C op mo xpo po o pobèm, m o è mpo. 1. G c pc o m xmp ph op homm m pph p po pobèm pomm yèm b x combo coc w o mho p yhè co / 2. Ic - ç jc b b >< coc - cocè p p om om

Plus en détail

Réinventer le métier d a annonceur d e de demain demain

Réinventer le métier d a annonceur d e de demain demain Réinventer le métier d a da annonceur de demain le 31 mars 2010 Introduction Anne-Marie Ga aultier Dreyfus, Présidente du Club des Annonceurs Directeur Marketing Galeries Lafayette 31/03/2010 1 L histoire

Plus en détail

Thuraya SatSleeve Transformez votre smartphone en mode satellite

Thuraya SatSleeve Transformez votre smartphone en mode satellite Thuraya SatSleeve Transformez votre smartphone en mode satellite www.thuraya.com Suivez-nous sur /thurayatelecom Restez Proche Associant parfaite mobilité et simplicité, Thuraya SatSleeve est le moyen

Plus en détail

sciences humaines du Canada i n s k y 2006 Doctoral Fellowships Program / Programmes de bourses de doctorat de 2006 As of 2006/08/18, Alberta KA

sciences humaines du Canada i n s k y 2006 Doctoral Fellowships Program / Programmes de bourses de doctorat de 2006 As of 2006/08/18, Alberta KA f 2006 F / 2006 f 2006/08/18 U f $80000 / 80 000 $ 4 / f f x U f $80000 / 80 000 $ U f $40000 / 40 000 $ 2 / f f : f $60000 / 60 000 $ 3 / O : f $40000 / 40 000 $ 2 / f f f $40000 / 40 000 $ 2 / (1945-2004)

Plus en détail

Enjeux et contraintes de la mutualisation des ressources pour les collectivités et les agents

Enjeux et contraintes de la mutualisation des ressources pour les collectivités et les agents Mercredi 5 novembre 2014 Enjeux et contraintes de la mutualisation des ressources pour les collectivités et les agents Hervé PETTON, Directeur Territorial 35 ans d expérience professionnelle en collectivités

Plus en détail

Suis la ligne. Spectacle jeune public à par r de 18 mois

Suis la ligne. Spectacle jeune public à par r de 18 mois Suis la ligne Spectacle jeune public à par r de 18 mois LE SPECTACLE Suis la ligne... et pars à la découverte, suis le chemin... ses traces et dessins, suis le livre... tourne la page et entre... Dessiner,

Plus en détail

Chapitre IV Les oscillations couplées «Les oscillations libres d un système à plusieurs degrés de liberté»

Chapitre IV Les oscillations couplées «Les oscillations libres d un système à plusieurs degrés de liberté» Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer MD 8-9 Chre IV es oscllons coulées «es oscllons lbres d un ssèe à luseurs degrés de lberé» Dns ce chre, nous llons coencer r éuder les oscllons lbres

Plus en détail

La complémentaire santé. des 16-30 ans CHEZ NOUS PAS DE PROFIT SUR VOTRE SANTÉ. adaptée à vos besoins pour faciliter votre accès aux soins :

La complémentaire santé. des 16-30 ans CHEZ NOUS PAS DE PROFIT SUR VOTRE SANTÉ. adaptée à vos besoins pour faciliter votre accès aux soins : La complémentaire santé des 16-30 ans CHEZ NOUS PAS DE PROFIT SUR VOTRE SANTÉ la réponse santé adaptée à vos besoins por faciliter votre accès ax soins : avec le tiers payant por ne pls avancer vos frais

Plus en détail

Chapitre 1 Calculs algébriques dans... 3. Chapitre 2 Logique... 27. Chapitre 3 Fonctions numériques... 41. Chapitre 4 Calcul intégral...

Chapitre 1 Calculs algébriques dans... 3. Chapitre 2 Logique... 27. Chapitre 3 Fonctions numériques... 41. Chapitre 4 Calcul intégral... Avt-propos Cet ouvrge est coçu pour permettre u étudits des clsses préprtoires ECE d order leur première ée ds les meilleures coditios e fcilitt l trsitio vec l eseigemet secodire Aisi, l ojectif est i

Plus en détail