SYSTEME FERME EN REACTION CHIMIQUE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "SYSTEME FERME EN REACTION CHIMIQUE"

Transcription

1 SYSTEME FERME EN REACTION CHIMIQUE I. DESCRIPTION D UN SYSTEME. Les dfférets types de système (ouvert, fermé, solé U système S est formé d u esemble de corps séparés du reste de l uvers (appelé mleu extéreur M.E. par ue surface fermée réelle ou fctve. M.E. Surface fermée S Les proprétés de cette surface détermet les échages du système avec le mleu extéreur : - Echage de matère et d éerge : système ouvert (bécher lors d u dosage : ajout de matère - Echage d éerge mas pas de matère : système fermé (ce que ous allos étuder - Pas d échage de matère d éerge : système solé (l uvers est u système solé Remarque : Das le cas d'u système fermé, la masse du système reste costate, mas sa composto peut varer par sute de processus teres (réactos chmques. 2. Paramètres d état (tesfs et extesfs L état d u système à l équlbre est détermé par la coassace d u pett ombre de gradeurs macroscopques appelées paramètres d état ou varables d état. Sot u système composé de dfféretes espèces chmques (B. Les paramètres d état de ce système sot sa masse (m, so volume (, sa température (T, sa presso (P, les quattés de matères (. O dstgue deux types de paramètres : - U paramètre extesf est ue gradeur addtve lée aux dmesos du système et à la quatté de matère (, m,. - U paramètre tesf est déf e chaque pot du système et e possède pas la proprété d addtvté relatve aux dmesos du système et à la quatté de matère (P, T. Remarque : le quotet de 2 gradeurs extesves fourt ue gradeur tesve. Ex : masse volumque masse/volume ; cocetratoquatté de matère/volume 3. Phases d u système La parte du système où tous les paramètres tesfs sot sot uformes (même valeur e chaque pot, sot varet cotûmet e tout pot costtue ue phase du système. Exemple : Les états physques d u corps pur (solde, lqude, gaz costtuet des phases dfféretes (dscotutés de la masse volumque. 4. Composto d u système homogèe (cocetrato et fracto molare, presso partelle et lo de Dalto U système das lequel tous les paramètres tesfs sot uformes est homogèe, la composto est alors la même e chaque pot. Remarque : U système homogèe comporte ue seule phase. Delacour - Chme - PTSI Paul Costas Réactos e soluto aqueuse - Chaptre : Système fermé e réacto chmque

2 Autres paramètres d états tesfs d u système homogèe composé de costtuats chmques (B occupat le volume : - Cocetrato molare de B : [ B ] c - Fracto (ou ttre molare de B : x k k avec x Remarque : o déft de même le ttre (ou fracto massque de B : m cocetrato massque : χ m w w m k k et la Cas d u système e phase gazeuse : O adoptera le modèle du gaz parfat qu obét à l équato d état : P..R.T P : presso totale (Pa : volume occupé (m 3 : quatté totale de matère (mol T : température thermodyamque (K avec T(K t( C + 273,6 R : costate des gaz parfats R 8,34 J.K -.mol - Pour caractérser chaque espèce gazeuse B das u mélage déal de gaz parfats, o peut utlser les pressos partelles. - La presso partelle de B das le mélage gazeux est la presso qu aurat B s l occupat seul tout le volume offert au mélage à la même température : P..R.T Lo de Dalto : Das u mélage déal de gaz parfats, la presso totale est la somme des pressos R.T R.T R.T partelles de tous les gaz présets : P... P Remarques : La presso partelle est relée à la cocetrato molare : P.R.T c.r.t as qu à la fracto molare et à la presso totale II. EQUATION BILAN ET AANCEMENT D UNE REACTION CHIMIQUE. Equato bla et ombres stœchométrques algébrques L équato bla tradut les proportos das lesquelles les dfférets réactfs réagsset pour former les produts. Exemple : L ammoac est sythétsé suvat la réacto d équato bla : 3 2 O peut auss écrre cette équato bla comme cec : Les ombres stœchométrques deveet alors algébrques : 2 pour ; - pour ; -3 pour. Cosdéros u système sège d ue uque réacto dot l équato bla s écrt : sot ecore 0 Das cette écrture est le ombre stœchométrque algébrque du costtuat B : postf 0 s B est u produt et égatf 0 s c est u réactf. Cette forme algébrque de l équato bla est utlsée e thermodyamque chmque, cétque chmque... Delacour - Chme - PTSI Paul Costas Réactos e soluto aqueuse - Chaptre : Système fermé e réacto chmque

3 2. Avacemet d ue réacto Das u système fermé, les varatos des quattés de matères des dfférets costtuats sot dues à la réacto chmque s y déroulat. Ces varatos e sot alors pas dépedates. Nous allos chercher leur relato par le bas d u tableau d avacemet sur l exemple de la réacto d équato bla : 3 2 ou Par défto représete l avacemet de la réacto à l stat t. Par coveto o predra : 0 0. Equato bla : Etat tal (t0 Etat e cours d évoluto (t Etat fal (t f Pour u système chmque fermé, de composto tale doée, la composto est coue à chaque -0 stat s l avacemet est cou : 0 + ν.ξ sot ξ avec ν algébrque ν S l avacemet ξ est postf (ξ>0, l évoluto est das le ses drect : 3 2 S l avacemet ξ est égatf (ξ<0, l évoluto est das le ses drect : 3 2 Les quattés de matère état des gradeurs postves ou ulles (, les varatos de sot borées avec : - : plus pette valeur postve de ξ aulat la quatté de matère de l u des réactfs (dt lmtat. La réacto est alors totale (ou quattatve das le ses drect. - : plus grade valeur égatve de ξ aulat la quatté de matère de l u des produts (dt lmtat. La réacto est alors totale (ou quattatve das le ses verse. S, l état fal correspodat à u équlbre chmque où tous les costtuats de la réacto sot présets. Remarque : l avacemet est attaché à ue équato bla doée. S les coeffcets stœchométrques sot multplés par α, l avacemet est dvsé par α. Autres paramétrages d évoluto : Avacemet volumque Lorsque le volume du système chmque reste costat (soluto aqueuse par exemple, o utlse souvet les cocetratos des espèces plutôt que les quattés de matère : o [ B ] c + ν ξ c o. + ν ξ avec ξ ξ avacemet volumque (e mol.l - Taux de coverso ou degré d avacemet Cette gradeur est assocée à u réactf B (ν < 0 : quatté de B ayat réag τ (τ > 0 quatté tale deb d où 0.(- τ Remarque : das le cas d u réactf uque qu se dssoce, o utlse le terme de coeffcet de dssocato souvet oté α. Delacour - Chme - PTSI Paul Costas Réactos e soluto aqueuse - Chaptre : Système fermé e réacto chmque

4 III. QUOTIENT DE REACTION - CONSTANTE D EQUILIBRE. Quotet réactoel Sot u système réactoel, sège d ue réacto chmque dot l équato bla s écrt : ou de faço plus géérale : 0 O désge par quotet réactoel, oté Q, la quatté :.. ou de faço plus géérale : avec a(b, gradeur sas dmeso, désgée par actvté du costtuat B das le système chmque. Remarques : Le quotet réactoel est assocé à ue équato bla doé. L actvté d ue espèce chmque déped de la ature et de l état de l espèce cosdérée. Nous admettos les expressos suvates qu serot étables e secode aée. S B appartet à ue phase gazeuse PB a(b avec 0 P R.T PB (B. : presso partelle du costtuat B das la phase gazeuse P 0 bar 0 5 Pa : presso stadard (ou de référece Cette expresso de l actvté est valable pour de fables pressos. S B appartet à ue soluto [B ] c B est u soluté : a(b 0 0 avec c c (B c [B ] : cocetrato molare de B c 0 mol.l - : cocetrato stadard (ou de référece Cette expresso est valable pour des solutos dluées 0.. B est le solvat (eau par exemple das ue soluto aqueuse : a(h 2 O S B est solde ou lqude seul das sa phase : a(b 2. Costate d équlbre Au fur et à mesure que la réacto se produt, l avacemet ξ vare, les actvtés varet et smultaémet Q vare. S l évoluto a leu das le ses drect, Q augmete, s elle a leu das le ses verse, Q dmue. Lorsque le système cesse d évoluer l avacemet ξ a attet sa valeur fale ξ f. Ue étude thermodyamque motre que lorsque l état d équlbre fal est attet, Q eq pred ue valeur qu est dépedate de la maère dot l état d équlbre a été réalsé. A l équlbre : où K 0 (T est appelée costate thermodyamque d équlbre qu e déped que de la température. Remarque : la coassace de K 0 (T permet d accéder à la valeur de l avacemet das l état d équlbre fal, doc à la composto fale du système qu e déped que de sa composto tale coue. Delacour - Chme - PTSI Paul Costas Réactos e soluto aqueuse - Chaptre : Système fermé e réacto chmque

5 3. Evoluto d u système chmque Le système évolue de faço à ce que le quotet de réacto Q tede vers K 0 (T : - Q < K 0 (T : évoluto das le ses drect - Q > K 0 (T : évoluto das le ses verse - Q K 0 (T : pas d évoluto (état d équlbre K 0 Q Q 2 Q Réacto totale : Ue réacto peut être cosdérée comme totale (quattatve lorsque ξ f est égal ou très vos de ξ max : ξ f ξ max ε avec 0 < ε << ξ max. Das le cas gééral - équlbres homogèes - cette stuato correspod au cas où K 0 >>. (Das le cas d u équlbre hétérogèe o peut assster à ue rupture d équlbre par défaut d u réactf : vor sute du cours Réacto ulle : Ue réacto peut être cosdérée comme ulle s ξ f est sesblemet ul (ξ f ε. Cette stuato correspod e gééral au cas où K 0 <<. I. REACTIONS CHIMIQUES EN SOLUTION AQUEUSE Ue soluto aqueuse est obteue e dssolvat u ou pluseurs solutés das l eau qu costtue le solvat. Les solutés sot présets e fable quatté et le solvat costtue l espèce très largemet majortare.. Caractérstques de la molécule d eau Géométrques : agle HOH 04,5 - logueur de laso O-H 96 pm Electrques : 2 doublets lats ( et 2 et 2 doublets o lats (3 et 4 L eau est ue molécule polare : car l atome d oxygèe est plus électroégatf que l atome d hydrogèe; les doublets de laso ( et (2 sot plus attrés par l'oxygèe que par l'hydrogèe. So momet dpolare est élevé : p(h 2 O,85 D à 20 C ( debye (D 29 Coséqueces : A cause des valeurs mportates de so momet dpolare et de sa costate délectrque, l eau est u solvat osat, dssocat, dspersat et hydratat. 2. Réactos e soluto aqueuse - trasfert de partcules.0 C.m 3 Das ue soluto aqueuse, l eau et les espèces oques ou moléculares e présece peuvet partcper à des réactos chmques que l o peut classer e 4 types selo la ature des partcules échagées etre u doeur et u accepteur : - Réactos acdo-basques (Chaptre 2 : échage de proto L eau possède ue costate délectrque mportate : ε r 80 à 20 C. - Réactos d oxydo-réducto (Chaptre 5 : échage d électro - Réactos de précptato (Chaptre 4 : échage d ao ou de cato - Réactos de complexato (Chaptre 3 : échage de lgad - 2δ O (3 (4 H ( (2 +δ +δ H Delacour - Chme - PTSI Paul Costas Réactos e soluto aqueuse - Chaptre : Système fermé e réacto chmque

Coefficient de partage

Coefficient de partage Coeffcet de partage E chme aque, la sythèse d'u composé se fat e pluseurs étapes : la réacto propremet dte (utlsat par exemple u motage à reflux quad la réacto dot être actvée thermquemet), les extractos

Plus en détail

Calculs en chromatographie

Calculs en chromatographie Calculs e chroatographe éthode de la oralsato tere... 1 Coeffcet de répose assque relatf... 1 Calcul des pourcetages assques... 2 Calcul des pourcetages olares... 3 xeple d aalyse CG d ue substtuto copéttve

Plus en détail

Chapitre II : Application du second principe à l étude de la réaction chimique ; Potentiel chimique

Chapitre II : Application du second principe à l étude de la réaction chimique ; Potentiel chimique Chaptre II : Applcato du secod prcpe à l étude de la réacto chmque ; Potetel chmque Pla : ********************** I- Eocé du secod prcpe de la thermodyamque... 2 1- Eocé du secod Prcpe de la hermodyamque...

Plus en détail

III GRANDEURS MOLAIRES

III GRANDEURS MOLAIRES Chaptre III GRNDEURS MOLIRES Gradeurs molares - Gradeur molare d u corps pur ou d u age de corps purs Sot u système thermodyamque costtué de moles d u même composé, o assoce à ue gradeur extesve de ce

Plus en détail

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR Semestre : 4 Module : Méthodes Quattatves III Elémet : Mathématques Facères Esegat : Mme BENOMAR Elémets du cours Itérêts smples, précompte, escompte et compte courat Itérêts composés Autés Amortssemets

Plus en détail

Exercice 1 : Analogie entre équilibres acido-basiques et équilibres de complexation (Application du Principe de Le Châtelier).

Exercice 1 : Analogie entre équilibres acido-basiques et équilibres de complexation (Application du Principe de Le Châtelier). Bla UE 1C G. EXERCICES BILAN Exercce 1 : Aaloge etre équlbres acdo-basques et équlbres de complexato (Applcato du Prcpe de Le Châteler). Objectfs de l'exercce - Coassaces/Compéteces testées das cet exercce

Plus en détail

Chapitre I : Introduction à la résistance des matériaux & Rappel de statique. (August Wöhler)

Chapitre I : Introduction à la résistance des matériaux & Rappel de statique. (August Wöhler) Chaptre I : Itroducto à la résstace des matéraux & appel de statque (August Wöhler) Premer cours de ésstace des atéraux a été doé par August Wöhler à l'uversté de Göttge (Allemage) e 842. aculty of echacal

Plus en détail

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1 II - Notos de probablté 9/0/007 PHYS-F-30 G. Wlquet Ue varable aléatore est ue varable dot la valeur e peut être prédte avec certtude mas dot la probablté d occurrece d ue valeur (varable dscrète) ou d

Plus en détail

TD Techniques de prévision pour la Gestion de production

TD Techniques de prévision pour la Gestion de production Orgasato et gesto dustrelle Page / 6 TD Techques de prévso pour la Gesto de producto er Exercce Vetes d u rayo de jouraux das u supermarché Javer Févrer Mars Avrl Ma Ju Jullet Août Septembre Octobre Novembre

Plus en détail

ANALYSE DES ENQUETES CAS-TEMOINS. AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séries non appariées) ad bc. , bc. 762, nmnm

ANALYSE DES ENQUETES CAS-TEMOINS. AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séries non appariées) ad bc. , bc. 762, nmnm I. DEFINITION ANALYSE DES ENQUETES CAS-TEMOINS AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séres o apparées) Dr F. Séguret Départemet d Iformato Médale, Épdémologe et Bostatstques U facteur F est ue

Plus en détail

Annexe 1. Estimation d un quantile non-paramétrique par la méthode de Hazen

Annexe 1. Estimation d un quantile non-paramétrique par la méthode de Hazen Aexe. Estmato d u quatle o-paramétrque par la méthode de Haze La probablté cumulée emprque d ue doée au se d u échatllo est pas u cocept parfatemet déf : pluseurs estmatos sot possbles ; l e est de même

Plus en détail

I. Qu est-ce qu une variable aléatoire?

I. Qu est-ce qu une variable aléatoire? I. Qu est-ce qu ue varable aléatore?. Défto : Sot ue expérece aléatore dot l esemble des résultats possbles (l uvers est oté Ω. Ue varable aléatore est ue focto X allat de Ω sur R, c est-à-dre que c est

Plus en détail

Chapitre 8 Corrélation et régression linéaire simple. José LABARERE

Chapitre 8 Corrélation et régression linéaire simple. José LABARERE UE4 : Bostatstques Chaptre 8 Corrélato et régresso léare smple José LABARERE Aée uverstare 20/202 Uversté Joseph Fourer de Greoble - Tous drots réservés. Pla I. Corrélato et régresso léare II. Coeffcet

Plus en détail

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant :

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant : STATISTIQUES Cours Termale ES O observe que, das certas cas, l semble ester u le etre deu caractères statstques quattatfs (deu varables) sur ue populato ; par eemple, etre le pods et la talle d u ouveau-é,

Plus en détail

Chapitre VII : Equilibre d un système thermodynamique - Constante d équilibre.

Chapitre VII : Equilibre d un système thermodynamique - Constante d équilibre. Chaptre V : Equlbre u système thermoyamque - state équlbre. Chaptre V : Equlbre u système thermoyamque - state équlbre. V. : Equlbre u système thermoyamque. er prcpe ( système ermé ) U=δQ + δw = δq V eme

Plus en détail

NOMBRES COMPLEXES EXERCICES CORRIGES

NOMBRES COMPLEXES EXERCICES CORRIGES Cours et exercces de mathématques NOMRES COMPLEXES EXERCICES CORRIGES Exercce. O doe = + et = + Ecrre sous forme algébrque les complexes suvats : = ; Exercce. Calculer, et = ; = ; = ; 5 006 009 E dédure

Plus en détail

Apport de la technique de décomposition de domaine en réduction modale de branche

Apport de la technique de décomposition de domaine en réduction modale de branche Apport de la techque de décomposto de domae e réducto modale de brache Perre-Olver LAFFAY, Olver QUEMENER *, Etee VIDECOQ, Ala NEVEU Laboratore de Mécaque et d Eergétque d Evry (LMEE) 40, Rue du Pelvoux

Plus en détail

Statistiques II Sc. Éco. & Gestion (S3) Pr. M. El Merouani 3-Notation ensembliste des événements :

Statistiques II Sc. Éco. & Gestion (S3) Pr. M. El Merouani 3-Notation ensembliste des événements : wwwelmerouajmdocom Statstques II Sc Éco & Gesto S r M El Meroua Chaptre : roaltés I Itroducto : -Epreuve ou expérece : O appelle épreuve ou expérece ue certae acto que l o peut répéter pluseurs fos ar

Plus en détail

Annexe 2 Note méthodologique sur le calcul des évolutions de bases, taux et produits de la fiscalité directe locale

Annexe 2 Note méthodologique sur le calcul des évolutions de bases, taux et produits de la fiscalité directe locale Mstère de l téreur, de l outre-mer ublcato : «le gude statstque de et des collectvtés terrtorales la fscalté drecte locale 2007» Aexe 2 Note méthodologque sur le calcul des évolutos de bases, taux et produts

Plus en détail

NOMBRES COMPLEXES - EXERCICES CORRIGES Exercice n 1.

NOMBRES COMPLEXES - EXERCICES CORRIGES Exercice n 1. NOMBRES COMPLEXES - EXERCICES CORRIGES Exercce. O doe = + et = + Ecrre sous forme algébrque les complexes suvats : = ; = ; = ; = ; 5 = Exercce. Calculer, et E dédure la valeur de 006 et de 009, pus les

Plus en détail

Chapitre III. Gaz parfaits

Chapitre III. Gaz parfaits Chatre III Gaz arfats IIIA : Déftos rorétés IIIAI : Gééraltés : U gaz arfat est u flude déal qu satsfat à l équato d état vr, ou ecore c est u gaz qu obét rgoureusemet aux tros los MARIOE, GAY LUSSAC et

Plus en détail

PHYSIQUE DES SEMICONDUCTEURS

PHYSIQUE DES SEMICONDUCTEURS MIISTERE DE L'ESEIGEMET SUPERIEURE ET DE LA REHERHE SIETIFIQUE UIERSITE DE BEHAR Départemet es Sceces Laboratore e Pysque es spostfs à semcoucteurs (L.P.D.S ttp://www.uv-becar.z/lps/ PHYSIQUE DES SEMIODUTEURS

Plus en détail

Problème I- Acide éthanoïque (ph et conductimétrie) Enoncé

Problème I- Acide éthanoïque (ph et conductimétrie) Enoncé - Acide éthaoïque (ph et coductimétrie) Eocé 1- L acide éthaoïque (H 3 OOH) est u oxydat e solutio aqueuse das le couple H 3 OOH/H 3 H OH (acide éthaoïque/éthaol). Écrire la demi-équatio d oxydoréductio

Plus en détail

Statistique. 3 ème Maths Mai 2010 A. LAATAOUI. I. Introduction :

Statistique. 3 ème Maths Mai 2010 A. LAATAOUI. I. Introduction : Statstque 3 ème Maths Ma 00 A LAATAOUI I Itroducto : La statstque est ue scece ayat pour objet l étude des phéomèes socau surtout ceu doat leu à des varatos ou ceu e pouvat être suffsammet maîtrsés que

Plus en détail

III ESPERANCE MATHEMATIQUE

III ESPERANCE MATHEMATIQUE /9 ésumé de ours e alul des probabltés (JJ bellager III ESPEAE MATHEMATIQUE I.Défto et alul de l espérae mathématque d ue VA La défto la plus géérale de l espérae d u VA : (do à valeurs postves ou ulles

Plus en détail

6. RADIERS 6.1. GÉNÉRALITÉS

6. RADIERS 6.1. GÉNÉRALITÉS 6. RADIERS 6.. GÉNÉRALITÉS U raer est ue alle plae, évetuellemet ervurée, costtuat l'esemble es foatos 'u bâtmet. Il s'éte sur toute la surface e l'ouvrage. Ce moe e foato est utlsé as eux cas : lorsque

Plus en détail

IFT3913 Qualité du logiciel et métriques. Chapitre 7 Collecte et analyse des métriques

IFT3913 Qualité du logiciel et métriques. Chapitre 7 Collecte et analyse des métriques IFT393 Qualté du logcel et métrques Chaptre 7 Collecte et aalyse des métrques Pla du cours Itroducto Qualté du logcel Théore de la mesure Mesure du produt logcel Mesure de la qualté du logcel Études emprques

Plus en détail

Les nombres complexes

Les nombres complexes haptre 6 termale S Les ombres complexes 1 hstorque et créato : N Z ID Q R es esembles ot été costruts au fl de l hstore grâce à u même problème : certaes équatos ot des solutos das u esemble doé mas d

Plus en détail

Module 4 - Leçon 01 - Budget des ventes 1. Introduction - Recherche de la tendance générale

Module 4 - Leçon 01 - Budget des ventes 1. Introduction - Recherche de la tendance générale Cotrôle de gesto Budget des vetes Module 4 - Leço - Budget des vetes Itroducto - Recherche de la tedace géérale - Itroducto Le budget des vetes est le premer budget opératoel à établr. Il est cosdéré comme

Plus en détail

Série d'exercices *** 4 ème Maths Lycée Secondaire Ali Zouaoui LES N. COMPLEXES " Hajeb Laayoun "

Série d'exercices *** 4 ème Maths Lycée Secondaire Ali Zouaoui LES N. COMPLEXES  Hajeb Laayoun Sére d'exercces *** 4 ème Maths Lycée Secodare Al ouaou LES N COMPLEXES " Hajeb Laayou " I / L esemble des ombres complexes : Défto : O appelle esemble des ombres complexes, et o ote C, l esemble des ombres

Plus en détail

Evaluation des méthodes d analyse appliquées aux sciences de la vie et de la santé. Statistique. Variables aléatoires

Evaluation des méthodes d analyse appliquées aux sciences de la vie et de la santé. Statistique. Variables aléatoires UE 4 Evaluato des méthodes d aalyse applquées au sceces de la ve et de la saté Statstque Varables aléatores Frédérc Mauy - 27 septembre et 3 octobre 2013 1 Pla du cours 1. Varable aléatore 1. Défto 2.

Plus en détail

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe

Plus en détail

M : Zribi. 4 ème Maths Chapitre 1. 1) Ensemble des nombres complexes : Activité 1:

M : Zribi. 4 ème Maths Chapitre 1. 1) Ensemble des nombres complexes : Activité 1: LSMarsa Elradh 1) Esemble des ombres complexes : Actvté 1: Résoudre das IN pus das Z l équato 5+x=1 ; résoudre das Z pus das Q l équato 3x=2 ; résoudre das Q pus das IR l équato : x²=2 Résoudre das IR

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

Terminales S Exercices sur les nombres complexes Page 1 sur 6

Terminales S Exercices sur les nombres complexes Page 1 sur 6 Termales S Exercces sur les ombres complexes Page sur 6 Exercce : ) Calculer, et 5 6 7 ) E dédure, et ) Détermer les eters pour lesquels est a) u réel, b) est u magare pur, c) égal à Exercce : Ecrre sous

Plus en détail

Nombres complexes Sessions antérieures

Nombres complexes Sessions antérieures ème aée Maths Nombres complexes Sessos atéreures Aée scolare 9 - A LAATAOUI Exercce N (SP) Das le pla complexe P rapporté à u repère orthoormé ( Ouv ; ; ) o cosdère les pots A et B d affxes respectves

Plus en détail

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet.

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet. ère S Cotrôle du mard 7 javer 05 ( heures) D C N Le barème est doé sur 0 O répodra drectemet sur la cope foure avec le sujet U certa ombre de questos écesste ue recherche préalable au broullo O e rédgera

Plus en détail

Partie 1. Corrigé de CCIP 2000 par Pierre Veuillez

Partie 1. Corrigé de CCIP 2000 par Pierre Veuillez Corrgé de CCIP 2000 par Perre Veullez Das tout le problème, désge u eter aturel o ul. O cosdère ue ure U coteat boules umérotées de à. O tre ue boule au hasard das U. O ote k le uméro de cette boule. S

Plus en détail

Chapitre III : Les caractéristiques de dispersion

Chapitre III : Les caractéristiques de dispersion Chaptre III : Les caractérstques de dsperso Les caractérstques de tedace cetrale e sot pas toujours suffsates pour caractérser ue sére statstque, car séres peuvet avor Mo= Me = x alors qu elles sot dstrbuées

Plus en détail

Devoir de contrôle n 1. 4 ème Maths 1 Radès. Répondre par Vrai au Faux aux questions propositions suivantes. Aucune justification n est demandée.

Devoir de contrôle n 1. 4 ème Maths 1 Radès. Répondre par Vrai au Faux aux questions propositions suivantes. Aucune justification n est demandée. Lycée Ib Khaldou Devor de cotrôle ème Maths Radès ( heure) Mr ABIDI Fard Mathématques Mercred 9 Novembre 0 Exercce : ( pots) Répodre par Vra au Faux aux questos propostos suvates Aucue justfcato est demadée

Plus en détail

Cours (Terminale) Probabilités (révisions 1 ère )

Cours (Terminale) Probabilités (révisions 1 ère ) Cours (Termale) Probabltés (révsos ère ) Quelques rappels et complémets sur les esembles Uo de deux esembles O appelle «uo de deux esembles E et F» l esemble oté E F dot les élémets sot costtués des élémets

Plus en détail

6GEI300 - Électronique I. Examen Partiel #1

6GEI300 - Électronique I. Examen Partiel #1 6GEI3 Électroque I Autome 27 Modalté: Aucue documetato est permse. Vous avez drot à ue calculatrce o programmable. La durée de l exame est de 3h Cet exame compte pour 2% de la ote fale. Questo 1. Questos

Plus en détail

Analyse de régression

Analyse de régression Itroducto à la régresso Aalyse de régresso La régresso est utlsée pour estmer ue focto f( ) décrvat ue relato etre ue varable explquée cotue,, et ue ou pluseurs varables explcatves,. = f(,, 3,, )+ε Remarque

Plus en détail

BTS BLANC Mai ; on pose A. en fonction de an. puis écrire an

BTS BLANC Mai ; on pose A. en fonction de an. puis écrire an BTS BLANC Ma 0 Epreuve : Mathématques Géérales et Applquées Flère : DA / ARLE Durée: heures NB : Chaque parte dot être tratée sur des copes dfféretes I- MATHEMATIQUES GENERALES Exercce a b Sot le Sot la

Plus en détail

.Il existe dans C un nombre non réel, noté i, vérifiant i 1

.Il existe dans C un nombre non réel, noté i, vérifiant i 1 Esemble C des ombres complexes 4 ème mth HHmmoud Feth )Forme lgébrque d u ombre complexe : Il exste u esemble oté C, de ombres ppelés ombre complexe, tel que : C cotet IR ; C est mu d ue ddto et d ue multplcto

Plus en détail

Limites de fonctions (1) Approche intuitive ; limites des fonctions de référence. 1 ère S. II. La fonction carrée. 1 ) Tableau de variation

Limites de fonctions (1) Approche intuitive ; limites des fonctions de référence. 1 ère S. II. La fonction carrée. 1 ) Tableau de variation ère S Lmtes de foctos () Approche tutve ; tes des foctos de référece II. La focto carrée ) Tableau de varato Das ce chaptre, o lasse provsoremet de côté les dérvées. I. Itroducto ) Rappel Déà vu : oto

Plus en détail

Chapitre 2 Le système physico-chimique et sa composition

Chapitre 2 Le système physico-chimique et sa composition Chaptre 2 Le système physco-chmque et sa composton 1-Les objectfs du chaptre Ce que je dos connaître Les notons de consttuants physco-chmques, corps purs et mélanges Les grandeurs de composton du système

Plus en détail

Partie I : Gestion de portefeuilles actions Chapitre 3 Gestion de Portefeuille Moyenne-Variance

Partie I : Gestion de portefeuilles actions Chapitre 3 Gestion de Portefeuille Moyenne-Variance Parte I : Gesto de portefeulles actos Chaptre 3 Gesto de Portefeulle Moyee-arace Gesto de Portefeulle D. Msae edemet d ue acto Cette parte est cosacrée à u apport mportat de la théore facère modere qu

Plus en détail

MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON

MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON BAC BLANC MATIERE : MATHEMATIQUES OBLIGATOIRE CLASSE de : Termale S SALLE : Grade Permaece PROFESSEUR : Mle GUIHENEUF ATE : Vedred javer 6 HEURE ébut : 8 h HEURE f : h MATERIEL UTILISE : CALCULATRICE AUTORISEE

Plus en détail

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20.

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20. BTS CG 996 Eercce : (0 pots) Ue agece mmoblère evsage de commercalser u programme de costructo d'appartemets Deu projets lu sot soums: Projet P : Le coût de producto de appartemets ( eter et 0 )est doé

Plus en détail

EPREUVE DE MATHEMATIQUES

EPREUVE DE MATHEMATIQUES Sesso févrer 009 BREVET DE TECHNICIEN SUPERIEUR «COMPTABILITE ET GESTION DES ORGANISATIONS» EPREUVE DE MATHEMATIQUES Durée : heures Coeffcet : Matérel et documets autorsés : L usage des strumets de calcul

Plus en détail

Polynésie Juin 2010 Série S Exercice. Le plan complexe est rapporté à un repère orthonormal direct ( O; uv, )

Polynésie Juin 2010 Série S Exercice. Le plan complexe est rapporté à un repère orthonormal direct ( O; uv, ) Polyése Ju 00 Sére S xercce Le pla complexe est rapporté à u repère orthoormal drect ( O; uv, ) Prérequs Parte A Resttuto orgasée de coassaces Sot u ombre complexe tel que = a+ b où a et b sot deux ombres

Plus en détail

Mots de longueur donnée à base de P lettres, et fonction génératrice

Mots de longueur donnée à base de P lettres, et fonction génératrice Mots de logueur doée à base de lettres, et foctio géératrice Cosidéros les mots de logueur à base de lettres, avec etier positif. ) Combie existe-t-il de tels mots? La première lettre du mot est l ue des

Plus en détail

arlesrcomplexesraurbacr2014r==corriges=z

arlesrcomplexesraurbacr2014r==corriges=z arlesrcomplexesraurbacr0r==corriges= Nouvelle-Calédoe ovembre 0 5 pots Proposto : Pour tout eter aturel : ( + ) = () VRAI! ( ) doc d où ( ) ( ) ( ) ( ) Sot (E) l équato ( )( + 8) = 0 où désge u ombre complexe

Plus en détail

ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES

ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES ANALYSE DES DONNÉES TEST DU KHI-DEUX ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES Perre-Lous Gozalez Mesure de la laso etre deux varables qualtatves Kh deux Equête : Êtes-vous «pas du tout d accord»

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * * SESSION 003 EPREUVE SPECIFIQUE FILIERE MP MAHEMAIQUES 1 Durée : 4 heures Les calculatrces sot terdtes * * * NB : Le caddat attachera la plus grade mportace à la clarté, à la précso et à la cocso de la

Plus en détail

La statistique et les statistiques

La statistique et les statistiques Psy004 Secto : La statstque et les statstques Pla du cours: 0.0: Beveue 0.: Les catégores du savor 0.: Survol de la psychologe 0.3: Le pla de cours 0.4: Les assstats.0: La physque: scece exacte?.: Scece

Plus en détail

Méthode du simplexe: préliminaires. 2. Programmation linéaire. Solution de base. Méthode du simplexe: préliminaires. b. Méthode du simplexe

Méthode du simplexe: préliminaires. 2. Programmation linéaire. Solution de base. Méthode du simplexe: préliminaires. b. Méthode du simplexe Méthode du smplee: prélmares Modèles de recherche opératoelle (RO). Programmato léare b. Méthode du smplee Das le cas où l y a ue fté de solutos, la méthode d élmato de Gauss-Jorda permet d detfer tros

Plus en détail

Une urne contient 5 boules rouges, 5 boules blanches et 6 boules bleues.

Une urne contient 5 boules rouges, 5 boules blanches et 6 boules bleues. Lycée Paul Gaugu CPGE-EC Aée 04/05 Exercces «basques» Fche N : Exercces sur les varables aléatores réelles dscrètes Exercce. : O cosdère deux dés dscerables be équlbrés. O ote X la varable aléatore égale

Plus en détail

Historique de la fibre optique Les fontaines lumineuses de l antiquité

Historique de la fibre optique Les fontaines lumineuses de l antiquité stoque de la fbe optque Les fotaes lumeuses de l atquté Pcpe de la popagato de la lumèe? Pcpe du gudage plaae (1 Dmeso) Se place e codto de éfleo totale A 1 A 1 Gae g Gae g M < c Cœu c M > c Cœu c Fute

Plus en détail

sont distincts 2 à 2.

sont distincts 2 à 2. Lycée Thers CORRIGÉ TP PYTHON - 09 L algorthme des k-meas pour partager u uage de pots e u ombre doé de classes peu dspersées 1 - La méthode de Forgy [Qu. 1] 1) Cette double somme comporte termes pusque

Plus en détail

Grandeurs de réaction et de formation

Grandeurs de réaction et de formation PSI Brzeux Ch. hermochme 1 : grandeurs de réacton et de formaton 1 C H A P I R E 1 r a p p e l s e t c o m p l é m e n t s ) Grandeurs de réacton et de formaton 1. RAPPELS 1.1. Phases et consttuants Donnons

Plus en détail

Divisibilité et congruences. Corrigés d exercices

Divisibilité et congruences. Corrigés d exercices Dvsblté et cogrueces Corrgés d exercces Les exercces du lvre corrgés das ce docuet sot les suvats : Page 445 : N 1, 5 Page 459 : N 45 Page 449 : N 10 Page 460 : N 51, 5, 55, 57 Page 451 : N 16 Page 461

Plus en détail

LEÇON N 6 : Loi de Poisson, loi normale.

LEÇON N 6 : Loi de Poisson, loi normale. LEÇON N 6 :. Pré-requs : Probabltés : défto, calculs et probabltés codtoelles ; Lo bomale cf. leço o 5) ; Noto de varables aléatores dscrètes et cotues cf. leços o 4 et 7), et proprétés assocées : espérace,

Plus en détail

5. Variables aléatoires simultanées

5. Variables aléatoires simultanées 5. Varables aléatores smultaées 5.1 Coule de varables aléatores Défto 1 Pour tout dce das 1, sot X ue varable aléatore. O dt que X X 1 X est ue varable aléatore de dmeso. Nous ous téresseros rcalemet aux

Plus en détail

[ ] IV.- Espérance mathématique de l estimateur  : Nous avons ( ) ε. alors l espérance mathématique sera : soit

[ ] IV.- Espérance mathématique de l estimateur  : Nous avons ( ) ε. alors l espérance mathématique sera : soit Itroducto à l écoométre S6-EF sc. éco. & gesto Prof. Mohamed El Meroua IV.- Espérace mathématque de l estmateur  : A ˆ A + X X X Nous avos ( ε alors l espérace mathématque sera : E ( E( A + E[ ( X X X

Plus en détail

Séries de Fourier 12-1

Séries de Fourier 12-1 Séres de Fourer 1-1 Sommare 1. Applcato de classe C 1 par morceaux 1 1.1. Applcato de classe C 1 par morceaux 1 1.. Applcato -pérodque C 1 par mcx. 1 1.3. pérato sur les applcatos C 1 par mcx 1. Sére de

Plus en détail

Formation d un ester à partir d un acide et d un alcool

Formation d un ester à partir d un acide et d un alcool CHAPITRE 10 RÉACTINS D ESTÉRIFICATIN ET D HYDRLYSE 1 Formatio d u ester à partir d u acide et d u alcool 1. Nomeclature Acide : R C H Alcool : R H Groupe caractéristique ester : C Formule géérale d u ester

Plus en détail

Chapitre III : Loi de déplacement d équilibre

Chapitre III : Loi de déplacement d équilibre Chme Applcto du secod prcpe de l thermodymque à l étude de l récto chmque Chptre III : Lo de déplcemet d équlbre l (Clquer sur le ttre pour ccéder u prgrphe) I- ********************** Evoluto spotée d

Plus en détail

On applique le théorème de Pythagore au triangle AIE est rectangle en I AI 2 IE 2 AE 2 IE IE 1 2

On applique le théorème de Pythagore au triangle AIE est rectangle en I AI 2 IE 2 AE 2 IE IE 1 2 Exercce Lba 6 4 pots O cosdère u solde ADECBF costtué de deux pyramdes detques ayat pour base commue le carré ABCD de cetre I. Ue représetato e perspectve de ce solde est doée e aexe (à redre avec la cope).

Plus en détail

CHAPITRE I : LES SERIES STATISTIQUES A DEUX DIMENSIONS : DISTRIBUTIONS MARGINALES ET CONDITIONNELLES

CHAPITRE I : LES SERIES STATISTIQUES A DEUX DIMENSIONS : DISTRIBUTIONS MARGINALES ET CONDITIONNELLES CHAPITRE I : LES SERIES STATISTIQUES A DEU DIMESIOS : DISTRIBUTIOS MARGIALES ET CODITIOELLES CHAPITRE I : LES SERIES STATISTIQUES A DEU DIMESIOS : DISTRIBUTIOS MARGIALES ET CODITIOELLES Il est très courat

Plus en détail

ESPACES VECTORIELS NORMÉS DE DIMENSION FINIE NORMES USUELLES, ÉQUIVALENCE DES NORMES

ESPACES VECTORIELS NORMÉS DE DIMENSION FINIE NORMES USUELLES, ÉQUIVALENCE DES NORMES ESPACES VECTORIELS NORMÉS DE DIMENSION FINIE NORMES USUELLES, ÉQUIVALENCE DES NORMES SOMMAIRE. Normes sur u espace vectorel E 2.. Défto d'ue orme. Cter l'égalté tragulare reversée. 2.2. Normes usuelles

Plus en détail

I. Introduction. Les constantes totales de stabilité des complexes respectifs sont: Marina Iliescu, C. Podina et Cristina Mandravel

I. Introduction. Les constantes totales de stabilité des complexes respectifs sont: Marina Iliescu, C. Podina et Cristina Mandravel L ÉTUDE DE L ÉTAT IONIQUE RÉEL DE CERTAINS IONS ÉTALLIQUES DANS DES SOLUTIONS AQUEUSES TRÈS DILUÉES. I. DETERINATION DES CONSTANTES TOTALES DE STABILITE DANS LE CAS OU LES IONS ETALLIQUES FORENT UN SEUL

Plus en détail

Chapitre 4 : RÉGRESSION

Chapitre 4 : RÉGRESSION Chaptre 4 : RÉGRESSION 4. Régresso léare smple 4.. Équato de la régresso 4.. Estmato par les modres carrés 4..3 Coeffcet de détermato 4..4 Iférece sur les coeffcets 4..5 Prévso et aalyse des résdus Régresso

Plus en détail

ENTHALPIE LIBRE ET POTENTIEL CHIMIQUE

ENTHALPIE LIBRE ET POTENTIEL CHIMIQUE ETHALPIE LIBRE ET POTETIEL CHIMIQUE I-Ethale lbre d u système fermé 1 Coséquece du deuxème rce Sot u système S fermé à la temérature T et à la resso.; ces valeurs sot a ror dfféretes de celles qu caractérset

Plus en détail

Exercice n 1 1) Par associativité de l intersection des événements, et à l aide de la formule des probabilités conditionnelles,

Exercice n 1 1) Par associativité de l intersection des événements, et à l aide de la formule des probabilités conditionnelles, CONCOURS EMIA Sceces CONCOURS 0 EPREUVE DE MATHEMATIQUES Corrgé o offcel rédgé par Jea-Gullaume CUAZ, esegat au Lycée Mltare de Sat-Cyr, jgcuaz@hotmalcom Eercce ) Par assocatvté de l tersecto des évéemets,

Plus en détail

Thermodynamique Applications aux systèmes physicochimiques

Thermodynamique Applications aux systèmes physicochimiques Thermodyamque Applcatos aux systèmes physcochmques Jea-Noël Foussard Edmod Jule Stéphae Mathé Hubert Debellefotae Thermodyamque Applcatos aux systèmes physcochmques Illustrato de couverture : Sakkmesterke

Plus en détail

Serie statistique double

Serie statistique double Sere statstque double Dstrbutos margales Actvté U relevé statstque des talles (e cm) et des pods Y (e kg) d u échatllo de 00 élèves a perms de costrure le tableau suvat : Y [0, 5[ [5, 50[ [50, 55[ [55,

Plus en détail

IR homogène de degré α ( α IR ). (0.5 pt.)

IR homogène de degré α ( α IR ). (0.5 pt.) Javer 05 ( heures et 0 mutes) a) Sot IN 0 \ {} Défr : sous-esemble boré de IR sous-esemble covee de IR b) Soet les sous-esembles suvats de IR : A [-4,0] [0,] B {(,y) IR : + y 9} Représeter graphquemet,

Plus en détail

I. Moyenne, variance et écart-type d une série statistique

I. Moyenne, variance et écart-type d une série statistique I Moyee, varace et écart-type d ue sére statstque Sére statstque dscrète : Eemple d ue sére statstque dscrète : Preos le cas d ue classe de élèves qu réalset u devor oté sur 5 La sére statstque dscrète

Plus en détail

= exportations du pays i en produit k

= exportations du pays i en produit k CHELE, Comptes harmosés sur les échages et l écoome modale LES INDICATEURS Les dcateurs reteus ot été choss e se fodat sur l'expérece acquse das les travaux du CEPII, et après avor cofroté les méthodes

Plus en détail

( ), dans les conditions standards, va

( ), dans les conditions standards, va THERMOCHIMIE R. Duperray Lycée F.BUISSON PTSI U T I L I S A T I O N D E S T A B L E S D E S G R A N D E U R S T H E R M O D Y N A M I Q U E S S T A N D A R D Dans le chaptre précédent, nous avons vu l

Plus en détail

Chapitre I : L eau solvant

Chapitre I : L eau solvant Chme Plan (Clquer sur le ttre pour accéder au paragraphe) ********************** I- L EAU SOLVANT...2 I-1 Pouvor d hydrataton... 2 a- Forces de Van der Walls... 2 b- Forces répulsves... 3 c- Interactons

Plus en détail

Gilles Leborgne 31 mai Rappel de dérivation 1. i=1 x i e i et y = n

Gilles Leborgne 31 mai Rappel de dérivation 1. i=1 x i e i et y = n 1 Notes de cours de l'isima, premère aée http://wwwsmafr/ leborge Méthode des modres carrés : melleure approxmato léare Glles Leborge 31 ma 2005 Table des matères 1 Rappel de dérvato 1 2 Cas 1-D 2 21 Les

Plus en détail

1-Généralités sur les polymères. Julien PINAUD IUT Nîmes - SGM

1-Généralités sur les polymères. Julien PINAUD IUT Nîmes - SGM 1-Gééraltés sur les polymères Jule PINAUD IUT Nîmes - SGM De la molécule au matérau TP chme orgaque (CH) Mérales Pétrole Naphta Charbo, Gaz aturel 90% Matères premères Végétales Bos (cellulose), Coto (cellulose),

Plus en détail

AJUSTEMENT ANALYTIQUE RÉGRESSION - CORRÉLATION

AJUSTEMENT ANALYTIQUE RÉGRESSION - CORRÉLATION AJUSTEMENT ANALYTIQUE RÉGRESSION - CORRÉLATION. INTRODUCTION Il est fréquet de s'terroger sur la relato qu peut exster etre deux gradeurs e partculer das les problèmes de prévso et d estmato. Tros types

Plus en détail

TS Les nombres complexes (1)

TS Les nombres complexes (1) TS Les omres complexes () Chptre d lgère I Itroducto ) ref hstorque Nomres mpossles omres mgres (Descrtes) omres complexes ) Esemles de omres x 7 0 x 7 0 x 0 L équto x ps de soluto ds ( x ou x ) x chque

Plus en détail

Améliorer la productivité

Améliorer la productivité Maurce Pllet Amélorer la productvté Déploemet dustrel du toléracemet ertel, 00 SBN : 978---54754- Commet calculer ue tolérace ertelle 75 Nous avos doc u toléracemet par tervalle sur les exgeces foctoelles

Plus en détail

Cours d Electrostatique-Electrocinétique

Cours d Electrostatique-Electrocinétique Uversté Joseph Fourer DEUG SMa Cours d Electrostatque-Electrocétque Joatha Ferrera Aée uverstare - Pla du cours I- Le champ électrostatque. Notos géérales a. Phéomèes électrostatques b. Structure de la

Plus en détail

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001 Exercice 1 : ( 12 poits ) Les parties A et B peuvet être traitées idépedammet l ue de l autre. O se propose d étudier l évolutio e foctio du temps des températures d u bai et d u solide plogé das ce bai.

Plus en détail

VARIANCE. I-Variance. 1) Facteurs d équilibre a) étude d un exemple. b) facteurs d équilibre = 0.

VARIANCE. I-Variance. 1) Facteurs d équilibre a) étude d un exemple. b) facteurs d équilibre = 0. VARANCE -Varace ) acteurs d équlbre a) étude d u exemle S l o cosdère u cors ur e équlbre dhasé, ar exemle lqude-vaeur, o sat que so état est caractérsé ar des aramètres tesfs qu sot la temérature et la

Plus en détail

Calculs financiers. Auteur : Philippe GILLET

Calculs financiers. Auteur : Philippe GILLET Clculs fcers Auteur : Phlppe GILLET Le tux d térêt Pour l empruteur qu e dspose ps des fods écessres, l représete le prx à pyer pour ue cosommto mmédte. Pour le prêteur, l représete le prx ecssé pour l

Plus en détail

Pondichéry Avril 2014 Série S Exercice.

Pondichéry Avril 2014 Série S Exercice. Podchéry Avrl 04 Sére S Exercce Le pla complexe est mu d u repère orthoormé ( O; uv, ) Pour tout eter aturel, o ote A le pot d affxe z déf par : O déft la sute ( ) z z 0 = et + = + z 4 4 r par r = z pour

Plus en détail

Probabilités. est la i ième valeur possible. L ensemble des issues auxquelles on associe la même valeur x

Probabilités. est la i ième valeur possible. L ensemble des issues auxquelles on associe la même valeur x Probabltés A) Varable aléatore et lo de probablté Varable aléatore Défto : O cosdère l'esemble E des ssues d'ue expérece aléatore Défr ue varable aléatore X sur cet esemble, c est assocer u ombre à chaque

Plus en détail

SUIVI CINETIQUE PAR ANALYSE CHIMIQUE (CORRECTION)

SUIVI CINETIQUE PAR ANALYSE CHIMIQUE (CORRECTION) Chme Termnale S Chaptre Travaux Pratques n a Correcton SUIVI CINETIQUE PAR ANALYSE CHIMIQUE (CORRECTION) 1 PRINCIPE On dose une espèce chmque (réact ou produt du système chmque) à ntervalle de temps réguler

Plus en détail

2013 LES DÉLAIS DE PAIEMENT. STATISTIQUES DE 2000 À 2012 EN NOMENCLATURE NAF rev. 2

2013 LES DÉLAIS DE PAIEMENT. STATISTIQUES DE 2000 À 2012 EN NOMENCLATURE NAF rev. 2 203 LES DÉLAIS DE PAIEMENT STATISTIQUES DE 2000 À 202 EN NOMENCLATURE NAF rev. 2 Javer 204 Itroducto Des séres statstques chroologques des délas de paemet et du solde du crédt teretreprses sot dspobles

Plus en détail

REPUBLIUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTAIRE DES ETUDES SUPERIEURS ET DES RECHERCHES SCIENTIFIQUES

REPUBLIUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTAIRE DES ETUDES SUPERIEURS ET DES RECHERCHES SCIENTIFIQUES REPUBLIUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTAIRE DES ETUDES SUPERIEURS ET DES RECHERCHES SCIENTIFIQUES UNIVERSITE ABOU BAKR BELKAID TLEMCEN FACULTE DE TECHNOLOGIE DEPARTEMENT DE GENIE ELECTRIQUE

Plus en détail

ε : force électromotrice induite instantanée ou en abrégé f.é.m induite instantanée

ε : force électromotrice induite instantanée ou en abrégé f.é.m induite instantanée Lo de l ducto électromagétque (Lo de faraday) Pla, résumé 1 1. Lo de Faraday = Flux du champ magétque : Φ = = cos ou Φ = : force électromotrce dute stataée ou e abrégé f.é.m dute stataée dφ : force électromotrce

Plus en détail

Bac blanc de mathématiques

Bac blanc de mathématiques Termale st2s le mercred 09/03/2016 Durée : 2 heures Bac blac de mathématques Exercce 1 : 6 pots Le tableau c-dessous doe le ombre d aboemets au servce de téléphoe moble e Frace etre f 2001 et f 2009, exprmé

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail