CONSERVATOIRE NATIONAL DES ARTS ET METIERS

Dimension: px
Commencer à balayer dès la page:

Download "CONSERVATOIRE NATIONAL DES ARTS ET METIERS"

Transcription

1 ONSEVAOIE NAIONAL DES AS E MEIES ELEONIQUE ANALOGIQUE PH / ELE 4 / DU GEII ere année Dder LE UYE / Perre POVEN Janer

2 ABLE DES MAIEES APPELS D ELEOINEIQUE...5. Introducton Matéraux en électrcté ourant électrque, hamp électrque et dfférence de potentel Los fondamentales Lo des malles Lo des nœuds Générateurs déaux Générateur de tenson déal Générateur de courant déal... 8 LES DIPOLES PASSIFS ELEMENAIES...9. Introducton aractérstque d un dpole Les dpôles passfs élémentares..... ésstance..... Bobne d nducton..... ondensateur....4 Los générales des dpôles passfs....5 Assocaton de dpôles de même nature....6 égme snusoïdal....7 Dagrammes de Fresnel et los des dpôles en régme snusoïdal Notaton complexe et mpédance complexe... 7 PUISSANE E ENEGIE.... Défntons.... as partculers Energe consommée dans une résstance Energe dans une bobne Energe dans un condensateur Pussance acte, réacte, apparente et complexe dans un dpole quelconque Force électromotrce et force contre électromotrce Générateur et force électromotrce écepteur et force contre électromotrce... 4 MEHODES D ANALYSE DES ESEAUX Introducton Méthode des courants des malles héorème de Mllman héorème de superposton héorème de héenn et de Norton Grandeurs caractérstques d un dpôle héorème de héenn héorème de Norton elaton entre les deux théorèmes héorème de Kennely FAEU DE QUALIE E IUI ESONNAN...4

3 5. Oscllatons lbres dans un crcut L Facteur de qualté d un crcut Défnton Facteur de qualté d un élément réactf réel Généralsaton du facteur de qualté Le crcut résonnant sére LES QUADIPOLES Défntons Descrpton matrcelle du quadrpôle Matrces mpédances Matrces admttances Matrces hybrdes Matrce de transfert ou matrce chaîne Schémas équalents du quadrpôle eprésentaton matrcelle mpédance eprésentaton matrcelle admttance eprésentaton matrcelle hybrde Assocaton de quadrpôles Assocaton sére Assocaton parallèle Assocaton en cascade Grandeurs caractérstques d un quadrpôle Adaptaton d mpédance FILAGE, DIAGAMMES DE BODE Introducton au fltrage Défntons Echelle logarthmque et dagramme de Bode Fonctons de transfert de base Intégrateur Dérateur Intégrateur réel ou fltre passe bas du premer ordre Dérateur réel Fltre passe-haut du premer ordre fltre passe bas du second ordre fltre passe haut du second ordre Fonctons de transfert quelconques L AMPLIFIAEU OPEAIONNEL IDEAL Généraltés Introducton aractérstques de l amplfcateur opératonnel déal aractérstques de l amplfcateur opératonnel réel AOP utlsé aec contre-réacton ou en boucle fermée Montages amplfcateurs Amplfcateur nerseur Amplfcateur non nerseur Sueur de tenson ou adaptateur d mpédance Montages opératonnels Addtonneur nerseur Soustracteur (ou dfférentateur) Addtonneur non nerseur Intégrateur Dérateur Amplfcateur logarthmque Montages conertsseurs onertsseur ourant-enson Impact de la bande passante de l AOP... 95

4 9 SUUES LASSIQUES POU EALISE DES FILES AIFS Introducton ellule de auch ellule de auch pour fltre passe-bas du second ordre Structure de Sallen et Key ou structure à source de tenson commandée Structure de Sallen et Key pour fltre passe-bas du second ordre ransformaton passe-bas -> passe-haut Structure de auch pour fltre passe-haut du second ordre Structure de Sallen et Key pour fltre passe-haut du second ordre... EALISAION DE FILES.... Le gabart.... Dfférents types de fltres.... Etude du fltre passe-bas de Butterworth Introducton Détermnaton de l ordre N du fltre pour qu l satsfasse à un gabart Détermnaton de la foncton de transfert du fltre Détermnaton des pôles du fltre de Butterworth Etude du fltre passe-bas de chebyche Introducton Présentaton du fltre de chebyche alcul du taux d ondulaton dans la bande passante Détermnaton de l ordre N du fltre pour qu l satsfasse à un gabart Détermnaton de la foncton de transfert du fltre... MONAGES AOP EN EGIME NON LINEAIE...4. ontre-réacton poste sur un AOP : fonctonnement en boucle fermée omparateur de tenson smple Montages de base Lmtaton de la tenson de sorte de l AOP omparateur à hystéréss ou rgger de Schmtt Justfcaton d un tel comparateur omparateur à hystéréss ou trgger de Schmtt Varante de trgger Oscllateur à relaxaton ou multbrateur astable Introducton Analyse théorque Varante d'oscllateur à relaxaton: générateur de sgnaux trangulares... 4

5 APPELS D ELEOINEIQUE. Introducton L électrocnétque étude la crculaton des courants électrques dans les crcuts électrques composés d un ensemble d éléments appelés composants comme les générateurs (ples, ), les composants passfs (résstance, bobne d nducton, condensateur) et les composants actfs (transstor, amplfcateur opératonnel, ). es éléments sont relés entre eux par des fls conducteurs.. Matéraux en électrcté Les électrons se déplacent dans les soldes plus ou mons faclement selon le matérau. La charge d un électron est égale à,6. -9 oulomb. On dstngue types de matéraux : Les conducteurs : matéraux dans lesquels un champ très fable sufft à fournr une énerge permettant le déplacement des électrons lbres (porteurs de charges arrachés à chaque atome). On a un à deux électrons lbres en moyenne par atome. La concentraton en électrons dépend du matérau ; par exemple pour le cure, on a 8 électrons par m. Les solants : pas d électron lbre. La qualté de l solant dépend de la pureté du matérau Les sem-conducteurs : la concentraton en électrons dépend du matérau et de la température. Les électrons sont dsposés dans des bandes permses séparées par des bandes dtes nterdtes. Une certane quantté d énerge permet de fare passer des électrons d une bande permse plene (bande de alence) ers la bande de (bande de conducton) générant ans des trous électrquement équalents à des charges postes dans la bande de alence. Les sem-conducteurs sont utlsés dans la plupart des crcuts actfs.. ourant électrque, hamp électrque et dfférence de potentel Au XVIIIe sècle, le phénomène électrque est étudé, expérmenté, ensegné ; l enthousasme les cours et les salons. Mas l faut attendre 799 et l'nenton de la ple par Volta pour pouor dsposer d'une source de courant. L'Italen Alessandro Volta découre en 799 que le contact de deux métaux dfférents produt un courant électrque. Volta " emple " alternatement des dsques de znc, d'argent et de carton mbbé de soluton salée dans laquelle des ons postfs ou négatfs se déplacent. La ple, qu l présente en 8 à Napoléon à l'académe des Scences, oure une nouelle ère car elle permet d'obtenr un courant contnu et donc permanent. Fgure : prototype de la ple de Volta En 89, André-Mare Ampère ntrodut le premer la noton de courant électrque et la dstngue fermement de celle de la tenson électrque. Il donne une forme mathématque à cette nouelle scence ce qu lu permet d'en calculer les effets. Ampère réalse l'expérence suante : une bobne de conducteur est almentée par une ple. Il 5

6 émet l'hypothèse que, lorsqu'elle est almentée, la bobne est traersée par une grandeur qu'l appelle courant électrque, que cette grandeur possède un sens, qu'l chost arbtrarement du pole de la ple ers le pole - et une ntensté dont l montrera l'expresson mathématque à l'ade d'autres expérences. Fgure : eprésentaton par Ampère de ses courants élémentares. Le débt de charge ou courant électrque est donné par la relaton : dq I I s exprme en ampère. dt Les los du courant électrque ont été étudée par Ampère ( ) au début du 9 ème sècle. Par conenton le sens du courant est le sens contrare du déplacement des électrons. emarque : à l'époque d'ampère, l'électron état nconnu (l sera découert en 897 par J.J. homson), l ne saat pas que le sens de parcours du courant qu'l a chos est nerse à celu de déplacement des électrons qu génèrent ce courant électrque. On gardera néanmons par la sute le sens défn par Ampère. Le sens arbtrare de crculaton du courant électrque a du pole du générateur ers le pole -. Le déplacement d ensemble des électrons n est possble que s ls sont soums à une force électrostatque. ette force est due à l exstence d un champ électrque (F qe) créé par une dfférence entre le nombre d électrons présents sur les bornes et du générateur. Là où l y a plus d électrons, autrement dt le pont où la charge négate est la plus grande, c est la borne -. La dfférence de potentel entre deux ponts A et B d un crcut VAB VA VB peut-être ue comme un moyen smple de quantfer cette dfférence de nombres d électrons, et l ntensté comme une façon commode de quantfer le nombre d électrons se déplaçant dans un conducteur. On a la relaton : V AB V A V B B A Edr Les dfférences de potentel s exprme en olt et le champ électrque E s exprme en olt par mètre..4 Los fondamentales Un réseau ou crcut électrque est un ensemble de conducteurs relant entre eux des éléments appelés composants : résstance, condensateur, bobne de self-nducton, dode, transstor, Dans un réseau électrque, on dstngue : - le nœud : pont de raccordement entre au mons deux conducteurs - la branche : porton du réseau comprs entre deux nœuds - la malle : parte du réseau qu se referme sur elle-même.4. Lo des malles Sot le réseau suant : 6

7 V A -V B V F -V A M A B V A V B V V B -V E V F V E V D F E D noeuds : A-B--D-E-F branches : AB-B-D- DE-BE-EF-FA malles : ABEFA ABDEFA BDEB V E -V F Sot une charge q se déplaçant le long d une malle ; chaque nœud de la malle se troue à un potentel ben défn par rapport à un nœud d orgne ou de référence commune M dont le potentel est appelée masse. q se déplace le long de la malle ABEFA et subt des aratons d énerge potentelle le long du parcours. On a : q( VA VB VB VE VE VF VF VA) q() car la charge q est reenue au pont ntal. B V V D A V On chost un sens arbtrare de parcours sur la malle : par exemple le sens des agulles d une montre. Les dfférences de potentel sont des grandeurs algébrques et ont des orentatons arbtrares. Par conenton, les dfférences de potentel des flèches parcourues dans le même sens que le parcours seront comptées postement. V 6 V 4 V A V B F E On a c : V 5 Défnton : La somme des dfférences de potentel le long d une malle est nulle. ette lo est baptsée lo des malles ou premère lo de Krschhoff. Mathématquement on a :.4. Lo des nœuds Le mouement des charges, créant le courant est soums aux los de la physque : conseraton de l énerge, de la quantté de mouement et de la charge (de la matère). 5 4 N On chost un sens arbtrare pour chaque courant. Par conenton, les courants se drgeant dans le même sens que les flèches seront comptées postement. Sot le nœud N un pont de raccordement de pluseurs conducteurs traersés par des courants. En un nœud, l ne peut y aor accumulaton de charges. On 7 a donc c : 4 5

8 Défnton : La somme des courants entrant est égale à la somme des courants sortant. ette lo est baptsée lo des nœuds ou seconde lo de Krschhoff. Mathématquement on a :.5 Générateurs déaux.5. Générateur de tenson déal Un générateur de tenson déal délre une dfférence de potentel ndépendante du courant qu l délre. On représente ce générateur par les symboles suants : E E ancenne représentaton nouelle représentaton e générateur de tenson n exste pas et en pratque, la dfférence de potentel en sorte d un générateur de tenson décrot en foncton du courant de sorte..5. Générateur de courant déal Un générateur de courant déal délre un courant ndépendamment de la dfférence de potentel entre ses bornes. On représente ce générateur par les symboles suants : I I ancenne représentaton nouelle représentaton 8

9 LES DIPOLES PASSIFS ELEMENAIES. Introducton Les composants utlsés en électronque présentent des bornes électrques ou pôles permettant leur connexon dans un réseau. On dstngue : - les dpôles ( pôles) comme les résstances, les condensateurs, les bobnes, les ples, les dodes, - les quadrpôles (4 pôles) comme par exemple les transformateurs, les fltres.. aractérstque d un dpole Sot un dpole traersé par un courant électrque I et dont la dfférence de potentel entre ses bornes est U. La caractérstque de ce dpole est la courbe If(U). Suant l allure de cette courbe, on peut dstnguer dfférentes famlles de dpole. Dpole lnéare : la caractérstque If(U) est une drote d équaton IaUb. Par exemple, les résstances et les générateurs de tenson et de courant déaux sont des dpoles lnéares. S la caractérstque If(U) n est pas une drote le dpole est non lnéare Dpole passf : un dpôle est passf s son ntensté de court-crcut est nulle et s la dfférence de potentel à ses bornes est nulle en crcut ouert. Dt autrement, pour un dpole passf, on a I s U.Les tros crcuts passfs prncpaux sont la résstance, la bobne d nducton et la capacté. Dans les autres cas, on dt que le dpole est actf. Exemple : I () Le dpole est lnéare et passf (l s agt d une résstance) Le dpole est non lnéare et passf (dode) Le dpole est lnéare et actf (générateur de tenson non parfat) Le dpole 4 est lnéare et actf (générateur de tenson parfat) () () U 9

10 . Les dpôles passfs élémentares.. ésstance Une résstance est un dpôle consttué par un matérau conducteur et caractérsé par sa résstance exprmée en ohm ( Ω ) La résstance s obtent comme sut : l ρ s Où ρ est la résstté en Ω m, l est la longueur et s est la secton du conducteur. 8 Pratquement ρ are entre et 6 8 Ωm ( cure,5. Ω m ) Il exste également des résstances dont la résstance are en foncton d un paramètre comme la température (thermstance)... Bobne d nducton La bobne d nducton est un dpôle consttué d un conducteur métallque enroulé autour d un support cylndrque. Lorsqu un courant traerse celle-c, elle produt un champ magnétque dans l espace enronnant Le coeffcent d nducton ou nductance qu s exprme en henry (H) est le suant : s L μn l N est le nombre de spres. s est la secton du conducteur métallque en m et l est la longueur du support cylndrque. μ en H/m est la perméablté : μ μμ 7 μ 4π est la perméablté dans le de et μ est la perméablté relate mleu/de. Une bobne pure n exste pas. En pratque, elle est toujours en sére aec une pette résstance... ondensateur Un condensateur est formé de deux conducteurs dont l un entoure complètement l autre (condensateur cylndrque) ou de deux conducteurs plans séparées par un solant (condensateur plan). On démontre qu l exste un coeffcent postf ne dépendant que de la géométre du condensateur tel que la charge électrque totale Q d un condensateur sot donnée par : Q V en oulomb où V est la dfférence de potentel entre les armatures du condensateur. La capacté s exprme en farad (F). Pour un condensateur plan, on a : ertans auteurs utlsent la termnologe résstor pour ben dstnguer le nom du dpôle. Dans ce document, nous utlserons le mot résstance pour désgner le dpôle et sa aleur. On rappelle que la charge élémentare d un électron est égale à,6. 9 oulomb

11 S ε e S est la surface de l armature du condensateur et e est la dstance entre les deux armatures. ε est la permttté en F/m : ε ε ε ε 8,84. est la permttté du de et ε est la permttté relate mleu/de. omme farad représente une très grande capacté, on utlse généralement les sous-multples comme le mcrofarad ( μf 6 F), le nanofarad ( nf 9 F) et le pcofarad( pf F)..4 Los générales des dpôles passfs Il exste deux chox pour l orentaton du courant et de la dfférence de potentel DIPOLE onenton récepteur DIPOLE onenton générateur Nous allons mantenant rappeler les los générales des types de dpôles passfs élémentares : résstance, bobne et condensateur : L d L dt dt d G dt L dt en ohms (Ω) L en henry en farad remarques :

12 Dans une bobne, le courant ne peut pas subr une araton brutale : mplquerat une dfférence de potentel. De la même façon, la dfférence de potentel aux bornes d un condensateur ne peut pas arer brutalement d dt nstantanément : mplquerat un courant. En contnu, la bobne est un court-crcut et le condensateur est un crcut ouert. d dt.5 Assocaton de dpôles de même nature en sére : L L L d d L L L dt dt L L L d dt dt dt dt Généralsaton : Généralsaton : Généralsaton : L L en parallèle : L L L

13 Généralsaton : dt dt L L L L L L dt d d dt dt Généralsaton : d dt Généralsaton : L L.6 égme snusoïdal Après aor rappelé les los générales, nous allons nous ntéresser au régme snusoïdal qu est le régme de fonctonnement le plus souent utlsé en électronque. Sot un courant arant en foncton du temps selon la lo snusoïdale suante : t () I sn( t ϕ) I est l ampltude maxmum du sgnal en ampère. (t) I I snϕ t I t ϕ I Sot Φ () t t ϕ la phase du courant foncton lnéare en foncton du temps en radan. ϕ est la phase à l orgne : ϕ Φ () En dérant Φ par rapport au temps on obtent la pulsaton : dφ en radan/seconde dt La fréquence f est le nombre de pérodes par seconde. f s obtent en dsant la pulsaton par π dφ f en seconde - ou Hertz π dt π

14 On a la relaton suante entre la fréquence f et la pérode : f Pour éter des calculs fastdeux lors de l étude des assocatons de dpoles en sére et en parallèle on utlse deux méthodes pratques: - le dagramme de Fresnel - la notaton complexe.7 Dagrammes de Fresnel et los des dpôles en régme snusoïdal D une manère générale, un dagramme de Fresnel permet de représenter une foncton snusoïdale x ( t) X sn( t ϕ) par un ecteur x OM. M t ϕ orgne des phases Le ecteur x OM tourne autour du pont d orgne à la tesse angulare. Sa longueur est égale à X et l angle entre l axe orgne des phases et x est égal à t ϕ. En pratque, comme tous les ecteurs consdérés tournent autour de aec la même tesse angulare, on smplfe la représentaton en consdérant les ecteurs à l nstant t. On notera le ecteur x [ X ϕ] Les dagrammes de Fresnel permettent de représenter graphquement et par des ecteurs ϕ ] et [ V ϕ ] dans une base orthonormée. I [ t I t eprenons l expresson du courant ( ) sn( θ ). Supposons pour smplfer les notatons que la phase à l orgne θ. On a donc ( t) I sn t Nous allons applquer les los générales aux dpôles résstance, bobne et condensateur. as de la résstance : I sn t V sn t aec V I Les deux ecteurs et sont en phase V I I as de la bobne : 4

15 d L dt d L dt ( I sn t) π LI cos t V sn( t ) aec V LI Pour la bobne, le ecteur est en aance de π sur le ecteur. V LI I L I I (t) (t) t as du condensateur : dt I tdt sn I cos t V sn( t π ) aec V I Pour le condensateur, le ecteur est en retard de π sur le ecteur. I I V I I (t) (t) t 5

16 Pour les untés,, L et sont homogènes à des ohms (Ω). Lorsque, L, la bobne se comporte comme un court-crcut. et, le condensateur se comporte comme un crcut ouert. Lorsque, L, la bobne se comporte comme un crcut ouert et, le condensateur se comporte comme un court crcut. Nous allons mantenant nous nteresser à l assocaton de dpoles de nature dfférentes. as de l assocaton d une résstance et d une capacté en sére : I I sn t sn t I I π dt cos t sn( t ) V sn( t ϕ) ϕ I I I w le ecteur est la somme des ecteurs et ϕ est l angle entre les ecteurs et (c ϕ est négatf) On a : V I I I tanϕ ϕ arctan kπ arctan V sn( t ϕ) I sn tarctan as de l assocaton d une résstance et d une bobne en sére : 6

17 L L I I sn t sn t d π L L L I cos t L I sn( t ) dt V sn( t ) L I L ϕ L I ϕ le ecteur est la somme des ecteurs L I et ϕ est l angle entre les ecteurs et (c ϕ est postf) On a : V I L I I L tan ϕ L L ϕ arctan V sn( t ϕ) L I L sn t arctan.8 Notaton complexe et mpédance complexe Dans le cas du régme snusoïdal, on utlse les nombres complexes pour smplfer les calculs des dpôles de nature dfférente. Une grandeur snusoïdale (courant ou dfférence de potentel) est caractérsé par deux nombres : l ampltude et la phase nstantanée Φ( t) t θ. Il est donc naturel de représenter une grandeur snusodale par un nombre complexe lorsque le crcut est lnéare et que les opératons à effectuer sont auss lnéares. Défnton : un crcut est lnéare s : soums à un courant ( t) I cos t, la dfférence de potentel est ( t) V cos( t ϕ) soums à un courant ( t) I sn t, la dfférence de potentel est ( t) V sn( t ϕ) alors soums à la combnason lnéare λ t) μ ( ), la dfférence de potentel est de la forme λ ( t) μ ( t) ( t 7

18 λ μ λ μ Posons λ et μ j. La dfférence de potentel assocée à la combnason lnéare t) ( t) j ( t) I (cos t j sn t) I exp( j ) est la suante : ( t ( ) t () () t j() t V cos( t ϕ) jsn( t ϕ) Vexp( j t jϕ) Dans le reste de ce document, on se lmtera à l étude des crcuts lnéares aec des opérateurs lnéares (addton, multplcaton par constante, dératon, ntégraton). S le courant est de la forme ( t) I cos t ( ( t)) parte réelle de (t), la dfférence de potentel ( t) V (cos t ϕ) ( ( t)) parte réelle de (t). De même la dfférence de potentel ( t ) assocé au courant ( ) sn ( ( t I t I t)) est t) V (sn t ϕ) I( ( )) ( t On défnt l mpédance complexe d un dpôle comme sut : aec I exp( j ) et V exp( j t j ) t exp( jarg( )) V exp( jt jϕ ) I exp( jt) V exp( jϕ ) I Le module de l mpédance complexe est égal à : V I et l argument de l mpédance complexe est égal à : On a donc : V exp( jϕ) I as de la résstance : Nous aons u que On a : arg( ) ϕ ϕ 8

19 I exp( j ) t L mpédance complexe de la résstance est donc : On retroue les résultats obtenus en utlsant le dagramme de Fresnel. as de la bobne : d L dt d calculons : dt d dt d d I cos( t) j sn( t) dt dt I [ sn( t) j cos( )] t I j cos( t) sn( t) j ji cos( t) j sn( t) [ ] j dérer reent donc à multpler par j On a : d L dt jl jl I exp( j ) t L mpédance complexe de la bobne est donc : jl ette expresson peut auss s écrre π π π π L exp j comme exp j cos j sn j as du condensateur : dt calculons dt : dt I t) dt cos( j I sn( t) dt I I sn( t) j cos( t) I j cos( t) sn( t) j I cos( t) j sn( t) j j [ ] ntégrer reent donc à dser par j 9

20 On a : dt I j j exp( j ) t L mpédance complexe du condensateur est donc : j π ette expresson peut auss s écrre exp j comme π π π exp j cos j sn j j omme dans le paragraphe précédent sur le dagramme de Fresnel, nous allons mantenant étuder l assocaton de dpoles de nature dfférentes en utlsant les mpédances complexes. as de l assocaton d une résstance et d une capacté en sére : snusodal > I exp( j ) > t > j. j On retroue le module et l argument de exp( jϕ) : ϕ arctan et tanϕ A partr de ce calcul l est possble d exprmer u (t) Par exemple, s t) I sn t ( u ( t) I sn( t ϕ) alors nous aurons : as de l assocaton d une résstance et d une bobne en sére : L L

21 snusodal > I exp( j ) > > L L jl t [ jl ] L. On retroue le module et l argument de exp( jϕ) : ϕ L et arctan L L tan ϕ S ( t) I cos( t), on a la relaton ( t) ( ) [ jl] I exp( j ) t exp( jϕ) I exp( jt) I exp( jt jϕ) ( t) ( ) I cos( t ϕ) En résumé : S ( t) I cos( t) () S ( t) I sn( t) I() et ( t) ( ) et ( t) I( ) On retroue aec les mpédances complexes les même los que celles étables pour l assocaton de résstances de même nature : On a ans u que l utlsaton de l mpédance complexe permet de remplacer les équatons dfférentelles par des équatons algébrques ce qu smplfe grandement l étude de l assocaton de crcuts de nature dfférente en régme snusodal. On retroue aec les admttances complexes les même los que celles étables pour l assocaton de condensateurs de même nature :

22 Y Y Y Y Y Y Y Y Y Y Y Y Dseur de tenson Dseur de courant

23 PUISSANE E ENEGIE. Défntons S on applque une dfférence de potentel A B entre deux ponts A et B d un dpole, les charges se déplaçant de B ers A subssent une araton d énerge potentelle Pour une charge élémentare dq se déplaçant de B ers A, le traal ou l énerge potentelle dw s exprme comme sut : dw dq pendant le temps dt Le déplacement de la charge élémentare dq sous l effet du champ électrque ndut par la dfférence de potentel dq entre les ponts A et B en un temps dt ndut un courant. dt D ou l énerge potentelle : dw dt Le traal fourn (cas d un générateur) ou reçu (cas d un récepteur) par l élément du crcut entre A et B entre les nstants t et t est : W Défnton : la pussance nstantanée (t) rapport au temps. p t t dw p dt dt W en Joules fourne ou reçue par le dpole entre A et B est la dérée de W par p peut donc auss être défne comme sut : p La pussance nstantanée p est le produt de la dfférence de potentel (t) par le courant (t) S > p, le dpôle est récepteur ; s < p le dpôle est générateur. Défnton : la aleur moyenne d une foncton quelconque (t) t xmoy x( t) dt t t t S x(t) est pérodque de pérode, alors on a : xmoy x( t) dt S x(t) est snusodale, alors x MOY. x sur l nteralle de temps t t est Par conenton, on utlsera des lettres mnuscules pour les arables et des lettres majuscules pour les constantes

24 La pussance moyenne P est calculée sur un nteralle de temps ; ] P t t t dw t t t pdt t t t t t t dt [ t t comme sut : S et sont snusodaux de pérode, le calcul de la pussance moyenne P se fat sur l nteralle de temps P dt P en watts Défnton : la aleur effcace d une foncton pérodque x (t) centrée (de aleur moyenne nulle) de pérode est : xeff x ( t) dt S la foncton (t) x est snusodale, on a : x t) X sn t ( ( cos t) X xeff X sn tdt X dt D où x EFF X. as partculers.. Energe consommée dans une résstance as V et I contnus : V I La pussance moyenne est égale à la pussance nstantanée P : t V P VIdt VI I t t t L énerge dsspée thermquement sur l nteralle de temps t t est : t V W VIdt VI( t t) ( t t) P( t t) t as et snusodaux : I sn t et V sn t I sn t p I sn t I cos t L énerge dsspée W pendant une pérode est : 4

25 W W cos t pdt I dt I I V V I et P En régme snusoïdal, pusque I V I EFF et V EFF, on a la relaton entre P, V EFF, I EFF P V I EFF EFF.. Energe dans une bobne as et snusodaux : d π I sn( t) et L L I cos( t) L I sn t dt L I sn( t)cos( ) p t L I sn( t) car sn α snα cosα W W t t L I L I pdt sn( tdt ) t t t LI [ cos( t) ] ( cos( ) cos( )) t t t 4 alculons l énerge stockée pus resttuée par la bobne pendant une pérode Entre et, l are soutendue par p (t) est poste ; la bobne stocke de l énerge. Elle se comporte en 4 récepteur. alculons l énerge stockée pendant cette phase. On a : LI π LI W stockéee cos() cos

26 Entre et, l are soutendue par p (t) est négate ; la bobne resttue de l énerge. Elle se comporte en 4 générateur. alculons l énerge resttuée pendant cette phase. On a : W resttuée LI π π LI cos.. cos Pendant la durée, l énerge dépensée par la bobne est nulle. On dt que le dpôle est purement réactf. L énerge stockée (sous forme magnétque) pendant 4 est resttuée ntégralement pendant le quart de pérode suant. I stockée resttuée (t) p (t) I u(t) /4 / t.. Energe dans un condensateur as et snusodaux : I sn( t) et I I π dt cos( t) sn t w w I p sn( t)cos( t) I sn t car sn α snα cosα W W t t I pdt sn( tdt ) I 4 t t t I I [ cos( t) ] ( cos( ) cos( )) ( cos( ) cos( )) t t t t t 4 4 alculons l énerge resttuée pus stockée par le condensateur pendant une pérode 6

27 Entre et, l are soutendue par p (t) est négate ; le condensateur resttue de l énerge. Il se comporte en 4 générateur. alculons l énerge resttuée pendant cette phase. On a : W resttuée I π I cos.. cos() 4 4 Entre et, l are soutendue par p (t) est poste ; le condensateur stocke de l énerge. Il se comporte en 4 récepteur. alculons l énerge stockée pendant cette phase. On a : W stockée I π π I cos.. cos Pendant la durée, l énerge dépensée par le condensateur est nulle. omme la bobne, le condensateur est un dpôle purement réactf. L énerge resttuée pendant 4 est stockée (sous forme électrque) ntégralement pendant le quart de pérode suant. resttuée stockée I (t) p (t) u(t) /4 / t En résumé pour un sgnal (t) snusodal : phase Bobne L condensateur à 4 à 4 La bobne stocke LI La bobne resttue (magnétque) LI Le condensateur resttue Le condensateur stocke I I (électrque) 7

28 Pusque I On a auss l énerge stockée par le condensateur est égale à V O V as de l assocaton d une bobne et d un condensateur : L assocaton d une bobne et d un condensateur parfat est telle que pendant chaque phase, l énerge stockée dans la bobne est égale à l énerge resttuée par le condensateur et ce ersa. et échange mplque la relaton : LI I sot L pulsaton de résonance L échange d énerge se fat donc au rythme de la pulsaton de résonance. Nous reendrons sur les crcuts résonnants dans un prochan chaptre.. Pussance acte, réacte, apparente et complexe dans un dpole quelconque I cos t et V cos( t ) ϕ La pussance acte est la pussance moyenne. On a : P dt V I t t dt cos( )cos( ϕ) VI (cos( t) cos( )) dt ϕ ϕ omme cos( ϕt) dt et cos( ϕ ) dt cosϕdt cosϕ On obtent : V I P cosϕ en Watt (W) cos ϕ est le facteur de pussance du dpole. emarque : on obtent les mêmes résultats en posant On défnt également la pussance réacteq : I sn t V I Q snϕ en VoltAmpère réactf (VA) Il est à noter que la pussance réacte Q est nulle pour une résstance car on a ϕ 8

29 Fnalement, on défnt également la pussance apparente S: S VI eff P Q V I eff en VoltAmpère(VA) VI Q snϕ VI S ϕ VI P cosϕ ableau récaptulatf pour les dpoles élémentares : P eff ésstance Bobne L ondensateur I Q L I eff S I eff L I eff Ieff - V Ieff Veff eff Exprmons la pussance acte P et la pussance réacteq en foncton du courant et de la dfférence de potentel u. Sot I cos t et V cos( t ) ϕ I exp( j ) I exp( j t) t * V exp( j t) exp( j ) V exp( j t)exp( jϕ) ϕ * VI exp( j t)exp( j t)exp( jϕ) VI exp( jϕ) * V I * exp( j t)exp( j t)exp( jϕ) VI exp( jϕ) * * VI j j VI (exp( ϕ) exp( ϕ)) cosϕ Ans, on a donc les relatons suantes : 9

30 P 4 * * ( ) * * VI (exp( jϕ) exp( jϕ)) V I j snϕ En utlsant le même rasonnement, on obtent Q 4 j * * ( ) La pussance réacte proent des éléments réactfs du crcut. Fnalement nous pouons défnr la pussance complexe d un crcut par : V I V I ϕ * ( cosϕ j snϕ) exp( j ) P P jq On peut érfer que le module de P est égal à la pussance apparente S.4 Force électromotrce et force contre électromotrce.4. Générateur et force électromotrce Un générateur conertt une énerge (mécanque, chmque,lumneuse, ) en une énerge électrque. Sot dw p dt dt l énerge fourne par le générateur au crcut dw l énerge dsspée par effet Joule dans le générateur dw dt dw l énerge reçue de l extéreur par le générateur. En applquant la lo de conseraton de l énerge, on a la relaton suante : dw dw dw dw dw dw <> dt dw dt dw dw dt dt dw dw udt Dsons l expresson par dt :

Université d El Oued Cours Circuits Electriques 3 LMD-EM

Université d El Oued Cours Circuits Electriques 3 LMD-EM ère parte : Electrocnétque Chaptre ntroducton L Electrocnétque est la parte de l Electrcté qu étude les courants électrques. - Courant électrque -- Défntons Défnton : un courant électrque est un mouvement

Plus en détail

Montage émetteur commun

Montage émetteur commun tour au menu ontage émetteur commun Polarsaton d un transstor. ôle de la polarsaton La polarsaton a pour rôle de placer le pont de fonctonnement du transstor dans une zone où ses caractérstques sont lnéares.

Plus en détail

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique Spécale PSI - Cours "Electromagnétsme" 1 Inducton électromagnétque Chaptre IV : Inductance propre, nductance mutuelle. Energe électromagnétque Objectfs: Coecents d nductance propre L et mutuelle M Blan

Plus en détail

Exercices d Électrocinétique

Exercices d Électrocinétique ercces d Électrocnétque Intensté et densté de courant -1.1 Vtesse des porteurs de charges : On dssout une masse m = 20g de chlorure de sodum NaCl dans un bac électrolytque de longueur l = 20cm et de secton

Plus en détail

Oscillations électriques libres

Oscillations électriques libres Oscllatons électrues lbres A Oscllatons lbres amortes 1/ Etude expérmentale a Expérence et observatons Après avor chargé le condensateur (poston 1) On bascule l nterrupteur sur la poston, on obtent l oscllogramme

Plus en détail

Electricité II : Régimes sinusoïdaux et transitoires AC and transient circuit analysis Fascicule d'exercices de Travaux Dirigés

Electricité II : Régimes sinusoïdaux et transitoires AC and transient circuit analysis Fascicule d'exercices de Travaux Dirigés Electrcté II : égmes snusoïdaux et transtores and transent crcut analyss Fasccule d'exercces de Travaux Drgés 5 cours / Séances de TD / 5 séances de TP égmes snusoïdaux Nombre de séances de TD prévues

Plus en détail

Courant alternatif. Dr F. Raemy La tension alternative et le courant alternatif ont la représentation mathématique : U t. cos (!

Courant alternatif. Dr F. Raemy La tension alternative et le courant alternatif ont la représentation mathématique : U t. cos (! Courant alternatf Dr F. Raemy La tenson alternatve et le courant alternatf ont la représentaton mathématque : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Une résstance dans un crcut à courant

Plus en détail

Travaux pratiques : GBF et oscilloscope

Travaux pratiques : GBF et oscilloscope Travaux pratques : et osclloscope S. Benlhajlahsen ésumé L objectf de ce TP est d apprendre à utlser, c est-à-dre à régler, deux des apparels les plus couramment utlsés : le et l osclloscope. I. Premère

Plus en détail

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h.

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h. A2 Analyser le système Converson statque de l énerge Date : Nom : Cours 2 h 1 Introducton Un ConVertsseur Statque d énerge (CVS) est un montage utlsant des nterrupteurs à semconducteurs permettant par

Plus en détail

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i Exercces avec corrgé succnct du chaptre 3 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qu apparassent dans ce texte sont ben défns dans la verson écran complète

Plus en détail

Champ magnétique. 1 Notions préliminaires. 1.1 Courant électrique et densité de courant

Champ magnétique. 1 Notions préliminaires. 1.1 Courant électrique et densité de courant 4 Champ magnétque 1 Notons prélmnares 1.1 Courant électrque et densté de courant Un courant électrque est défn par un déplacement de charges électrques élémentares (ex : les électrons de conducton dans

Plus en détail

Valeur absolue et fonction valeur absolue Cours

Valeur absolue et fonction valeur absolue Cours Valeur absolue foncton valeur absolue Cours CHAPITRE 1 : Dstance entre deu réels 1) Eemples prélmnares 2) Défnton 3) Proprétés CHAPITRE 2 : Valeur absolue d un réel 1) Défnton 2) Proprétés CHAPITRE 3 :

Plus en détail

Grandeurs de réaction et de formation

Grandeurs de réaction et de formation PSI Brzeux Ch. hermochme 1 : grandeurs de réacton et de formaton 1 C H A P I R E 1 r a p p e l s e t c o m p l é m e n t s ) Grandeurs de réacton et de formaton 1. RAPPELS 1.1. Phases et consttuants Donnons

Plus en détail

Calculs des convertisseurs en l'electronique de Puissance

Calculs des convertisseurs en l'electronique de Puissance Calculs des conertsseurs en l'electronque de Pussance Projet : PROGRAMMAON ate : 14 arl Auteur : herry EQUEU. EQUEU 1, rue Jules Massenet 37 OURS el 47 5 93 64 herry EQUEU Jun [V37] Fcher : ESGN.OC Calculs

Plus en détail

Cours et exercices de PHYSIQUE :

Cours et exercices de PHYSIQUE : Cours et exercces de PHYSIQUE : Électrcté. Ingéneur CESI Préparaton aux tests de sélecton. Stéphane Vctor. stephanevctor@yahoo.fr - - Programme de physque. Électrcté. Chaptre : Les composants passfs. -

Plus en détail

Remboursement d un emprunt par annuités constantes

Remboursement d un emprunt par annuités constantes Sére STG Journées de formaton Janver 2006 Remboursement d un emprunt par annutés constantes Le prncpe Utlsaton du tableur Un emprunteur s adresse à un prêteur pour obtenr une somme d argent (la dette)

Plus en détail

Utilisation du symbole

Utilisation du symbole HKBL / 7 symbole sgma Utlsaton du symbole Notaton : Pour parler de la somme des termes successfs d une sute, on peut ou ben utlser les pontllés ou ben utlser le symbole «sgma» majuscule noté Par exemple,

Plus en détail

Représentation de l'information

Représentation de l'information 1. L nformaton 1-1 Dualté état et temps Représentaton de l'nformaton La noton d'nformaton correspond à la connassance d'un état donné parm pluseurs possbles à un nstant donné. La Fgure 1 llustre cette

Plus en détail

Cours de CEM. Lois physiques de l électricité et de l électromagnétisme

Cours de CEM. Lois physiques de l électricité et de l électromagnétisme Cours de CEM - Orgne des éléments parastes os physques de l électrcté et de l électromagnétsme es composants passfs possèdent des éléments parastes qu lmtent leurs utlsatons. Ils sont dus aux los physques

Plus en détail

Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 Année 2011 12. TD4. Tribus.

Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 Année 2011 12. TD4. Tribus. Unversté Perre & Mare Cure (Pars 6) Lcence de Mathématques L3 UE LM364 Intégraton 1 Année 2011 12 TD4. Trbus. Échauffements Exercce 1. Sot X un ensemble. Donner des condtons sur X pour que les classes

Plus en détail

Effets CEM sur et des circuits imprimés

Effets CEM sur et des circuits imprimés Effets CEM sur et des crcuts mprmés 2 avrl 2009 André Trabold Tel. 026 411 93 33 1728 Rossens www.emc.montena.com 1 Programme Introducton Immunté: Sgnaux perturbateur et fltres Emsson: Sgnaux perturbateur

Plus en détail

Exercices d algorithmique

Exercices d algorithmique Exercces d algorthmque Les algorthmes proposés ne sont pas classés par ordre de dffculté Nombres Ecrre un algorthme qu renvoe la somme des nombre entre 0 et n passé en paramètre Ecrre un algorthme qu renvoe

Plus en détail

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2 Exo7 Nombres complexes Vdéo parte. Les nombres complexes, défntons et opératons Vdéo parte. Racnes carrées, équaton du second degré Vdéo parte 3. Argument et trgonométre Vdéo parte 4. Nombres complexes

Plus en détail

Chapitre 5.1 Les photons et l effet photoélectrique

Chapitre 5.1 Les photons et l effet photoélectrique Chaptre 5. Les s et l eet photoélectrque L ntensté d une onde électromagnétque n 884, le physcen brtannque John Henry Poyntng a démontré à partr des équatons de Maxwell que l ntensté d un champ électromagnétque

Plus en détail

SIMNUM : Simulation de systèmes auto-gravitants en orbite

SIMNUM : Simulation de systèmes auto-gravitants en orbite SIMNUM : Smulaton de systèmes auto-gravtants en orbte sujet proposé par Ncolas Kelbasewcz : ncolas.kelbasewcz@ensta-parstech.fr 14 janver 2014 1 Établssement du modèle 1.1 Approxmaton de champ lontan La

Plus en détail

Le théorème du viriel

Le théorème du viriel Le théorème du vrel On se propose de démontrer le théorème du vrel de deux manères dfférentes. La premère fat appel à deux "trcks" qu l faut vor. Cette preuve met en avant une quantté, notée S c, qu permet

Plus en détail

Exercices de révision pour examen #1

Exercices de révision pour examen #1 Exercces de révson pour examen #1 Queston 1. Questons théorques. a) Nommez les courants qu exstent quand une dode est en équlbre. Courants de dffuson et de drft. b) Dessnez la structure physque réelle

Plus en détail

Activité Intitulé de l'activité Volume horaire

Activité Intitulé de l'activité Volume horaire Informatons de l'unté d'ensegnement Implantaton Cursus de ECAM Insttut Supéreur Industrel Bacheler en Scences ndustrelles Electronque applquée B2150 Cycle 1 Bloc 2 Quadrmestre 2 Pondératon 4 Nombre de

Plus en détail

Mesure avec une règle

Mesure avec une règle Mesure avec une règle par Matheu ROUAUD Professeur de Scences Physques en prépa, Dplômé en Physque Théorque. Lycée Alan-Fourner 8000 Bourges ecrre@ncerttudes.fr RÉSUMÉ La mesure d'une grandeur par un système

Plus en détail

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix?

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix? Note méthodologque Tratements hebdomadares Questlemonscher.com Quelle méthode de collecte de prx? Les éléments méthodologques ont été défns par le cabnet FaE onsel, socété d études et d analyses statstques

Plus en détail

Installation & Guide de démarrage WL510 Adaptateur sans fil /Antenne

Installation & Guide de démarrage WL510 Adaptateur sans fil /Antenne Installaton & Gude de démarrage WL510 Adaptateur sans fl /Antenne Informaton mportante à propos du WL510 Adresse IP = 192.168.10.20 Nom d utlsateur = wl510 Mot de passe = wl510 QUICK START WL510-01- VR1.1

Plus en détail

Cours de Calcul numérique MATH 031

Cours de Calcul numérique MATH 031 Cours de Calcul numérque MATH 03 G. Bontemp, A. da Slva Soares, M. De Wulf Département d'informatque Boulevard du Tromphe - CP22 http://www.ulb.ac.be/d Valeurs propres en pratque. Localsaton. Méthode de

Plus en détail

MODELISATION ET SIMULATION NUMERIQUE DES SYSTEMES ANALOGIQUES

MODELISATION ET SIMULATION NUMERIQUE DES SYSTEMES ANALOGIQUES MODELISATION ET SIMULATION NUMERIQUE DES SYSTEMES ANALOGIQUES Hervé MOREL Drecteur de Recherche - CNRS Herve.Morel@nsa-lyon.fr AMPERE - INSA de LYON mard 2 octobre 24 Modélsaton et smulaton des systèmes

Plus en détail

Corrélation et régression linéaire

Corrélation et régression linéaire Corrélaton et régresson lnéare 1. Concept de corrélaton. Analyse de régresson lnéare 3. Dfférences entre valeurs prédtes et observées d une varable 1. Concept de corrélaton L objectf est d analyser un

Plus en détail

Généralités sur les fonctions 1ES

Généralités sur les fonctions 1ES Généraltés sur les fonctons ES GENERALITES SUR LES FNCTINS I. RAPPELS a. Vocabulare Défnton Une foncton est un procédé qu permet d assocer à un nombre x appartenant à un ensemble D un nombre y n note :

Plus en détail

MODELISATION DES PROCESSUS LINEAIRES

MODELISATION DES PROCESSUS LINEAIRES MDELISATIN DES PRCESSUS LINEAIRES Dans un premer temps, nous ne consdérons que des processus partculers, supposés notamment statonnare. Cec permet de présenter un certan nombre d'outls dans un cadre relatvement

Plus en détail

On dépose une espèce à une certaine concentration, puis on observe comment sa concentration se répartit en fonction de la distance.

On dépose une espèce à une certaine concentration, puis on observe comment sa concentration se répartit en fonction de la distance. Moblté des espèces en soluton I_ Les dfférents modes de transport En soluton, les molécules peuvent se déplacer selon tros modes dfférents : onvecton, la matère est déplacée par contrante mécanque (agtaton)

Plus en détail

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique Ch 4 Séres statstques à une dmenson Défntons et représentaton graphque Termnologe Ensemble étudé = populaton Eléments de cet ensemble = ndvdus ou untés Attrbut consdéré = caractère qu peut être qualtatf

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2015 2016. Statistiques Descriptives

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2015 2016. Statistiques Descriptives UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année unverstare 215 216 L1 Économe Cours de B. Desgraupes Statstques Descrptves Séance 7: Indces synthétques Table des matères 1 Introducton 1 1.1

Plus en détail

Enseignement secondaire. PHYSI Physique Programme

Enseignement secondaire. PHYSI Physique Programme Ensegnement secondare Dvson supéreure PHYSI Physque Programme 3CB_3CC_3CF_3MB_3MC_3MF Langue véhculare : franças Nombre mnmal de devors par trmestre : 1 PHYSI_3CB_3CC_3CF_3MB_3MC_3MF_PROG_10-11 Page 1

Plus en détail

Le Potentiel chimique

Le Potentiel chimique 44 Le Potentel chmque PIERRE DUHEM (1861 1916) 44.1 Grandeurs molares partelles 44.1.1 Varables de Gbbs Système polyphasé Nous étuderons dans la sute un système thermodynamque formé de pluseurs phases

Plus en détail

V FORMATION DES IMAGES DANS L EXEMPLE DU MIROIR PLAN

V FORMATION DES IMAGES DANS L EXEMPLE DU MIROIR PLAN Chaptre V page V-1 V FORMTION DES IMGES DNS L EXEMPLE DU MIROIR PLN Le but de ce chaptre est d ntrodure la noton d mage { travers l exemple du mror plan. Vous vous êtes sûrement déjà regardé(e) dans un

Plus en détail

Les jeunes économistes

Les jeunes économistes Chaptre1 : les ntérêts smples 1. défnton et calcul pratque : Défnton : Dans le cas de l ntérêt smple, le captal reste nvarable pendant toute la durée du prêt. L emprunteur dot verser, à la fn de chaque

Plus en détail

Grandeur physique, chiffres significatifs

Grandeur physique, chiffres significatifs Grandeur physque, chffres sgnfcatfs I) Donner le résultat d une mesure en correspondance avec l nstrument utlsé : S avec un nstrument, ren n est ndqué sur l ncerttude absolue X d une mesure X, on consdère

Plus en détail

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks Plan Geston des stocks Abdellah El Fallah Ensa de Tétouan 2011 Les opératons de gestons des stocks Les coûts assocés à la geston des stocks Le rôle des stocks Modèle de la quantté économque Geston calendare

Plus en détail

Cours Corporate finance

Cours Corporate finance Cours Corporate fnance Eléments de théore du portefeulle Le edaf Franços Longn www.longn.fr lan Notons de rentablté Défnton odélsaton Eléments de théore du portefeulle ortefeulle Dversfcaton Le edaf Le

Plus en détail

CHAPITRE 14 : RAISONNEMENT DES SYSTÈMES DE COMMANDE

CHAPITRE 14 : RAISONNEMENT DES SYSTÈMES DE COMMANDE HAITRE 4 : RAISONNEMENT DES SYSTÈMES DE OMMANDE RAISONNEMENT DES SYSTÈMES DE OMMANDE... 2 INTRODUTION... 22 RAELS... 22 alcul de la valeur ntale de la répone à un échelon... 22 alcul du gan tatque... 22

Plus en détail

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction -

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction - EXAME FIAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSIO 1 - Correcton - Exercce 1 : 1) Consdérons une entreprse E comportant deux établssements : E1 et E2 qu emploent chacun 200 salarés. Au sen de l'établssement

Plus en détail

Calcul de structure en fatigue vibratoire. Fascicule u2.05 : Mécanique de la rupture et de l'endommagement

Calcul de structure en fatigue vibratoire. Fascicule u2.05 : Mécanique de la rupture et de l'endommagement Ttre : Calcul de structure en fatgue vbratore Date : 14/11/2012 Page : 1/9 Calcul de structure en fatgue vbratore 1 But Ce document a pour but de décrre la mse en œuvre d'un calcul de structure en fatgue

Plus en détail

RÉPONSES À UN ÉCHELON. Sortie u(t) réponse. t(s)

RÉPONSES À UN ÉCHELON. Sortie u(t) réponse. t(s) BTS S ÉPONSS À UN ÉHON. éponse à n échelon d n système d premer ordre xemple : almentaton d n condensater de capacté par ne sorce de tenson e(t) à travers résstance a tenson varable e(t) est n échelon

Plus en détail

Physique UE3 PACES. 4 e édition. Salah Belazreg

Physique UE3 PACES. 4 e édition. Salah Belazreg PACES Physque UE3 PACES Physque UE3 Salah Belazreg Professeur agrégé et docteur en physque, l ensegne au lycée Camlle Guérn à Poters. Il a ensegné la bophysque en classes préparatores aux concours de

Plus en détail

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage Fche n 7 : Vérfcaton du débt et de la vtesse par la méthode de traçage 1. PRINCIPE La méthode de traçage permet de calculer le débt d un écoulement ndépendamment des mesurages de hauteur et de vtesse.

Plus en détail

NIVEAUX D ENERGIE DE LA MOLECULE ISOLEE ET INTERACTION MATIERE RAYONNEMENT

NIVEAUX D ENERGIE DE LA MOLECULE ISOLEE ET INTERACTION MATIERE RAYONNEMENT NIVEAUX D ENERGIE DE LA MOLECULE ISOLEE ET INTERACTION MATIERE RAYONNEMENT INTRODUCTION A LA SPECTROSCOPIE MOLECULAIRE La spectroscope peut être défne comme l étude des nteractons entre la lumère et la

Plus en détail

Maquette Tournesol Soleil, Terre et rotations La géométrie et mathématiques du système Maquette pour comprendre PhM Observatoire de Lyon

Maquette Tournesol Soleil, Terre et rotations La géométrie et mathématiques du système Maquette pour comprendre PhM Observatoire de Lyon Maquette ournesol olel, erre et rotatons La géométre et mathématques du sstème Maquette pour comprendre hm Observatore de Lon Les repères classques éclptque (longtudes et lattudes éclptques) et équatoral

Plus en détail

Mémento de théorie de l information

Mémento de théorie de l information Mémento de théore de l nformaton Glles Zémor 6 octobre 204 0 Rappels de probabltés Espaces probablsés. Un espace probablsé (Ω, P ) est un ensemble Ω mun d une mesure de probablté P qu est, lorsque Ω est

Plus en détail

Les domaines d'existence des deux solides sont représentés sur le graphe ci-dessous.

Les domaines d'existence des deux solides sont représentés sur le graphe ci-dessous. Concours Centralesupélec TSI 2011 corrge sous reserves I L'élément soufre et les sources naturelles de soufre I.A.1. Les règles pour obtenr la confguraton électronque d un atome dans son état fondamental

Plus en détail

viamobil eco V14 Sommaire Aperçu 72 Avantages du produit 73 Visuel du produit 74 Descriptif 75 Accessoires 76 Caractéristiques techniques 77

viamobil eco V14 Sommaire Aperçu 72 Avantages du produit 73 Visuel du produit 74 Descriptif 75 Accessoires 76 Caractéristiques techniques 77 Sommare vamobl eco V14 Aperçu 72 Avantages du produt 73 Vsuel du produt 74 Descrptf 75 Accessores 76 Caractérstques technques 77 vamobl eco V14 71 Aperçu V14 Pousser un fauteul faclement. 72 Avantages

Plus en détail

classification non supervisée : pas de classes prédéfinies Applications typiques

classification non supervisée : pas de classes prédéfinies Applications typiques Qu est ce que le clusterng? analyse de clusterng regroupement des obets en clusters un cluster : une collecton d obets smlares au sen d un même cluster dssmlares au obets appartenant à d autres clusters

Plus en détail

- Equilibre simultané IS/LM : Pour déterminer le couple d équilibre général, il convient de résoudre l équation IS = LM.

- Equilibre simultané IS/LM : Pour déterminer le couple d équilibre général, il convient de résoudre l équation IS = LM. Exercce n 1 Cet exercce propose de détermner l équlbre IS/LM sur la base d une économe dépourvue de présence étatque. Pour ce fare l convent, dans un premer temps de détermner la relaton (IS) marquant

Plus en détail

Les nombres premiers ( Spécialité Maths) Terminale S

Les nombres premiers ( Spécialité Maths) Terminale S Les nombres premers ( Spécalté Maths) Termnale S Dernère mse à jour : Mercred 23 Avrl 2008 Vncent OBATON, Ensegnant au lycée Stendhal de Grenoble (Année 2007-2008) Lycée Stendhal, Grenoble ( Document de

Plus en détail

Modélisation et simulation du démarrage d un véhicule à boite de vitesses automatique avec les bond graphs

Modélisation et simulation du démarrage d un véhicule à boite de vitesses automatique avec les bond graphs Modélsaton et smulaton du démarrage d un véhcule à bote de vtesses automatque avec les bond graphs Dragos N. CRUCERU, Andre N. MACIAC, Valeran CROIORESCU, Génevève DAUPHIN ANGUY Laboratore d Automatque,

Plus en détail

Technique d installation / de surveillance

Technique d installation / de surveillance Technque d nstallaton / de survellance VARIMETER RCM Contrôleur dfférentel type A IL 5882, SL 5882, IR 5882 05976 Dagramme de fonctonnement / alarme pré-alerte IL 5882 IR 5882 avec transformateur de courant

Plus en détail

MECANISMES MODELISES

MECANISMES MODELISES MEANISMES MODELISES Les évaluatons de sûreté relatves aux nstallatons de stockage de déchets radoactfs en couche géologque profonde nécesstent la compréhenson et la modélsaton d une part des systèmes hydrogéologques

Plus en détail

Proposition d'une solution au problème d initialisation cas du K-means

Proposition d'une solution au problème d initialisation cas du K-means Proposton d'une soluton au problème d ntalsaton cas du K-means Z.Guelll et L.Zaou, Unversté des scences et de la technologe d Oran MB, Unversté Mohamed Boudaf USTO -BP 505 El Mnaouer -ORAN - Algére g.zouaou@gmal.com,

Plus en détail

Méthodologie quiestlemoinscher de comparaison de prix entre magasins

Méthodologie quiestlemoinscher de comparaison de prix entre magasins Méthodologe questlemonscher de comparason de prx entre magasns Les éléments méthodologques ont été défns par le cabnet FaCE Consel, socété d études et d analyses statstques ndépendante. Le cabnet FaCE

Plus en détail

Chapitre 5. Menu de SUPPORT

Chapitre 5. Menu de SUPPORT 155 Chaptre 5. Menu de SUPPORT Ce que vous apprendrez dans ce chaptre Ce chaptre vous présentera des routnes supplémentares susceptbles de vous ader dans les analyses de données présentées dans le chaptre

Plus en détail

TECHNICOME.COM ANALYSEUR DE LIGNES D ABONNE CABLESHARK P3 LA SOLUTION IDEALE POUR IDENTIFIER ET REPARER LES DEFAUTS DE LA BOUCLE LOCALE

TECHNICOME.COM ANALYSEUR DE LIGNES D ABONNE CABLESHARK P3 LA SOLUTION IDEALE POUR IDENTIFIER ET REPARER LES DEFAUTS DE LA BOUCLE LOCALE ANALYSEUR DE LIGNES D ABONNE CABLESHARK P3 LA SOLUTION IDEALE POUR IDENTIFIER ET REPARER LES DEFAUTS DE LA BOUCLE LOCALE Connectez vos clents Rapdement! Que vous soyez novce ou expérmenté dans le déploement

Plus en détail

Chapitre 6. Economie ouverte :

Chapitre 6. Economie ouverte : 06/2/202 Chaptre 6. Econome ouverte : le modèle Mundell Flemng Elsabeth Cudevlle Le développement des échanges nternatonaux (bens et servces et flux fnancers) a rendu fortement nterdépendantes les conjonctures

Plus en détail

ÉLÉMENTS DE THÉORIE DE L INFORMATION POUR LES COMMUNICATIONS.

ÉLÉMENTS DE THÉORIE DE L INFORMATION POUR LES COMMUNICATIONS. ÉLÉMETS DE THÉORIE DE L IFORMATIO POUR LES COMMUICATIOS. L a théore de l nformaton est une dscplne qu s appue non seulement sur les (télé-) communcatons, mas auss sur l nformatque, la statstque, la physque

Plus en détail

ELECTRICITE. Analyse des signaux et des circuits électriques. Michel Piou

ELECTRICITE. Analyse des signaux et des circuits électriques. Michel Piou LCTICIT nalyse des sgnax et des crcts électrqes Mchel Po Chaptre 2 Los générales de l électrcté en régme contn. Théorèmes de sperposton, Thévenn et Norton. dton 23/05/2005 nméro d'enregstrement de

Plus en détail

ASCENSEUR FLUVIAL FUNICULAIRE DE STREPY-THIEU

ASCENSEUR FLUVIAL FUNICULAIRE DE STREPY-THIEU ASCENSEUR FLUVIAL FUNICULAIRE DE STREPY-THIEU Le canddat est nvté à formuler toute hypothèse cohérente qu lu semblerat nécessare pour pouvor répondre aux questons posées. Page 1 sur 21 1. PRESENTATION

Plus en détail

C Notice technique K-Réa v3 C. NOTICE TECHNIQUE

C Notice technique K-Réa v3 C. NOTICE TECHNIQUE C. NOTICE TECHNIQUE C.1. Introducton et grands prncpes... 5 C.1.1. Objet du calcul et champ d applcaton... 5 C.1.2. Introducton aux méthodes de calcul et vérfcatons proposées... 6 C.1.2.1. Présentaton

Plus en détail

T.P. Le redressement commandé : le pont mixte.

T.P. Le redressement commandé : le pont mixte. I Introdcton : T.P. Le redressement commandé : le pont mxte. Précédemment, nos avons v qe nos povons réalser la converson d'ne tenson alternatve snsoïdale t =U 2sn t en ne tenson contne grâce à l'tlsaton

Plus en détail

CHAPITRE 2 LA SPECTROMETRIE RMN

CHAPITRE 2 LA SPECTROMETRIE RMN .J. Ducauze et D.N. Rutledge groparstech PITRE L SPETRMETRIE RMN «Spectrométre RMN» veut dre qu on s ntéresse aux nformatons qu apportent les spectres, c est-à-dre à un ensemble d observatons effectuées

Plus en détail

THESE. DOCTEUR en ELECTRONIQUE

THESE. DOCTEUR en ELECTRONIQUE N d ordre : 4 THESE Présentée à L UNIVERSITE des SCIENCES et TECHNOLOGIE de LILLE (LILLE ) pour l obtenton du grade de DOCTEUR en ELECTRONIQUE Par Samuel LEMAN (Ingéneur de l école Polytech Llle) le 3

Plus en détail

TP Programmation de protocoles de communication Basé sur un TP de M1- Master IST, Université Paris-Sud

TP Programmation de protocoles de communication Basé sur un TP de M1- Master IST, Université Paris-Sud IUT Bordeaux 1 2008-2009 Département Informatque ASR2-Réseaux TP Programmaton de protocoles de communcaton Basé sur un TP de M1- Master IST, Unversté Pars-Sud Ce TP a pour objectf d'nter à la programmaton

Plus en détail

éléments d'analyse statistique

éléments d'analyse statistique éléments danalse statstque applcaton à lhdrologe deuxème édton D. Ther octobre 989 R 30 73 EAU 4S 89 BUREAU DE RECHERCHES GEOLOGIQUES ET MINIERES SERVICES SOL ET SOUS-SOL Département Eau B.P. 6009-45060

Plus en détail

Assurance maladie et aléa de moralité ex-ante : L incidence de l hétérogénéité de la perte sanitaire

Assurance maladie et aléa de moralité ex-ante : L incidence de l hétérogénéité de la perte sanitaire Assurance malade et aléa de moralté ex-ante : L ncdence de l hétérogénété de la perte santare Davd Alary 1 et Franck Ben 2 Cet artcle examne l ncdence de l hétérogénété de la perte santare sur les contrats

Plus en détail

écrans de sous-toiture

écrans de sous-toiture écrans de sous-toture Les règles de bonne pratque # défnton Un écran souple de sous-toture est une feulle déroulée sur la charpente, sur un solant thermque ou sur un support contnu ventlé, avant la mse

Plus en détail

Partie C : Description du protocole expérimental pour la mesure de la

Partie C : Description du protocole expérimental pour la mesure de la Parte C : Descrpton du protocole expérmental pour la mesure de la réponse en fréquence du cytosquelette testée par magnétocytométre Ce chaptre décrt la méthode expérmentale pour mesurer et analyser les

Plus en détail

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE. MEMOIRE Présentée à

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE. MEMOIRE Présentée à REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE MEMOIRE Présentée à L Unversté de Batna Faculté des Scences Département de Physque

Plus en détail

THESE. présentée pour obtenir LE TITRE DE DOCTEUR DE L INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE. École doctorale : GEET

THESE. présentée pour obtenir LE TITRE DE DOCTEUR DE L INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE. École doctorale : GEET N d ordre : 2288 THESE présentée pour obtenr LE TITRE DE DOCTEUR DE L INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE École doctorale : GEET Spécalté : Géne électrque Par M. SALANNE Jean-Phlppe Ttre de la

Plus en détail

Dans un mélange, tous les constituants ont le même statut thermodynamique.

Dans un mélange, tous les constituants ont le même statut thermodynamique. Mélanges et solutons I_ Défntons et composton. Défntons Dans un mélange, tous les consttuants ont le même statut thermodynamque. Lorsque dans un mélange solde ou lqude, un des consttuants, appelé solvant,

Plus en détail

LES DIMENSIONS DANS LA PERCEPTION DES INTERVALLES MUSICAUX *

LES DIMENSIONS DANS LA PERCEPTION DES INTERVALLES MUSICAUX * LES DIMENSIONS DANS LA PERCEPTION DES INTERVALLES MUSICAUX * "W.J.M. LEVELT et R. PLOMP (Insttute for Percepton R.V.O.-T.N.O., SOESTERBERG, PAYS-BAS) Introducton Il est ntéressant de savor de quelle manère

Plus en détail

Système solaire combiné Estimation des besoins énergétiques

Système solaire combiné Estimation des besoins énergétiques Revue des Energes Renouvelables ICRESD-07 Tlemcen (007) 109 114 Système solare combné Estmaton des besons énergétques R. Kharch 1, B. Benyoucef et M. Belhamel 1 1 Centre de Développement des Energes Renouvelables

Plus en détail

Théorie des Nombres - TD1 Rappels d arithmétique élémentaire

Théorie des Nombres - TD1 Rappels d arithmétique élémentaire Unversté Perre & Mare Cure Master de mathématques 1 Année 2012-2013 Module MM020 Théore des Nombres - TD1 Rappels d arthmétque élémentare Exercce 1 : Trouver tous les enters n N tels que ϕ(n) = 6. Même

Plus en détail

1.0 Probabilité vs statistique...1. 1.1 Expérience aléatoire et espace échantillonnal...1. 1.2 Événement...2

1.0 Probabilité vs statistique...1. 1.1 Expérience aléatoire et espace échantillonnal...1. 1.2 Événement...2 - robabltés - haptre : Introducton à la théore des probabltés.0 robablté vs statstque.... Expérence aléatore et espace échantllonnal.... Événement.... xomes défnton de probablté..... Quelques théorèmes

Plus en détail

Informations de l'unité d'enseignement Implantation. Cursus de. Intitulé. Code. Cycle 1. Bloc 1. Quadrimestre 1-2. Pondération 5. Nombre de crédits 5

Informations de l'unité d'enseignement Implantation. Cursus de. Intitulé. Code. Cycle 1. Bloc 1. Quadrimestre 1-2. Pondération 5. Nombre de crédits 5 Informatons de l'unté d'ensegnement Implantaton ECAM Cursus de Bacheler en Scences ndustrelles Informatque et communcaton B1030 Cycle 1 Bloc 1 Quadrmestre 1-2 Pondératon 5 Nombre de crédts 5 Nombre d heures

Plus en détail

MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA)

MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA) MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA) Unversté d Orléans Econométre des Varables Qualtatves Chaptre 3 Modèles à Varable Dépendante Lmtée Modèles Tobt Smples et Tobt Généralsés Chrstophe Hurln

Plus en détail

Thermodynamique Classique

Thermodynamique Classique hermodynamque Classque Quelques défntons utles hermodynamque Classque http://hebergement.u-psud.fr/rmn/thermo/thermo.html Julen obroff, Magstère de Physque d Orsay, 009 el : 0 69 5 53 36 emal : bobroff@lps.u-psud.fr

Plus en détail

Physique appliquée. 1 re STI. Génie électronique

Physique appliquée. 1 re STI. Génie électronique Physqe applqée 1 re STI Géne électronqe Mare-Clade Dder Lycée les Irs, Lormont Jacqes Lafarge Lycée Gstave ffel, Bordeax Therry Lecorex Lycée Rchele, Rel-Malmason Gérard Montaster Lycée Doran, Pars Sos

Plus en détail

Lycée Vaucanson PTSI 1 et 2 TD INDUCTION N 2

Lycée Vaucanson PTSI 1 et 2 TD INDUCTION N 2 Lycée Vaucanson PTSI et 2 TD Physque TD INDUCTION N 2 EXERCICE : Coeffcent d nductance mutuelle ente deux solénoïdes : On consdèe deux bobnes longues, ou solénoïdes, de même axe Oz et de même longueu d,

Plus en détail

Soutien : Modèle de Potts mars 2015

Soutien : Modèle de Potts mars 2015 Année 04 05 Physque Statstque hors équlbre et transtons de phase Souten : Modèle de Potts mars 05 On onsdère une varante du modèle d Isng, dte de Potts, dans laquelle les N degrés de lberté (qu on appellera

Plus en détail

C - LE CHAMP MAGNÉTIQUE

C - LE CHAMP MAGNÉTIQUE C - LE CHAMP MAGNÉTQUE C - 1 - ORGNE DES CHAMPS MAGNÉTQUES L existence de champs magnétiques est liée aux déplacements de charges électriques. En plus d un champ électrique, une charge électrique en mouement

Plus en détail

Série 7 : circuits en R.S.F.

Série 7 : circuits en R.S.F. Série 7 : circuits en R.S.F. 1 Documents du chapitre Action d un circuit du 1er ordre sur un échelon de tension et sur une entrée sinusoïdale : Déphasage de grandeurs sinusoïdales et représentation de

Plus en détail

ÉLECTRICITÉ 1/5. En rotation : W = M.q. M = F.r. P = W t. eo. Q S W = VAB. Q VA - VB AB. I = Q t W = U. Q. P = U. I I : intensité ( ampère )

ÉLECTRICITÉ 1/5. En rotation : W = M.q. M = F.r. P = W t. eo. Q S W = VAB. Q VA - VB AB. I = Q t W = U. Q. P = U. I I : intensité ( ampère ) ÉLECTRICITÉ / Travail ( W ) en joule En translation : W = F.d Puissance mécanique ( P ) en watt Champ électrique uniforme ( e ) en volt/mètre Travail de la force électrique ( W ) en joule Champ et potentiel

Plus en détail

Chapitre 1 : Images données par une lentille mince convergente

Chapitre 1 : Images données par une lentille mince convergente Chaptre 1 : Images données par une lentlle mnce convergente Termnale S Spécalté Chaptre 1 : Images données par une lentlle mnce convergente bectfs : - Constructon graphque de l mage d un obet plan perpendculare

Plus en détail

TRANSFERT DE CARGAISON CALCULS ET ARRONDIS

TRANSFERT DE CARGAISON CALCULS ET ARRONDIS TRANSFERT DE CARGAISON CALCULS ET ARRONDIS SOMMAIRE 1. Méthode de détermnaton de l énerge transférée lors du transfert d une cargason de. Calcul de l énerge transférée.1 Calcul de l énerge brute transférée.1.1

Plus en détail

La physiologie du cerveau montre que celui-ci est constitué de cellules (les neurones) interconnectées. Quelques étapes de cette découverte :

La physiologie du cerveau montre que celui-ci est constitué de cellules (les neurones) interconnectées. Quelques étapes de cette découverte : Chaptre 3 Apprentssage automatque : les réseaux de neurones Introducton Le Perceptron Les réseaux mult-couches 3.1 Introducton Comment l'homme fat-l pour rasonner, parler, calculer, apprendre,...? Comment

Plus en détail

Gestion et stratégie Utilisateur

Gestion et stratégie Utilisateur Geston et stratége Utlsateur GESTION ET STRATEGIE UTILISATEUR...2 1.) Comment gérer des utlsateurs?...2 1.1) Geston des utlsateurs en groupe de traval...2 1.2) Geston des utlsateurs par domane...2 Rôle

Plus en détail