CONSERVATOIRE NATIONAL DES ARTS ET METIERS

Dimension: px
Commencer à balayer dès la page:

Download "CONSERVATOIRE NATIONAL DES ARTS ET METIERS"

Transcription

1 ONSEVAOIE NAIONAL DES AS E MEIES ELEONIQUE ANALOGIQUE PH / ELE 4 / DU GEII ere année Dder LE UYE / Perre POVEN Janer

2 ABLE DES MAIEES APPELS D ELEOINEIQUE...5. Introducton Matéraux en électrcté ourant électrque, hamp électrque et dfférence de potentel Los fondamentales Lo des malles Lo des nœuds Générateurs déaux Générateur de tenson déal Générateur de courant déal... 8 LES DIPOLES PASSIFS ELEMENAIES...9. Introducton aractérstque d un dpole Les dpôles passfs élémentares..... ésstance..... Bobne d nducton..... ondensateur....4 Los générales des dpôles passfs....5 Assocaton de dpôles de même nature....6 égme snusoïdal....7 Dagrammes de Fresnel et los des dpôles en régme snusoïdal Notaton complexe et mpédance complexe... 7 PUISSANE E ENEGIE.... Défntons.... as partculers Energe consommée dans une résstance Energe dans une bobne Energe dans un condensateur Pussance acte, réacte, apparente et complexe dans un dpole quelconque Force électromotrce et force contre électromotrce Générateur et force électromotrce écepteur et force contre électromotrce... 4 MEHODES D ANALYSE DES ESEAUX Introducton Méthode des courants des malles héorème de Mllman héorème de superposton héorème de héenn et de Norton Grandeurs caractérstques d un dpôle héorème de héenn héorème de Norton elaton entre les deux théorèmes héorème de Kennely FAEU DE QUALIE E IUI ESONNAN...4

3 5. Oscllatons lbres dans un crcut L Facteur de qualté d un crcut Défnton Facteur de qualté d un élément réactf réel Généralsaton du facteur de qualté Le crcut résonnant sére LES QUADIPOLES Défntons Descrpton matrcelle du quadrpôle Matrces mpédances Matrces admttances Matrces hybrdes Matrce de transfert ou matrce chaîne Schémas équalents du quadrpôle eprésentaton matrcelle mpédance eprésentaton matrcelle admttance eprésentaton matrcelle hybrde Assocaton de quadrpôles Assocaton sére Assocaton parallèle Assocaton en cascade Grandeurs caractérstques d un quadrpôle Adaptaton d mpédance FILAGE, DIAGAMMES DE BODE Introducton au fltrage Défntons Echelle logarthmque et dagramme de Bode Fonctons de transfert de base Intégrateur Dérateur Intégrateur réel ou fltre passe bas du premer ordre Dérateur réel Fltre passe-haut du premer ordre fltre passe bas du second ordre fltre passe haut du second ordre Fonctons de transfert quelconques L AMPLIFIAEU OPEAIONNEL IDEAL Généraltés Introducton aractérstques de l amplfcateur opératonnel déal aractérstques de l amplfcateur opératonnel réel AOP utlsé aec contre-réacton ou en boucle fermée Montages amplfcateurs Amplfcateur nerseur Amplfcateur non nerseur Sueur de tenson ou adaptateur d mpédance Montages opératonnels Addtonneur nerseur Soustracteur (ou dfférentateur) Addtonneur non nerseur Intégrateur Dérateur Amplfcateur logarthmque Montages conertsseurs onertsseur ourant-enson Impact de la bande passante de l AOP... 95

4 9 SUUES LASSIQUES POU EALISE DES FILES AIFS Introducton ellule de auch ellule de auch pour fltre passe-bas du second ordre Structure de Sallen et Key ou structure à source de tenson commandée Structure de Sallen et Key pour fltre passe-bas du second ordre ransformaton passe-bas -> passe-haut Structure de auch pour fltre passe-haut du second ordre Structure de Sallen et Key pour fltre passe-haut du second ordre... EALISAION DE FILES.... Le gabart.... Dfférents types de fltres.... Etude du fltre passe-bas de Butterworth Introducton Détermnaton de l ordre N du fltre pour qu l satsfasse à un gabart Détermnaton de la foncton de transfert du fltre Détermnaton des pôles du fltre de Butterworth Etude du fltre passe-bas de chebyche Introducton Présentaton du fltre de chebyche alcul du taux d ondulaton dans la bande passante Détermnaton de l ordre N du fltre pour qu l satsfasse à un gabart Détermnaton de la foncton de transfert du fltre... MONAGES AOP EN EGIME NON LINEAIE...4. ontre-réacton poste sur un AOP : fonctonnement en boucle fermée omparateur de tenson smple Montages de base Lmtaton de la tenson de sorte de l AOP omparateur à hystéréss ou rgger de Schmtt Justfcaton d un tel comparateur omparateur à hystéréss ou trgger de Schmtt Varante de trgger Oscllateur à relaxaton ou multbrateur astable Introducton Analyse théorque Varante d'oscllateur à relaxaton: générateur de sgnaux trangulares... 4

5 APPELS D ELEOINEIQUE. Introducton L électrocnétque étude la crculaton des courants électrques dans les crcuts électrques composés d un ensemble d éléments appelés composants comme les générateurs (ples, ), les composants passfs (résstance, bobne d nducton, condensateur) et les composants actfs (transstor, amplfcateur opératonnel, ). es éléments sont relés entre eux par des fls conducteurs.. Matéraux en électrcté Les électrons se déplacent dans les soldes plus ou mons faclement selon le matérau. La charge d un électron est égale à,6. -9 oulomb. On dstngue types de matéraux : Les conducteurs : matéraux dans lesquels un champ très fable sufft à fournr une énerge permettant le déplacement des électrons lbres (porteurs de charges arrachés à chaque atome). On a un à deux électrons lbres en moyenne par atome. La concentraton en électrons dépend du matérau ; par exemple pour le cure, on a 8 électrons par m. Les solants : pas d électron lbre. La qualté de l solant dépend de la pureté du matérau Les sem-conducteurs : la concentraton en électrons dépend du matérau et de la température. Les électrons sont dsposés dans des bandes permses séparées par des bandes dtes nterdtes. Une certane quantté d énerge permet de fare passer des électrons d une bande permse plene (bande de alence) ers la bande de (bande de conducton) générant ans des trous électrquement équalents à des charges postes dans la bande de alence. Les sem-conducteurs sont utlsés dans la plupart des crcuts actfs.. ourant électrque, hamp électrque et dfférence de potentel Au XVIIIe sècle, le phénomène électrque est étudé, expérmenté, ensegné ; l enthousasme les cours et les salons. Mas l faut attendre 799 et l'nenton de la ple par Volta pour pouor dsposer d'une source de courant. L'Italen Alessandro Volta découre en 799 que le contact de deux métaux dfférents produt un courant électrque. Volta " emple " alternatement des dsques de znc, d'argent et de carton mbbé de soluton salée dans laquelle des ons postfs ou négatfs se déplacent. La ple, qu l présente en 8 à Napoléon à l'académe des Scences, oure une nouelle ère car elle permet d'obtenr un courant contnu et donc permanent. Fgure : prototype de la ple de Volta En 89, André-Mare Ampère ntrodut le premer la noton de courant électrque et la dstngue fermement de celle de la tenson électrque. Il donne une forme mathématque à cette nouelle scence ce qu lu permet d'en calculer les effets. Ampère réalse l'expérence suante : une bobne de conducteur est almentée par une ple. Il 5

6 émet l'hypothèse que, lorsqu'elle est almentée, la bobne est traersée par une grandeur qu'l appelle courant électrque, que cette grandeur possède un sens, qu'l chost arbtrarement du pole de la ple ers le pole - et une ntensté dont l montrera l'expresson mathématque à l'ade d'autres expérences. Fgure : eprésentaton par Ampère de ses courants élémentares. Le débt de charge ou courant électrque est donné par la relaton : dq I I s exprme en ampère. dt Les los du courant électrque ont été étudée par Ampère ( ) au début du 9 ème sècle. Par conenton le sens du courant est le sens contrare du déplacement des électrons. emarque : à l'époque d'ampère, l'électron état nconnu (l sera découert en 897 par J.J. homson), l ne saat pas que le sens de parcours du courant qu'l a chos est nerse à celu de déplacement des électrons qu génèrent ce courant électrque. On gardera néanmons par la sute le sens défn par Ampère. Le sens arbtrare de crculaton du courant électrque a du pole du générateur ers le pole -. Le déplacement d ensemble des électrons n est possble que s ls sont soums à une force électrostatque. ette force est due à l exstence d un champ électrque (F qe) créé par une dfférence entre le nombre d électrons présents sur les bornes et du générateur. Là où l y a plus d électrons, autrement dt le pont où la charge négate est la plus grande, c est la borne -. La dfférence de potentel entre deux ponts A et B d un crcut VAB VA VB peut-être ue comme un moyen smple de quantfer cette dfférence de nombres d électrons, et l ntensté comme une façon commode de quantfer le nombre d électrons se déplaçant dans un conducteur. On a la relaton : V AB V A V B B A Edr Les dfférences de potentel s exprme en olt et le champ électrque E s exprme en olt par mètre..4 Los fondamentales Un réseau ou crcut électrque est un ensemble de conducteurs relant entre eux des éléments appelés composants : résstance, condensateur, bobne de self-nducton, dode, transstor, Dans un réseau électrque, on dstngue : - le nœud : pont de raccordement entre au mons deux conducteurs - la branche : porton du réseau comprs entre deux nœuds - la malle : parte du réseau qu se referme sur elle-même.4. Lo des malles Sot le réseau suant : 6

7 V A -V B V F -V A M A B V A V B V V B -V E V F V E V D F E D noeuds : A-B--D-E-F branches : AB-B-D- DE-BE-EF-FA malles : ABEFA ABDEFA BDEB V E -V F Sot une charge q se déplaçant le long d une malle ; chaque nœud de la malle se troue à un potentel ben défn par rapport à un nœud d orgne ou de référence commune M dont le potentel est appelée masse. q se déplace le long de la malle ABEFA et subt des aratons d énerge potentelle le long du parcours. On a : q( VA VB VB VE VE VF VF VA) q() car la charge q est reenue au pont ntal. B V V D A V On chost un sens arbtrare de parcours sur la malle : par exemple le sens des agulles d une montre. Les dfférences de potentel sont des grandeurs algébrques et ont des orentatons arbtrares. Par conenton, les dfférences de potentel des flèches parcourues dans le même sens que le parcours seront comptées postement. V 6 V 4 V A V B F E On a c : V 5 Défnton : La somme des dfférences de potentel le long d une malle est nulle. ette lo est baptsée lo des malles ou premère lo de Krschhoff. Mathématquement on a :.4. Lo des nœuds Le mouement des charges, créant le courant est soums aux los de la physque : conseraton de l énerge, de la quantté de mouement et de la charge (de la matère). 5 4 N On chost un sens arbtrare pour chaque courant. Par conenton, les courants se drgeant dans le même sens que les flèches seront comptées postement. Sot le nœud N un pont de raccordement de pluseurs conducteurs traersés par des courants. En un nœud, l ne peut y aor accumulaton de charges. On 7 a donc c : 4 5

8 Défnton : La somme des courants entrant est égale à la somme des courants sortant. ette lo est baptsée lo des nœuds ou seconde lo de Krschhoff. Mathématquement on a :.5 Générateurs déaux.5. Générateur de tenson déal Un générateur de tenson déal délre une dfférence de potentel ndépendante du courant qu l délre. On représente ce générateur par les symboles suants : E E ancenne représentaton nouelle représentaton e générateur de tenson n exste pas et en pratque, la dfférence de potentel en sorte d un générateur de tenson décrot en foncton du courant de sorte..5. Générateur de courant déal Un générateur de courant déal délre un courant ndépendamment de la dfférence de potentel entre ses bornes. On représente ce générateur par les symboles suants : I I ancenne représentaton nouelle représentaton 8

9 LES DIPOLES PASSIFS ELEMENAIES. Introducton Les composants utlsés en électronque présentent des bornes électrques ou pôles permettant leur connexon dans un réseau. On dstngue : - les dpôles ( pôles) comme les résstances, les condensateurs, les bobnes, les ples, les dodes, - les quadrpôles (4 pôles) comme par exemple les transformateurs, les fltres.. aractérstque d un dpole Sot un dpole traersé par un courant électrque I et dont la dfférence de potentel entre ses bornes est U. La caractérstque de ce dpole est la courbe If(U). Suant l allure de cette courbe, on peut dstnguer dfférentes famlles de dpole. Dpole lnéare : la caractérstque If(U) est une drote d équaton IaUb. Par exemple, les résstances et les générateurs de tenson et de courant déaux sont des dpoles lnéares. S la caractérstque If(U) n est pas une drote le dpole est non lnéare Dpole passf : un dpôle est passf s son ntensté de court-crcut est nulle et s la dfférence de potentel à ses bornes est nulle en crcut ouert. Dt autrement, pour un dpole passf, on a I s U.Les tros crcuts passfs prncpaux sont la résstance, la bobne d nducton et la capacté. Dans les autres cas, on dt que le dpole est actf. Exemple : I () Le dpole est lnéare et passf (l s agt d une résstance) Le dpole est non lnéare et passf (dode) Le dpole est lnéare et actf (générateur de tenson non parfat) Le dpole 4 est lnéare et actf (générateur de tenson parfat) () () U 9

10 . Les dpôles passfs élémentares.. ésstance Une résstance est un dpôle consttué par un matérau conducteur et caractérsé par sa résstance exprmée en ohm ( Ω ) La résstance s obtent comme sut : l ρ s Où ρ est la résstté en Ω m, l est la longueur et s est la secton du conducteur. 8 Pratquement ρ are entre et 6 8 Ωm ( cure,5. Ω m ) Il exste également des résstances dont la résstance are en foncton d un paramètre comme la température (thermstance)... Bobne d nducton La bobne d nducton est un dpôle consttué d un conducteur métallque enroulé autour d un support cylndrque. Lorsqu un courant traerse celle-c, elle produt un champ magnétque dans l espace enronnant Le coeffcent d nducton ou nductance qu s exprme en henry (H) est le suant : s L μn l N est le nombre de spres. s est la secton du conducteur métallque en m et l est la longueur du support cylndrque. μ en H/m est la perméablté : μ μμ 7 μ 4π est la perméablté dans le de et μ est la perméablté relate mleu/de. Une bobne pure n exste pas. En pratque, elle est toujours en sére aec une pette résstance... ondensateur Un condensateur est formé de deux conducteurs dont l un entoure complètement l autre (condensateur cylndrque) ou de deux conducteurs plans séparées par un solant (condensateur plan). On démontre qu l exste un coeffcent postf ne dépendant que de la géométre du condensateur tel que la charge électrque totale Q d un condensateur sot donnée par : Q V en oulomb où V est la dfférence de potentel entre les armatures du condensateur. La capacté s exprme en farad (F). Pour un condensateur plan, on a : ertans auteurs utlsent la termnologe résstor pour ben dstnguer le nom du dpôle. Dans ce document, nous utlserons le mot résstance pour désgner le dpôle et sa aleur. On rappelle que la charge élémentare d un électron est égale à,6. 9 oulomb

11 S ε e S est la surface de l armature du condensateur et e est la dstance entre les deux armatures. ε est la permttté en F/m : ε ε ε ε 8,84. est la permttté du de et ε est la permttté relate mleu/de. omme farad représente une très grande capacté, on utlse généralement les sous-multples comme le mcrofarad ( μf 6 F), le nanofarad ( nf 9 F) et le pcofarad( pf F)..4 Los générales des dpôles passfs Il exste deux chox pour l orentaton du courant et de la dfférence de potentel DIPOLE onenton récepteur DIPOLE onenton générateur Nous allons mantenant rappeler les los générales des types de dpôles passfs élémentares : résstance, bobne et condensateur : L d L dt dt d G dt L dt en ohms (Ω) L en henry en farad remarques :

12 Dans une bobne, le courant ne peut pas subr une araton brutale : mplquerat une dfférence de potentel. De la même façon, la dfférence de potentel aux bornes d un condensateur ne peut pas arer brutalement d dt nstantanément : mplquerat un courant. En contnu, la bobne est un court-crcut et le condensateur est un crcut ouert. d dt.5 Assocaton de dpôles de même nature en sére : L L L d d L L L dt dt L L L d dt dt dt dt Généralsaton : Généralsaton : Généralsaton : L L en parallèle : L L L

13 Généralsaton : dt dt L L L L L L dt d d dt dt Généralsaton : d dt Généralsaton : L L.6 égme snusoïdal Après aor rappelé les los générales, nous allons nous ntéresser au régme snusoïdal qu est le régme de fonctonnement le plus souent utlsé en électronque. Sot un courant arant en foncton du temps selon la lo snusoïdale suante : t () I sn( t ϕ) I est l ampltude maxmum du sgnal en ampère. (t) I I snϕ t I t ϕ I Sot Φ () t t ϕ la phase du courant foncton lnéare en foncton du temps en radan. ϕ est la phase à l orgne : ϕ Φ () En dérant Φ par rapport au temps on obtent la pulsaton : dφ en radan/seconde dt La fréquence f est le nombre de pérodes par seconde. f s obtent en dsant la pulsaton par π dφ f en seconde - ou Hertz π dt π

14 On a la relaton suante entre la fréquence f et la pérode : f Pour éter des calculs fastdeux lors de l étude des assocatons de dpoles en sére et en parallèle on utlse deux méthodes pratques: - le dagramme de Fresnel - la notaton complexe.7 Dagrammes de Fresnel et los des dpôles en régme snusoïdal D une manère générale, un dagramme de Fresnel permet de représenter une foncton snusoïdale x ( t) X sn( t ϕ) par un ecteur x OM. M t ϕ orgne des phases Le ecteur x OM tourne autour du pont d orgne à la tesse angulare. Sa longueur est égale à X et l angle entre l axe orgne des phases et x est égal à t ϕ. En pratque, comme tous les ecteurs consdérés tournent autour de aec la même tesse angulare, on smplfe la représentaton en consdérant les ecteurs à l nstant t. On notera le ecteur x [ X ϕ] Les dagrammes de Fresnel permettent de représenter graphquement et par des ecteurs ϕ ] et [ V ϕ ] dans une base orthonormée. I [ t I t eprenons l expresson du courant ( ) sn( θ ). Supposons pour smplfer les notatons que la phase à l orgne θ. On a donc ( t) I sn t Nous allons applquer les los générales aux dpôles résstance, bobne et condensateur. as de la résstance : I sn t V sn t aec V I Les deux ecteurs et sont en phase V I I as de la bobne : 4

15 d L dt d L dt ( I sn t) π LI cos t V sn( t ) aec V LI Pour la bobne, le ecteur est en aance de π sur le ecteur. V LI I L I I (t) (t) t as du condensateur : dt I tdt sn I cos t V sn( t π ) aec V I Pour le condensateur, le ecteur est en retard de π sur le ecteur. I I V I I (t) (t) t 5

16 Pour les untés,, L et sont homogènes à des ohms (Ω). Lorsque, L, la bobne se comporte comme un court-crcut. et, le condensateur se comporte comme un crcut ouert. Lorsque, L, la bobne se comporte comme un crcut ouert et, le condensateur se comporte comme un court crcut. Nous allons mantenant nous nteresser à l assocaton de dpoles de nature dfférentes. as de l assocaton d une résstance et d une capacté en sére : I I sn t sn t I I π dt cos t sn( t ) V sn( t ϕ) ϕ I I I w le ecteur est la somme des ecteurs et ϕ est l angle entre les ecteurs et (c ϕ est négatf) On a : V I I I tanϕ ϕ arctan kπ arctan V sn( t ϕ) I sn tarctan as de l assocaton d une résstance et d une bobne en sére : 6

17 L L I I sn t sn t d π L L L I cos t L I sn( t ) dt V sn( t ) L I L ϕ L I ϕ le ecteur est la somme des ecteurs L I et ϕ est l angle entre les ecteurs et (c ϕ est postf) On a : V I L I I L tan ϕ L L ϕ arctan V sn( t ϕ) L I L sn t arctan.8 Notaton complexe et mpédance complexe Dans le cas du régme snusoïdal, on utlse les nombres complexes pour smplfer les calculs des dpôles de nature dfférente. Une grandeur snusoïdale (courant ou dfférence de potentel) est caractérsé par deux nombres : l ampltude et la phase nstantanée Φ( t) t θ. Il est donc naturel de représenter une grandeur snusodale par un nombre complexe lorsque le crcut est lnéare et que les opératons à effectuer sont auss lnéares. Défnton : un crcut est lnéare s : soums à un courant ( t) I cos t, la dfférence de potentel est ( t) V cos( t ϕ) soums à un courant ( t) I sn t, la dfférence de potentel est ( t) V sn( t ϕ) alors soums à la combnason lnéare λ t) μ ( ), la dfférence de potentel est de la forme λ ( t) μ ( t) ( t 7

18 λ μ λ μ Posons λ et μ j. La dfférence de potentel assocée à la combnason lnéare t) ( t) j ( t) I (cos t j sn t) I exp( j ) est la suante : ( t ( ) t () () t j() t V cos( t ϕ) jsn( t ϕ) Vexp( j t jϕ) Dans le reste de ce document, on se lmtera à l étude des crcuts lnéares aec des opérateurs lnéares (addton, multplcaton par constante, dératon, ntégraton). S le courant est de la forme ( t) I cos t ( ( t)) parte réelle de (t), la dfférence de potentel ( t) V (cos t ϕ) ( ( t)) parte réelle de (t). De même la dfférence de potentel ( t ) assocé au courant ( ) sn ( ( t I t I t)) est t) V (sn t ϕ) I( ( )) ( t On défnt l mpédance complexe d un dpôle comme sut : aec I exp( j ) et V exp( j t j ) t exp( jarg( )) V exp( jt jϕ ) I exp( jt) V exp( jϕ ) I Le module de l mpédance complexe est égal à : V I et l argument de l mpédance complexe est égal à : On a donc : V exp( jϕ) I as de la résstance : Nous aons u que On a : arg( ) ϕ ϕ 8

19 I exp( j ) t L mpédance complexe de la résstance est donc : On retroue les résultats obtenus en utlsant le dagramme de Fresnel. as de la bobne : d L dt d calculons : dt d dt d d I cos( t) j sn( t) dt dt I [ sn( t) j cos( )] t I j cos( t) sn( t) j ji cos( t) j sn( t) [ ] j dérer reent donc à multpler par j On a : d L dt jl jl I exp( j ) t L mpédance complexe de la bobne est donc : jl ette expresson peut auss s écrre π π π π L exp j comme exp j cos j sn j as du condensateur : dt calculons dt : dt I t) dt cos( j I sn( t) dt I I sn( t) j cos( t) I j cos( t) sn( t) j I cos( t) j sn( t) j j [ ] ntégrer reent donc à dser par j 9

20 On a : dt I j j exp( j ) t L mpédance complexe du condensateur est donc : j π ette expresson peut auss s écrre exp j comme π π π exp j cos j sn j j omme dans le paragraphe précédent sur le dagramme de Fresnel, nous allons mantenant étuder l assocaton de dpoles de nature dfférentes en utlsant les mpédances complexes. as de l assocaton d une résstance et d une capacté en sére : snusodal > I exp( j ) > t > j. j On retroue le module et l argument de exp( jϕ) : ϕ arctan et tanϕ A partr de ce calcul l est possble d exprmer u (t) Par exemple, s t) I sn t ( u ( t) I sn( t ϕ) alors nous aurons : as de l assocaton d une résstance et d une bobne en sére : L L

21 snusodal > I exp( j ) > > L L jl t [ jl ] L. On retroue le module et l argument de exp( jϕ) : ϕ L et arctan L L tan ϕ S ( t) I cos( t), on a la relaton ( t) ( ) [ jl] I exp( j ) t exp( jϕ) I exp( jt) I exp( jt jϕ) ( t) ( ) I cos( t ϕ) En résumé : S ( t) I cos( t) () S ( t) I sn( t) I() et ( t) ( ) et ( t) I( ) On retroue aec les mpédances complexes les même los que celles étables pour l assocaton de résstances de même nature : On a ans u que l utlsaton de l mpédance complexe permet de remplacer les équatons dfférentelles par des équatons algébrques ce qu smplfe grandement l étude de l assocaton de crcuts de nature dfférente en régme snusodal. On retroue aec les admttances complexes les même los que celles étables pour l assocaton de condensateurs de même nature :

22 Y Y Y Y Y Y Y Y Y Y Y Y Dseur de tenson Dseur de courant

23 PUISSANE E ENEGIE. Défntons S on applque une dfférence de potentel A B entre deux ponts A et B d un dpole, les charges se déplaçant de B ers A subssent une araton d énerge potentelle Pour une charge élémentare dq se déplaçant de B ers A, le traal ou l énerge potentelle dw s exprme comme sut : dw dq pendant le temps dt Le déplacement de la charge élémentare dq sous l effet du champ électrque ndut par la dfférence de potentel dq entre les ponts A et B en un temps dt ndut un courant. dt D ou l énerge potentelle : dw dt Le traal fourn (cas d un générateur) ou reçu (cas d un récepteur) par l élément du crcut entre A et B entre les nstants t et t est : W Défnton : la pussance nstantanée (t) rapport au temps. p t t dw p dt dt W en Joules fourne ou reçue par le dpole entre A et B est la dérée de W par p peut donc auss être défne comme sut : p La pussance nstantanée p est le produt de la dfférence de potentel (t) par le courant (t) S > p, le dpôle est récepteur ; s < p le dpôle est générateur. Défnton : la aleur moyenne d une foncton quelconque (t) t xmoy x( t) dt t t t S x(t) est pérodque de pérode, alors on a : xmoy x( t) dt S x(t) est snusodale, alors x MOY. x sur l nteralle de temps t t est Par conenton, on utlsera des lettres mnuscules pour les arables et des lettres majuscules pour les constantes

24 La pussance moyenne P est calculée sur un nteralle de temps ; ] P t t t dw t t t pdt t t t t t t dt [ t t comme sut : S et sont snusodaux de pérode, le calcul de la pussance moyenne P se fat sur l nteralle de temps P dt P en watts Défnton : la aleur effcace d une foncton pérodque x (t) centrée (de aleur moyenne nulle) de pérode est : xeff x ( t) dt S la foncton (t) x est snusodale, on a : x t) X sn t ( ( cos t) X xeff X sn tdt X dt D où x EFF X. as partculers.. Energe consommée dans une résstance as V et I contnus : V I La pussance moyenne est égale à la pussance nstantanée P : t V P VIdt VI I t t t L énerge dsspée thermquement sur l nteralle de temps t t est : t V W VIdt VI( t t) ( t t) P( t t) t as et snusodaux : I sn t et V sn t I sn t p I sn t I cos t L énerge dsspée W pendant une pérode est : 4

25 W W cos t pdt I dt I I V V I et P En régme snusoïdal, pusque I V I EFF et V EFF, on a la relaton entre P, V EFF, I EFF P V I EFF EFF.. Energe dans une bobne as et snusodaux : d π I sn( t) et L L I cos( t) L I sn t dt L I sn( t)cos( ) p t L I sn( t) car sn α snα cosα W W t t L I L I pdt sn( tdt ) t t t LI [ cos( t) ] ( cos( ) cos( )) t t t 4 alculons l énerge stockée pus resttuée par la bobne pendant une pérode Entre et, l are soutendue par p (t) est poste ; la bobne stocke de l énerge. Elle se comporte en 4 récepteur. alculons l énerge stockée pendant cette phase. On a : LI π LI W stockéee cos() cos

26 Entre et, l are soutendue par p (t) est négate ; la bobne resttue de l énerge. Elle se comporte en 4 générateur. alculons l énerge resttuée pendant cette phase. On a : W resttuée LI π π LI cos.. cos Pendant la durée, l énerge dépensée par la bobne est nulle. On dt que le dpôle est purement réactf. L énerge stockée (sous forme magnétque) pendant 4 est resttuée ntégralement pendant le quart de pérode suant. I stockée resttuée (t) p (t) I u(t) /4 / t.. Energe dans un condensateur as et snusodaux : I sn( t) et I I π dt cos( t) sn t w w I p sn( t)cos( t) I sn t car sn α snα cosα W W t t I pdt sn( tdt ) I 4 t t t I I [ cos( t) ] ( cos( ) cos( )) ( cos( ) cos( )) t t t t t 4 4 alculons l énerge resttuée pus stockée par le condensateur pendant une pérode 6

27 Entre et, l are soutendue par p (t) est négate ; le condensateur resttue de l énerge. Il se comporte en 4 générateur. alculons l énerge resttuée pendant cette phase. On a : W resttuée I π I cos.. cos() 4 4 Entre et, l are soutendue par p (t) est poste ; le condensateur stocke de l énerge. Il se comporte en 4 récepteur. alculons l énerge stockée pendant cette phase. On a : W stockée I π π I cos.. cos Pendant la durée, l énerge dépensée par le condensateur est nulle. omme la bobne, le condensateur est un dpôle purement réactf. L énerge resttuée pendant 4 est stockée (sous forme électrque) ntégralement pendant le quart de pérode suant. resttuée stockée I (t) p (t) u(t) /4 / t En résumé pour un sgnal (t) snusodal : phase Bobne L condensateur à 4 à 4 La bobne stocke LI La bobne resttue (magnétque) LI Le condensateur resttue Le condensateur stocke I I (électrque) 7

28 Pusque I On a auss l énerge stockée par le condensateur est égale à V O V as de l assocaton d une bobne et d un condensateur : L assocaton d une bobne et d un condensateur parfat est telle que pendant chaque phase, l énerge stockée dans la bobne est égale à l énerge resttuée par le condensateur et ce ersa. et échange mplque la relaton : LI I sot L pulsaton de résonance L échange d énerge se fat donc au rythme de la pulsaton de résonance. Nous reendrons sur les crcuts résonnants dans un prochan chaptre.. Pussance acte, réacte, apparente et complexe dans un dpole quelconque I cos t et V cos( t ) ϕ La pussance acte est la pussance moyenne. On a : P dt V I t t dt cos( )cos( ϕ) VI (cos( t) cos( )) dt ϕ ϕ omme cos( ϕt) dt et cos( ϕ ) dt cosϕdt cosϕ On obtent : V I P cosϕ en Watt (W) cos ϕ est le facteur de pussance du dpole. emarque : on obtent les mêmes résultats en posant On défnt également la pussance réacteq : I sn t V I Q snϕ en VoltAmpère réactf (VA) Il est à noter que la pussance réacte Q est nulle pour une résstance car on a ϕ 8

29 Fnalement, on défnt également la pussance apparente S: S VI eff P Q V I eff en VoltAmpère(VA) VI Q snϕ VI S ϕ VI P cosϕ ableau récaptulatf pour les dpoles élémentares : P eff ésstance Bobne L ondensateur I Q L I eff S I eff L I eff Ieff - V Ieff Veff eff Exprmons la pussance acte P et la pussance réacteq en foncton du courant et de la dfférence de potentel u. Sot I cos t et V cos( t ) ϕ I exp( j ) I exp( j t) t * V exp( j t) exp( j ) V exp( j t)exp( jϕ) ϕ * VI exp( j t)exp( j t)exp( jϕ) VI exp( jϕ) * V I * exp( j t)exp( j t)exp( jϕ) VI exp( jϕ) * * VI j j VI (exp( ϕ) exp( ϕ)) cosϕ Ans, on a donc les relatons suantes : 9

30 P 4 * * ( ) * * VI (exp( jϕ) exp( jϕ)) V I j snϕ En utlsant le même rasonnement, on obtent Q 4 j * * ( ) La pussance réacte proent des éléments réactfs du crcut. Fnalement nous pouons défnr la pussance complexe d un crcut par : V I V I ϕ * ( cosϕ j snϕ) exp( j ) P P jq On peut érfer que le module de P est égal à la pussance apparente S.4 Force électromotrce et force contre électromotrce.4. Générateur et force électromotrce Un générateur conertt une énerge (mécanque, chmque,lumneuse, ) en une énerge électrque. Sot dw p dt dt l énerge fourne par le générateur au crcut dw l énerge dsspée par effet Joule dans le générateur dw dt dw l énerge reçue de l extéreur par le générateur. En applquant la lo de conseraton de l énerge, on a la relaton suante : dw dw dw dw dw dw <> dt dw dt dw dw dt dt dw dw udt Dsons l expresson par dt :

Montage émetteur commun

Montage émetteur commun tour au menu ontage émetteur commun Polarsaton d un transstor. ôle de la polarsaton La polarsaton a pour rôle de placer le pont de fonctonnement du transstor dans une zone où ses caractérstques sont lnéares.

Plus en détail

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique Spécale PSI - Cours "Electromagnétsme" 1 Inducton électromagnétque Chaptre IV : Inductance propre, nductance mutuelle. Energe électromagnétque Objectfs: Coecents d nductance propre L et mutuelle M Blan

Plus en détail

Exercices d Électrocinétique

Exercices d Électrocinétique ercces d Électrocnétque Intensté et densté de courant -1.1 Vtesse des porteurs de charges : On dssout une masse m = 20g de chlorure de sodum NaCl dans un bac électrolytque de longueur l = 20cm et de secton

Plus en détail

Oscillations électriques libres

Oscillations électriques libres Oscllatons électrues lbres A Oscllatons lbres amortes 1/ Etude expérmentale a Expérence et observatons Après avor chargé le condensateur (poston 1) On bascule l nterrupteur sur la poston, on obtent l oscllogramme

Plus en détail

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h.

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h. A2 Analyser le système Converson statque de l énerge Date : Nom : Cours 2 h 1 Introducton Un ConVertsseur Statque d énerge (CVS) est un montage utlsant des nterrupteurs à semconducteurs permettant par

Plus en détail

Calculs des convertisseurs en l'electronique de Puissance

Calculs des convertisseurs en l'electronique de Puissance Calculs des conertsseurs en l'electronque de Pussance Projet : PROGRAMMAON ate : 14 arl Auteur : herry EQUEU. EQUEU 1, rue Jules Massenet 37 OURS el 47 5 93 64 herry EQUEU Jun [V37] Fcher : ESGN.OC Calculs

Plus en détail

Remboursement d un emprunt par annuités constantes

Remboursement d un emprunt par annuités constantes Sére STG Journées de formaton Janver 2006 Remboursement d un emprunt par annutés constantes Le prncpe Utlsaton du tableur Un emprunteur s adresse à un prêteur pour obtenr une somme d argent (la dette)

Plus en détail

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2 Exo7 Nombres complexes Vdéo parte. Les nombres complexes, défntons et opératons Vdéo parte. Racnes carrées, équaton du second degré Vdéo parte 3. Argument et trgonométre Vdéo parte 4. Nombres complexes

Plus en détail

Le théorème du viriel

Le théorème du viriel Le théorème du vrel On se propose de démontrer le théorème du vrel de deux manères dfférentes. La premère fat appel à deux "trcks" qu l faut vor. Cette preuve met en avant une quantté, notée S c, qu permet

Plus en détail

Mesure avec une règle

Mesure avec une règle Mesure avec une règle par Matheu ROUAUD Professeur de Scences Physques en prépa, Dplômé en Physque Théorque. Lycée Alan-Fourner 8000 Bourges ecrre@ncerttudes.fr RÉSUMÉ La mesure d'une grandeur par un système

Plus en détail

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix?

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix? Note méthodologque Tratements hebdomadares Questlemonscher.com Quelle méthode de collecte de prx? Les éléments méthodologques ont été défns par le cabnet FaE onsel, socété d études et d analyses statstques

Plus en détail

Généralités sur les fonctions 1ES

Généralités sur les fonctions 1ES Généraltés sur les fonctons ES GENERALITES SUR LES FNCTINS I. RAPPELS a. Vocabulare Défnton Une foncton est un procédé qu permet d assocer à un nombre x appartenant à un ensemble D un nombre y n note :

Plus en détail

Les jeunes économistes

Les jeunes économistes Chaptre1 : les ntérêts smples 1. défnton et calcul pratque : Défnton : Dans le cas de l ntérêt smple, le captal reste nvarable pendant toute la durée du prêt. L emprunteur dot verser, à la fn de chaque

Plus en détail

Grandeur physique, chiffres significatifs

Grandeur physique, chiffres significatifs Grandeur physque, chffres sgnfcatfs I) Donner le résultat d une mesure en correspondance avec l nstrument utlsé : S avec un nstrument, ren n est ndqué sur l ncerttude absolue X d une mesure X, on consdère

Plus en détail

RÉPONSES À UN ÉCHELON. Sortie u(t) réponse. t(s)

RÉPONSES À UN ÉCHELON. Sortie u(t) réponse. t(s) BTS S ÉPONSS À UN ÉHON. éponse à n échelon d n système d premer ordre xemple : almentaton d n condensater de capacté par ne sorce de tenson e(t) à travers résstance a tenson varable e(t) est n échelon

Plus en détail

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction -

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction - EXAME FIAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSIO 1 - Correcton - Exercce 1 : 1) Consdérons une entreprse E comportant deux établssements : E1 et E2 qu emploent chacun 200 salarés. Au sen de l'établssement

Plus en détail

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks Plan Geston des stocks Abdellah El Fallah Ensa de Tétouan 2011 Les opératons de gestons des stocks Les coûts assocés à la geston des stocks Le rôle des stocks Modèle de la quantté économque Geston calendare

Plus en détail

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage Fche n 7 : Vérfcaton du débt et de la vtesse par la méthode de traçage 1. PRINCIPE La méthode de traçage permet de calculer le débt d un écoulement ndépendamment des mesurages de hauteur et de vtesse.

Plus en détail

CHAPITRE 14 : RAISONNEMENT DES SYSTÈMES DE COMMANDE

CHAPITRE 14 : RAISONNEMENT DES SYSTÈMES DE COMMANDE HAITRE 4 : RAISONNEMENT DES SYSTÈMES DE OMMANDE RAISONNEMENT DES SYSTÈMES DE OMMANDE... 2 INTRODUTION... 22 RAELS... 22 alcul de la valeur ntale de la répone à un échelon... 22 alcul du gan tatque... 22

Plus en détail

classification non supervisée : pas de classes prédéfinies Applications typiques

classification non supervisée : pas de classes prédéfinies Applications typiques Qu est ce que le clusterng? analyse de clusterng regroupement des obets en clusters un cluster : une collecton d obets smlares au sen d un même cluster dssmlares au obets appartenant à d autres clusters

Plus en détail

Chapitre 6. Economie ouverte :

Chapitre 6. Economie ouverte : 06/2/202 Chaptre 6. Econome ouverte : le modèle Mundell Flemng Elsabeth Cudevlle Le développement des échanges nternatonaux (bens et servces et flux fnancers) a rendu fortement nterdépendantes les conjonctures

Plus en détail

ÉLÉMENTS DE THÉORIE DE L INFORMATION POUR LES COMMUNICATIONS.

ÉLÉMENTS DE THÉORIE DE L INFORMATION POUR LES COMMUNICATIONS. ÉLÉMETS DE THÉORIE DE L IFORMATIO POUR LES COMMUICATIOS. L a théore de l nformaton est une dscplne qu s appue non seulement sur les (télé-) communcatons, mas auss sur l nformatque, la statstque, la physque

Plus en détail

Assurance maladie et aléa de moralité ex-ante : L incidence de l hétérogénéité de la perte sanitaire

Assurance maladie et aléa de moralité ex-ante : L incidence de l hétérogénéité de la perte sanitaire Assurance malade et aléa de moralté ex-ante : L ncdence de l hétérogénété de la perte santare Davd Alary 1 et Franck Ben 2 Cet artcle examne l ncdence de l hétérogénété de la perte santare sur les contrats

Plus en détail

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE. MEMOIRE Présentée à

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE. MEMOIRE Présentée à REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE MEMOIRE Présentée à L Unversté de Batna Faculté des Scences Département de Physque

Plus en détail

Système solaire combiné Estimation des besoins énergétiques

Système solaire combiné Estimation des besoins énergétiques Revue des Energes Renouvelables ICRESD-07 Tlemcen (007) 109 114 Système solare combné Estmaton des besons énergétques R. Kharch 1, B. Benyoucef et M. Belhamel 1 1 Centre de Développement des Energes Renouvelables

Plus en détail

1.0 Probabilité vs statistique...1. 1.1 Expérience aléatoire et espace échantillonnal...1. 1.2 Événement...2

1.0 Probabilité vs statistique...1. 1.1 Expérience aléatoire et espace échantillonnal...1. 1.2 Événement...2 - robabltés - haptre : Introducton à la théore des probabltés.0 robablté vs statstque.... Expérence aléatore et espace échantllonnal.... Événement.... xomes défnton de probablté..... Quelques théorèmes

Plus en détail

La physiologie du cerveau montre que celui-ci est constitué de cellules (les neurones) interconnectées. Quelques étapes de cette découverte :

La physiologie du cerveau montre que celui-ci est constitué de cellules (les neurones) interconnectées. Quelques étapes de cette découverte : Chaptre 3 Apprentssage automatque : les réseaux de neurones Introducton Le Perceptron Les réseaux mult-couches 3.1 Introducton Comment l'homme fat-l pour rasonner, parler, calculer, apprendre,...? Comment

Plus en détail

Modélisation d une chaîne de conversion éolienne de petite puissance

Modélisation d une chaîne de conversion éolienne de petite puissance Modélsaton d une chaîne de conerson éolenne de ette ussance O. GEGAUD, B. MULTON, H. BEN AHMED LÉS Antenne de Bretagne de l ENS de Cachan Camus de Ker Lann 37 BUZ ésumé Parallèlement au marché mortant

Plus en détail

Dirigeant de SAS : Laisser le choix du statut social

Dirigeant de SAS : Laisser le choix du statut social Drgeant de SAS : Lasser le chox du statut socal Résumé de notre proposton : Ouvrr le chox du statut socal du drgeant de SAS avec 2 solutons possbles : apprécer la stuaton socale des drgeants de SAS comme

Plus en détail

BTS GPN 2EME ANNEE-MATHEMATIQUES-MATHS FINANCIERES MATHEMATIQUES FINANCIERES

BTS GPN 2EME ANNEE-MATHEMATIQUES-MATHS FINANCIERES MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES I. Concepts généraux. Le référentel précse : Cette parte du module M4 «Acquérr des outls mathématques de base nécessares à l'analyse de données économques» est en relaton avec

Plus en détail

Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amiens.fr/pedagogie/maths/new/ue2007/synthese_atelier_annette_alain.

Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amiens.fr/pedagogie/maths/new/ue2007/synthese_atelier_annette_alain. Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amens.fr/pedagoge/maths/new/ue2007/synthese_ateler_annette_alan.pdf 1 La règle du jeu Un drecteur de casno se propose d nstaller le

Plus en détail

SIMULATION D UN JET TURBULENT POUR LE REFROIDISSEMENT DES AUBES DE TURBINE

SIMULATION D UN JET TURBULENT POUR LE REFROIDISSEMENT DES AUBES DE TURBINE 10 ème Sémnare Internatonal sur la Physque Energétque 10 th Internatonal Meetng on Energetcal Physcs SIMULAION D UN JE URBULEN POUR LE REFROIDISSEMEN DES AUBES DE URBINE Bounegta Bachr 1, Abdelarm Maamar

Plus en détail

MODÈLE D ISING À UNE ET DEUX DIMENSIONS.

MODÈLE D ISING À UNE ET DEUX DIMENSIONS. Chapter MODÈLE DISIG À UE ET DEUX DIMESIOS.. ITRODUCTIO. ous commençons, dans ce chaptre, létude dun problème de mécanque statstque de la matère condensée où leffet des nteractons est mportant. Le modèle

Plus en détail

Chapitre 3 : Incertitudes CHAPITRE 3 INCERTITUDES. Lignes directrices 2006 du GIEC pour les inventaires nationaux de gaz à effet de serre 3.

Chapitre 3 : Incertitudes CHAPITRE 3 INCERTITUDES. Lignes directrices 2006 du GIEC pour les inventaires nationaux de gaz à effet de serre 3. Chaptre 3 : Incerttudes CHAPITRE 3 INCERTITUDES Lgnes drectrces 2006 du GIEC pour les nventares natonaux de gaz à effet de serre 3.1 Volume 1 : Orentatons générales et établssement des rapports Auteurs

Plus en détail

I. Présentation générale des méthodes d estimation des projets de type «unité industrielle»

I. Présentation générale des méthodes d estimation des projets de type «unité industrielle» Evaluaton des projets et estmaton des coûts Le budget d un projet est un élément mportant dans l étude d un projet pusque les résultats économques auront un mpact sur la réalsaton ou non et sur la concepton

Plus en détail

Editions ENI. Project 2010. Collection Référence Bureautique. Extrait

Editions ENI. Project 2010. Collection Référence Bureautique. Extrait Edtons ENI Project 2010 Collecton Référence Bureautque Extrat Défnton des tâches Défnton des tâches Project 2010 Sasr les tâches d'un projet Les tâches représentent le traval à accomplr pour attendre l'objectf

Plus en détail

CHAPITRE DEUX : FORMALISME GEOMETRIQUE

CHAPITRE DEUX : FORMALISME GEOMETRIQUE CHPITRE DEUX FORMLISME GEOMETRIQUE. CHPITRE DEUX : FORMLISME GEOMETRIQUE verson.3, -8 I. GEOMETRIE DNS L ESPCE-TEMPS ) Prncpe de relatvté Le prncpe de relatvté peut s exprmer ans : toutes les los physques

Plus en détail

Relais de protection et de commmande

Relais de protection et de commmande S O U S - S T A T I O N S Relas de protecton et de commmande La gamme SEPCOS-PRO comprend des relas de protecton et de commande de haute technologe qu répondent à la perfecton aux exgences des réseaux

Plus en détail

Corrigé du problème de Mathématiques générales 2010. - Partie I - 0 0 0. 0.

Corrigé du problème de Mathématiques générales 2010. - Partie I - 0 0 0. 0. Corrgé du problème de Mathématques générales 2010 - Parte I - 1(a. Sot X S A. La matrce A est un polynôme en X donc commute avec X. 1(b. On a : 0 = m A (A = m A (X n ; le polynôme m A (x n est annulateur

Plus en détail

MÉTHODES DE SONDAGES UTILISÉES DANS LES PROGRAMMES D ÉVALUATIONS DES ÉLÈVES

MÉTHODES DE SONDAGES UTILISÉES DANS LES PROGRAMMES D ÉVALUATIONS DES ÉLÈVES MÉTHODES DE SONDAGES UTILISÉES DANS LES PROGRAMMES D ÉVALUATIONS DES ÉLÈVES Émle Garca, Maron Le Cam et Therry Rocher MENESR-DEPP, bureau de l évaluaton des élèves Cet artcle porte sur les méthodes de

Plus en détail

Découvrir l interface Windows 8

Découvrir l interface Windows 8 Wndows 8.1 L envronnement Wndows 8 Interfaces Wndows 8 et Bureau L envronnement Wndows 8 Découvrr l nterface Wndows 8 Après s être dentfé va un compte Mcrosoft ou un compte local, l utlsateur vot apparaître

Plus en détail

Mode d'emploi. Servomoteur radiofréquence 1187 00

Mode d'emploi. Servomoteur radiofréquence 1187 00 Mode d'emplo Servomoteur radofréquence 1187 00 Table des matères A propos de ce mode d'emplo... 2 Représentaton de l'apparel... 3 Montage... 3 Démontage... 3 Almentaton... 4 Mettre la ple en place... 4

Plus en détail

Définition des tâches

Définition des tâches Défnton des tâches Défnton des tâches Project 2010 Sasr les tâches d'un projet Les tâches représentent le traval à accomplr pour attendre l'objectf du projet. Elles représentent de ce fat, les éléments

Plus en détail

Integral T 3 Compact. raccordé aux installations Integral 5. Notice d utilisation

Integral T 3 Compact. raccordé aux installations Integral 5. Notice d utilisation Integral T 3 Compact raccordé aux nstallatons Integral 5 Notce d utlsaton Remarques mportantes Remarques mportantes A quelle nstallaton pouvez-vous connecter votre téléphone Ce téléphone est conçu unquement

Plus en détail

Dynamique du point matériel

Dynamique du point matériel Chaptre III Dynaqe d pont atérel I Généraltés La cnéatqe a por objet l étde des oveents des corps en foncton d teps, sans tenr copte des cases q les provoqent La dynaqe est la scence q étde (o déterne)

Plus en détail

Calculer le coût amorti d une obligation sur chaque exercice et présenter les écritures dans les comptes individuels de la société Plumeria.

Calculer le coût amorti d une obligation sur chaque exercice et présenter les écritures dans les comptes individuels de la société Plumeria. 1 CAS nédt d applcaton sur les normes IAS/IFRS Coût amort sur oblgatons à taux varable ou révsable La socété Plumera présente ses comptes annuels dans le référentel IFRS. Elle détent dans son portefeulle

Plus en détail

MEMOIRE. Présenté au département des sciences de la matière Faculté des sciences

MEMOIRE. Présenté au département des sciences de la matière Faculté des sciences REPUBLIQUE LERIEN DEMOCRTIQUE ET POPULIRE Mnstère de l ensegnement supéreur et de la recherche scentfque Unversté El-Hadj Lakhdar-BTN- MEMOIRE Présenté au département des scences de la matère Faculté des

Plus en détail

Interfaces Windows 8 et Bureau

Interfaces Windows 8 et Bureau Interfaces Wndows 8 et Bureau Interfaces Wndows 8 et Bureau Découvrr l nterface Wndows 8 Après s être dentfé va un compte Mcrosoft ou un compte local, l utlsateur vot apparaître sur son écran la toute

Plus en détail

IDEI Report # 18. Transport. December 2010. Elasticités de la demande de transport ferroviaire: définitions et mesures

IDEI Report # 18. Transport. December 2010. Elasticités de la demande de transport ferroviaire: définitions et mesures IDEI Report # 18 Transport December 2010 Elastctés de la demande de transport ferrovare: défntons et mesures Elastctés de la demande de transport ferrovare : Défntons et mesures Marc Ivald Toulouse School

Plus en détail

TD 1. Statistiques à une variable.

TD 1. Statistiques à une variable. Danel Abécasss. Année unverstare 2010/2011 Prépa-L1 TD de bostatstques. Exercce 1. On consdère la sére suvante : TD 1. Statstques à une varable. 1. Calculer la moyenne et l écart type. 2. Calculer la médane

Plus en détail

Corrections adiabatiques et nonadiabatiques dans les systèmes diatomiques par calculs ab-initio

Corrections adiabatiques et nonadiabatiques dans les systèmes diatomiques par calculs ab-initio Correctons adabatques et nonadabatques dans les systèmes datomques par calculs ab-nto Compte rendu du traval réalsé dans le cadre d un stage de quatre mos au sen du Groupe de Spectroscope Moléculare et

Plus en détail

LA RENOVATION DE L INDICE HARMONISE DES PRIX A LA CONSOMMATION DANS LA ZONE UEMOA

LA RENOVATION DE L INDICE HARMONISE DES PRIX A LA CONSOMMATION DANS LA ZONE UEMOA Observatore Economque et Statstque d Afrque Subsaharenne LA RENOVATION DE L INDICE HARMONISE DES PRIX A LA CONSOMMATION DANS LA ZONE UEMOA Une contrbuton à la réunon commune CEE/BIT sur les ndces des prx

Plus en détail

Calcul de tableaux d amortissement

Calcul de tableaux d amortissement Calcul de tableaux d amortssement 1 Tableau d amortssement Un emprunt est caractérsé par : une somme empruntée notée ; un taux annuel, en %, noté ; une pérodcté qu correspond à la fréquence de remboursement,

Plus en détail

Impôt sur la fortune et investissement dans les PME Professeur Didier MAILLARD

Impôt sur la fortune et investissement dans les PME Professeur Didier MAILLARD Conservatore atonal des Arts et Méters Chare de BAQUE Document de recherche n 9 Impôt sur la fortune et nvestssement dans les PME Professeur Dder MAILLARD Avertssement ovembre 2007 La chare de Banque du

Plus en détail

WINDOWS 10. Prise en main de votre ordinateur ou votre tablette

WINDOWS 10. Prise en main de votre ordinateur ou votre tablette WINDOWS 10 Prse en man de votre ordnateur ou votre tablette Table des matères Wndows 10 L envronnement Wndows 10 sur un ordnateur Wndows 10 : les nouveautés................................ 7 Démarrer Wndows

Plus en détail

Terminal numérique TM 13 raccordé aux installations Integral 33

Terminal numérique TM 13 raccordé aux installations Integral 33 Termnal numérque TM 13 raccordé aux nstallatons Integral 33 Notce d utlsaton Vous garderez une longueur d avance. Famlarsez--vous avec votre téléphone Remarques mportantes Chaptres à lre en prorté -- Vue

Plus en détail

Module : filtrage analogique

Module : filtrage analogique BSEL - Physique appliquée Module : filtrage analogique Diaporama : aucun ésumé de cours - Les différents types de filtres - Transmittance en z d un filtre numérique 3- Algorithme de calcul de y n 4- Stabilité

Plus en détail

AVERTISSEMENT. Contact SCD INPL: mailto:scdinpl@inpl-nancy.fr LIENS

AVERTISSEMENT. Contact SCD INPL: mailto:scdinpl@inpl-nancy.fr LIENS AVERTISSEMENT Ce document est le frut d un long traval approuvé par le jury de soutenance et ms à dsposton de l ensemble de la communauté unverstare élarge. Il est soums à la proprété ntellectuelle de

Plus en détail

hal-00409942, version 1-14 Aug 2009

hal-00409942, version 1-14 Aug 2009 Manuscrt auteur, publé dans "MOSIM' 008, Pars : France (008)" 7 e Conférence Francophone de MOdélsaton et SIMulaton - MOSIM 08 - du mars au avrl 008 - Pars - France «Modélsaton, Optmsaton et Smulaton des

Plus en détail

- Acquisition de signaux en sismologie large bande. - Acquisition de signaux lents, magnétisme, MT.

- Acquisition de signaux en sismologie large bande. - Acquisition de signaux lents, magnétisme, MT. 87 DUCAPTEURAUXEANQUESDEDONNEES. TECHNQUES D'NSTRUMENTATON EN GEOPEY8QUE. J:M. CANTN Unversté Lous Pasteur (Strasbourg 1) nsttut de Physque du Globe de Strasbourg Ecole et Observatore de Physque du Globe.

Plus en détail

Un protocole de tolérance aux pannes pour objets actifs non préemptifs

Un protocole de tolérance aux pannes pour objets actifs non préemptifs Un protocole de tolérance aux pannes pour objets actfs non préemptfs Françose Baude Dens Caromel Chrstan Delbé Ludovc Henro Equpe Oass, INRIA - CNRS - I3S 2004, route des Lucoles F-06902 Sopha Antpols

Plus en détail

VIELLE Marc. CEA-IDEI Janvier 1998. 1 La nomenclature retenue 3. 2 Vue d ensemble du modèle 4

VIELLE Marc. CEA-IDEI Janvier 1998. 1 La nomenclature retenue 3. 2 Vue d ensemble du modèle 4 GEMINI-E3 XL France Un outl destné à l étude des mpacts ndustrels de poltques énergétques et envronnementales VIELLE Marc CEA-IDEI Janver 1998 I LA STRUCTURE DU MODELE GEMINI-E3 XL FRANCE 3 1 La nomenclature

Plus en détail

THESE. Khalid LEKOUCH

THESE. Khalid LEKOUCH N d ordre : /2012 THESE Présentée à la FACULTE DES SCIENCES D AGADIR En vue de l obtenton du GRADE DE DOCTEUR EN PHYSIQUE (Spécalté : Energétque, Thermque et Métrologe) Par Khald LEKOUCH MODELISATION ET

Plus en détail

Économétrie. Annexes : exercices et corrigés. 5 e édition. William Greene New York University

Économétrie. Annexes : exercices et corrigés. 5 e édition. William Greene New York University Économétre 5 e édton Annexes : exercces et corrgés Wllam Greene New York Unversty Édton françase drgée par Dder Schlacther, IEP Pars, unversté Pars II Traducton : Stéphane Monjon, unversté Pars I Panthéon-Sorbonne

Plus en détail

DES EFFETS PERVERS DU MORCELLEMENT DES STOCKS

DES EFFETS PERVERS DU MORCELLEMENT DES STOCKS DES EFFETS PERVERS DU MORCELLEMENT DES STOCKS Le cabnet Enetek nous démontre les mpacts négatfs de la multplcaton des stocks qu au leu d amélorer le taux de servce en se rapprochant du clent, le dégradent

Plus en détail

FORMATION DOCTORALE EN INFORMATIQUE THESE. présentée en vue de l obtention du Doctorat en Informatique. par

FORMATION DOCTORALE EN INFORMATIQUE THESE. présentée en vue de l obtention du Doctorat en Informatique. par UNIVERSITE DE TUNIS EL MANAR FACULTE DES SCIENCES DE TUNIS INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON FORMATION DOCTORALE EN INFORMATIQUE THESE présentée en vue de l obtenton du Doctorat en Informatque

Plus en détail

Chapitre 1.5a Le champ électrique généré par plusieurs particules

Chapitre 1.5a Le champ électrique généré par plusieurs particules hapte.5a Le chap électque généé pa pluseus patcules Le chap électque généé pa pluseus chages fxes Le odule de chap électque d une chage ponctuelle est adal, popotonnel à la chage électque et neseent popotonnel

Plus en détail

Thermodynamique statistique Master Chimie Université d Aix-Marseille. Bogdan Kuchta

Thermodynamique statistique Master Chimie Université d Aix-Marseille. Bogdan Kuchta hermodynamque statstque Master Chme Unversté d Ax-Marselle Bogdan Kuchta Plan: Rappel: thermodynamque phénoménologque (dscuter l entrope, l évoluton de gaz parfat,) Premer prncpe Deuxème prncpe (transformaton

Plus en détail

CREATION DE VALEUR EN ASSURANCE NON VIE : COMMENT FRANCHIR UNE NOUVELLE ETAPE?

CREATION DE VALEUR EN ASSURANCE NON VIE : COMMENT FRANCHIR UNE NOUVELLE ETAPE? CREATION DE VALEUR EN ASSURANCE NON VIE : COMMENT FRANCHIR UNE NOUVELLE ETAPE? Boulanger Frédérc Avanssur, Groupe AXA 163-167, Avenue Georges Clémenceau 92742 Nanterre Cedex France Tel: +33 1 46 14 43

Plus en détail

E1 - LOIS GÉNÉRALES DE L ÉLECTROCINÉTIQUE

E1 - LOIS GÉNÉRALES DE L ÉLECTROCINÉTIQUE E1 - LOIS GÉNÉRLES E L ÉLECTROCINÉTIQUE OBJECTIFS L Électrocnétqe est la branche de l Électromagnétsme q étde le transport des charges électrqes dans les crcts condcters. Ses applcatons, de l électrotechnqe

Plus en détail

ÉTUDE DU STOCKAGE THERMIQUE DANS LE SOL EN UTILISANT UN SCHÉMA A DIFFÉRENCES FINIES UNIDIMENSIONNEL

ÉTUDE DU STOCKAGE THERMIQUE DANS LE SOL EN UTILISANT UN SCHÉMA A DIFFÉRENCES FINIES UNIDIMENSIONNEL ÉTUDE DU STOCKAGE THERMIQUE DANS LE SOL EN UTILISANT UN SCHÉMA A DIFFÉRENCES FINIES UNIDIMENSIONNEL Bogdan HORBANIUC, Gheorghe DUMITRASCU, Andre DUMENCU UNIVERSITÉ TECHNIQUE GHEORGHE ASACHI, Iaș, Roumane

Plus en détail

STATISTIQUE AVEC EXCEL

STATISTIQUE AVEC EXCEL STATISTIQUE AVEC EXCEL Excel offre d nnombrables possbltés de recuellr des données statstques, de les classer, de les analyser et de les représenter graphquement. Ce sont prncpalement les tros éléments

Plus en détail

LE RÉGIME DE RETRAITE DU PERSONNEL CANADIEN DE LA CANADA-VIE (le «régime») INFORMATION IMPORTANTE CONCERNANT LE RECOURS COLLECTIF

LE RÉGIME DE RETRAITE DU PERSONNEL CANADIEN DE LA CANADA-VIE (le «régime») INFORMATION IMPORTANTE CONCERNANT LE RECOURS COLLECTIF 1 LE RÉGIME DE RETRAITE DU PERSONNEL CANADIEN DE LA CANADA-VIE (le «régme») INFORMATION IMPORTANTE CONCERNANT LE RECOURS COLLECTIF AVIS AUX RETRAITÉS ET AUX PARTICIPANTS AVEC DROITS ACQUIS DIFFÉRÉS Expédteurs

Plus en détail

Clemenceau. Régime sinusoïdal forcé. Impédances Lois fondamentales - Puissance. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O.

Clemenceau. Régime sinusoïdal forcé. Impédances Lois fondamentales - Puissance. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O. ycé Clnca PCS - Physq ycé Clnca PCS (O.Granr) ég snsoïdal forcé pédancs os fondantals - Pssanc ycé Clnca PCS - Physq ntérêt ds corants snsoïdax : Expl d tnsons snsoïdals : tnson d sctr (50 H 0 V) s lgns

Plus en détail

Contrats prévoyance des TNS : Clarifier les règles pour sécuriser les prestations

Contrats prévoyance des TNS : Clarifier les règles pour sécuriser les prestations Contrats prévoyance des TNS : Clarfer les règles pour sécurser les prestatons Résumé de notre proposton : A - Amélorer l nformaton des souscrpteurs B Prévor plus de souplesse dans l apprécaton des revenus

Plus en détail

Pro2030 GUIDE D UTILISATION. Français

Pro2030 GUIDE D UTILISATION. Français Pro2030 GUIDE D UTILISATION Franças Contents Garante... Introducton... 1 Artcle nº 605056 Rév C Schéma nº A605056 Novembre 2010 2010 YSI Incorporated. Le logo YSI est une marque déposée de YSI Incorporated.

Plus en détail

Amélioration des Délais dans les Réseaux à Débits Garantis pour des Flux Temps-Réel Sous Contrainte «(m,k)-firm»

Amélioration des Délais dans les Réseaux à Débits Garantis pour des Flux Temps-Réel Sous Contrainte «(m,k)-firm» Améloraton des Délas dans les Réseaux à Débts Garants pour des Flux Temps-Réel Sous Contrante «(m,k)-frm» Résumé : Koubâa Ans, Yé-Qong Song LORIA UHP Nancy 1 - INPL - INRIA Lorrane 2, av. de la Forêt de

Plus en détail

Les prix quotidiens de clôture des échanges de quotas EUA et de crédits CER sont fournis par ICE Futures Europe

Les prix quotidiens de clôture des échanges de quotas EUA et de crédits CER sont fournis par ICE Futures Europe Méthodologe CDC Clmat Recherche puble chaque mos, en collaboraton avec Clmpact Metnext, Tendances Carbone, le bulletn mensuel d nformaton sur le marché européen du carbone (EU ETS). L obectf de cette publcaton

Plus en détail

T3 Comfort raccordé a IP Office

T3 Comfort raccordé a IP Office IP Telephony Contact Centers Moblty Servces T3 Comfort raccordé a IP Offce Benutzerhandbuch User's gude Manual de usuaro Manuel utlsateur Manuale d uso Gebrukersdocumentate Sommare Sommare Se famlarser

Plus en détail

Série A Septembre 2008

Série A Septembre 2008 Sére A Septembre 2008 Sommare Notce avec encadré* 3 Annexe à la Notce 17 UFEP : extrat des statuts 27 *Cet encadré a pour objet d attrer l attenton de l adhérent sur certanes dspostons essentelles de la

Plus en détail

Mode d'emploi. Capteur de température ambiante radiofréquence avec horloge 1186..

Mode d'emploi. Capteur de température ambiante radiofréquence avec horloge 1186.. Mode d'emplo Capteur de température ambante radofréquence avec horloge 1186.. Table des matères A propos de ce mode d'emplo... 2 Comment le capteur de température ambante radofréquence fonctonne... 2 Affchage

Plus en détail

Page 5 TABLE DES MATIÈRES

Page 5 TABLE DES MATIÈRES Page 5 TABLE DES MATIÈRES CHAPITRE I LES POURCENTAGES 1. LES OBJECTIFS 12 2. LES DÉFINITIONS 14 1. La varaton absolue d'une grandeur 2. La varaton moyenne d'une grandeur (par unté de temps) 3. Le coeffcent

Plus en détail

Paquets. Paquets nationaux 1. Paquets internationaux 11

Paquets. Paquets nationaux 1. Paquets internationaux 11 Paquets Paquets natonaux 1 Paquets nternatonaux 11 Paquets natonaux Servces & optons 1 Créaton 3 1. Dmensons, pods & épasseurs 3 2. Présentaton des paquets 4 2.1. Face avant du paquet 4 2.2. Comment obtenr

Plus en détail

BUREAU D'APPLICATION DES METHODES STATISTIQUES ET INFORMATIQUES

BUREAU D'APPLICATION DES METHODES STATISTIQUES ET INFORMATIQUES BUREAU DAPPLICATION DES METHODES STATISTIQUES ET INFORMATIQUES BAMSI REPRINT 04/2003 Introducton à l analyse des données Samuel AMBAPOUR BAMSSI I BAMSI B.P. 13734 Brazzavlle BAMSI REPRINT 04/2003 Introducton

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section Orthoptiste / stage i-prépa intensif - 1 Chapitre 10 : Condensateur et circuit RC I. Notions de base en électricité : a) Courant électrique

Plus en détail

TRAVAUX PRATIQUES SPECTRO- COLORIMETRIE

TRAVAUX PRATIQUES SPECTRO- COLORIMETRIE UNIVERSITE MONTPELLIER 2 Département de Physque TRAVAUX PRATIQUES DE SPECTRO- COLORIMETRIE F. GENIET 2 INTRODUCTION Cet ensegnement de travaux pratques de seconde année se propose de revor rapdement l'aspect

Plus en détail

Interface OneNote 2013

Interface OneNote 2013 Interface OneNote 2013 Interface OneNote 2013 Offce 2013 - Fonctons avancées Lancer OneNote 2013 À partr de l'nterface Wndows 8, utlsez une des méthodes suvantes : - Clquez sur la vgnette OneNote 2013

Plus en détail

TP filtres électriques

TP filtres électriques P filtres électriques Objectif : Étudier les caractéristiques de gain et de phase de quelques filtres classiques 1 Introduction oute cette partie est informative : la non compréhension de certains paragraphes

Plus en détail

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR Semestre : 4 Module : Méthodes Quattatves III Elémet : Mathématques Facères Esegat : Mme BENOMAR Elémets du cours Itérêts smples, précompte, escompte et compte courat Itérêts composés Autés Amortssemets

Plus en détail

INTERNET. Initiation à

INTERNET. Initiation à Intaton à INTERNET Surfez sur Internet Envoyez des messages Téléchargez Dscutez avec Skype Découvrez Facebook Regardez des vdéos Protégez votre ordnateur Myram GRIS Table des matères Internet Introducton

Plus en détail

La Quantification du Risque Opérationnel des Institutions Bancaires

La Quantification du Risque Opérationnel des Institutions Bancaires HEC Montréal Afflée à l Unversté de Montréal La Quantfcaton du Rsque Opératonnel des Insttutons Bancares par Hela Dahen Département Fnance Thèse présentée à la Faculté des études supéreures en vue d obtenton

Plus en détail

Donner les limites de validité de la relation obtenue.

Donner les limites de validité de la relation obtenue. olutions! ours! - Multiplicateur 0 e s alculer en fonction de. Donner les limites de validité de la relation obtenue. Quelle est la valeur supérieure de? Quel est le rôle de 0? - Multiplicateur e 0 s alculer

Plus en détail

ErP : éco-conception et étiquetage énergétique. Les solutions Vaillant. Pour dépasser la performance. La satisfaction de faire le bon choix.

ErP : éco-conception et étiquetage énergétique. Les solutions Vaillant. Pour dépasser la performance. La satisfaction de faire le bon choix. ErP : éco-concepton et étquetage énergétque Les solutons Vallant Pour dépasser la performance La satsfacton de fare le bon chox. ErP : éco-concepton et étquetage énergétque Eco-concepton et Etquetage

Plus en détail

10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010

10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010 10ème Congrès ranças d'acoustque Lyon, 1-16 Avrl 010 Imagere acoustque en soufflere SA Arnaud Ménoret 1, Nathale Gorllot, Jean-Luc Adam 3 1 Sgnal Développement, 1 Bld Chassegne, 86000 Poters, a.menoret@sgnal-developpement.com

Plus en détail

Les méthodes numériques de la dynamique moléculaire

Les méthodes numériques de la dynamique moléculaire Les méthodes numérques de la dynamque moléculare Chrstophe Chpot Equpe de chme et & bochme théorques, Unté Mxte de Recherche CNRS/UHP 7565, Insttut Nancéen de Chme Moléculare, Unversté Henr Poncaré, B.P.

Plus en détail

Bibliothèque de documents

Bibliothèque de documents Bblothèque de documents Bblothèque de documents SharePont 2010 Vue d ensemble Dans un ste SharePont, les bblothèques permettent de stocker des éléments de types dfférents : des documents, des mages, des

Plus en détail

Le Prêt Efficience Fioul

Le Prêt Efficience Fioul Le Prêt Effcence Foul EMPRUNTEUR M. Mme CO-EMPRUNTEUR M. Mlle Mme Mlle (CONJOINT, PACSÉ, CONCUBIN ) Départ. de nass. Nature de la pèce d dentté : Natonalté : CNI Passeport Ttre de séjour N : Salaré Stuaton

Plus en détail

Protection. la PROTECTION EN SAVOIR PLUS SUR. Les services. Dossier Métier. La Réglementation. - Mettre à disposition gratuitement et personnellement

Protection. la PROTECTION EN SAVOIR PLUS SUR. Les services. Dossier Métier. La Réglementation. - Mettre à disposition gratuitement et personnellement Dosser Méter Protecton EN SAVOIR PLUS SUR la PROTECTION Les servces Etude de poste Nos équpes de spécalstes Protecton peuvent étuder les rsques sur chaque poste de traval et préconser les équpements les

Plus en détail

Les déterminants de la détention et de l usage de la carte de débit : une analyse empirique sur données individuelles françaises

Les déterminants de la détention et de l usage de la carte de débit : une analyse empirique sur données individuelles françaises Les détermnants de la détenton et de l usage de la carte de débt : une analyse emprque sur données ndvduelles françases Davd Boune Marc Bourreau Abel Franços Jun 2006 Département Scences Economques et

Plus en détail

EH SmartView. Identifiez vos risques et vos opportunités. www.eulerhermes.be. Pilotez votre assurance-crédit. Services en ligne Euler Hermes

EH SmartView. Identifiez vos risques et vos opportunités. www.eulerhermes.be. Pilotez votre assurance-crédit. Services en ligne Euler Hermes EH SmartVew Servces en lgne Euler Hermes Identfez vos rsques et vos opportuntés Plotez votre assurance-crédt www.eulerhermes.be Les avantages d EH SmartVew L expertse Euler Hermes présentée de manère clare

Plus en détail