Mécanique des Milieux Continus

Dimension: px
Commencer à balayer dès la page:

Download "Mécanique des Milieux Continus"

Transcription

1 Mécanque des Mleux Contnus Golay Frédérc SEATECH

2 MMC Golay MMC - -

3 Ce cours de mécanque des mleux contnus est à la base de l ensegnement de mécanque à SEATECH. Les notons abordées c, transport de champs, los de conservaton,..., seront reprses ultéreurement en mécanque des soldes et mécanque des fludes. Dans une premère parte, nous aborderons les notatons tensorelles et vectorelles ndspensables à toute étude scentfque, pus dans une deuxème parte, nous étuderons la cnématque des mleux contnus. Après avor ntrodut la modélsaton des efforts et les los de conservaton par le prncpe des pussances vrtuelles, nous applquerons ces los de conservaton aux los de comportement de l élastcté lnéare (en mécanque des soldes) et aux los de comportement des fludes newtonens (en mécanque des fludes) Golay MMC

4 MMC Golay MMC - 4 -

5 Sommare TABLE DES MATIERES Notatons tensorelles... 9 Vecteurs et tenseurs Notatons Changement de repère... Permutatons et détermnants Les symboles de permutaton Détermnant d une matrce Polynôme caractérstque Adjont d un tenseur antsymétrque Calcul vectorel et analyse vectorelle Calcul vectorel Analyse vectorelle Transformaton d ntégrales Formules essentelles en Mécanque des Mleux Contnus Coordonnées cartésennes orthonormées Coordonnées cylndrques Coordonnées sphérques Comment retrouver les formules... 5 A retenr... 3 CINEMATIQUE... 5 Le mouvement et ses représentatons Confguraton Varables de Lagrange et varables d Euler Dérvées partculares... 6 Déformaton d un mleux contnu Noton de déformaton Tenseur des déformatons Condtons de compatblté Transport, dérvées partculares Transport d un volume Transport d une surface orentée Dérvée partculare d une ntégrale de volume Dérvée partculare d une ntégrale de surface A retenr EFFORTS DANS LES MILIEUX CONTINUS Golay MMC

6 MMC Défntons Forces Vecteur-contrante et tenseur des contrantes Equlbre Le Prncpe des Pussances Vrtuelles (German 97) Pussance vrtuelle des efforts ntéreurs Pussance vrtuelle des efforts extéreurs Applcaton du Prncpe des Pussances Vrtuelles Equlbre Autre présentaton: Prncpe fondamental de la dynamque Quelques proprétés du tenseur des contrantes Symétre du tenseur des contrantes Contrante normale et contrante tangentelle Drectons prncpales, contrantes prncpales Invarants Cercles de Mohr Exemples de tenseur des contrantes Tenseur unaxal Tenseur sphérque A retenr ELASTICITE Approche expérmentale: essa de tracton Lo de comportement élastque lnéare (en HPP) Forme générale Matérau élastque homogène sotrope Matérau élastque homogène orthotrope Matérau élastque homogène sotrope transverse Caractérstques de quelques matéraux Crtères de lmte d élastcté Le problème d élastcté Ecrture générale Formulaton en déplacement Formulaton en contrante Théorème de superposton Elastcté plane Thermoélastcté A retenr INTRODUCTION A LA MECANIQUE DES FLUIDES Lo de comportement Flude Newtonen Flude ncompressble Flude non-vsqueux Flude au repos... 6 Golay MMC - 6 -

7 Sommare Conservaton de la masse Equaton du mouvement A retenr... 6 Bblographe Annexes: Rappels de mécanques des soldes rgdes Cnématques du solde Descrpton du mouvement Composton des mouvements Cnétque Défntons Eléments de cnétque Cnétque du solde rgde Equatons fondamentales de la mécanque des soldes Torseur assocé aux efforts externes Lo fondamentale de la dynamque Golay MMC

8 MMC Golay MMC - 8 -

9 Notatons tensorelles NOTATIONS TENSORIELLES Vecteurs et tenseurs Avertssement: L objectf de ce chaptre, est de famlarser les étudants avec les notatons tensorelles. Afn d en smplfer le contenu, nous ne consdérerons que des bases orthonormées.. Notatons.. Vecteur Dans un espace euclden ξ à tros dmensons, sot e, e, e 3 une base orthonormée. Un vecteur V est représenté par ses composantes V, V, V 3 3 V = Ve + Ve + Ve = Ve 3 3 = En utlsant la conventon de sommaton, ou conventon d Ensten, on écrt V = Ve (.) (.) où, chaque fos qu un ndce est répété, l convent de fare varer cet ndce de à 3 et de fare la somme. Dans l expresson () l ndce est un "ndce muet". En notaton matrcelle on écrra parfos V V = V = V { } et le vecteur transposé V 3 T V = = = T { V} V V V V 3 (.3) (.4).. Applcaton lnéare deξ dans ξ Sot A une applcaton lnéare, dans la base e, e, e. Cette applcaton est représentée par une matrce 3x3 3 notée A : A A A 3 A A A 3 A A A S W est un vecteur tel que W = AV, alors les composantes de W sont données par W = A V + A V + A V 3 3 W = A V + A V + A V 3 3 W = A V + A V + A V et en utlsant les conventons de sommaton où j est un ndce muet Golay MMC

10 MMC W = AV j j et en notaton vectorelle { W} A { V} = On défnt les symboles de Kronecker par (.5) δ j s = j = s j (.6) En partculer l applcaton dentté est représentée par la matrce δ δ δ 3 δ δ δ 3 δ δ δ = La composton de deux applcatons lnéares se tradut par le produt de leur matrce représentatve, c est-àdre C = AB ou encore C = A B et en notaton ndcelle C j = A B k kj (.7)..3 Formes blnéares Sot A une forme blnéare sur ξ, c est-à-dre une applcaton blnéare de ξ ξ dans R. Dans la base e, e, e 3 elle est représentée par une matrce A telle que j A V W (, ) = AVW j j ou en notaton matrcelle AV, W = V A W ( ) { } En partculer, la forme blnéare représentée dans toute base par les symboles de Kronecker est le produt scalare. S ( e, e, e ) est une base orthonormée, alors 3 e e = δ j j et le produt scalare de deux vecteurs est donné par V W = Ve We = VW e e = δvw = VW ou en notaton matrcelle V W = V W { } j j j j j j (.8)..4 Tenseurs..4. Tenseur du second ordre Un tenseur du second ordre T est un opérateur lnéare qu fat correspondre à tout vecteur V de l espace euclden un vecteur W de ce même espace. Golay MMC - -

11 Notatons tensorelles W = T V ( ) Cet opérateur peut être représenté par une matrce 3x3, notée T ou T ou T, telle que W = TV j j ou en notaton matrcelle ou { W} T { V} = W = TV * Un tenseur est dt symétrque s T = T j j * Un tenseur est dt antsymétrque s T = T j j * Un tenseur est dt sotrope s T = tδ j j * On peut toujours décomposer un tenseur en une parte symétrque et antsymétrque S A T = T + T ou T = T + T S A j j j T avec = + ( T T ) S j j j et T = ( T T ) A j j j..4. Tenseur d ordre supéreur On peut défnr un vecteur V par ses composantes V, ou par les coeffcents de la forme lnéare X X V = XV, car la base chose est orthonormée (vor les notons de vecteurs covarants et contravarants). On peut alors consdérer le vecteur comme un tenseur du premer ordre. De même, une foncton scalare peut être consdérée comme un tenseur d ordre zéro. Un tenseur du trosème ordre S est un opérateur lnéare qu, à tout vecteur Z fat correspondre un tenseur du second ordre T. T = S ( Z) ouencore T = S Z j jk k..4.3 Produt tensorel On défnt le produt tensorel du vecteur U par le vecteur V, noté U V, comme le tenseur d ordre deux, défn par la forme blnéare qu aux vecteurs X U X V Y et Y fat correspondre ( )( ) Les 9 produts tensorels e e défnssent une base de l espace vectorel des tenseurs d ordre deux, s ben j que l on peut écrre un tenseur T comme T T e = e j j ou encore, par exemple, - - Golay MMC

12 MMC u v uv uv u v = uve e = uv uv uv j j 3 3 u v u v u v Contracton et produt contracté Sot le produt tensorel A B C, on appelle contracton, l opératon qu lu fat correspondre le vecteur A( B C). Le produt contracté d un tenseur d ordre 4 R et d un tenseur d ordre 3 S est défn par le tenseur d ordre 5 R S = R e e e e S e e e = R S e e e e e ( ) ( ) jkl j k l pqr p q r jkm mqr j k q r Le produt doublement contracté d un tenseur d ordre 4 R et d un tenseur d ordre 3 S est défn par le tenseur d ordre 3 R : S = R e e e e : S e e e = R S e e e ( ) ( ) jkl j k l pqr p q r jnm mnr j r Par exemple, le produt doublement contracté de deux tenseurs d ordre T et T est le scalare T : T = T e e : e e = TT ( ) ( T pq ) j j p a j j. Changement de repère.. Matrce de passage Sot e, e, e une base orthonormée et e, e, e une autre base orthonormée. 3 3 On défnt la matrce de passage Q telle que: e = Q e + Q e + Q e 3 3 e = Q e + Q e + Q e 3 3 e = Q e + Q e + Q e ou encore, en notatons ndcelles e = Q e j j et en notaton matrcelle = { e } Q { e} Les deux bases étant orthonormées, on dot avor δ = e e = Q e Q e = Q Qδ = Q Q j j k k jl l k jl kl k jk ce qu montre que la matrce nverse de Q est e = Q e j j T Q. En partculer on tre la relaton nverse:.. Vecteurs Sot V un vecteur de composantes V dans la base e, e, e et V dans la base e, e, e. 3 3 V Ve = = Ve Golay MMC - -

13 Notatons tensorelles En utlsant la matrce de passage V Ve = = VQ e sot k k V = VQ et V = VQ k k k k ou encore, en notaton matrcelle V Q V et V Q T = = V { } { } { } { } Remarque: le produt scalare est un nvarant, c est à dre que cette foncton est ndépendante du repère chos. En notaton ndcelle V. W = VW = VQ WQ = δvw = VW = VW. et en notaton matrcelle k k k j kj j j T V. W = V { W } = Q { V} Q { W } T = V Q Q { W} = V { W} = VW...3 Applcaton lnéare Sot A une applcaton lnéare, de composantes A dans la base e, e, e. et A dans la base e, e, e. j 3 j 3 En notaton ndcelle d où W = AV = Q W = Q A V = Q A Q V k k j j j jm m j jm km k A = Q A Q k j jm km et en notaton matrcelle W A V Q W Q A V Q A Q T = = = = V sot { } { } { } { } { } A = Q A Q T..4 Forme blnéare Sot A une applcaton lnéare, de composantes A dans la base e, e, e. et A dans la base e, e, e. j 3 j 3 AV (, W) = AVW = AVW = AQ VQ W j j j j j k k mj m sot A = AQ Q km j k mj et en notaton matrcelle AV (, W ) = V A { W} V A = { W } = T T T T Q V A Q W = V Q A Q W { } { } { } Golay MMC

14 MMC sot A = Q A Q T..5 Tenseur d ordre Sot T un tenseur d ordre, en notaton ndcelle pus T = T e e = T e e = TQ e Q e = TQ Q e e km j j j j j k k mj m j k mj k m T = T Q Q j k mj Permutatons et détermnants. Les symboles de permutaton On ntrodut les symboles de permutaton ε jk + s, j, k est une permutaton pare de,, 3 = s, j, k est une permutaton mpare de,, 3 s deux ndces sont répétés Ces symboles représentent le produt mxte des vecteurs de base ( e, e, e ) ε = jk j k ε sont les composantes d un tenseur du trosème ordre, qu représente, par exemple, la forme trlnéare jk produt mxte: U, V, W =ε UVW ( ) jk j k Avec un peu de patence on peut démontrer les résultats suvants δ δ δ ε ε Det = δ δ δ δ δ δ ε ε = δ δ δ δ jk mn jm kn jn km ε ε = δ jk jn km ε ε = 6 jk jk l m n jk lmn jl jm jn kl km kn. Détermnant d une matrce Les symboles de permutaton permettent le calcul du détermnant d une matrce par ou encore ε Det( A) = ε jk A A A mnp m jn kp (.9) Det( A) = ε ε 6 A A A jk mnp m jn kp On peut également détermner l nverse d une matrce Golay MMC - 4 -

15 Notatons tensorelles B = A et B = Det( A) ε ε A A j mn jpq mp nq.3 Polynôme caractérstque Les valeurs propres d un tenseur du second ordre sont obtenues par la résoluton de l équaton caractérstque sot en développant P( λ) = Det( A λi ) ou encore ε ε ( A λδ )( A λδ )( A λδ ) = jk mnp m m jn jn kp kp 6 P( λ) = I λi + λ I λ 3 3 avec I ε ε A A A Det( A) 3 jk mnp m jn kp = 6 = I = A A A A = ( Tr A ) Tr A I = A = Tr A jj j j I, I, I sont appelés les nvarants fondamentaux du tenseur A. 3.4 Adjont d un tenseur antsymétrque Sot Ω un tenseur antsymétrque Ω = Ω Ω Ω Ω Ω Ω 3 on peut également lu assocer le vecteur sot ω Ω 3 3 ω 3 Ω ω = ω = Ω ω ω 3 Ω = ω ω 3 ω ω Le vecteur ω est le vecteur adjont du tenseur antsymétrque Ω. En notaton ndcelle on a: Ω = ε ω j jk k ω = ε Ω jk jk (.) Golay MMC

16 MMC 3 Calcul vectorel et analyse vectorelle 3. Calcul vectorel Le produt vectorel c = a b s écrt en notaton ndcelle ce =ε a be jk j k On peut montrer que ( a b) c = ( a c) b ( b c) a a b c d = a c b d a d b c ( ) ( ) ( )( ) ( )( ) 3. Analyse vectorelle On note d une vrgule la dérvée partelle, sot exprmés dans un repère cartésen orthonormé., =. Les opérateurs exposés dans cette parte seront x * Sot f une foncton scalare Le gradent d une foncton scalare est un vecteur f x f grad f = f = f e =, x f x 3 Le laplacen d une foncton scalare est un scalare * Sot v un vecteur f f f f = f = + +, x x x 3 La dvergence d un vecteur est un scalare v v v Dv v = v = + +, x x x 3 3 Le rotatonnel d un vecteur est un vecteur v v 3 x x 3 v v 3 rot v = v = ε v e = jk k, j x x 3 v v x x Le gradent d un vecteur est une matrce Golay MMC - 6 -

17 Notatons tensorelles v v v x x x 3 v v v v = v e e =, j j x x x 3 Le laplacen d un vecteur est un vecteur v v v x x x 3 v v v + + x x x 3 v v v v v = v e = v, jj + + = x x x 3 v 3 v v v x x x 3 * Sot T un tenseur du second ordre La dvergence d un tenseur est un vecteur T T T + + x x x T T T DvT = T e = j, j + + x x x T T T + + x x x * Quelques formules utles Dv( f a) = f Dva + a grad f Dv( a b) = b rota a rotb Dv( rota) = rot ( grad f) = grad( f g) = f gradg + ggrad f rot ( f a) = f rota + grad f a Dv( grad f) = f rot rot a = grad Dv a a ( ) ( ) 3.3 Transformaton d ntégrales Sot Ω un domane borné et Ω sa frontère, de normale n. Sot φ une foncton scalare, alors φ n ds = gradφ dv Ω Sot A un vecteur, alors A n ds = Ω Ω Dv( A) dv Ω Golay MMC

18 MMC Sot T un tenseur, alors T n ds = Ω Ω DvT ( ) dv Sot Ω un domane plan de normale n, de frontère Γ. Sot U un vecteur défn sur ce domane. S τ est le vecteur untare tangent à Γ, alors rotu ( ) n ds = U τ dl Ω Tous ces résultats sont ssus du théorème de la dvergence t n ds = t dv Ω jkl l Ω jkl, l Γ 4 Formules essentelles en Mécanque des Mleux Contnus 4. Coordonnées cartésennes orthonormées OM = xe + ye + ze x y z * Sot v = v e + v e + v e x x y y z z un vecteur, alors et v v v x x x x y z v v v v y y y ( v) = v = e e = v e e = j, j j x x y z j v v v z z z x y z v v v v dvv = = v = Tr( grad( v) ) = v : I = + + x x y z x y z, v = = = = + + ( ( )) v dv v e v e v e v e ve, jj x x y y z z x x j j * Sot f une foncton scalare, alors et f x f f grad( f ) = f = e = f e =, y x f z f f f f f = dv( grad( f )) = = f = + +, jj x x x y z j j xx xy xz j j yx yy yz T T T zx zy zz T T T * Sot T = T e e = T T T un tenseur symétrque du deuxème ordre, alors: Golay MMC - 8 -

19 Notatons tensorelles et T T xx xy T xz + + x y z T T T T j yx yy yz dv( T) = e = T e = j, j + + x x y z j T T zx zy T zz + + x y z T T T T xx xy xz j T = e e = T e e = T T T j j, kk j yx yy yz x x k k T T T zx zy zz 4. Coordonnées cylndrques OM OM OM OM = re + ze et = e, = e, = e r z r θ z r r θ z d( OM) = edr + rdθe + e dz r θ z e e e r θ z =, =, = r r r e e e r θ z = e, = e, = θ r θ θ θ e e e r θ z =, =, = z z z * Sot v = ve + v e + ve r r θ θ z z un vecteur, alors et v v v r r r v r r θ θ z v ( ) v v θ θ θ grad v = v = + vr r r θ z vz v v z z r r θ z r r z dv v Tr ( ( v) ) v I v v v v θ = = : = r r r θ z v v v v ( ) r r v dv v θ v θ e v = = e v e θ r θ r r θ r r r θ z z * Sot f une foncton scalare, alors f f f grad( f ) = f = e + e + e r θ z r r θ z et f f f f f = dv( f) = r r r r θ z Golay MMC

20 MMC * Sot T T T T rr rθ rz θr θθ θz T T T zr zθ zz = T T T un tenseur symétrque du deuxème ordre, alors: Trr T T T T rθ rz rr r r θ z r T T T T θr θθ θz rθ dv( T) = r r θ z r Tzr T T T zθ zz zr r r θ z r θθ 4.3 Coordonnées sphérques OM OM OM OM = re et = e, = e, = e r r θ r r θ rsnθ φ d( OM) = edr + rdθe + rsnθ dφe r θ φ e e e r θ φ =, =, = r r r e e r θ e φ = e, = e, = θ r θ θ θ e e e r θ φ = snθe, = cosθe, = snθe cosθe φ φ r θ φ φ φ Sot v = v e + v e + v e un vecteur, alors r r θ θ φ φ φ et v v r r v r v v θ φ r r θ r snθ φ v v v θ θ grad( v) v θ = = v + cotgθv r r r θ r snθ φ v φ r φ v v φ φ + cotgθv + v θ r r θ r snθ φ v v r r v v v θ φ θ dvv = v : I = cotgθ r r r θ r snθ φ r (sn θv ) v φ θ v v + + r r r snθ θ snθ φ v v r cos v θ θ φ v = dv( ( v) ) = v + θ r θ sn θ sn θ φ v v v r θ φ v cotgθ + + φ r snθ φ φ snθ Golay MMC - -

21 Notatons tensorelles * Sot f une foncton scalare, alors et * Sot T f r f grad( f ) = r θ f r snθ φ f f f f f = dv( grad( f )) = + + cotgθ + r r θ r θ r sn θ φ rr rθ rφ θr θθ θφ T T T φr φθ φφ T T T = T T T un tenseur symétrque du deuxème ordre, alors: T T T rr rθ rφ cot r r θ r snθ φ r T r ( ) T T θ θθ θφ dv T = ( T T ) cotg + 3T r r θ r snθ φ r T r T T φ φθ φφ ( T cotgθ + 3 T θφ rφ) r r θ r snθ φ r 4.4 Comment retrouver les formules Nous nous plaçons par exemple en coordonnées cylndrques. On note v ve v e ve = + + = ve r r θ θ z z avec = r, θ, z et, =,, r r θ z Donc, avec cette conventon e e θ r e = et e = r, θ θθ, r r ( T T T T gθ rr θθ φφ rθ ) ( θ θθ φφ rθ) Chercher le gradent d un tenseur consste à augmenter l ordre de ce tenseur, sot ( ) = ( ) j e, j S on applque cette remarque à un vecteur, on obtent: ( v ) ( ve = ) e, j j En n oublant pas de dérver les vecteurs de base, car nous sommes dans un système de coordonnées cylndrque, v = v e e + v e e = v e e + v e e, j j, j j, j j, θ θ = v e e + v e e + v e e, j j r r, θ θ θ θθ, θ vr vθ = v e e + e e e e, j j θ θ r θ r r Pour obtenr l opérateur dvergence, l sufft de contracter doublement avec le tenseur unté d ordre, dv( ) = ( ): sot dans le cas d un vecteur: - - Golay MMC

22 MMC v v v r r r v v θ z dv( v) = ( v) : = v + = + + +, r r r r θ z et donc l opérateur Laplacen pour un scalare ϕ, r ϕ ϕ ϕ ϕ ϕ = dv( ϕ) = ϕ + = + + +, r r r r r θ z Applquons mantenant cette méthodologe à un tenseur d ordre. ( T) = ( T e e j j ) e, k k = T e e e + T e e e + T e e e = T e e e + T e e e + T e e e j, k j k j, k j k j j, k k j, k j k j, θ j θ j j, θ θ Trj Tθj = T e e e + e e e e e e j, k j k θ j θ r j θ r r T T r θ + e e e e e e θ θ r θ r r Pour obtenr la trace de ce tenseur d ordre 3 on contracte les deux derners ndces: T T T r r dv T θ θθ = ( T) : = T e + e e + e j, j θ r r r r Trr T T T T rθ rz θθ rr = e r r r θ z r r T r T T T T θ θθ θz rθ θr e θ r r θ z r r Tzr T T T zθ zz zr e z r r θ z r On peut donc mantenant retrouver l opérateur Laplacen d un vecteur : v = dv v ( ) v v θ r v v v v + r, θ θθ, v r, θ θθ, r r, r = v e + e e + e e + e, jj θ r θ r r r r r r v v r v v θ r θ v e v = e v e r r θ θ z z r θ r r θ r Golay MMC - -

23 Notatons tensorelles 5 A retenr Conventon de sommaton : V = Ve Produts tensorels : u v uv uv u v = uve e = uv uv uv j Symboles de permutaton : j 3 3 u v u v u v ε + = ( e, e, e ) = jk j k s, j, k est une permutaton pare de,, 3 s, j, k est une permutaton mpare de,, 3 s deux ndces sont répétés Produt vectorel : c = a b =ε a b e jk j k Quelques opérateurs : Dv v = v,, rot v = v =ε v e jk k, j, v = v e e, j j, DvT = T e j, j En systèmes de coordonnées cylndrque ou sphérque, meux vaut utlser un formulare! Golay MMC

24 MMC Golay MMC - 4 -

25 Cnématque CINEMATIQUE Le mouvement et ses représentatons. Confguraton L espace physque est rapporté à un repère orthonormé drect ( O, e, e, e ). L ensemble des partcules ou 3 ponts matérels consttuant le mleu contnu étudé, occupe à chaque nstant t, un ensemble de postons dans l espace: c est la confguraton du système à l nstant t, noté Ω ( t) (d ntéreur Ω ( t) et de frontère Ω ( t) ). On ntrodut auss la noton de confguraton de référence: c est la confguraton partculère du système à un nstant t fxé. Souvent on prendra Ω = Ω (), et on parlera alors de confguraton ntale. Toute partcule M de Ω est repérée par son vecteur poston X ( t) dans la confguraton de référence. Toute partcule M de Ω ( t) est repérée par son vecteur poston x( t) dans la confguraton actuelle (à l nstant t). e Ω Φ ( X, t) e 3 e Ω M X Ω( t) Fgure : Confguratons de référence et actuelle u X t (, ) Ωt ( ) M x La poston de chaque partcule M sera donc détermnée s on connaît sa poston dans la confguraton de référence et une foncton Φ telle que: x( t) = Φ ( X, t) (.) Φ défnt le mouvement par rapport à ( O, e, e, e ). On devra donc détermner tros fonctons scalares, telles 3 que: x = Φ ( X, X, X, t) 3 x = Φ ( X, X, X, t) 3 x = Φ ( X, X, X, t) (.) Dre que le mleu est contnu, c est dre que Φ est une foncton contnue et bunvoque de X. On supposera que Φ est dfférentable. Le déplacement par rapport à la confguraton Ω, à l nstant t, de la partcule M est le vecteur u( X, t) = x( X, t) X (.3) Golay MMC

26 MMC. Varables de Lagrange et varables d Euler Une grandeur attachée à une partcule (masse volumque, vtesse,...) peut être défne, - Sot en foncton de X et t : varables de Lagrange - Sot en foncton de x et t : varables d Euler Le vecteur vtesse d une partcule M est défn par dom Φ ( X, t) V( X, t) = = t Le vecteur accélératon d une partcule M est défn par dv ( X, t) Φ ( X, t) Γ ( X, t) = = t (.4) (.5).. Trajectore On appelle trajectore d une partcule, la courbe géométrque leu des postons occupées par cette partcule au x( t) = Φ X, t est une représentaton paramétrée en temps de la trajectore. Par défnton cours du temps. ( ) de la vtesse, dom dx dx dx V( x, t) = = e + e + e 3 3 les trajectores peuvent être obtenues par la résoluton des tros équatons dx dx dx 3 = = = V ( x, x, x, t) V ( x, x, x, t) V ( x, x, x, t) (.6) Lgnes de courant A un nstant donné, on appelle lgnes de courant du mouvement, les lgnes qu sont en tout pont tangentes au vecteur vtesse de la partcule stuée en ce pont. Sot pour t fxé, deux équatons: dx dx dx 3 = = V ( x, x, x, t) V ( x, x, x, t) V ( x, x, x, t) (.7) Remarque: Pour un mouvement statonnare (ou permanent) V( x, t) = V( x). Les lgnes de courant et les trajectores sont confondues..3 Dérvées partculares.3. Défnton Lorsque l on sut une partcule dans son mouvement, la grandeur A attachée à la partcule ne dépend que de t. Par défnton, on appelle dérvée partculare de A à l nstant t, la dérvée de A par rapport à la seule varable t. En varables de Lagrange: A = A( X, t) da A ( X, t) = ( X, t) t En varables d Euler: A = A( x, t) (.8) Golay MMC - 6 -

27 Cnématque A A dax (, t) = ( x, t) + ( x, t) dx t xj da A A dxj ( x, t) = ( x, t) + ( x, t) t x j da A A ( x, t) = ( x, t) + ( x, tv ) j t x j j ou encore da A = + ( V ) A t.3. Applcaton à l accélératon dv ( x, t) V Γ ( x, t) = = + ( V ) V t que l on peut également écrre V Γ ( x, t) = + V + rotv V t (.9) (.) Déformaton d un mleux contnu. Noton de déformaton On dra qu un mleu contnu en mouvement subt des déformatons s les dstances relatves des ponts matérels varent au cours du temps. En dfférencant (.), on obtent: Φ dx( t) = Φ dx dxe = dx e j X j On note F l applcaton lnéare qu fat passer de l espace vectorel dans lequel peut varer dx dans l espace vectorel où vare a pror dx. Cette applcaton lnéare, appelée tenseur gradent ou applcaton lnéare tangente, permet donc le passage de la confguraton Ω à la confguraton Ω ( t). e 3 e Ω dx Ω F Ωt ( ) Ωt ( ) M dx e M Fgure : Applcaton lnéare tangente En notaton ndcelle, F j x x x X X X 3 Φ x x x x = = sot F = X X X X X j j 3 x x x X X X 3 (.) Golay MMC

28 MMC. Tenseur des déformatons.. Défnton Le tenseur gradent décrt la transformaton locale au vosnage d une partcule donnée. Afn de rendre compte des déformatons, c est à dre des changements de forme autour de cette partcule, on s ntéresse à l évoluton du produt scalare de deux vecteurs matérels prs respectvement dans les deux confguratons Ω et Ω ( t). Consdérons tros partcules vosnes X, X + dx, X + dx. Après déformatons, elles occupent dans Ω ( t) les postons respectves x, x + dx, x + dx. e 3 e Ω dx Ω dx Ωt ( ) dx M dx Ω( t) e M Fgure 3 : Noton de déformaton x k k dx dx F( X t) dx F( X t) dx dx x =,, = dx j X X j d où sa varaton autour de la transformaton x x k k dx dx dx dx = δ dxdx F F δ dxdx j = j k kj j j X X j sot dx dx dx dx = dxεdx en posant T ε = F ( X, t) F( X, t) (.) L applcaton lnéare ε est appelée tenseur des déformatons. Cette applcaton est symétrque mas dépend ben sûr de la base( O, e, e, e ) ntalement chose. 3.. Remarques * S l n y a pas de déformatons, alors ε = (et nversement). * T C = F F est appelé le tenseur des dlatatons. Ce tenseur est symétrque. On peut démontrer: Théorème : Les valeurs propres de C sont strctement postves. Théorème : Det F > t Théorème 3: ε est symétrque et possède les mêmes vecteurs propres que C. * Varaton de longueur Sot dx = dx = dl e x et dx = dl, alors Golay MMC - 8 -

29 Cnématque dx dx dx dx dl dl dx ε dx = = = dl ε xx ou encore, s les déformatons sont pettes dl dl dl = + ε + ε ε dl dl xx xx xx ε représente au premer ordre la varaton de longueur dans la drecton x. xx * Varaton d angle Sot dx = dl e x, dx = dl e y, alors ou encore, dx dx dx dx = dldl = dx dx = dl ε = cosθ + ε + ε xy xx yy cosθ ε ε xy donc ε représente au premer ordre la varaton d angle entre les drectons x et y. xy..3 Autre écrture D après (.3) et (.) sot x u F( X, t) = ( X, t) = + ( X, t) X X T T u ( ) u u ( ) u ε = X t X t ( X t) ( X t), +, +,, X X X X (.3) ou encore en notaton ndcelle ε j u u j u u k k = + + X X X X j j..4 Cas des pettes perturbatons Cette hypothèse correspond au cas où u( X, t) u et ( X, t ) X sont petts. En reprenant () et en ne retenant que les termes d ordre, on obtent: ε HPP T u ( X t) u = ( X t), +, X X (.4) ou encore en notaton ndcelle ε jhpp u u j = + X X j Golay MMC

30 MMC.3 Condtons de compatblté A tout déplacement u on fat correspondre une déformaton ε. On peut auss se poser le problème nverse. Ce problème est dt problème de compatblté géométrque d un champ de déformaton, ou encore problème d ntégrablté d un champ de déformaton. Les condtons de compatblté peuvent être étables dans le cas général, cependant nous ne les établrons que dans le cas des pettes perturbatons. Décomposons mantenant le gradent des déplacements en une parte symétrque ε et une parte antsymétrque ω. On a u ( X, t ) = ε( X, t ) + ω( X, t ) X T u u j ( ) u u ω = X t ( X t) ω j,, = X X X X j ω = ε ε j, k k, j jk, sot en dérvant une nouvelle fos ω = ω, j, k, l dans{,, 3} j, kl j, lk ou encore, j, k, l ε + ε ε ε = j, kl kl, j k, jl jl, k (.5) permutaton crculare Sx équatons ε = ε + ε +,,, ε + ε ε ε + permutaton crculare 3, 3 3, 3, 33 33, Récproquement, s ε vérfe (.5), alors les formes dfférentelles = dx j k, j jk, k dω ε ε sont exactes; elles permettent donc de construre le champ ω de tenseur antsymétrque. On vérfe ensute que les formes dfférentelles du = ω ε dx + k k k sont exactes, d où la possblté de construre un champ de déplacement u( X, t) défn dans Ω. 3 Transport, dérvées partculares 3. Transport d un volume Sot dω un élément de volume de la confguraton de référence, défn par tros vecteurs dx, dx, dx 3. Par la transformaton, ces tros vecteurs se transportent en tros vecteurs dx, dx, dx qu défnssent dans la 3 confguraton actuelle un volume dω. Golay MMC - 3 -

31 Cnématque dx dx 3 dω 3 dx dω dx dx dx Fgure 4 : Transport d un élément de volume Le volume dω est représenté par le produt mxte des vecteurs dx, dx, dx 3 : donc dω = dx dx dx dω =ε Or, d après (.) dω =ε et, d après (.9) donc en défntve ( ) 3 dx dx dx jk j k 3 F F F dx dx dx jk jp kq r p q 3r dω = ε det( F) dx dx dx = det( F) dx dx dx ( ) pqr p q 3r 3 dω = Det( F) dω (.6) 3. Transport d une surface orentée Sot ds un élément de surface de la confguraton de référence de normale N. Par la transformaton, cette surface se transporte en une surface ds de normale n dans la confguraton actuelle. En consdérant un vecteur V dans la confguraton de référence qu se transporte en un vecteur v dans la confguraton actuelle, on peut défnr l élément de volume ( ds N) V qu se transporte en un élément de volume ( ds n) v. ds N ds n D après (.6) ds n v = det( F) ds N V et comme avec (.) v = FV Fgure 5 : Transport d un élément de surface T ds n FV ds = F n V = detf ds N V Golay MMC

32 MMC on obtent fnalement T ds n = det( F) F ds N (.7) 3.3 Dérvée partculare d une ntégrale de volume K( t) = k( x, t) dω Sot Ω( t), une ntégrale de volume sur le domane Ω ( t) dans la confguraton de référence. Pour en détermner la dérvée temporelle, nous devons au préalable exprmer K ( t) sur la confguraton de référence pour "passer" la dérvaton sous l ntégrale. En effectuant le changement de varable (.), et en utlsant (.6) dω = Det( F) dω = J dω on obtent K( t) = k( ϕ( X, t), t) J dω pus Ω dk dk dj = J k + dω Ω A ce stade nous devons explcter dj /. En utlsant les notatons ndcelles, et en partculer les symboles de permutaton, on a: sot or J = detf = ε ε F F F 6 dj = ε ε jk pqr jk pqr p jq kr F p t F F jq kr F ϕ ( X, t) ϕ v x v ( ( )) ( ( )) p l = = V X t v x t F lp t t X X =, =, = = t X X x X x p p p p l p l donc dj = ε ε jk pqr v F F F x l lp jq kr mas ε F F F pqr lp jq kr = ε ljk detf sot dj v v v = ε ε detf = δ detf = J jk ljk l x x x l l dj J dvv = (.8) En reportant dans l expresson de dk / dk dk = J k J dvv + d Ω Ω Golay MMC - 3 -

33 Cnématque pus en exprmant l ntégrale sur la confguraton actuelle, on obtent fnalement dk dk = k dvv + dω Ω( t) (.9) En utlsant les égaltés suvantes, dk k = + v k t dv( kv ) = v k + kdvv on peut écrre (.9) sous la forme dk k = dv ( t) ( kv + ) dω Ω t ou encore, en utlsant le théorème de la dvergence dk k = ( t) d Ω+ Ω Ω( t) kv n d Ω t Applcaton fondamentale: conservaton de la masse La masse d un système matérel qu on sut dans son mouvement reste constante. M = ρ( x, t) dω dm Ω( t) = et où ρ est la masse volumque. On a alors: dρ + ρ dvv = ρ + dv ou ( ρv) = t (.) 3.4 Dérvée partculare d une ntégrale de surface Sot K( t) = k( x, t) n dσ, une ntégrale de volume sur le domane Σ ( t) dans la confguraton de Σ( t) référence. Pour en détermner la dérvée temporelle, nous devons au préalable exprmer K ( t ) sur la confguraton de référence pour "passer" la dérvaton sous l ntégrale. En effectuant le changement de varable (.), et en utlsant (.7) on obtent T dσ n = det( F) F dσ N T K( t) = k ( X, t), t J F dσ N ( ϕ ) Σ pus T = J F N k J F N + dσ T dk dk d Σ T on dot donc calculer df / df df df df F F = I F + F = = F F Golay MMC

Utilisation du symbole

Utilisation du symbole HKBL / 7 symbole sgma Utlsaton du symbole Notaton : Pour parler de la somme des termes successfs d une sute, on peut ou ben utlser les pontllés ou ben utlser le symbole «sgma» majuscule noté Par exemple,

Plus en détail

Champ magnétique. 1 Notions préliminaires. 1.1 Courant électrique et densité de courant

Champ magnétique. 1 Notions préliminaires. 1.1 Courant électrique et densité de courant 4 Champ magnétque 1 Notons prélmnares 1.1 Courant électrque et densté de courant Un courant électrque est défn par un déplacement de charges électrques élémentares (ex : les électrons de conducton dans

Plus en détail

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i Exercces avec corrgé succnct du chaptre 3 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qu apparassent dans ce texte sont ben défns dans la verson écran complète

Plus en détail

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique Spécale PSI - Cours "Electromagnétsme" 1 Inducton électromagnétque Chaptre IV : Inductance propre, nductance mutuelle. Energe électromagnétque Objectfs: Coecents d nductance propre L et mutuelle M Blan

Plus en détail

Le théorème du viriel

Le théorème du viriel Le théorème du vrel On se propose de démontrer le théorème du vrel de deux manères dfférentes. La premère fat appel à deux "trcks" qu l faut vor. Cette preuve met en avant une quantté, notée S c, qu permet

Plus en détail

Valeur absolue et fonction valeur absolue Cours

Valeur absolue et fonction valeur absolue Cours Valeur absolue foncton valeur absolue Cours CHAPITRE 1 : Dstance entre deu réels 1) Eemples prélmnares 2) Défnton 3) Proprétés CHAPITRE 2 : Valeur absolue d un réel 1) Défnton 2) Proprétés CHAPITRE 3 :

Plus en détail

SIMNUM : Simulation de systèmes auto-gravitants en orbite

SIMNUM : Simulation de systèmes auto-gravitants en orbite SIMNUM : Smulaton de systèmes auto-gravtants en orbte sujet proposé par Ncolas Kelbasewcz : ncolas.kelbasewcz@ensta-parstech.fr 14 janver 2014 1 Établssement du modèle 1.1 Approxmaton de champ lontan La

Plus en détail

Cours de Calcul numérique MATH 031

Cours de Calcul numérique MATH 031 Cours de Calcul numérque MATH 03 G. Bontemp, A. da Slva Soares, M. De Wulf Département d'informatque Boulevard du Tromphe - CP22 http://www.ulb.ac.be/d Valeurs propres en pratque. Localsaton. Méthode de

Plus en détail

Université d El Oued Cours Circuits Electriques 3 LMD-EM

Université d El Oued Cours Circuits Electriques 3 LMD-EM ère parte : Electrocnétque Chaptre ntroducton L Electrocnétque est la parte de l Electrcté qu étude les courants électrques. - Courant électrque -- Défntons Défnton : un courant électrque est un mouvement

Plus en détail

Exercices d Électrocinétique

Exercices d Électrocinétique ercces d Électrocnétque Intensté et densté de courant -1.1 Vtesse des porteurs de charges : On dssout une masse m = 20g de chlorure de sodum NaCl dans un bac électrolytque de longueur l = 20cm et de secton

Plus en détail

CHAPITRE DEUX : FORMALISME GEOMETRIQUE

CHAPITRE DEUX : FORMALISME GEOMETRIQUE CHPITRE DEUX FORMLISME GEOMETRIQUE. CHPITRE DEUX : FORMLISME GEOMETRIQUE verson.3, -8 I. GEOMETRIE DNS L ESPCE-TEMPS ) Prncpe de relatvté Le prncpe de relatvté peut s exprmer ans : toutes les los physques

Plus en détail

Physique UE3 PACES. 4 e édition. Salah Belazreg

Physique UE3 PACES. 4 e édition. Salah Belazreg PACES Physque UE3 PACES Physque UE3 Salah Belazreg Professeur agrégé et docteur en physque, l ensegne au lycée Camlle Guérn à Poters. Il a ensegné la bophysque en classes préparatores aux concours de

Plus en détail

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2 Exo7 Nombres complexes Vdéo parte. Les nombres complexes, défntons et opératons Vdéo parte. Racnes carrées, équaton du second degré Vdéo parte 3. Argument et trgonométre Vdéo parte 4. Nombres complexes

Plus en détail

Grandeurs de réaction et de formation

Grandeurs de réaction et de formation PSI Brzeux Ch. hermochme 1 : grandeurs de réacton et de formaton 1 C H A P I R E 1 r a p p e l s e t c o m p l é m e n t s ) Grandeurs de réacton et de formaton 1. RAPPELS 1.1. Phases et consttuants Donnons

Plus en détail

MECANISMES MODELISES

MECANISMES MODELISES MEANISMES MODELISES Les évaluatons de sûreté relatves aux nstallatons de stockage de déchets radoactfs en couche géologque profonde nécesstent la compréhenson et la modélsaton d une part des systèmes hydrogéologques

Plus en détail

Corrélation et régression linéaire

Corrélation et régression linéaire Corrélaton et régresson lnéare 1. Concept de corrélaton. Analyse de régresson lnéare 3. Dfférences entre valeurs prédtes et observées d une varable 1. Concept de corrélaton L objectf est d analyser un

Plus en détail

SIMULATION D UN JET TURBULENT POUR LE REFROIDISSEMENT DES AUBES DE TURBINE

SIMULATION D UN JET TURBULENT POUR LE REFROIDISSEMENT DES AUBES DE TURBINE 10 ème Sémnare Internatonal sur la Physque Energétque 10 th Internatonal Meetng on Energetcal Physcs SIMULAION D UN JE URBULEN POUR LE REFROIDISSEMEN DES AUBES DE URBINE Bounegta Bachr 1, Abdelarm Maamar

Plus en détail

Exercices d algorithmique

Exercices d algorithmique Exercces d algorthmque Les algorthmes proposés ne sont pas classés par ordre de dffculté Nombres Ecrre un algorthme qu renvoe la somme des nombre entre 0 et n passé en paramètre Ecrre un algorthme qu renvoe

Plus en détail

Chapitre 1 : Images données par une lentille mince convergente

Chapitre 1 : Images données par une lentille mince convergente Chaptre 1 : Images données par une lentlle mnce convergente Termnale S Spécalté Chaptre 1 : Images données par une lentlle mnce convergente bectfs : - Constructon graphque de l mage d un obet plan perpendculare

Plus en détail

V FORMATION DES IMAGES DANS L EXEMPLE DU MIROIR PLAN

V FORMATION DES IMAGES DANS L EXEMPLE DU MIROIR PLAN Chaptre V page V-1 V FORMTION DES IMGES DNS L EXEMPLE DU MIROIR PLN Le but de ce chaptre est d ntrodure la noton d mage { travers l exemple du mror plan. Vous vous êtes sûrement déjà regardé(e) dans un

Plus en détail

Montage émetteur commun

Montage émetteur commun tour au menu ontage émetteur commun Polarsaton d un transstor. ôle de la polarsaton La polarsaton a pour rôle de placer le pont de fonctonnement du transstor dans une zone où ses caractérstques sont lnéares.

Plus en détail

C Notice technique K-Réa v3 C. NOTICE TECHNIQUE

C Notice technique K-Réa v3 C. NOTICE TECHNIQUE C. NOTICE TECHNIQUE C.1. Introducton et grands prncpes... 5 C.1.1. Objet du calcul et champ d applcaton... 5 C.1.2. Introducton aux méthodes de calcul et vérfcatons proposées... 6 C.1.2.1. Présentaton

Plus en détail

Remboursement d un emprunt par annuités constantes

Remboursement d un emprunt par annuités constantes Sére STG Journées de formaton Janver 2006 Remboursement d un emprunt par annutés constantes Le prncpe Utlsaton du tableur Un emprunteur s adresse à un prêteur pour obtenr une somme d argent (la dette)

Plus en détail

Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 Année 2011 12. TD4. Tribus.

Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 Année 2011 12. TD4. Tribus. Unversté Perre & Mare Cure (Pars 6) Lcence de Mathématques L3 UE LM364 Intégraton 1 Année 2011 12 TD4. Trbus. Échauffements Exercce 1. Sot X un ensemble. Donner des condtons sur X pour que les classes

Plus en détail

Généralités sur les fonctions 1ES

Généralités sur les fonctions 1ES Généraltés sur les fonctons ES GENERALITES SUR LES FNCTINS I. RAPPELS a. Vocabulare Défnton Une foncton est un procédé qu permet d assocer à un nombre x appartenant à un ensemble D un nombre y n note :

Plus en détail

Les jeunes économistes

Les jeunes économistes Chaptre1 : les ntérêts smples 1. défnton et calcul pratque : Défnton : Dans le cas de l ntérêt smple, le captal reste nvarable pendant toute la durée du prêt. L emprunteur dot verser, à la fn de chaque

Plus en détail

TRANSFERT DE CARGAISON CALCULS ET ARRONDIS

TRANSFERT DE CARGAISON CALCULS ET ARRONDIS TRANSFERT DE CARGAISON CALCULS ET ARRONDIS SOMMAIRE 1. Méthode de détermnaton de l énerge transférée lors du transfert d une cargason de. Calcul de l énerge transférée.1 Calcul de l énerge brute transférée.1.1

Plus en détail

Calcul de structure en fatigue vibratoire. Fascicule u2.05 : Mécanique de la rupture et de l'endommagement

Calcul de structure en fatigue vibratoire. Fascicule u2.05 : Mécanique de la rupture et de l'endommagement Ttre : Calcul de structure en fatgue vbratore Date : 14/11/2012 Page : 1/9 Calcul de structure en fatgue vbratore 1 But Ce document a pour but de décrre la mse en œuvre d'un calcul de structure en fatgue

Plus en détail

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique Ch 4 Séres statstques à une dmenson Défntons et représentaton graphque Termnologe Ensemble étudé = populaton Eléments de cet ensemble = ndvdus ou untés Attrbut consdéré = caractère qu peut être qualtatf

Plus en détail

Maquette Tournesol Soleil, Terre et rotations La géométrie et mathématiques du système Maquette pour comprendre PhM Observatoire de Lyon

Maquette Tournesol Soleil, Terre et rotations La géométrie et mathématiques du système Maquette pour comprendre PhM Observatoire de Lyon Maquette ournesol olel, erre et rotatons La géométre et mathématques du sstème Maquette pour comprendre hm Observatore de Lon Les repères classques éclptque (longtudes et lattudes éclptques) et équatoral

Plus en détail

Mesure avec une règle

Mesure avec une règle Mesure avec une règle par Matheu ROUAUD Professeur de Scences Physques en prépa, Dplômé en Physque Théorque. Lycée Alan-Fourner 8000 Bourges ecrre@ncerttudes.fr RÉSUMÉ La mesure d'une grandeur par un système

Plus en détail

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage Fche n 7 : Vérfcaton du débt et de la vtesse par la méthode de traçage 1. PRINCIPE La méthode de traçage permet de calculer le débt d un écoulement ndépendamment des mesurages de hauteur et de vtesse.

Plus en détail

Le Potentiel chimique

Le Potentiel chimique 44 Le Potentel chmque PIERRE DUHEM (1861 1916) 44.1 Grandeurs molares partelles 44.1.1 Varables de Gbbs Système polyphasé Nous étuderons dans la sute un système thermodynamque formé de pluseurs phases

Plus en détail

Oscillations électriques libres

Oscillations électriques libres Oscllatons électrues lbres A Oscllatons lbres amortes 1/ Etude expérmentale a Expérence et observatons Après avor chargé le condensateur (poston 1) On bascule l nterrupteur sur la poston, on obtent l oscllogramme

Plus en détail

Docteur de l École Nationale Supérieure d'arts et Métiers

Docteur de l École Nationale Supérieure d'arts et Métiers N : 009 ENAM 0008 Ecole doctorale n 43 : Scences des Méters de l Ingéneur H È S E pour obtenr le grade de Docteur de l École Natonale Supéreure d'arts et Méters Spécalté Mécanque présentée et soutenue

Plus en détail

Electricité II : Régimes sinusoïdaux et transitoires AC and transient circuit analysis Fascicule d'exercices de Travaux Dirigés

Electricité II : Régimes sinusoïdaux et transitoires AC and transient circuit analysis Fascicule d'exercices de Travaux Dirigés Electrcté II : égmes snusoïdaux et transtores and transent crcut analyss Fasccule d'exercces de Travaux Drgés 5 cours / Séances de TD / 5 séances de TP égmes snusoïdaux Nombre de séances de TD prévues

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2015 2016. Statistiques Descriptives

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2015 2016. Statistiques Descriptives UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année unverstare 215 216 L1 Économe Cours de B. Desgraupes Statstques Descrptves Séance 7: Indces synthétques Table des matères 1 Introducton 1 1.1

Plus en détail

Théorie des Nombres - TD1 Rappels d arithmétique élémentaire

Théorie des Nombres - TD1 Rappels d arithmétique élémentaire Unversté Perre & Mare Cure Master de mathématques 1 Année 2012-2013 Module MM020 Théore des Nombres - TD1 Rappels d arthmétque élémentare Exercce 1 : Trouver tous les enters n N tels que ϕ(n) = 6. Même

Plus en détail

Les domaines d'existence des deux solides sont représentés sur le graphe ci-dessous.

Les domaines d'existence des deux solides sont représentés sur le graphe ci-dessous. Concours Centralesupélec TSI 2011 corrge sous reserves I L'élément soufre et les sources naturelles de soufre I.A.1. Les règles pour obtenr la confguraton électronque d un atome dans son état fondamental

Plus en détail

VENTILATION DANS LES SILOS-TOURS CONVENTIONNELS À FOURRAGE

VENTILATION DANS LES SILOS-TOURS CONVENTIONNELS À FOURRAGE VENTILATION DANS LES SILOS-TOURS CONVENTIONNELS À FOURRAGE A. Bahloul a, R. Gravel a, B. Roberge a et N. Goyer a M. Chavez b et M. Reggo b a Insttut de Recherche Robert-Sauvé en Santé et Sécurté du Traval

Plus en détail

Dynamique du point matériel

Dynamique du point matériel Chaptre III Dynaqe d pont atérel I Généraltés La cnéatqe a por objet l étde des oveents des corps en foncton d teps, sans tenr copte des cases q les provoqent La dynaqe est la scence q étde (o déterne)

Plus en détail

La fourniture de biens et facteurs publics en présence de ménages et d entreprises mobiles

La fourniture de biens et facteurs publics en présence de ménages et d entreprises mobiles La fournture de bens et facteurs publcs en présence de ménages et d entreprses mobles Pascale Duran-Vgneron évrer 007 Le modèle On suppose un pays drgé par un gouvernement central ayant compétence sur

Plus en détail

Modélisation et simulation du démarrage d un véhicule à boite de vitesses automatique avec les bond graphs

Modélisation et simulation du démarrage d un véhicule à boite de vitesses automatique avec les bond graphs Modélsaton et smulaton du démarrage d un véhcule à bote de vtesses automatque avec les bond graphs Dragos N. CRUCERU, Andre N. MACIAC, Valeran CROIORESCU, Génevève DAUPHIN ANGUY Laboratore d Automatque,

Plus en détail

Modélisation et simulation des efforts de coupe en fraisage 2.5 axes

Modélisation et simulation des efforts de coupe en fraisage 2.5 axes 18 ème Congrès Franças de Mécanque Grenoble, 7-31 août 007 Modélsaton et smulaton des efforts de coupe en frasage.5 axes Adel Amn AMMAR, Zouber BOUAZIZ & Al ZGHAL Unté de recherche de mécanque des soldes

Plus en détail

Représentation de l'information

Représentation de l'information 1. L nformaton 1-1 Dualté état et temps Représentaton de l'nformaton La noton d'nformaton correspond à la connassance d'un état donné parm pluseurs possbles à un nstant donné. La Fgure 1 llustre cette

Plus en détail

Enseignement secondaire. PHYSI Physique Programme

Enseignement secondaire. PHYSI Physique Programme Ensegnement secondare Dvson supéreure PHYSI Physque Programme 3CB_3CC_3CF_3MB_3MC_3MF Langue véhculare : franças Nombre mnmal de devors par trmestre : 1 PHYSI_3CB_3CC_3CF_3MB_3MC_3MF_PROG_10-11 Page 1

Plus en détail

Chapitre 6. Economie ouverte :

Chapitre 6. Economie ouverte : 06/2/202 Chaptre 6. Econome ouverte : le modèle Mundell Flemng Elsabeth Cudevlle Le développement des échanges nternatonaux (bens et servces et flux fnancers) a rendu fortement nterdépendantes les conjonctures

Plus en détail

On dépose une espèce à une certaine concentration, puis on observe comment sa concentration se répartit en fonction de la distance.

On dépose une espèce à une certaine concentration, puis on observe comment sa concentration se répartit en fonction de la distance. Moblté des espèces en soluton I_ Les dfférents modes de transport En soluton, les molécules peuvent se déplacer selon tros modes dfférents : onvecton, la matère est déplacée par contrante mécanque (agtaton)

Plus en détail

Thermodynamique Classique

Thermodynamique Classique hermodynamque Classque Quelques défntons utles hermodynamque Classque http://hebergement.u-psud.fr/rmn/thermo/thermo.html Julen obroff, Magstère de Physque d Orsay, 009 el : 0 69 5 53 36 emal : bobroff@lps.u-psud.fr

Plus en détail

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h.

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h. A2 Analyser le système Converson statque de l énerge Date : Nom : Cours 2 h 1 Introducton Un ConVertsseur Statque d énerge (CVS) est un montage utlsant des nterrupteurs à semconducteurs permettant par

Plus en détail

- Equilibre simultané IS/LM : Pour déterminer le couple d équilibre général, il convient de résoudre l équation IS = LM.

- Equilibre simultané IS/LM : Pour déterminer le couple d équilibre général, il convient de résoudre l équation IS = LM. Exercce n 1 Cet exercce propose de détermner l équlbre IS/LM sur la base d une économe dépourvue de présence étatque. Pour ce fare l convent, dans un premer temps de détermner la relaton (IS) marquant

Plus en détail

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix?

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix? Note méthodologque Tratements hebdomadares Questlemonscher.com Quelle méthode de collecte de prx? Les éléments méthodologques ont été défns par le cabnet FaE onsel, socété d études et d analyses statstques

Plus en détail

Mémento de théorie de l information

Mémento de théorie de l information Mémento de théore de l nformaton Glles Zémor 6 octobre 204 0 Rappels de probabltés Espaces probablsés. Un espace probablsé (Ω, P ) est un ensemble Ω mun d une mesure de probablté P qu est, lorsque Ω est

Plus en détail

MODELISATION ET SIMULATION NUMERIQUE DES SYSTEMES ANALOGIQUES

MODELISATION ET SIMULATION NUMERIQUE DES SYSTEMES ANALOGIQUES MODELISATION ET SIMULATION NUMERIQUE DES SYSTEMES ANALOGIQUES Hervé MOREL Drecteur de Recherche - CNRS Herve.Morel@nsa-lyon.fr AMPERE - INSA de LYON mard 2 octobre 24 Modélsaton et smulaton des systèmes

Plus en détail

Cours Corporate finance

Cours Corporate finance Cours Corporate fnance Eléments de théore du portefeulle Le edaf Franços Longn www.longn.fr lan Notons de rentablté Défnton odélsaton Eléments de théore du portefeulle ortefeulle Dversfcaton Le edaf Le

Plus en détail

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction -

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction - EXAME FIAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSIO 1 - Correcton - Exercce 1 : 1) Consdérons une entreprse E comportant deux établssements : E1 et E2 qu emploent chacun 200 salarés. Au sen de l'établssement

Plus en détail

Chapitre III : Premier principe de la Thermodynamique. Système

Chapitre III : Premier principe de la Thermodynamique. Système Chaptre III : Premer prncpe de la Thermodynamque III.1. Langage thermodynamque Système : C est un corps ou un ensemble de corps de masse détermnée et délmtée dans l espace. Mleu extéreur : On consdère

Plus en détail

Proposition d'une solution au problème d initialisation cas du K-means

Proposition d'une solution au problème d initialisation cas du K-means Proposton d'une soluton au problème d ntalsaton cas du K-means Z.Guelll et L.Zaou, Unversté des scences et de la technologe d Oran MB, Unversté Mohamed Boudaf USTO -BP 505 El Mnaouer -ORAN - Algére g.zouaou@gmal.com,

Plus en détail

ASCENSEUR FLUVIAL FUNICULAIRE DE STREPY-THIEU

ASCENSEUR FLUVIAL FUNICULAIRE DE STREPY-THIEU ASCENSEUR FLUVIAL FUNICULAIRE DE STREPY-THIEU Le canddat est nvté à formuler toute hypothèse cohérente qu lu semblerat nécessare pour pouvor répondre aux questons posées. Page 1 sur 21 1. PRESENTATION

Plus en détail

Grandeur physique, chiffres significatifs

Grandeur physique, chiffres significatifs Grandeur physque, chffres sgnfcatfs I) Donner le résultat d une mesure en correspondance avec l nstrument utlsé : S avec un nstrument, ren n est ndqué sur l ncerttude absolue X d une mesure X, on consdère

Plus en détail

Prérequis de Mathématiques pour GMP

Prérequis de Mathématiques pour GMP Prérequs de Mathématques pour GMP V. Nolot Sommare. Rappels sur les vecteurs La noton de foncton. Foncton et graphe de foncton..................... Nombre dérvé et foncton dérvée.................. 3.3

Plus en détail

LES POMPES. Devant la grande diversité de situations possibles, on trouve un grand nombre de machines que l on peut classer en deux grands groupes :

LES POMPES. Devant la grande diversité de situations possibles, on trouve un grand nombre de machines que l on peut classer en deux grands groupes : Ste: http://gene.ndustrel.aa.free.fr LES POMPES Les pompes sont des apparels permettant un transfert d énerge entre le flude et un dspostf mécanque convenable. Suvant les condtons d utlsaton, ces machnes

Plus en détail

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks Plan Geston des stocks Abdellah El Fallah Ensa de Tétouan 2011 Les opératons de gestons des stocks Les coûts assocés à la geston des stocks Le rôle des stocks Modèle de la quantté économque Geston calendare

Plus en détail

Courant alternatif. Dr F. Raemy La tension alternative et le courant alternatif ont la représentation mathématique : U t. cos (!

Courant alternatif. Dr F. Raemy La tension alternative et le courant alternatif ont la représentation mathématique : U t. cos (! Courant alternatf Dr F. Raemy La tenson alternatve et le courant alternatf ont la représentaton mathématque : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Une résstance dans un crcut à courant

Plus en détail

Travaux pratiques : GBF et oscilloscope

Travaux pratiques : GBF et oscilloscope Travaux pratques : et osclloscope S. Benlhajlahsen ésumé L objectf de ce TP est d apprendre à utlser, c est-à-dre à régler, deux des apparels les plus couramment utlsés : le et l osclloscope. I. Premère

Plus en détail

Équations différentielles et systèmes dynamiques. Jean-Christophe yoccoz, membre de l institut (Académie des sciences), professeur

Équations différentielles et systèmes dynamiques. Jean-Christophe yoccoz, membre de l institut (Académie des sciences), professeur Équatons dfférentelles et systèmes dynamques Jean-Chrstophe yoccoz, membre de l nsttut (Académe des scences), professeur enseignement Cours : Quelques aspects de la théore des systèmes dynamques quaspérodques

Plus en détail

Assurance maladie et aléa de moralité ex-ante : L incidence de l hétérogénéité de la perte sanitaire

Assurance maladie et aléa de moralité ex-ante : L incidence de l hétérogénéité de la perte sanitaire Assurance malade et aléa de moralté ex-ante : L ncdence de l hétérogénété de la perte santare Davd Alary 1 et Franck Ben 2 Cet artcle examne l ncdence de l hétérogénété de la perte santare sur les contrats

Plus en détail

Première partie. Proportionnalité. 1 Reconnaître des situations de proportionnalité... 7

Première partie. Proportionnalité. 1 Reconnaître des situations de proportionnalité... 7 Premère parte Proportonnalté 1 Reconnaître des stuatons de proportonnalté....... 7 2 Trater des stuatons de proportonnalté en utlsant un rapport de lnéarté........................ 8 3 Trater des stuatons

Plus en détail

Interprétation cristalline de l isomorphisme de Deligne-Illusie (cas des courbes)

Interprétation cristalline de l isomorphisme de Deligne-Illusie (cas des courbes) Interprétaton crstallne de l somorphsme de Delgne-Illuse (cas des courbes) C. Huyghe et N. Wach 6 avrl 23 Abstract In 987, Delgne and Illuse proved the degeneraton of the spectral sequence de Hodge vers

Plus en détail

Sujets des projets. Informatique de Base Université Pierre et Marie Curie

Sujets des projets. Informatique de Base Université Pierre et Marie Curie 1 Sujets des projets Informatque de Base Unversté Perre et Mare Cure D Bernard, F Hecht, N Segun Master I / sesson 2004/2005 Table des matères 1 Sujet : Recherche rapde d un trangle contenant un pont dans

Plus en détail

STATISTIQUE AVEC EXCEL

STATISTIQUE AVEC EXCEL STATISTIQUE AVEC EXCEL Excel offre d nnombrables possbltés de recuellr des données statstques, de les classer, de les analyser et de les représenter graphquement. Ce sont prncpalement les tros éléments

Plus en détail

Les nombres premiers ( Spécialité Maths) Terminale S

Les nombres premiers ( Spécialité Maths) Terminale S Les nombres premers ( Spécalté Maths) Termnale S Dernère mse à jour : Mercred 23 Avrl 2008 Vncent OBATON, Ensegnant au lycée Stendhal de Grenoble (Année 2007-2008) Lycée Stendhal, Grenoble ( Document de

Plus en détail

MODELISATION DES PROCESSUS LINEAIRES

MODELISATION DES PROCESSUS LINEAIRES MDELISATIN DES PRCESSUS LINEAIRES Dans un premer temps, nous ne consdérons que des processus partculers, supposés notamment statonnare. Cec permet de présenter un certan nombre d'outls dans un cadre relatvement

Plus en détail

MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA)

MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA) MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA) Unversté d Orléans Econométre des Varables Qualtatves Chaptre 3 Modèles à Varable Dépendante Lmtée Modèles Tobt Smples et Tobt Généralsés Chrstophe Hurln

Plus en détail

Cours et exercices de PHYSIQUE :

Cours et exercices de PHYSIQUE : Cours et exercces de PHYSIQUE : Électrcté. Ingéneur CESI Préparaton aux tests de sélecton. Stéphane Vctor. stephanevctor@yahoo.fr - - Programme de physque. Électrcté. Chaptre : Les composants passfs. -

Plus en détail

5- Analyse discriminante

5- Analyse discriminante 5. ANALYSE DISCRIMINANTE... 5. NOTATION ET FORMULATION DU PROBLÈME... 5. ASPECT DESCRIPTIF...3 5.. RECHERCHE DU VECTEUR SÉPARANT LE MIEUX POSSIBLE LES GROUPES...4 5.. Cas partculer de deu groupes...7 5.3

Plus en détail

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE. MEMOIRE Présentée à

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE. MEMOIRE Présentée à REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE MEMOIRE Présentée à L Unversté de Batna Faculté des Scences Département de Physque

Plus en détail

classification non supervisée : pas de classes prédéfinies Applications typiques

classification non supervisée : pas de classes prédéfinies Applications typiques Qu est ce que le clusterng? analyse de clusterng regroupement des obets en clusters un cluster : une collecton d obets smlares au sen d un même cluster dssmlares au obets appartenant à d autres clusters

Plus en détail

LES DIMENSIONS DANS LA PERCEPTION DES INTERVALLES MUSICAUX *

LES DIMENSIONS DANS LA PERCEPTION DES INTERVALLES MUSICAUX * LES DIMENSIONS DANS LA PERCEPTION DES INTERVALLES MUSICAUX * "W.J.M. LEVELT et R. PLOMP (Insttute for Percepton R.V.O.-T.N.O., SOESTERBERG, PAYS-BAS) Introducton Il est ntéressant de savor de quelle manère

Plus en détail

TD 1. Statistiques à une variable.

TD 1. Statistiques à une variable. Danel Abécasss. Année unverstare 2010/2011 Prépa-L1 TD de bostatstques. Exercce 1. On consdère la sére suvante : TD 1. Statstques à une varable. 1. Calculer la moyenne et l écart type. 2. Calculer la médane

Plus en détail

Dans un mélange, tous les constituants ont le même statut thermodynamique.

Dans un mélange, tous les constituants ont le même statut thermodynamique. Mélanges et solutons I_ Défntons et composton. Défntons Dans un mélange, tous les consttuants ont le même statut thermodynamque. Lorsque dans un mélange solde ou lqude, un des consttuants, appelé solvant,

Plus en détail

Calcul de l unité astronomique Lors du transit de Vénus

Calcul de l unité astronomique Lors du transit de Vénus TP 8 Calcul de l unté astronomque Lors du transt de Vénus Nveau A partr du CM Evaluaton de l Unté Astronomque à partr de l observaton du transt de Vénus. -Propostons pédagogques Les propostons exposées

Plus en détail

ÉLÉMENTS DE THÉORIE DE L INFORMATION POUR LES COMMUNICATIONS.

ÉLÉMENTS DE THÉORIE DE L INFORMATION POUR LES COMMUNICATIONS. ÉLÉMETS DE THÉORIE DE L IFORMATIO POUR LES COMMUICATIOS. L a théore de l nformaton est une dscplne qu s appue non seulement sur les (télé-) communcatons, mas auss sur l nformatque, la statstque, la physque

Plus en détail

Evaluation des actions

Evaluation des actions Akrem ISCAE archés nancers : Evaluaton des actons Evaluaton des actons Secton I : Dénton hypothèses et notatons I-- La noton d un act nancer -a- Dénton Un act nancer est tout ben qu un nvestsseur désre

Plus en détail

Calculer le coût amorti d une obligation sur chaque exercice et présenter les écritures dans les comptes individuels de la société Plumeria.

Calculer le coût amorti d une obligation sur chaque exercice et présenter les écritures dans les comptes individuels de la société Plumeria. 1 CAS nédt d applcaton sur les normes IAS/IFRS Coût amort sur oblgatons à taux varable ou révsable La socété Plumera présente ses comptes annuels dans le référentel IFRS. Elle détent dans son portefeulle

Plus en détail

CHAPITRE 2 LA SPECTROMETRIE RMN

CHAPITRE 2 LA SPECTROMETRIE RMN .J. Ducauze et D.N. Rutledge groparstech PITRE L SPETRMETRIE RMN «Spectrométre RMN» veut dre qu on s ntéresse aux nformatons qu apportent les spectres, c est-à-dre à un ensemble d observatons effectuées

Plus en détail

Chapitre 5. Menu de SUPPORT

Chapitre 5. Menu de SUPPORT 155 Chaptre 5. Menu de SUPPORT Ce que vous apprendrez dans ce chaptre Ce chaptre vous présentera des routnes supplémentares susceptbles de vous ader dans les analyses de données présentées dans le chaptre

Plus en détail

Méthodologie quiestlemoinscher de comparaison de prix entre magasins

Méthodologie quiestlemoinscher de comparaison de prix entre magasins Méthodologe questlemonscher de comparason de prx entre magasns Les éléments méthodologques ont été défns par le cabnet FaCE Consel, socété d études et d analyses statstques ndépendante. Le cabnet FaCE

Plus en détail

Algorithme approché d optimisation d un modèle de Processus Décisionnel de Markov sur Graphe

Algorithme approché d optimisation d un modèle de Processus Décisionnel de Markov sur Graphe Algorthme approché d optmsaton d un modèle de Processus Décsonnel de Markov sur Graphe Nathale Peyrard Régs Sabbadn INRA-MIA Avgnon et Toulouse E-Mal: {peyrard,sabbadn}@toulouse.nra.fr Réseau MSTGA, Avgnon,

Plus en détail

éléments d'analyse statistique

éléments d'analyse statistique éléments danalse statstque applcaton à lhdrologe deuxème édton D. Ther octobre 989 R 30 73 EAU 4S 89 BUREAU DE RECHERCHES GEOLOGIQUES ET MINIERES SERVICES SOL ET SOUS-SOL Département Eau B.P. 6009-45060

Plus en détail

Conduits de ventilation et de désenfumage résistants au feu suivant norme européenne (EN)

Conduits de ventilation et de désenfumage résistants au feu suivant norme européenne (EN) Conduts de ventlaton et de désenfumage résstants au feu suvant norme européenne (EN) 0. Conduts de ventlaton et de désenfumage, encoffrements contnus résstants au feu Conduts 0 Généraltés Spécfcté des

Plus en détail

Chapitre 5.1 Les photons et l effet photoélectrique

Chapitre 5.1 Les photons et l effet photoélectrique Chaptre 5. Les s et l eet photoélectrque L ntensté d une onde électromagnétque n 884, le physcen brtannque John Henry Poyntng a démontré à partr des équatons de Maxwell que l ntensté d un champ électromagnétque

Plus en détail

Exercices de révision pour examen #1

Exercices de révision pour examen #1 Exercces de révson pour examen #1 Queston 1. Questons théorques. a) Nommez les courants qu exstent quand une dode est en équlbre. Courants de dffuson et de drft. b) Dessnez la structure physque réelle

Plus en détail

Combinaison de dires d'experts en élicitation de lois a priori. pour Listeria chez la souris. Exposé AppliBugs

Combinaison de dires d'experts en élicitation de lois a priori. pour Listeria chez la souris. Exposé AppliBugs Combnason de dres d'experts en élctaton de los a pror. Applcaton à un modèle doseréponse pour Lstera chez la sours. Exposé ApplBugs ISABELLE ALBERT 8 / / 03 INTRODUCTION Cet exposé présente une parte du

Plus en détail

Partie C : Description du protocole expérimental pour la mesure de la

Partie C : Description du protocole expérimental pour la mesure de la Parte C : Descrpton du protocole expérmental pour la mesure de la réponse en fréquence du cytosquelette testée par magnétocytométre Ce chaptre décrt la méthode expérmentale pour mesurer et analyser les

Plus en détail

Variations temporelles de la gravité en relation avec la dynamique interne de la Terre - Apport des gravimètres supraconducteurs

Variations temporelles de la gravité en relation avec la dynamique interne de la Terre - Apport des gravimètres supraconducteurs Unversté Lous Pasteur Strasbourg I Ecole Doctorale des Scences de la Terre, de l Unvers et de l Envronnement Insttut de Physque du Globe, UMR 7516 ULP-CNRS THÈSE DE DOCTORAT DE L UNIVERSITÉ STRASBOURG

Plus en détail

Information mutuelle et partition optimale du support d une mesure de probabilité

Information mutuelle et partition optimale du support d une mesure de probabilité Informaton mutuelle et partton optmale du support d une mesure de probablté Bernard Coln et Ernest Monga Département de Mathématques Unversté de Sherbrooke Sherbrooke JK-R (Québec) Canada bernard.coln@usherbrooke.ca

Plus en détail

Activité Intitulé de l'activité Volume horaire

Activité Intitulé de l'activité Volume horaire Informatons de l'unté d'ensegnement Implantaton Cursus de ECAM Insttut Supéreur Industrel Bacheler en Scences ndustrelles Electronque applquée B2150 Cycle 1 Bloc 2 Quadrmestre 2 Pondératon 4 Nombre de

Plus en détail

Outils de modélisation et d imagerie pour un scanner micro-onde : Application au contrôle de la teneur en eau d une colonne de sol.

Outils de modélisation et d imagerie pour un scanner micro-onde : Application au contrôle de la teneur en eau d une colonne de sol. Outls de modélsaton et d magere pour un scanner mcro-onde : Applcaton au contrôle de la teneur en eau d une colonne de sol. R. Lencrerot To cte ths verson: R. Lencrerot. Outls de modélsaton et d magere

Plus en détail

Cryptographie évolutionniste

Cryptographie évolutionniste Cryptographe évolutonnste Applcaton des algorthmes évolutonnstes à la cryptographe Fouza Omary* Abderrahm Tragha** Aboubakr Lbekkour* *Département de mathématques et nformatque faculté des scences-rabat

Plus en détail