Exercices d Électrocinétique

Dimension: px
Commencer à balayer dès la page:

Download "Exercices d Électrocinétique"

Transcription

1 ercces d Électrocnétque Intensté et densté de courant -1.1 Vtesse des porteurs de charges : On dssout une masse m = 20g de chlorure de sodum NaCl dans un bac électrolytque de longueur l = 20cm et de secton S = 10cm 10 cm rempl d eau. La dssoluton est totale. On fat passer un courant d ntensté I = 100m entre deu électrodes stuées au etrémtés de la cuve. onnées : masses molares : M(Cl) = 35, 5 g.mol 1 et M(Na) = 23g.mol 1. Nombre d vogadro est N = 6, mol 1 ; charge élémentare est e = 1, C. Q : Sachant que les vecteurs vtesse des ons chlorure et des ons sodum sont de sens opposés et dans le rapport 1, 5, détermner la vtesse et le sens de déplacement de ces ons. ép : v + = 2, m.s 1 ; v = 3, m.s Sem-conducteur : Les sem-conducteurs sont des matérau utlsés en électronque et dont la conducton vare fortement avec la température ou avec la présence d mpureté. ans un sem-conducteur, l este deu types de porteurs de charge : les électrons, de charge q e = e, de densté n e ; et les trous, de charge q p = +e, de densté n p. À une température donnée, du fat des proprétés dues au lasons nternes au sem-conducteur, le produt n e n p = n 2 est constant. La présence d mpuretés (= atomes étrangers au réseau) permet de modfer n e et n p tout en mantenant le produt n e n p constant. n l absence d mpuretés, ces deu valeurs sont égales : n e = n p = n. Pour le slcum, nous avons : n = 1, m 3. ans les condtons d étude, la vtesse des électrons est v e = 12cm.s 1 et celle des trous v p = 5 cm.s 1. 1) étermner la densté de courant du slcum dans les condtons d étude. 2) Comment vare la densté de courant j avec n e? Tracer l allure de la courbe correspondante j = j(n e ) et eplquer l ntérêt de la présence d mpuretés dans le slcum utlsé en électronque. ép : 1) j = 4, m 2 ; 2) j mn = j 0 = 3, m 2 pour n e,0 = n vp v e = 9, m 3. 1 Calculs de tensons et de courants -2.1 éseau à deu malles étermner, pour le crcut c-contre, l ntensté qu traverse la 1 résstance 2 et la tenson u au bornes de la résstance 3 : 1) en fasant des assocatons de résstances et en applquant le u dvseur de tenson. 2) en fasant une transformaton Thévenn Norton et en applquant le dvseur de courant. 3) pplcaton numérque pour = 6 V, 1 = 100 Ω, 2 = 3 = 4 = 50 Ω 3 ép : 1/2) = ( )( ) ; u = 3 ( ) ( )( ) ; 3) = 15 m et u = 1, 5 V

2 ercces d Électrocnétque Crcut lnéare ans le crcut c-contre : 1) Calculer U F, 2) Calculer l ntensté I 0 crculant dans la branche prncpale; 3) Calculer l ntensté I crculant dans la branche contenant le générateur (précser son sens) ; 4) Calculer les ntenstés 1, 2 et 3. onnées : = 1 Ω, = 5V et = 3V. ép : U F 1, 67 V ; I 0 0, 83 ; I 0, 17 ; 1 = 3 0, 33 ; 2 0, strbuton de courant sur les arêtes d un cube Le courant d ntensté I arrve sur le sommet d un cube dont les arêtes sont consttuées par un fl métallque; chaque arête a une résstance r. Le courant ressort par le sommet H opposé à. 1) Calculer les ntenstés dans chaque branche. 2) Sot V = V et V H = 0 V les potentels des ponts et H. Calculer les potentels des dfférents sommets. 3) Quelle est la chaleur dsspée dans le cube par unté de temps?.n. : I = 500 m et r = 0, 2 Ω. ép : 2) V = V F = V G = r I 3 = 2 5 V ; V = V = V C = V r I 3 = 3 5 V ; 3) P J = δq dt = 5 6 ri2 42 mw. ssocaton de générateurs -2.4 Modélsaton de Thévenn (1) onner le générateur de Thévenn équvalent au crcut c-contre entre et. I C 2 F ' ép : éq = 2 et Th = e + η Modélsaton de Thévenn (2) étermner le générateur de Thévenn équvalent au réseau dpolare entre les bornes et c-contre. onnées : η = 1, = 6 Ω et = 24V. 5h 2 2 η? eq Th ép : eq = 2 = 3 Ω et Th = 2η + 4 = 18 V Calculs de résstances équvalentes -2.6 ésstance équvalente d un réseau dpolare (1) Calculer la résstance équvalente à un réseau à malles carrées, chaque côtés ayant la résstance r. ép : éq = 13 7 I M C N G F I 2 http ://pcs-unautreregard.over-blog.com/

3 ercces d Électrocnétque -2.7 ésstance équvalente d un réseau dpolare (2) Chaque trat représente un résstor de résstance. étermner la résstance équvalente de ce réseau vu des ponts : 1) et C (5/4) 2) et (3/2) 3) et F (7/8) 4) et (5/6) 5) H et () 6) et (17/24) 7) et F (7/12) C H F G J -2.8 Théorème de Kennelly (À comprendre!) On consdère les deu crcuts c-dessous : celu de gauche est appelé le crcut «étole» et celu de drote crcut «trangle». prmer les résstances r 1,r 2 et r 3 du crcut étole en foncton des résstances 1, 2 et 3 du crcut trangle pour que les deu crcuts soent équvalents. La relaton obtenue consttue le théorème de Kennelly. 2 3 ép : r 1 =, r 2 et r 3 se dédusent par permutaton crculare des ndces ésstance équvalente d un réseau dpolare (3) 1 C 2 1) Calculer la résstance équvalente du réseau suvant : a. en utlsant les los de Krchoff. b. en utlsant les regroupements de résstances (sére, parallèle, trangle-étole) ) On applque entre et une tenson U = 11 V. Calculer l ntensté du courant dans la branche C avec : 1 = 2, 2 = 4, et = 1 Ω. ép : 1) éq = ; 2) I = I C = U = 1. Équaton dfférentelle et Condtons ntales d un crcut eu bobnes réelles en parallèle étermner, dans le cas partculer où 1 L 2 = 2 L 1, l équaton dfférentelle lant la tenson u et le courant dans le montage c-contre, consttué de deu bobnes réelles en parallèle. d ép : (L 1 + L 2 )u = L 1 L 2 dt + 2L eu condensateurs réels en sére étermner l équaton dfférentelle lant la tenson u et le courant dans le montage c-contre, consttué de deu condensateurs avec fute en sére. On notera u 1 et u 2 les tensons au bornes de chaque condensateur. du ép : Cas où 2 C 2 = 1 C 1 : (C 1 + C 2 ) = C 1 C 2 dt + C 1 u Fltre de Wen (ercce mportant!) Le montage c-contre comporte deu résstances dentques et deu condensateurs de capactés dentques C. 1) Écrre l équaton dfférentelle lant la tenson de sorte v au bornes du condensateur et la tenson d entrée u. 2) À l nstant ntal, les deu condensateurs sont déchargés et la tenson u = est constante. étermner les condtons ntales portant sur v et dv dt v(0 + ) et dv dt (0+ ). juste après le branchement du crcut : http ://pcs-unautreregard.over-blog.com/ 3

4 ercces d Électrocnétque ép : 1) du dt = C d2 v dt 2 + 3dv dt + v C ; 2) v(0+ ) = 0 et dv dt (0+ ) = C obne réelle en sére avec un condensateur avec futes Une bobne réelle d nductance L possède une résstance r. lle est placée avec un condensateur de capacté C et de résstance de fute. 1) étermner l équaton dfférentelle lant l ntensté et la tenson u. 2) À t = 0, la tenson au bornes du condensateur vaut v 0 et pour t 0, on mpose u = 0 grâce à un court-crcut. Juste après l nstallaton du court-crcut, que valent (0 + )? v(0 + )? d dt (0+ )? et dv dt (0+ )? ( ép : 1) LC d2 dt 2 + rc + L ) d 2) (0 + ) = 0 ; v(0 + ) = v 0 ; ) = u + C du dt (1 dt + + r d dt (0+ ) = v 0 L ; dv dt (0+ ) = v 0 C. Soluton ) près avor ntrodut et nommé les nœuds, on peut ntrodure la résstance équvalente à 2 et 4 qu sont en sére : 5 = Il apparaît que 3 est en parallèle avec 5. n smplfant : 6 = 3 // 5 = On reconnaît un dvseur de tenson, 1 et 6 étant en sére, soumses à la tenson : U = Sot : u = U = = U 5 Sot : = = ( ) ( )( ) sur le premer schéma équvalent ( )( ) que : ttenton! n apparaît plus sur le second schéma équvalent. Il fallat revenr au premer schéma équvalent pour l eprmer. 2) On ntrodut et on nomme les nœuds. On reconnaît un générateur de Thévenn de f.é.m. et de résstance nterne 1 entre et. On peut fare une transformaton Thévenn Norton. Il apparaît le c.é.m. : η = 1. 1 et 3 sont en paralèle, de résstance équvalente : 0 = est en parallèle avec 5, mas on ne smplfe pas! car : - on cherche - on reconnaît un dvseur de courant au nœud almenté par η : = η = Sot : = η η 1 1 u u ( )( ). 4 http ://pcs-unautreregard.over-blog.com/ u u

5 ercces d Électrocnétque Pusque U = 5, on retrouve : u = U = 3) = 15 m et u = U = 1, 5 V. 3 ( ) ( )( ) Soluton ) On reconnaît un montage «vseur de tenson» entre et F, donc : U F = + 2 = 1 V 2) Il faut d abord eprmer la résstance équvalente eq entre et C. eq = (//)//2 = 2 //2 = 2 5 u pont de vue de la branche prncpale, la branche {, 2,, F } est nutle pusqu une force éloctromotrce en parallèle mpose la tenson à ses bornes. On peut donc l enlever sur un schéma équvalent. Il apparaît deu forces électromotrces en sére qu s oppose : on peut donc les remplacer par une seule et unque f.é.m. de valeur 0 = = 2 V et de même sens que. Le crcut est mantenant équvalent à un crcut formé d une seule malle - parcourue par I 0, - consttué d une f.é.m. 0 de même sens que I 0 - et d une résstance équvalente 0 = + eq + = la lo des malles donne I 0 = 0 = ( ) = 5 0, ) Pour connaître l ntensté I crculant dans la branche contenant on calcule d abord l ntensté I qu crcule de vers F dans la branche contenant les résstances 2 + = 3 soumses à la tenson. La lo d Ohm donne, en conventon récepteur : I = 3 = 1 On en dédut donc, d après la lo des nœuds et en défnssant I par rapport à en conventon générateur, que I = I I 0 = 1 6 0, 17 (I drgée de F vers ). 4) Tout d abord, les symétres mposent que 1 = 3. On reconnaît ensute entre et C un dvseur de courant : On a donc : 1 = G 1 G eq I 0 = eq I 0 = 1 = 3 = 2 5 I 0 = 1 3 0, 33 e même : 2 = G 2 I 0 = eq G eq 2 I 0 = 2 = 1 5 I 0 = 1 0, 17 6 On vérfe ben entendu la lo des nœuds en : I 0 = http ://pcs-unautreregard.over-blog.com/ 5

6 ercces d Électrocnétque Groupement dode déale-résstances eprésenter la caractérstque Intensté-Tenson I(U) du dpôle équvalent au groupement entre les ponts et. I ' U vseur de Tenson (Généralsaton) Montrer que la lo à laquelle obét ce dvseur de tenson est : 2 U = e e U lmentaton d une dode (*) Le montage de la fgure c-contre montre un ensemble de générateurs assocés avec une résstance 3 et une dode à joncton. Celle-c est déale, sans résstance dynamque, et possède une tenson de seul U S. (e 1, r 1 ) (e 2, r 2 ) n supposant que la dode est polarsée dans le sens drect, et est parcourue par un courant non nul, eprmer en foncton de e 1, e 2, U S, 1, 2, 3, r 1 et r 2. À quelle condton portant sur ces grandeurs l hypothèse 0 est-elle justfée? ép : > 0 pour 3 (r )e (r )e 2 3 (r r ) + (r )(r ) > U S Protecton d une dode Zener (**) étermner la valeur mamale ma de la tenson contnue pour que la dode Zener ne claque pas. ' Les caractérstques de la dode Zener sont : la tenson Zener U Z ; ρ la résstance dynamque en régme Zener ; P ma la pussance mamale que la dode peut recevor ; ma et V ma l ntensté et la tenson mamales que la dode supporte en régme Zener. ép : ma = 1 ( 2 (U Z + UZ 2 + 4ρP ma) ) U Z ρ ρ U Équvalence entre générateur de tenson et générateur de courant (*) Sot le crcut c-contre avec : = 4 V, r = 2 Ω. est un électrolyseur de force contre-électromotrce égale à = 1, 5 V. ntre et, la résstance totale est de 12 Ω. On pourra poser : 2 = et 1 = 12. C r ' étermner la valeur de l ntensté dans la branche de l électrolyseur en foncton de la poston du curseur du potentomètre, donc de la valeur de. ép : = pour > 0, ce qu revent à dre que 8, 25 Ω < < 12 Ω. 6 http ://pcs-unautreregard.over-blog.com/

7 ercces d Électrocnétque éseau lnéares en régme contnu -3.1 Pont de Weahtsone Un pont de Weahtsone est un montage électrque permettant de détermner une résstance nconnue. 1) Équlbrage du pont La résstance à détermner est 1. Les résstances 3 et 4 sont fes et connues. 2 est une résstance varable dont on connaît la valeur. Le pont est dt équlbré lorsque la tenson u mesurée entre C et est nulle. 3 a) étermner la tenson u en foncton de et des résstances 1, 2, 3 et 4. b) À quelle condton le pont est-l équlbré? étermner alors 1. onnées : 3 = 100 Ω; 4 = 5kΩ ; 2 = Ω; = 6V. c) Le voltmètre ndque la tenson «u = 0» s, en réalté, on a : u < 1 mv. ans le cadre de l applcaton numérque de la queston b), donner la précson sur la mesure de 1. 2) Présence d une f.é.m paraste Le pont précédent est supposé équlbré, c est-àdre qu on a rgoureusement u = 0. Nous allons mantenant étuder l nfluence d une force électromotrce e sur l équlbre du pont (e est placé en sére avec la résstance ; cela peut modélser une tenson apparue lors du contact de deu matérau de nature chmque dfférente.) a) prmer la tenson u apparue à cause de la présence de e. b) On veut que l nfluence de e sot néglgeable au cours de la mesure. On estme que cette nfluence est néglgeable s u < 1 mv. Quelle est alors la condton portant sur e? On rappelle qu on a 3 = 100 Ω; 4 = 5kΩ ; 2 = Ω et = 6V. ép : 1.a) u = ( a) pplquer le prncpe de superposton ; u = -3.2 Théorème de Mllman 1) Énoncer la lo des nœuds en termes de potentels pour le nœud N dans le montage c-contre. n dédure le courant dans la résstance. 2) Trouver cette même ntensté en utlsant les transformatons thévenn Norton. ) ; 1.b) 1 = 36, 5 Ω ; 1.c) 1 = 36, 5 ± 0, 3 Ω ; 2e ; 2.b) e < 1, 02 mv N 3 3 ép : = ( ) http ://pcs-unautreregard.over-blog.com/ 7

8 ercces d Électrocnétque Calculs de courants étermner les courants I 1, I 2 et I 3 du montage c-contre. ép : I 1 = ; I 2 = 3 2 ; I 3 = I I 2 I Lo des nœuds en termes de potentels Le nœud est connecté à la masse du crcut de la fgure c-contre. On donne : η = 15; = 1 Ω et = 1V. 1) étermner les relatons entre V, V C et V en applquant la lo des nœuds en termes de potentels au nœuds, C et. 2) Un voltmètre numérque, branché entre et, mesure u = 10V. n dédure les valeurs de V et V C C 4 η ép : V = 24 V et V C = 18 V Théorème de superposton et théorème de Mllman étermner l ntensté du courant qu crcule dans la branche 2 M 2 en consdérant deu états successfs du crcut et en applquant le théorème de Mllman. ép : = 1 ( ) M -3.6 Pont double Sot le crcut c-contre tel que ab = a b. La résstance varable, entre C (curseur du potentomètre ) et, est notée. prmer, la résstance à mesurer, en foncton de, lorsque le pont double est équlbré (= courant nul dans le galvanomètre G qu se comporte comme une fable résstance). a a' b G b' C ép : = a b e r 8 http ://pcs-unautreregard.over-blog.com/

Montage émetteur commun

Montage émetteur commun tour au menu ontage émetteur commun Polarsaton d un transstor. ôle de la polarsaton La polarsaton a pour rôle de placer le pont de fonctonnement du transstor dans une zone où ses caractérstques sont lnéares.

Plus en détail

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h.

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h. A2 Analyser le système Converson statque de l énerge Date : Nom : Cours 2 h 1 Introducton Un ConVertsseur Statque d énerge (CVS) est un montage utlsant des nterrupteurs à semconducteurs permettant par

Plus en détail

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique Spécale PSI - Cours "Electromagnétsme" 1 Inducton électromagnétque Chaptre IV : Inductance propre, nductance mutuelle. Energe électromagnétque Objectfs: Coecents d nductance propre L et mutuelle M Blan

Plus en détail

Oscillations électriques libres

Oscillations électriques libres Oscllatons électrues lbres A Oscllatons lbres amortes 1/ Etude expérmentale a Expérence et observatons Après avor chargé le condensateur (poston 1) On bascule l nterrupteur sur la poston, on obtent l oscllogramme

Plus en détail

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage Fche n 7 : Vérfcaton du débt et de la vtesse par la méthode de traçage 1. PRINCIPE La méthode de traçage permet de calculer le débt d un écoulement ndépendamment des mesurages de hauteur et de vtesse.

Plus en détail

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

CONSERVATOIRE NATIONAL DES ARTS ET METIERS ONSEVAOIE NAIONAL DES AS E MEIES ELEONIQUE ANALOGIQUE PH / ELE 4 / DU GEII ere année ------------------------- ------------------------- Dder LE UYE / Perre POVEN Janer ABLE DES MAIEES APPELS D ELEOINEIQUE...5.

Plus en détail

Chapitre 6. Economie ouverte :

Chapitre 6. Economie ouverte : 06/2/202 Chaptre 6. Econome ouverte : le modèle Mundell Flemng Elsabeth Cudevlle Le développement des échanges nternatonaux (bens et servces et flux fnancers) a rendu fortement nterdépendantes les conjonctures

Plus en détail

Calculs des convertisseurs en l'electronique de Puissance

Calculs des convertisseurs en l'electronique de Puissance Calculs des conertsseurs en l'electronque de Pussance Projet : PROGRAMMAON ate : 14 arl Auteur : herry EQUEU. EQUEU 1, rue Jules Massenet 37 OURS el 47 5 93 64 herry EQUEU Jun [V37] Fcher : ESGN.OC Calculs

Plus en détail

Remboursement d un emprunt par annuités constantes

Remboursement d un emprunt par annuités constantes Sére STG Journées de formaton Janver 2006 Remboursement d un emprunt par annutés constantes Le prncpe Utlsaton du tableur Un emprunteur s adresse à un prêteur pour obtenr une somme d argent (la dette)

Plus en détail

Les jeunes économistes

Les jeunes économistes Chaptre1 : les ntérêts smples 1. défnton et calcul pratque : Défnton : Dans le cas de l ntérêt smple, le captal reste nvarable pendant toute la durée du prêt. L emprunteur dot verser, à la fn de chaque

Plus en détail

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction -

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction - EXAME FIAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSIO 1 - Correcton - Exercce 1 : 1) Consdérons une entreprse E comportant deux établssements : E1 et E2 qu emploent chacun 200 salarés. Au sen de l'établssement

Plus en détail

Le théorème du viriel

Le théorème du viriel Le théorème du vrel On se propose de démontrer le théorème du vrel de deux manères dfférentes. La premère fat appel à deux "trcks" qu l faut vor. Cette preuve met en avant une quantté, notée S c, qu permet

Plus en détail

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2 Exo7 Nombres complexes Vdéo parte. Les nombres complexes, défntons et opératons Vdéo parte. Racnes carrées, équaton du second degré Vdéo parte 3. Argument et trgonométre Vdéo parte 4. Nombres complexes

Plus en détail

Mesure avec une règle

Mesure avec une règle Mesure avec une règle par Matheu ROUAUD Professeur de Scences Physques en prépa, Dplômé en Physque Théorque. Lycée Alan-Fourner 8000 Bourges ecrre@ncerttudes.fr RÉSUMÉ La mesure d'une grandeur par un système

Plus en détail

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE. MEMOIRE Présentée à

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE. MEMOIRE Présentée à REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE MEMOIRE Présentée à L Unversté de Batna Faculté des Scences Département de Physque

Plus en détail

RÉPONSES À UN ÉCHELON. Sortie u(t) réponse. t(s)

RÉPONSES À UN ÉCHELON. Sortie u(t) réponse. t(s) BTS S ÉPONSS À UN ÉHON. éponse à n échelon d n système d premer ordre xemple : almentaton d n condensater de capacté par ne sorce de tenson e(t) à travers résstance a tenson varable e(t) est n échelon

Plus en détail

SIMULATION D UN JET TURBULENT POUR LE REFROIDISSEMENT DES AUBES DE TURBINE

SIMULATION D UN JET TURBULENT POUR LE REFROIDISSEMENT DES AUBES DE TURBINE 10 ème Sémnare Internatonal sur la Physque Energétque 10 th Internatonal Meetng on Energetcal Physcs SIMULAION D UN JE URBULEN POUR LE REFROIDISSEMEN DES AUBES DE URBINE Bounegta Bachr 1, Abdelarm Maamar

Plus en détail

classification non supervisée : pas de classes prédéfinies Applications typiques

classification non supervisée : pas de classes prédéfinies Applications typiques Qu est ce que le clusterng? analyse de clusterng regroupement des obets en clusters un cluster : une collecton d obets smlares au sen d un même cluster dssmlares au obets appartenant à d autres clusters

Plus en détail

Grandeur physique, chiffres significatifs

Grandeur physique, chiffres significatifs Grandeur physque, chffres sgnfcatfs I) Donner le résultat d une mesure en correspondance avec l nstrument utlsé : S avec un nstrument, ren n est ndqué sur l ncerttude absolue X d une mesure X, on consdère

Plus en détail

Dirigeant de SAS : Laisser le choix du statut social

Dirigeant de SAS : Laisser le choix du statut social Drgeant de SAS : Lasser le chox du statut socal Résumé de notre proposton : Ouvrr le chox du statut socal du drgeant de SAS avec 2 solutons possbles : apprécer la stuaton socale des drgeants de SAS comme

Plus en détail

STATISTIQUE AVEC EXCEL

STATISTIQUE AVEC EXCEL STATISTIQUE AVEC EXCEL Excel offre d nnombrables possbltés de recuellr des données statstques, de les classer, de les analyser et de les représenter graphquement. Ce sont prncpalement les tros éléments

Plus en détail

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix?

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix? Note méthodologque Tratements hebdomadares Questlemonscher.com Quelle méthode de collecte de prx? Les éléments méthodologques ont été défns par le cabnet FaE onsel, socété d études et d analyses statstques

Plus en détail

Contrats prévoyance des TNS : Clarifier les règles pour sécuriser les prestations

Contrats prévoyance des TNS : Clarifier les règles pour sécuriser les prestations Contrats prévoyance des TNS : Clarfer les règles pour sécurser les prestatons Résumé de notre proposton : A - Amélorer l nformaton des souscrpteurs B Prévor plus de souplesse dans l apprécaton des revenus

Plus en détail

LE RÉGIME DE RETRAITE DU PERSONNEL CANADIEN DE LA CANADA-VIE (le «régime») INFORMATION IMPORTANTE CONCERNANT LE RECOURS COLLECTIF

LE RÉGIME DE RETRAITE DU PERSONNEL CANADIEN DE LA CANADA-VIE (le «régime») INFORMATION IMPORTANTE CONCERNANT LE RECOURS COLLECTIF 1 LE RÉGIME DE RETRAITE DU PERSONNEL CANADIEN DE LA CANADA-VIE (le «régme») INFORMATION IMPORTANTE CONCERNANT LE RECOURS COLLECTIF AVIS AUX RETRAITÉS ET AUX PARTICIPANTS AVEC DROITS ACQUIS DIFFÉRÉS Expédteurs

Plus en détail

TD 1. Statistiques à une variable.

TD 1. Statistiques à une variable. Danel Abécasss. Année unverstare 2010/2011 Prépa-L1 TD de bostatstques. Exercce 1. On consdère la sére suvante : TD 1. Statstques à une varable. 1. Calculer la moyenne et l écart type. 2. Calculer la médane

Plus en détail

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks Plan Geston des stocks Abdellah El Fallah Ensa de Tétouan 2011 Les opératons de gestons des stocks Les coûts assocés à la geston des stocks Le rôle des stocks Modèle de la quantté économque Geston calendare

Plus en détail

E1 - LOIS GÉNÉRALES DE L ÉLECTROCINÉTIQUE

E1 - LOIS GÉNÉRALES DE L ÉLECTROCINÉTIQUE E1 - LOIS GÉNÉRLES E L ÉLECTROCINÉTIQUE OBJECTIFS L Électrocnétqe est la branche de l Électromagnétsme q étde le transport des charges électrqes dans les crcts condcters. Ses applcatons, de l électrotechnqe

Plus en détail

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année Cours d électricité Circuits électriques en courant constant Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Objectifs du chapitre

Plus en détail

CHAPITRE 14 : RAISONNEMENT DES SYSTÈMES DE COMMANDE

CHAPITRE 14 : RAISONNEMENT DES SYSTÈMES DE COMMANDE HAITRE 4 : RAISONNEMENT DES SYSTÈMES DE OMMANDE RAISONNEMENT DES SYSTÈMES DE OMMANDE... 2 INTRODUTION... 22 RAELS... 22 alcul de la valeur ntale de la répone à un échelon... 22 alcul du gan tatque... 22

Plus en détail

Généralités sur les fonctions 1ES

Généralités sur les fonctions 1ES Généraltés sur les fonctons ES GENERALITES SUR LES FNCTINS I. RAPPELS a. Vocabulare Défnton Une foncton est un procédé qu permet d assocer à un nombre x appartenant à un ensemble D un nombre y n note :

Plus en détail

La physiologie du cerveau montre que celui-ci est constitué de cellules (les neurones) interconnectées. Quelques étapes de cette découverte :

La physiologie du cerveau montre que celui-ci est constitué de cellules (les neurones) interconnectées. Quelques étapes de cette découverte : Chaptre 3 Apprentssage automatque : les réseaux de neurones Introducton Le Perceptron Les réseaux mult-couches 3.1 Introducton Comment l'homme fat-l pour rasonner, parler, calculer, apprendre,...? Comment

Plus en détail

Système solaire combiné Estimation des besoins énergétiques

Système solaire combiné Estimation des besoins énergétiques Revue des Energes Renouvelables ICRESD-07 Tlemcen (007) 109 114 Système solare combné Estmaton des besons énergétques R. Kharch 1, B. Benyoucef et M. Belhamel 1 1 Centre de Développement des Energes Renouvelables

Plus en détail

INTRODUCTION. Jean-Pierre MAGNAN Chef de la section des ouvrages en terre Département des sols et fondations Laboratoire central

INTRODUCTION. Jean-Pierre MAGNAN Chef de la section des ouvrages en terre Département des sols et fondations Laboratoire central Etude numérque de la consoldaton undmensonnelle en tenant compte des varatons de la perméablté et de la compressblté du sol, du fluage et de la non-saturaton Jean-Perre MAGNAN Chef de la secton des ouvrages

Plus en détail

Mode d'emploi. Capteur de température ambiante radiofréquence avec horloge 1186..

Mode d'emploi. Capteur de température ambiante radiofréquence avec horloge 1186.. Mode d'emplo Capteur de température ambante radofréquence avec horloge 1186.. Table des matères A propos de ce mode d'emplo... 2 Comment le capteur de température ambante radofréquence fonctonne... 2 Affchage

Plus en détail

ÉLÉMENTS DE THÉORIE DE L INFORMATION POUR LES COMMUNICATIONS.

ÉLÉMENTS DE THÉORIE DE L INFORMATION POUR LES COMMUNICATIONS. ÉLÉMETS DE THÉORIE DE L IFORMATIO POUR LES COMMUICATIOS. L a théore de l nformaton est une dscplne qu s appue non seulement sur les (télé-) communcatons, mas auss sur l nformatque, la statstque, la physque

Plus en détail

Assurance maladie et aléa de moralité ex-ante : L incidence de l hétérogénéité de la perte sanitaire

Assurance maladie et aléa de moralité ex-ante : L incidence de l hétérogénéité de la perte sanitaire Assurance malade et aléa de moralté ex-ante : L ncdence de l hétérogénété de la perte santare Davd Alary 1 et Franck Ben 2 Cet artcle examne l ncdence de l hétérogénété de la perte santare sur les contrats

Plus en détail

Relais de protection et de commmande

Relais de protection et de commmande S O U S - S T A T I O N S Relas de protecton et de commmande La gamme SEPCOS-PRO comprend des relas de protecton et de commande de haute technologe qu répondent à la perfecton aux exgences des réseaux

Plus en détail

BTS GPN 2EME ANNEE-MATHEMATIQUES-MATHS FINANCIERES MATHEMATIQUES FINANCIERES

BTS GPN 2EME ANNEE-MATHEMATIQUES-MATHS FINANCIERES MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES I. Concepts généraux. Le référentel précse : Cette parte du module M4 «Acquérr des outls mathématques de base nécessares à l'analyse de données économques» est en relaton avec

Plus en détail

GEA I Mathématiques nancières Poly. de révision. Lionel Darondeau

GEA I Mathématiques nancières Poly. de révision. Lionel Darondeau GEA I Mathématques nancères Poly de révson Lonel Darondeau Intérêts smples et composés Voc la lste des exercces à révser, corrgés en cours : Exercce 2 Exercce 3 Exercce 5 Exercce 6 Exercce 7 Exercce 8

Plus en détail

Corrections adiabatiques et nonadiabatiques dans les systèmes diatomiques par calculs ab-initio

Corrections adiabatiques et nonadiabatiques dans les systèmes diatomiques par calculs ab-initio Correctons adabatques et nonadabatques dans les systèmes datomques par calculs ab-nto Compte rendu du traval réalsé dans le cadre d un stage de quatre mos au sen du Groupe de Spectroscope Moléculare et

Plus en détail

Calculer le coût amorti d une obligation sur chaque exercice et présenter les écritures dans les comptes individuels de la société Plumeria.

Calculer le coût amorti d une obligation sur chaque exercice et présenter les écritures dans les comptes individuels de la société Plumeria. 1 CAS nédt d applcaton sur les normes IAS/IFRS Coût amort sur oblgatons à taux varable ou révsable La socété Plumera présente ses comptes annuels dans le référentel IFRS. Elle détent dans son portefeulle

Plus en détail

Editions ENI. Project 2010. Collection Référence Bureautique. Extrait

Editions ENI. Project 2010. Collection Référence Bureautique. Extrait Edtons ENI Project 2010 Collecton Référence Bureautque Extrat Défnton des tâches Défnton des tâches Project 2010 Sasr les tâches d'un projet Les tâches représentent le traval à accomplr pour attendre l'objectf

Plus en détail

IDEI Report # 18. Transport. December 2010. Elasticités de la demande de transport ferroviaire: définitions et mesures

IDEI Report # 18. Transport. December 2010. Elasticités de la demande de transport ferroviaire: définitions et mesures IDEI Report # 18 Transport December 2010 Elastctés de la demande de transport ferrovare: défntons et mesures Elastctés de la demande de transport ferrovare : Défntons et mesures Marc Ivald Toulouse School

Plus en détail

MÉTHODES DE SONDAGES UTILISÉES DANS LES PROGRAMMES D ÉVALUATIONS DES ÉLÈVES

MÉTHODES DE SONDAGES UTILISÉES DANS LES PROGRAMMES D ÉVALUATIONS DES ÉLÈVES MÉTHODES DE SONDAGES UTILISÉES DANS LES PROGRAMMES D ÉVALUATIONS DES ÉLÈVES Émle Garca, Maron Le Cam et Therry Rocher MENESR-DEPP, bureau de l évaluaton des élèves Cet artcle porte sur les méthodes de

Plus en détail

Integral T 3 Compact. raccordé aux installations Integral 5. Notice d utilisation

Integral T 3 Compact. raccordé aux installations Integral 5. Notice d utilisation Integral T 3 Compact raccordé aux nstallatons Integral 5 Notce d utlsaton Remarques mportantes Remarques mportantes A quelle nstallaton pouvez-vous connecter votre téléphone Ce téléphone est conçu unquement

Plus en détail

Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amiens.fr/pedagogie/maths/new/ue2007/synthese_atelier_annette_alain.

Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amiens.fr/pedagogie/maths/new/ue2007/synthese_atelier_annette_alain. Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amens.fr/pedagoge/maths/new/ue2007/synthese_ateler_annette_alan.pdf 1 La règle du jeu Un drecteur de casno se propose d nstaller le

Plus en détail

Terminal numérique TM 13 raccordé aux installations Integral 33

Terminal numérique TM 13 raccordé aux installations Integral 33 Termnal numérque TM 13 raccordé aux nstallatons Integral 33 Notce d utlsaton Vous garderez une longueur d avance. Famlarsez--vous avec votre téléphone Remarques mportantes Chaptres à lre en prorté -- Vue

Plus en détail

Modélisations du risque en assurance automobile. Michel Grun-Rehomme Université Paris 2 et Ensae Email: grun@ensae.fr

Modélisations du risque en assurance automobile. Michel Grun-Rehomme Université Paris 2 et Ensae Email: grun@ensae.fr Modélsatons du rsque en assurance automoble Mchel Grun-Rehomme Unversté Pars 2 et Ensae Emal: grun@ensae.fr 1 Modélsatons du rsque en assurance automoble La snstralté est mesurée en terme de fréquence

Plus en détail

Cours #8 Optimisation de code

Cours #8 Optimisation de code ELE-784 Ordnateurs et programmaton système Cours #8 Optmsaton de code Bruno De Kelper Ste nternet : http://www.ele.etsmtl.ca/academque/ele784/ Cours # 8 ELE784 - Ordnateurs et programmaton système 1 Plan

Plus en détail

Calcul de tableaux d amortissement

Calcul de tableaux d amortissement Calcul de tableaux d amortssement 1 Tableau d amortssement Un emprunt est caractérsé par : une somme empruntée notée ; un taux annuel, en %, noté ; une pérodcté qu correspond à la fréquence de remboursement,

Plus en détail

Série A Septembre 2008

Série A Septembre 2008 Sére A Septembre 2008 Sommare Notce avec encadré* 3 Annexe à la Notce 17 UFEP : extrat des statuts 27 *Cet encadré a pour objet d attrer l attenton de l adhérent sur certanes dspostons essentelles de la

Plus en détail

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT TP CIRCUITS ELECTRIQUES R.DUPERRAY Lycée F.BUISSON PTSI CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT OBJECTIFS Savoir utiliser le multimètre pour mesurer des grandeurs électriques Obtenir expérimentalement

Plus en détail

1.0 Probabilité vs statistique...1. 1.1 Expérience aléatoire et espace échantillonnal...1. 1.2 Événement...2

1.0 Probabilité vs statistique...1. 1.1 Expérience aléatoire et espace échantillonnal...1. 1.2 Événement...2 - robabltés - haptre : Introducton à la théore des probabltés.0 robablté vs statstque.... Expérence aléatore et espace échantllonnal.... Événement.... xomes défnton de probablté..... Quelques théorèmes

Plus en détail

AVERTISSEMENT. D'autre part, toute contrefaçon, plagiat, reproduction encourt une poursuite pénale. LIENS

AVERTISSEMENT. D'autre part, toute contrefaçon, plagiat, reproduction encourt une poursuite pénale. LIENS AVETISSEMENT Ce docuent est le frut d'un long traval approuvé par le jury de soutenance et s à dsposton de l'enseble de la counauté unverstare élarge. Il est sous à la proprété ntellectuelle de l'auteur.

Plus en détail

Un protocole de tolérance aux pannes pour objets actifs non préemptifs

Un protocole de tolérance aux pannes pour objets actifs non préemptifs Un protocole de tolérance aux pannes pour objets actfs non préemptfs Françose Baude Dens Caromel Chrstan Delbé Ludovc Henro Equpe Oass, INRIA - CNRS - I3S 2004, route des Lucoles F-06902 Sopha Antpols

Plus en détail

Clemenceau. Régime sinusoïdal forcé. Impédances Lois fondamentales - Puissance. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O.

Clemenceau. Régime sinusoïdal forcé. Impédances Lois fondamentales - Puissance. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O. ycé Clnca PCS - Physq ycé Clnca PCS (O.Granr) ég snsoïdal forcé pédancs os fondantals - Pssanc ycé Clnca PCS - Physq ntérêt ds corants snsoïdax : Expl d tnsons snsoïdals : tnson d sctr (50 H 0 V) s lgns

Plus en détail

I. Présentation générale des méthodes d estimation des projets de type «unité industrielle»

I. Présentation générale des méthodes d estimation des projets de type «unité industrielle» Evaluaton des projets et estmaton des coûts Le budget d un projet est un élément mportant dans l étude d un projet pusque les résultats économques auront un mpact sur la réalsaton ou non et sur la concepton

Plus en détail

CREATION DE VALEUR EN ASSURANCE NON VIE : COMMENT FRANCHIR UNE NOUVELLE ETAPE?

CREATION DE VALEUR EN ASSURANCE NON VIE : COMMENT FRANCHIR UNE NOUVELLE ETAPE? CREATION DE VALEUR EN ASSURANCE NON VIE : COMMENT FRANCHIR UNE NOUVELLE ETAPE? Boulanger Frédérc Avanssur, Groupe AXA 163-167, Avenue Georges Clémenceau 92742 Nanterre Cedex France Tel: +33 1 46 14 43

Plus en détail

Impôt sur la fortune et investissement dans les PME Professeur Didier MAILLARD

Impôt sur la fortune et investissement dans les PME Professeur Didier MAILLARD Conservatore atonal des Arts et Méters Chare de BAQUE Document de recherche n 9 Impôt sur la fortune et nvestssement dans les PME Professeur Dder MAILLARD Avertssement ovembre 2007 La chare de Banque du

Plus en détail

Modélisation d une chaîne de conversion éolienne de petite puissance

Modélisation d une chaîne de conversion éolienne de petite puissance Modélsaton d une chaîne de conerson éolenne de ette ussance O. GEGAUD, B. MULTON, H. BEN AHMED LÉS Antenne de Bretagne de l ENS de Cachan Camus de Ker Lann 37 BUZ ésumé Parallèlement au marché mortant

Plus en détail

T3 Comfort raccordé a IP Office

T3 Comfort raccordé a IP Office IP Telephony Contact Centers Moblty Servces T3 Comfort raccordé a IP Offce Benutzerhandbuch User's gude Manual de usuaro Manuel utlsateur Manuale d uso Gebrukersdocumentate Sommare Sommare Se famlarser

Plus en détail

AZOTES ET D'ENGRAIS PHOSPHATES EN RIZIERE.

AZOTES ET D'ENGRAIS PHOSPHATES EN RIZIERE. 1122 86..-. COMPARASON DE DVERSES NATURES D'ENGRAS. _.. AZOTES ET D'ENGRAS PHOSPHATES EN RZERE.,... 3, Par P. ROCHE ': J. VEY - EGO CHAN BANG Dvson Agrologe Servce Agronome.R.A.M...*...., NTRODUCTON Un

Plus en détail

Mécanique des Milieux Continus

Mécanique des Milieux Continus Mécanque des Mleux Contnus Golay Frédérc SEATECH MMC Golay MMC - - Ce cours de mécanque des mleux contnus est à la base de l ensegnement de mécanque à SEATECH. Les notons abordées c, transport de champs,

Plus en détail

Somfy Box. Activation de l option io et programmation de vos produits io

Somfy Box. Activation de l option io et programmation de vos produits io Somfy Box Actvaton de l opton o et programmaton de vos produts o Sommare Pré-requs pour la programmaton de produts o sur la Somfy Box 1 Harmonser la clé système 1 Qu est-ce que la clé système? 1 Dans quel

Plus en détail

THESE. Khalid LEKOUCH

THESE. Khalid LEKOUCH N d ordre : /2012 THESE Présentée à la FACULTE DES SCIENCES D AGADIR En vue de l obtenton du GRADE DE DOCTEUR EN PHYSIQUE (Spécalté : Energétque, Thermque et Métrologe) Par Khald LEKOUCH MODELISATION ET

Plus en détail

INTERNET. Initiation à

INTERNET. Initiation à Intaton à INTERNET Surfez sur Internet Envoyez des messages Téléchargez Dscutez avec Skype Découvrez Facebook Regardez des vdéos Protégez votre ordnateur Myram GRIS Table des matères Internet Introducton

Plus en détail

AVERTISSEMENT. Contact SCD INPL: mailto:scdinpl@inpl-nancy.fr LIENS

AVERTISSEMENT. Contact SCD INPL: mailto:scdinpl@inpl-nancy.fr LIENS AVERTISSEMENT Ce document est le frut d un long traval approuvé par le jury de soutenance et ms à dsposton de l ensemble de la communauté unverstare élarge. Il est soums à la proprété ntellectuelle de

Plus en détail

Définition des tâches

Définition des tâches Défnton des tâches Défnton des tâches Project 2010 Sasr les tâches d'un projet Les tâches représentent le traval à accomplr pour attendre l'objectf du projet. Elles représentent de ce fat, les éléments

Plus en détail

Manuel d'installation du système

Manuel d'installation du système Manuel d'nstallaton du système Système -énerge pour le chauffage et l'eau chaude GENIA HYBRID INTRODUCTION Tale des matères Gude d nstructons Documentaton produt Documents assocés Explcaton des symoles

Plus en détail

ET INCERTITUDES DE MESURE

ET INCERTITUDES DE MESURE LGCIE - Hdrologe Urbane Mater «Géne Cvl» Cour de Tronc Commun «Epérmentaton et modélaton» CAPTEURS, ETALONNAGES ET INCERTITUDES DE MESURE Jean-Luc BERTRAND-KRAJEWSKI Edton 7 Avertement Ce note de cour

Plus en détail

CHAPITRE DEUX : FORMALISME GEOMETRIQUE

CHAPITRE DEUX : FORMALISME GEOMETRIQUE CHPITRE DEUX FORMLISME GEOMETRIQUE. CHPITRE DEUX : FORMLISME GEOMETRIQUE verson.3, -8 I. GEOMETRIE DNS L ESPCE-TEMPS ) Prncpe de relatvté Le prncpe de relatvté peut s exprmer ans : toutes les los physques

Plus en détail

Mode d'emploi. Servomoteur radiofréquence 1187 00

Mode d'emploi. Servomoteur radiofréquence 1187 00 Mode d'emplo Servomoteur radofréquence 1187 00 Table des matères A propos de ce mode d'emplo... 2 Représentaton de l'apparel... 3 Montage... 3 Démontage... 3 Almentaton... 4 Mettre la ple en place... 4

Plus en détail

ÉTUDE DU STOCKAGE THERMIQUE DANS LE SOL EN UTILISANT UN SCHÉMA A DIFFÉRENCES FINIES UNIDIMENSIONNEL

ÉTUDE DU STOCKAGE THERMIQUE DANS LE SOL EN UTILISANT UN SCHÉMA A DIFFÉRENCES FINIES UNIDIMENSIONNEL ÉTUDE DU STOCKAGE THERMIQUE DANS LE SOL EN UTILISANT UN SCHÉMA A DIFFÉRENCES FINIES UNIDIMENSIONNEL Bogdan HORBANIUC, Gheorghe DUMITRASCU, Andre DUMENCU UNIVERSITÉ TECHNIQUE GHEORGHE ASACHI, Iaș, Roumane

Plus en détail

MODÈLE D ISING À UNE ET DEUX DIMENSIONS.

MODÈLE D ISING À UNE ET DEUX DIMENSIONS. Chapter MODÈLE DISIG À UE ET DEUX DIMESIOS.. ITRODUCTIO. ous commençons, dans ce chaptre, létude dun problème de mécanque statstque de la matère condensée où leffet des nteractons est mportant. Le modèle

Plus en détail

Circuits RL et RC. Chapitre 5. 5.1 Inductance

Circuits RL et RC. Chapitre 5. 5.1 Inductance Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite

Plus en détail

Les méthodes numériques de la dynamique moléculaire

Les méthodes numériques de la dynamique moléculaire Les méthodes numérques de la dynamque moléculare Chrstophe Chpot Equpe de chme et & bochme théorques, Unté Mxte de Recherche CNRS/UHP 7565, Insttut Nancéen de Chme Moléculare, Unversté Henr Poncaré, B.P.

Plus en détail

Pro2030 GUIDE D UTILISATION. Français

Pro2030 GUIDE D UTILISATION. Français Pro2030 GUIDE D UTILISATION Franças Contents Garante... Introducton... 1 Artcle nº 605056 Rév C Schéma nº A605056 Novembre 2010 2010 YSI Incorporated. Le logo YSI est une marque déposée de YSI Incorporated.

Plus en détail

MEMOIRE. Présenté au département des sciences de la matière Faculté des sciences

MEMOIRE. Présenté au département des sciences de la matière Faculté des sciences REPUBLIQUE LERIEN DEMOCRTIQUE ET POPULIRE Mnstère de l ensegnement supéreur et de la recherche scentfque Unversté El-Hadj Lakhdar-BTN- MEMOIRE Présenté au département des scences de la matère Faculté des

Plus en détail

Interface OneNote 2013

Interface OneNote 2013 Interface OneNote 2013 Interface OneNote 2013 Offce 2013 - Fonctons avancées Lancer OneNote 2013 À partr de l'nterface Wndows 8, utlsez une des méthodes suvantes : - Clquez sur la vgnette OneNote 2013

Plus en détail

LA RENOVATION DE L INDICE HARMONISE DES PRIX A LA CONSOMMATION DANS LA ZONE UEMOA

LA RENOVATION DE L INDICE HARMONISE DES PRIX A LA CONSOMMATION DANS LA ZONE UEMOA Observatore Economque et Statstque d Afrque Subsaharenne LA RENOVATION DE L INDICE HARMONISE DES PRIX A LA CONSOMMATION DANS LA ZONE UEMOA Une contrbuton à la réunon commune CEE/BIT sur les ndces des prx

Plus en détail

Prévost Kevin 1,2, Magal Pierre 1, Beaumont Catherine 2 RÉSUMÉ

Prévost Kevin 1,2, Magal Pierre 1, Beaumont Catherine 2 RÉSUMÉ INTERET UN MOELE MATHEMATIQUE AN LA COMPARAION E L EFFICACITE E IFFERENTE TRATEGIE E PREVENTION UR LA REITANCE AU PORTAGE A ALMONELLA ENTERITII CHEZ LA POULE Prévost Kevn 1,, Magal Perre 1, Beaumont Catherne

Plus en détail

Les prix quotidiens de clôture des échanges de quotas EUA et de crédits CER sont fournis par ICE Futures Europe

Les prix quotidiens de clôture des échanges de quotas EUA et de crédits CER sont fournis par ICE Futures Europe Méthodologe CDC Clmat Recherche puble chaque mos, en collaboraton avec Clmpact Metnext, Tendances Carbone, le bulletn mensuel d nformaton sur le marché européen du carbone (EU ETS). L obectf de cette publcaton

Plus en détail

Chapitre 1.5a Le champ électrique généré par plusieurs particules

Chapitre 1.5a Le champ électrique généré par plusieurs particules hapte.5a Le chap électque généé pa pluseus patcules Le chap électque généé pa pluseus chages fxes Le odule de chap électque d une chage ponctuelle est adal, popotonnel à la chage électque et neseent popotonnel

Plus en détail

Méthodes de catégorisation : Réseaux bayesiens naïfs. Olivier Aycard E-Motion group. Université Joseph Fourier. http://emotion.inrialpes.

Méthodes de catégorisation : Réseaux bayesiens naïfs. Olivier Aycard E-Motion group. Université Joseph Fourier. http://emotion.inrialpes. Méthodes de atégosaton : éseau aesens naïfs le Aad E-Moton goup Unesté Joseph Foue http://emoton.nalpes.f/aad le.aad@mag.f lan du ous Intéêts éseau aesens naïfs Appentssage de éseau aesens naïfs ésentaton

Plus en détail

LES APPAREILS A DEVIATION EN COURANT CONTINU ( LES APPREILS MAGNETOELECTRIQUES)

LES APPAREILS A DEVIATION EN COURANT CONTINU ( LES APPREILS MAGNETOELECTRIQUES) Chapitre 3 LES APPARELS A DEVATON EN COURANT CONTNU ( LES APPRELS MAGNETOELECTRQUES) - PRNCPE DE FONCTONNEMENT : Le principe de fonctionnement d un appareil magnéto-électrique est basé sur les forces agissant

Plus en détail

Économétrie. Annexes : exercices et corrigés. 5 e édition. William Greene New York University

Économétrie. Annexes : exercices et corrigés. 5 e édition. William Greene New York University Économétre 5 e édton Annexes : exercces et corrgés Wllam Greene New York Unversty Édton françase drgée par Dder Schlacther, IEP Pars, unversté Pars II Traducton : Stéphane Monjon, unversté Pars I Panthéon-Sorbonne

Plus en détail

Page 5 TABLE DES MATIÈRES

Page 5 TABLE DES MATIÈRES Page 5 TABLE DES MATIÈRES CHAPITRE I LES POURCENTAGES 1. LES OBJECTIFS 12 2. LES DÉFINITIONS 14 1. La varaton absolue d'une grandeur 2. La varaton moyenne d'une grandeur (par unté de temps) 3. Le coeffcent

Plus en détail

Thermodynamique statistique Master Chimie Université d Aix-Marseille. Bogdan Kuchta

Thermodynamique statistique Master Chimie Université d Aix-Marseille. Bogdan Kuchta hermodynamque statstque Master Chme Unversté d Ax-Marselle Bogdan Kuchta Plan: Rappel: thermodynamque phénoménologque (dscuter l entrope, l évoluton de gaz parfat,) Premer prncpe Deuxème prncpe (transformaton

Plus en détail

FORMATION DOCTORALE EN INFORMATIQUE THESE. présentée en vue de l obtention du Doctorat en Informatique. par

FORMATION DOCTORALE EN INFORMATIQUE THESE. présentée en vue de l obtention du Doctorat en Informatique. par UNIVERSITE DE TUNIS EL MANAR FACULTE DES SCIENCES DE TUNIS INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON FORMATION DOCTORALE EN INFORMATIQUE THESE présentée en vue de l obtenton du Doctorat en Informatque

Plus en détail

Le Prêt Efficience Fioul

Le Prêt Efficience Fioul Le Prêt Effcence Foul EMPRUNTEUR M. Mme CO-EMPRUNTEUR M. Mlle Mme Mlle (CONJOINT, PACSÉ, CONCUBIN ) Départ. de nass. Nature de la pèce d dentté : Natonalté : CNI Passeport Ttre de séjour N : Salaré Stuaton

Plus en détail

Réseau RRFR pour la surveillance dynamique : application en e-maintenance.

Réseau RRFR pour la surveillance dynamique : application en e-maintenance. Réseau RRFR pour la survellance dynamue : applcaton en e-mantenance. RYAD ZEMOURI, DANIEL RACOCEANU, NOUREDDINE ZERHOUNI Laboratore Unverstare de Recherche en Producton Automatsée (LURPA) 6, avenue du

Plus en détail

BUREAU D'APPLICATION DES METHODES STATISTIQUES ET INFORMATIQUES

BUREAU D'APPLICATION DES METHODES STATISTIQUES ET INFORMATIQUES BUREAU DAPPLICATION DES METHODES STATISTIQUES ET INFORMATIQUES BAMSI REPRINT 04/2003 Introducton à l analyse des données Samuel AMBAPOUR BAMSSI I BAMSI B.P. 13734 Brazzavlle BAMSI REPRINT 04/2003 Introducton

Plus en détail

10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010

10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010 10ème Congrès ranças d'acoustque Lyon, 1-16 Avrl 010 Imagere acoustque en soufflere SA Arnaud Ménoret 1, Nathale Gorllot, Jean-Luc Adam 3 1 Sgnal Développement, 1 Bld Chassegne, 86000 Poters, a.menoret@sgnal-developpement.com

Plus en détail

Prêt de groupe et sanction sociale Group lending and social fine

Prêt de groupe et sanction sociale Group lending and social fine Prêt de roupe et sancton socale Group lendn and socal fne Davd Alary Résumé Dans cet artcle, nous présentons un modèle d antsélecton sur un marché concurrentel du crédt. Nous consdérons l ntroducton de

Plus en détail

CHAPITRE IX. Modèle de Thévenin & modèle de Norton. Les exercices EXERCICE N 1 R 1 R 2

CHAPITRE IX. Modèle de Thévenin & modèle de Norton. Les exercices EXERCICE N 1 R 1 R 2 CHPITRE IX Modèle de Thévenin & modèle de Norton Les exercices EXERCICE N 1 R 3 E = 12V R 1 = 500Ω R 2 = 1kΩ R 3 = 1kΩ R C = 1kΩ E R 1 R 2 U I C R C 0V a. Dessiner le générateur de Thévenin vu entre les

Plus en détail

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge

Plus en détail

- Acquisition de signaux en sismologie large bande. - Acquisition de signaux lents, magnétisme, MT.

- Acquisition de signaux en sismologie large bande. - Acquisition de signaux lents, magnétisme, MT. 87 DUCAPTEURAUXEANQUESDEDONNEES. TECHNQUES D'NSTRUMENTATON EN GEOPEY8QUE. J:M. CANTN Unversté Lous Pasteur (Strasbourg 1) nsttut de Physque du Globe de Strasbourg Ecole et Observatore de Physque du Globe.

Plus en détail

Modélisation et conception d algorithmes pour la planification automatique du personnel de compagnies

Modélisation et conception d algorithmes pour la planification automatique du personnel de compagnies Modélsaton et concepton d algorthmes pour la planfcaton automatque du personnel de compagnes aérennes Carmen Draghc To cte ths verson: Carmen Draghc. Modélsaton et concepton d algorthmes pour la planfcaton

Plus en détail

Pour plus d'informations, veuillez nous contacter au 04.75.05.52.62. ou à contact@arclim.fr.

Pour plus d'informations, veuillez nous contacter au 04.75.05.52.62. ou à contact@arclim.fr. Régulaton Sondes & Capteurs Détente frgo électronque Supervson & GTC Humdfcaton & Déshu. Vannes & Servomoteurs Comptage eau, elec., énerge Ancens artcles Cette documentaton provent du ste www.arclm.eu

Plus en détail

Cette documentation provient du site www.arclim.eu et fait référence au produit suivant : PWRPR0000. Prix unitaire : 1732.77 HT

Cette documentation provient du site www.arclim.eu et fait référence au produit suivant : PWRPR0000. Prix unitaire : 1732.77 HT Régulaton Sondes & Capteurs Détente frgo électronque Supervson & GTC Humdfcaton & Déshu. Vannes & Servomoteurs Comptage eau, elec., énerge Ancens artcles Cette documentaton provent du ste www.arclm.eu

Plus en détail