E1 - LOIS GÉNÉRALES DE L ÉLECTROCINÉTIQUE

Dimension: px
Commencer à balayer dès la page:

Download "E1 - LOIS GÉNÉRALES DE L ÉLECTROCINÉTIQUE"

Transcription

1 E1 - LOIS GÉNÉRLES E L ÉLECTROCINÉTIQUE OBJECTIFS L Électrocnétqe est la branche de l Électromagnétsme q étde le transport des charges électrqes dans les crcts condcters. Ses applcatons, de l électrotechnqe à l électronqe, ont révoltonné la socété hmane, à tel pont qe l on pet placer l nventon d crct électrqe a même nvea qe celles de l agrcltre, de la roe o de l écrtre dans l hstore de l Hmanté. Elle a envah tos les secters de l économe et de la ve qotdenne et jamas ne socété n a été atant trbtare d ne technologe. Il sfft d magner ce q l nos arrverat s la terre état prvée de tot corant électrqe pendant vngt-qatre heres... L énerge électrqe est essentellement obtene par converson d énerge chmqe, dans les centrales thermqes les énerges hydralqes (barrages) et ncléares (centrales) restant mnortares à l échelle planétare. Elle est enste dstrbée sos forme de corant alternatf par n résea trphasé en tole d aragnée et n sos-résea dphasé radal à tos les tlsaters. fat de ses applcatons nnombrables, l Électrocnétqe est ensegnée dans n bt pratqe. Il ne s agt pas d exposer des théore spectaclares o de réalser des proesses mathématqes, mas de décrre les statons smples et concrètes qe rencontre la technologe. Objectfs de cette leçon : Vocablare et concepts de base de l électrocnétqe. Los de Krchhoff et cadre dans leqel elles sont valables. Étde énergétqe d n dpôle. I COURNT ÉLECTRIQUE I.1 Charge éfnton : Une grander physqe est ne grander extensve lorsq elle est proportonnelle à la qantté de matère. Le blan d ne telle grander caractérsant n système S, entre t et t+dt, s écrt : dg varaton de la grander G de S pendant dt dg = δ e G+δ p G avec δ e G le terme d échange (entre S et le mle extérer) et δ p G le terme de prodcton(spécfqe à S). δ e G dg δ p G (S) Prncpe de conservaton de la charge : La charge est ne grander extensve conservatve. La charge électrqe ne pet être n créé, n détrte; elle ne pet être q échangée : dq = δ e Q car δ p Q 0 Il s agt d ne lo fondamentale de la physqe. Conséqence en électrocnétqe : n générater ne créé acne charge; par contre, l pet commnqer ax charges ne énerge électrqe et les mettre ans en movement. I.2 Intensté éfnton : L ntensté d n corant à travers ne srface S orentée est égale à la charge électrqe q traverse S par nté de temps : = dq dt où en ampère () dq est la charge élémentare (en colomb, C) traversant S pendant la drée élémentare dt (en seconde, s) n srface S orentée Q : S = 10 m dans n condcter métallqe de secton S, qel est le nombre d électrons N q traversent cette secton par seconde? Rép. : En régme statonnare, = dq dt = Q τ avec Q = N.e, e = q e = 1, C et τ = 1 s.

2 E1 I. Corant électrqe Sot N =.τ e électrons (60 mllons de mllards!). I.3 Vecter densté de corant a éfnton On fat les hypothèses svantes : - Sot n matéra condcter dans leqel tos les porters de charge sont de même type : tos les porters portent la même charge q (spposée postve sr le schéma). - chaqe porter a ne vtesse assmlée à la vtesse de grope v (cf. cors d Électromagnétsme). - la densté volmqe des porters (n, en m 3 ) est nforme. Pendant la drée élémentare dt les porters q traversent la srface S (plane et orentée) sont contens : - dans le cylndre de base S, - de génératrce v dt - et de hater vdtcosα. Le volme de ce cylndre est dv = vdtcosα.s Il content le nombre dn de porters de charge q traversent S entre t et t+dt : dn = n.dv. porters traversant S à l nstant t+dt vdt v α vdtcosα La charge q traverse S pendant la drée dt est donc : dq = q.dn = q.n.vdtcosα.s L ntensté d corant q traverse S est donc : = dq dt = nqvcosαs À la srface S orentée par le vecter ntare n, on assoce le vecter srface : Or, v n = vcosα, d où : = nq v S j S M v dt n porters traversant S à l nstant t S = S n. éfnton : On appelle vecter densté volmqe de corant et on note j le vecter (exprmé en.m 2 ) : n est la densté volmqe de porters (en m 3 ) j = nq v où q est la charge d n porter (en C) v est la vtesse d ensemble des porters (en m.s 1 ) O encore : j = ρ v où ρ est la densté volmqe de charges mobles (en C.m 3 ). éfnton : (Généralsaton) L ntensté q traverse ne srface S qelconqe et orentée par n contor C est égale a flx de la densté de corant à travers S : = j (M) ds avec ds = ds. n (M) C I j (M) M n ds S ds b Corants créées par dfférents types de porters ans n mle condcter, la densté de corant totale j est la somme des denstés de corants correspondant à chaqe type de porters de charges : j = jk = k k n k q k vk = k ρ k vk 2 http ://atelerprepa.over-blog.com/ Qadr J.-Ph. PTSI

3 II. Lo d Ohm E1 c Exercce : secton des fls électrqes Les fls de cvre tlsés dans les nstallatons domestqes spportent sans dommage ne densté volmqe de corants de l ordre de 7.mm 2. Q : Qelle est la secton mnmale d n fl cylndrqe destné à véhcler n corant de 16? Rép : Sot S l are de la secton drote d fl cylndrqe. Spposons ne répartton nforme de corants, c est-à-dre n vecter densté volmqe de corants j dentqe en tot pont d fl, donc de sa secton S. On a : = j ds = j n nds = j.ds = j ds = j.s. Psqe I = 16 et qe la densté de corants ne dot pas dépasser j max = 7.mm 2, on conclt : S mn = I j max 2,3 mm 2 II LOI OHM Physcens Fls de serrrer, Georg Ohm commence à travaller avec son père. À la ste de plsers séjors en Ssse, l termne ses étdes à Erlangen et l accepte n modeste poste à Bamberg. Qelqes années pls tard, l est très herex d être nommé à Cologne où l trove n envronnement et des moyens propces à ses recherches. G. Ohm est l ater en 1827 de la lo fondamentale q rele la tenson électrqe ax bornes d n condcter à l ntensté q le parcort. Il décovre cette lo relatvement smple après des séres de mesres très délcates sr les températres locales et les forces exercées a sen même des condcters. Nommé professer à l cadéme Mltare de Berln, ps à l Insttt Polytechnqe de Nremberg et enfn en 1849 à l Unversté de Mnch, l porst ses travax dans les domanes Georg Smon Ohm de la polarsaton des ples électrqes, de l acostqe, de la Erlangen (Bavère) polarsaton de la lmère. Mnch 1854 Il se fat remarqer par des expérences spectaclares et par des tratements mathématqes sophstqés. ans le domane de l acostqe, l montre en 1843 qe l orelle est capable de séparer dans n son complexe les dfférentes composantes snsoïdales. II.1 Tenson et potentel électrqe Le movement des charges q constte le corant dans ne certane régon de l espace est provoqé par n déséqlbre de natre électrqe a sen de celle-c. On défnt en tot pont de l espace n champ scalare noté V(M) q on appelle potentel électrqe. Nos ne porrons défnr correctement le potentel électrqe qe dans le cors d Électromagnétsme. Por le moment, l sfft de savor qe lorsqe le potentel électrqe n est pas nforme, l apparaît n champ électrqe E. lors, les porters de charges mobles sont soms à la force électrqe q E q ler commnqe n movement d ensemble. Ils engendrent alors n corant électrqe (cf.i). la descrpton d ne porton de crct électrqe comprse entre dex ponts et B fat donc appel à dex granders, d ne part l ntensté d corant, d atre part la dfférence de potentel U B = V V B entre et B. éfnton : On appelle tenson (électrqe) la dfférence de potentel entre et B. Elle s exprme, comme le potentel, en volts (V). Par conventon, la tenson U B entre les ponts et B se représente dans n schéma électrqe par ne flèche drgée vers le pont. B U B = V V B Qadr J.-Ph. PTSI http ://atelerprepa.over-blog.com/ 3

4 E1 III..R.Q.S Rq1 : U B > 0 V > V B : s ne tenson est postve, alors la flèche de tenson est dans le sens des potentels crossants. Rq2 : Les potentels V sont défns à ne constante près. Sele la tenson o dfférence de potentels a n sens physqe. II.2 Lo d Ohm Por de nombrex condcters, la tenson (= dfférence de potentels) entre les extrémtés d condcter est proportonnelle à l ntensté traversant le condcter : U B = V V B = RI B I B = GU B avec R = 1 G R est la résstance (en ohm, Ω) d condcter ohmqe et G la condctance (en semens, S). Cas partcler : condcter métallqe cylndrqe homogène, de longer l et de secton S : R = ρ l S avec ρ 1 γ { ρ s appelle la résstvté (en Ω.m) γ s appelle la condctvté (en S.m 1 ) Ordres de grander : condcter : ρ 10 8 Ω.m et γ S.m 1 : ρ = 2, Ω.m et ρ C = 1, Ω.m Por n solant comme le verre : ρ 10 6 Ω.m et γ 10 6 S.m 1. Q : Qelle est la résstance d n fl électrqe en cvre de damètre φ = 1 mm et de longer l = 1 m? Por n fl de même natre mas de damètre doble (φ = 2 mm)? l Rép. : R fl = ρ C S = ρ 1 C π( φ Ω et R 2 )2 fl Ω Conclson : La résstance d n fl de connexon est néglgeable devant les atres résstances d n crct : R fl 0 Ω U fl 0 V III pproxmaton des régmes qas-statonnares III.1 Régme permanent et régme varable éfnton : On parle de résea en régme contn a (o statonnare o permanent) lorsqe les granders (ntensté, corant, charge...) sont ndépendantes d temps. On note de telles granders par des majscles (I, U B, Q 0...). Un résea électrqe fonctonne en régme varable lorsqe les granders q l sont assocées varent a cors d temps ((t), (t), q(t)...). a. ce terme n a acn rapport avec la contnté mathématqe. III.2 pproxmaton des régmes qas-statonnares Q : Sot le crct c-contre. Le condensater C est ntalement déchargé. près la fermetre de l nterrpter K, les ampèremètres vont-ls ndqer, à chaqe nstant, la même valer de l ntensté? Rép : en tote rger, non. Car l expérence montre qe l ntensté (la tenson, et totes lers manfestatons) sont des granders q se propagent avec ne vtesse énorme (c c 0 = m.s 1 ) mas avec ne vtesse fne. 4 http ://atelerprepa.over-blog.com/ Qadr J.-Ph. PTSI M (t) M K N (t) N E C R

5 IV. Los de Krchhoff E1 ns, en tote rger, N (t) est en retard sr l ntensté M (t) : N (t) = M (t τ), où τ est la drée de propagaton d sgnal électrqe de M à N. Q : Portant, en régme varable (snsoïdal le pls sovent) nos consdérerons qe l ntensté est la même en tos ponts d ne même branche, sos certanes condtons. où la qeston : à qelle condton pet-on parler de l ntensté dans ne branche d n crct, c est-à-dre, à qelle condton a-t-on : M (t) N (t)? Rép : Une étde complète nécesste le cadre de l Électromagnétsme et sera abordée en Math. Spé. Mas nos povons retenr qe cela nécesste qe la drée de propagaton τ = MN sot c néglgeable devant les drées caractérstqes d régme étdé (temps de relaxaton lorsqe le sgnal est transtore, o pérode lorsqe le sgnal est pérodqe). L approxmaton des régmes qas statonnares (RQS) o qas permanents (RQP) revent à néglger tos les effets lés à la propagaton des sgnax électro-magnétqes sos forme de tenson o de corant. lors, l ntensté est la même en tos les ponts d ne branche d n crct : M (t) = N (t) = (t) Condtons de l RQS por n sgnal snsoïdal : λ l T τ f 1 τ avec τ = l c - l est la dmenson caractérstqe d crct (longer d n fl de connexon) - τ est la drée caractérstqe de propagaton des sgnax. - T est la pérode d sgnal snsoïdal, f = 1 T sa fréqence et λ = c.t sa longer d onde. Ordre de grander : En pratqe, a laboratore, l 1 m τ = l c s = 3 ns. Et la condton : T τ f < 1 τ = Hz. Conclson : por 0 Hz < f < 1 MHz Hz, on est dans l RQS a laboratore. lors la mesre de l ntensté dans ne branche a n sens. Cec revent à travaller avec des sgnax de pérode : T > 1 f max = 10 6 s = 1 μs. IV LOIS E KIRCHOFF IV.1 Vocablare Fl de connexon : fl dont la résstance est néglgeable devant les atres résstances d montage. Masse Sgnal : référence des potentels d n crct donné. ce potentel n est pas forcément constant dans le temps (mas ce n est pas grave psqe seles les dfférences de potentels nos ntéressent). Symbole :. Masse Carcasse o «Terre» : c est n pont de potentel constant. La carcasse métallqe d n apparel électrqe ayant vocaton à être relée à la terre par l ntermédare de la prse de terre et la Terre étant conventonnellement a potentel nl, la carcasse électrqe pet servr de référence des potentels. Symbole :. pôle : composant électrqe lmté par dex bornes, appelées encore «pôles». Mltpôles : composant électrqe dont l accès se fat par pls de dex bornes. En partcler : les qadrpôles. Sovent, les qadrpôles possèdent ne borne commne entre l entrée et la sorte. On branche n qadrpôle entre n dpôle d entrée («sorce») et n dpôle de sorte q on appelle dpôle d tlsaton o encore «charge». Qadr J.-Ph. PTSI http ://atelerprepa.over-blog.com/ 5

6 E1 IV. Los de Krchhoff Nœd : c est n pont d crct q est la borne commne à pls de dex dpôles (et/o mltpôles). Branche : ensemble de dpôles montés en sére et stés entre dex nœds. Malle : ensemble de branches formant n contor fermé q on ne pet parcorr en ne passant q ne sele fos par chaqe nœd ntermédare. Une malle est orentée arbtrarement! Malle élémentare : c est ne malle délmtant dans le crct n enclos connexe. Résea o Crct : système de condcters relés les ns ax atres (par des fls de connexon) q on pet analyser en terme de malles, nœds, branches... Exercce : ans le crct c-contre, tos les dpôles sont dentqes. Q : énombrer les branches (b) et nommer les malles élémentares (m) et les nœds (n). Rép : On compte : - b = 5 branches (atant qe d ntenstés) - m = 3 malles élémentares : (PECNP), (BCE) et (BCB). - n = 3 noeds :, B et C. ttenton : N, P et E ne sont pas des nœds. 2 1 P e B E 3 4 N = M C Physcens près des étdes effectées à Köngsberg, Gstav Krchhoff ensegne la physqe à Berln. À vngt ans, l établt les los q régssent les corants électrqes dans les crcts dérvés (1845). Pls tard, l élabore ne théore générale de l électrcté dans laqelle l ntrodt les notons de potentel scalare et de potentel vecter. Nommé professer à Bresla, l collabore avec son am R. Bnsen q l entraîne en 1854 à Hedelberg où ls effectent ensemble des travax remarqables. ans ne expérence célèbre de spectroscope des flammes, ls montrent qe les raes d n gaz pevent être nversées, brllantes à l émsson, obscres à l absorpton. Ils explqent ans le doblet nor d sodm observé en 1814 par J. Franhofer dans le spectre solare. Sr la base d n sel argment de thermodynamqe, G. Krchhoff établt en 1859 la proportonnalté entre le povor émssf et le povor absorbant des corps chads. Introdsant enste le concept de corps nor, l dentfe en 1862 ce cœffcent de proportonnalté avec la brllance d rayonne- Gstav Robert Krchhoff Köngsberg (llemagne) Berln 1887 ment thermqe. Il émet également l hypothèse qe les los d corps nor ne dovent dépendre qe de la températre, hypothèse q joe n grand rôle dans les recherches en ce domane à la fn d XIX e sècle. Il nvente n spectroscope q l tlse avec R. Bnsen por réalser en 1859 l analyse spectrale des composés chmqes. Cette méthode ler permet de décovrr pe après dex éléments chmqes noveax, le césm et le rbdm. Le thallm, l ndm et le gallm seront enste dentfés avec cette même méthode d analyse. IV.2 Lo des nœds ans les réseax et en régme varable, l n est pas tojors facle de connaître le sens d corant. On chost n sens arbtrare d corant por chaqe branche, le corant réel I étant algébrqe. Lo des nœds : En régme contn, comme dans l RQS, La somme des ntenstés des corants arrvant en n nœd N est égale à la somme des ntenstés q en repartent : j = allant vers N venant de N k 6 http ://atelerprepa.over-blog.com/ Qadr J.-Ph. PTSI

7 IV. Los de Krchhoff E1 Exemple d applcaton : Sr le schéma c-contre, la lo des nœds a nœd N donne : somme des ntenstés arrvant en N = somme des ntenstés repartant de N Sot : = Q on pet encore écrre : = 0 Ce q condt a corollare svant de la lo des nœds : 5 1 N Corollare : En régme contn, comme dans l RQS, La somme algébrqe des ntenstés en n nœd est nlle : ε k k = 0 nœd en comptant : - postvement les ntenstés des corants arrvant en (ε k = +1) - et négatvement celles des corants repartant de (ε k = 1). IV.3 Lo des malles Lo des malles : En régme contn comme dans l RQS, La somme algébrqe des tensons prses le long d ne malle orentée est nlle : { εk = +1 s la tenson ε k k = 0 avec k est drgée dans le sens chos por la malle ε k = 1 snon malle Exemple d applcaton : Lo des malles por la malle orentée (CB) c-contre : = 0 4 = + 1 = B 3 = C Sot : + C + BC + B = 0 Corollare : lo d addtvté des tensons (o relaton de Chasles) : S, B et C sont tros ponts d n crct, alors : C = B + BC B 2 = CB C IV.4 pplcaton On reprend le crct étdé dans l exercce de IV.1. Q : Écrre totes les los des nœds et totes les los des malles élémentares. onnées : U PN = 12 V, U C = 3,6 V, U BC = U B 2, = 0,042 et 4 = 0,012. Q : étermner totes les ntenstés d crct, la tenson ax bornes de chaqe dpôle et le potentel de chaqe pont. Rép. : Los des nœds : Nœd : = (N 1 ) Nœd B : 2 = (N 2 ) Nœd C : = (N 3 ) = (N 1 )+(N 2 ) Los des malles : (PCNP) : U PN +U P +U E +U CE +U NC = 0 (M 1 ) (BCE) : U B +U CB +U EC +U E = 0 (M 2 ) (BCB) : U CB ( 4 )+U BC ( 3 ) = 0 (M 3 ) ex dpôles dentqes parcors par le même corant sont soms à la même tenson. onc : U E = U EC por la branche parcore par l ntensté 1. onc U C = U E +U EC = 2U E, sot U E = U EC = U C 2 = 1,8 V. Qadr J.-Ph. PTSI http ://atelerprepa.over-blog.com/ 7

8 E1 V. pôle et Pssance U P = U NC, sot (M1) e+2u P +U C = 0 U P = U CN = e U C 2 e pls, comme U BC = U B 2 U B = 2 3 U C = 2,4 V et U BC = U B 2 et U C = U B +U BC = 3,6 V, on en dédt : = 1,2 V. = 4,2 V Entre B et C, on a dex dpôle dentqes soms à la même tenson, donc : 3 = 4 = 0,012. La lo des nœds en B donne : 2 = 2 3 = 0,024. Celle en : 1 = 2 = 0,018. Par défnton de la masse, V N = V M = 0 V. La défnton de la tenson (U ab = V a V b ) permet d obtenr les potentels de tos les ponts : V P = 12 V V = 7,8 V V B = 5,4 V V C = 4,2 V V E = 6 V V IPÔLE ET PUISSNCE ÉLECTROCINÉTIQUE V.1 Caractérstqe d n dpôle éfnton : ex conventons por étder n dpôle : - et de sens opposés ( = B ) : - et sont de même sens ( = B ) : l s agt de la conventon récepter : l s agt de la conventon générater : B B B B éfnton : ex corbes permettent de caractérser n dpôle : - La corbe = () est la caractérstqe Tenson-Intensté. - La corbe = () est la caractérstqe Intensté-Tenson. Rqe : Tojors ndqer la conventon chose lorsq on trace ne caractérstqe () o (). Por cela, ndqer le symbole d dpôle et l ndcaton des sens de et à proxmté de la caractérstqe. Conventon récepter B B Conventon générater B B B. < 0 dpôle générater B. > 0 dpôle récepter B. > 0 dpôle récepter B. < 0 dpôle générater B. < 0 dpôle récepter B. > 0 dpôle générater B. > 0 dpôle générater B. < 0 dpôle récepter En conventon récepter, s l ntensté traversant le dpôle et la tenson à ses bornes ont le même sgne, alors le dpôle possède n caractère récepter. En conventon générater, s l ntensté traversant le dpôle et la tenson à ses bornes ont le même sgne, alors le dpôle possède n caractère générater. 8 http ://atelerprepa.over-blog.com/ Qadr J.-Ph. PTSI

9 V. pôle et Pssance E1 éfnton : On appelle : pôle Symétrqe : n dpôle dont le fonctonnement ne dépend pas d sens d corant. Exemples : résstance, condensater, bobne, thermstance... B R pôle d-symétrqe o encore dpôle «polarsé» : n dpôle dont le fonctonnement dépend d sens d corant. Exemples : dode, condensater électrochmqe, génératers... B Rq : la caractérstqe Intensté-Tenson (o Tenson-Intensté) d n dpôle polarsé n est pas symétrqe par rapport à l orgne O(0,0), d où le nom de «dpôle non-symétrqe». éfnton : pôle passf : dpôle ayant ne tenson nlle à ses bornes qand l n est parcor par acn corant : I = 0 U = 0 sa caractérstqe passe par l orgne. ans le cas contrare, on parle d n dpôle actf. Exemples : - dpôles passfs : dode, résstance. - dpôles actfs : générater de corant (I(U = 0) = 0) o de tenson (U(I = 0) = 0). V.2 Pssance reçe par n dpôle Qadr J.-Ph. PTSI http ://atelerprepa.over-blog.com/ 9

T.P. Le redressement commandé : le pont mixte.

T.P. Le redressement commandé : le pont mixte. I Introdcton : T.P. Le redressement commandé : le pont mxte. Précédemment, nos avons v qe nos povons réalser la converson d'ne tenson alternatve snsoïdale t =U 2sn t en ne tenson contne grâce à l'tlsaton

Plus en détail

Physique appliquée. 1 re STI. Génie électronique

Physique appliquée. 1 re STI. Génie électronique Physqe applqée 1 re STI Géne électronqe Mare-Clade Dder Lycée les Irs, Lormont Jacqes Lafarge Lycée Gstave ffel, Bordeax Therry Lecorex Lycée Rchele, Rel-Malmason Gérard Montaster Lycée Doran, Pars Sos

Plus en détail

ELECTRICITE. Analyse des signaux et des circuits électriques. Michel Piou

ELECTRICITE. Analyse des signaux et des circuits électriques. Michel Piou LCTICIT nalyse des sgnax et des crcts électrqes Mchel Po Chaptre 2 Los générales de l électrcté en régme contn. Théorèmes de sperposton, Thévenn et Norton. dton 23/05/2005 nméro d'enregstrement de

Plus en détail

RÉPONSES À UN ÉCHELON. Sortie u(t) réponse. t(s)

RÉPONSES À UN ÉCHELON. Sortie u(t) réponse. t(s) BTS S ÉPONSS À UN ÉHON. éponse à n échelon d n système d premer ordre xemple : almentaton d n condensater de capacté par ne sorce de tenson e(t) à travers résstance a tenson varable e(t) est n échelon

Plus en détail

Dynamique du point matériel

Dynamique du point matériel Chaptre III Dynaqe d pont atérel I Généraltés La cnéatqe a por objet l étde des oveents des corps en foncton d teps, sans tenr copte des cases q les provoqent La dynaqe est la scence q étde (o déterne)

Plus en détail

Université d El Oued Cours Circuits Electriques 3 LMD-EM

Université d El Oued Cours Circuits Electriques 3 LMD-EM ère parte : Electrocnétque Chaptre ntroducton L Electrocnétque est la parte de l Electrcté qu étude les courants électrques. - Courant électrque -- Défntons Défnton : un courant électrque est un mouvement

Plus en détail

Exercices d Électrocinétique

Exercices d Électrocinétique ercces d Électrocnétque Intensté et densté de courant -1.1 Vtesse des porteurs de charges : On dssout une masse m = 20g de chlorure de sodum NaCl dans un bac électrolytque de longueur l = 20cm et de secton

Plus en détail

Champ magnétique. 1 Notions préliminaires. 1.1 Courant électrique et densité de courant

Champ magnétique. 1 Notions préliminaires. 1.1 Courant électrique et densité de courant 4 Champ magnétque 1 Notons prélmnares 1.1 Courant électrque et densté de courant Un courant électrque est défn par un déplacement de charges électrques élémentares (ex : les électrons de conducton dans

Plus en détail

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique Spécale PSI - Cours "Electromagnétsme" 1 Inducton électromagnétque Chaptre IV : Inductance propre, nductance mutuelle. Energe électromagnétque Objectfs: Coecents d nductance propre L et mutuelle M Blan

Plus en détail

Chapitre III- 2- RÉGIME SINUSOÏDAL GÉNÉRALITÉS. 2π T II- GRANDEURS RELATIVES AU RÉGIME SINUSOÏDAL OBJECTIFS I- POURQUOI ÉTUDIER LE RÉGIME SINUSOÏDAL?

Chapitre III- 2- RÉGIME SINUSOÏDAL GÉNÉRALITÉS. 2π T II- GRANDEURS RELATIVES AU RÉGIME SINUSOÏDAL OBJECTIFS I- POURQUOI ÉTUDIER LE RÉGIME SINUSOÏDAL? OBJECTFS Chapre - - RÉGME SNSOÏDAL GÉNÉRALTÉS - Monrer l'mporance d régme snsoïdal en élecronqe e dans d'ares domanes. - Défnr les granders relaves à n sgnal snsoïdal. - Savor représener ne grander snsoïdale

Plus en détail

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h.

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h. A2 Analyser le système Converson statque de l énerge Date : Nom : Cours 2 h 1 Introducton Un ConVertsseur Statque d énerge (CVS) est un montage utlsant des nterrupteurs à semconducteurs permettant par

Plus en détail

Courant alternatif. Dr F. Raemy La tension alternative et le courant alternatif ont la représentation mathématique : U t. cos (!

Courant alternatif. Dr F. Raemy La tension alternative et le courant alternatif ont la représentation mathématique : U t. cos (! Courant alternatf Dr F. Raemy La tenson alternatve et le courant alternatf ont la représentaton mathématque : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Une résstance dans un crcut à courant

Plus en détail

Montage émetteur commun

Montage émetteur commun tour au menu ontage émetteur commun Polarsaton d un transstor. ôle de la polarsaton La polarsaton a pour rôle de placer le pont de fonctonnement du transstor dans une zone où ses caractérstques sont lnéares.

Plus en détail

Grandeurs de réaction et de formation

Grandeurs de réaction et de formation PSI Brzeux Ch. hermochme 1 : grandeurs de réacton et de formaton 1 C H A P I R E 1 r a p p e l s e t c o m p l é m e n t s ) Grandeurs de réacton et de formaton 1. RAPPELS 1.1. Phases et consttuants Donnons

Plus en détail

Corrélation et régression linéaire

Corrélation et régression linéaire Corrélaton et régresson lnéare 1. Concept de corrélaton. Analyse de régresson lnéare 3. Dfférences entre valeurs prédtes et observées d une varable 1. Concept de corrélaton L objectf est d analyser un

Plus en détail

Oscillations électriques libres

Oscillations électriques libres Oscllatons électrues lbres A Oscllatons lbres amortes 1/ Etude expérmentale a Expérence et observatons Après avor chargé le condensateur (poston 1) On bascule l nterrupteur sur la poston, on obtent l oscllogramme

Plus en détail

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique Ch 4 Séres statstques à une dmenson Défntons et représentaton graphque Termnologe Ensemble étudé = populaton Eléments de cet ensemble = ndvdus ou untés Attrbut consdéré = caractère qu peut être qualtatf

Plus en détail

Systèmes électromécaniques

Systèmes électromécaniques Hate Ecole d ngénere et de Geston D Canton d Vad Systèes électroécanqes Chaptre 6 OEURS SYNCRHONES A AANS PERANENS Coplage et odélsaton por les oters trphasés CD\SE\Cors\Chap6. Correvon A B E D E S A

Plus en détail

Travaux pratiques : GBF et oscilloscope

Travaux pratiques : GBF et oscilloscope Travaux pratques : et osclloscope S. Benlhajlahsen ésumé L objectf de ce TP est d apprendre à utlser, c est-à-dre à régler, deux des apparels les plus couramment utlsés : le et l osclloscope. I. Premère

Plus en détail

PHY124, année 0405 COURS D'ÉLECTROCINÉTIQUE

PHY124, année 0405 COURS D'ÉLECTROCINÉTIQUE PHY4, année 45 COUS D'ÉLECTOCINÉTIQUE Ce ors, dsponble sr le web à l adresse http ://marpx.np3.fr/alo/my-web/ele/ele.html, est l œvre de Sylvan Tsserant, de l Unversté de Marselle, q a donné l atorsaton

Plus en détail

Enseignement secondaire. PHYSI Physique Programme

Enseignement secondaire. PHYSI Physique Programme Ensegnement secondare Dvson supéreure PHYSI Physque Programme 3CB_3CC_3CF_3MB_3MC_3MF Langue véhculare : franças Nombre mnmal de devors par trmestre : 1 PHYSI_3CB_3CC_3CF_3MB_3MC_3MF_PROG_10-11 Page 1

Plus en détail

Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 Année 2011 12. TD4. Tribus.

Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 Année 2011 12. TD4. Tribus. Unversté Perre & Mare Cure (Pars 6) Lcence de Mathématques L3 UE LM364 Intégraton 1 Année 2011 12 TD4. Trbus. Échauffements Exercce 1. Sot X un ensemble. Donner des condtons sur X pour que les classes

Plus en détail

Vecteurs dans le plan

Vecteurs dans le plan Vecters dans le plan 1. Définition d n vecter : (classe de seconde) Soient A et B dex points d plan. La translation transformant A en B est la transformation qi transforme tot point M en n point M tel

Plus en détail

DE LA VALIDATION DES METHODES D ANALYSE A L EVALUATION DE L INCERTITUDE DES RESULTATS DE MESURE

DE LA VALIDATION DES METHODES D ANALYSE A L EVALUATION DE L INCERTITUDE DES RESULTATS DE MESURE DE LA VALIDATION DES METHODES D ANALYSE A L EVALUATION DE L INCETITUDE DES ESULTATS DE MESUE Mchèle Désenfant Marc Prel Cédrc ver Laboratore Natonal d Essas BNM-LNE 1, re Gaston Bosser 7574 Pars Cedex

Plus en détail

Le redressement. 1. Intérêt du redressement MCC

Le redressement. 1. Intérêt du redressement MCC . Intérêt d redressement Le redressement MCC Si on désire faire fonctionner n moter à corant contin (MCC) en alternatif il ne torne pas mais vibre. Explication : le corant alternatif change de sens réglièrement

Plus en détail

Clemenceau. Régime sinusoïdal forcé. Impédances Lois fondamentales - Puissance. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O.

Clemenceau. Régime sinusoïdal forcé. Impédances Lois fondamentales - Puissance. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O. ycé Clnca PCS - Physq ycé Clnca PCS (O.Granr) ég snsoïdal forcé pédancs os fondantals - Pssanc ycé Clnca PCS - Physq ntérêt ds corants snsoïdax : Expl d tnsons snsoïdals : tnson d sctr (50 H 0 V) s lgns

Plus en détail

Chapitre 5.1 Les photons et l effet photoélectrique

Chapitre 5.1 Les photons et l effet photoélectrique Chaptre 5. Les s et l eet photoélectrque L ntensté d une onde électromagnétque n 884, le physcen brtannque John Henry Poyntng a démontré à partr des équatons de Maxwell que l ntensté d un champ électromagnétque

Plus en détail

On dépose une espèce à une certaine concentration, puis on observe comment sa concentration se répartit en fonction de la distance.

On dépose une espèce à une certaine concentration, puis on observe comment sa concentration se répartit en fonction de la distance. Moblté des espèces en soluton I_ Les dfférents modes de transport En soluton, les molécules peuvent se déplacer selon tros modes dfférents : onvecton, la matère est déplacée par contrante mécanque (agtaton)

Plus en détail

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix?

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix? Note méthodologque Tratements hebdomadares Questlemonscher.com Quelle méthode de collecte de prx? Les éléments méthodologques ont été défns par le cabnet FaE onsel, socété d études et d analyses statstques

Plus en détail

Cours Corporate finance

Cours Corporate finance Cours Corporate fnance Eléments de théore du portefeulle Le edaf Franços Longn www.longn.fr lan Notons de rentablté Défnton odélsaton Eléments de théore du portefeulle ortefeulle Dversfcaton Le edaf Le

Plus en détail

Compensation des amétropies sphériques

Compensation des amétropies sphériques Compensation des amétropies sphériqes Principe de la compensation e verre compensater théoriqe (o verre correcter) de l'amétropie, placé devant l'œil, permet a sjet de voir net à l'infini sans accommoder.

Plus en détail

Le théorème du viriel

Le théorème du viriel Le théorème du vrel On se propose de démontrer le théorème du vrel de deux manères dfférentes. La premère fat appel à deux "trcks" qu l faut vor. Cette preuve met en avant une quantté, notée S c, qu permet

Plus en détail

Valeur absolue et fonction valeur absolue Cours

Valeur absolue et fonction valeur absolue Cours Valeur absolue foncton valeur absolue Cours CHAPITRE 1 : Dstance entre deu réels 1) Eemples prélmnares 2) Défnton 3) Proprétés CHAPITRE 2 : Valeur absolue d un réel 1) Défnton 2) Proprétés CHAPITRE 3 :

Plus en détail

Montages à plusieurs transistors

Montages à plusieurs transistors etor a men! ontages à plsiers transistors mplificaters à plsiers étages Dans de nombrex amplificaters, on cerce à obtenir n grand gain, ne impédance d entrée élevée (afin de ne pas pertrber la sorce d

Plus en détail

Représentation de l'information

Représentation de l'information 1. L nformaton 1-1 Dualté état et temps Représentaton de l'nformaton La noton d'nformaton correspond à la connassance d'un état donné parm pluseurs possbles à un nstant donné. La Fgure 1 llustre cette

Plus en détail

N d ordre : 79 Année : 2013. THÈSE de DOCTORAT en cotutelle pour l obtention du. Doctorat de l université d Aix Marseille (France) Et du

N d ordre : 79 Année : 2013. THÈSE de DOCTORAT en cotutelle pour l obtention du. Doctorat de l université d Aix Marseille (France) Et du N d ordre : 79 Année : 2013 Unversté Abdelmalek Essaâd Faclté des Scences et Technqes Tanger Laboratore d Energétqe A Marselle Unversté Ecole doctorale 353 Laboratore IUSTI, UMR-CNRS 7343 THÈSE de DOCTORAT

Plus en détail

TRANSLATION ET VECTEURS

TRANSLATION ET VECTEURS TRNSLTION ET VETEURS 1 sr 17 ctivité conseillée ctivités de grope La Translation (Partie1) http//www.maths-et-tiqes.fr/telech/trans_gr1.pdf La Translation (Partie2) http//www.maths-et-tiqes.fr/telech/trans_gr2.pdf

Plus en détail

Cours et exercices de PHYSIQUE :

Cours et exercices de PHYSIQUE : Cours et exercces de PHYSIQUE : Électrcté. Ingéneur CESI Préparaton aux tests de sélecton. Stéphane Vctor. stephanevctor@yahoo.fr - - Programme de physque. Électrcté. Chaptre : Les composants passfs. -

Plus en détail

Chapitre 1 : Images données par une lentille mince convergente

Chapitre 1 : Images données par une lentille mince convergente Chaptre 1 : Images données par une lentlle mnce convergente Termnale S Spécalté Chaptre 1 : Images données par une lentlle mnce convergente bectfs : - Constructon graphque de l mage d un obet plan perpendculare

Plus en détail

MECANISMES MODELISES

MECANISMES MODELISES MEANISMES MODELISES Les évaluatons de sûreté relatves aux nstallatons de stockage de déchets radoactfs en couche géologque profonde nécesstent la compréhenson et la modélsaton d une part des systèmes hydrogéologques

Plus en détail

SIMNUM : Simulation de systèmes auto-gravitants en orbite

SIMNUM : Simulation de systèmes auto-gravitants en orbite SIMNUM : Smulaton de systèmes auto-gravtants en orbte sujet proposé par Ncolas Kelbasewcz : ncolas.kelbasewcz@ensta-parstech.fr 14 janver 2014 1 Établssement du modèle 1.1 Approxmaton de champ lontan La

Plus en détail

Cours de CEM. Lois physiques de l électricité et de l électromagnétisme

Cours de CEM. Lois physiques de l électricité et de l électromagnétisme Cours de CEM - Orgne des éléments parastes os physques de l électrcté et de l électromagnétsme es composants passfs possèdent des éléments parastes qu lmtent leurs utlsatons. Ils sont dus aux los physques

Plus en détail

Repérage et vecteurs

Repérage et vecteurs Repérage et ecters Chapitre 10 page 241 Introdction : Rappels por démarrer : Page 241 I-Egalité de ecters 1- Détermination d'n ecter. Un ecter non nl est déterminé par : - sa direction ; - son sens ; -

Plus en détail

. τ. avec τ = 1. R + r. R + r R + r τ r exp t τ

. τ. avec τ = 1. R + r. R + r R + r τ r exp t τ 8-9 xrccs d Élctrocnétq égm transtor t régm forcé contn x-4. rct d ordr ) xprmr t) t t), ps tracr ls corbs rprésntatvs. On posra τ =. I I I I 4 ép : t) = I xp t )) t t) = I xp t ). τ τ t x-4. rct parallèl

Plus en détail

Grandeur physique, chiffres significatifs

Grandeur physique, chiffres significatifs Grandeur physque, chffres sgnfcatfs I) Donner le résultat d une mesure en correspondance avec l nstrument utlsé : S avec un nstrument, ren n est ndqué sur l ncerttude absolue X d une mesure X, on consdère

Plus en détail

Mesure avec une règle

Mesure avec une règle Mesure avec une règle par Matheu ROUAUD Professeur de Scences Physques en prépa, Dplômé en Physque Théorque. Lycée Alan-Fourner 8000 Bourges ecrre@ncerttudes.fr RÉSUMÉ La mesure d'une grandeur par un système

Plus en détail

LES COMPARAISONS CLES DU CONCEPT A LA PRATIQUE [KEY COMPARISON: FROM CONCEPT TOWARDS PRACTICE]

LES COMPARAISONS CLES DU CONCEPT A LA PRATIQUE [KEY COMPARISON: FROM CONCEPT TOWARDS PRACTICE] LES COMPARAISOS CLES DU COCEPT A LA PRATIQUE [KEY COMPARISO: FROM COCEPT TOWARDS PRACTICE] Soraya Amaroche Laboratore atonal d Essas BM-LE, re Gaston Bosser 7574 Pars Cedex 5 Résmé Le docment d CIPM (Comté

Plus en détail

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks Plan Geston des stocks Abdellah El Fallah Ensa de Tétouan 2011 Les opératons de gestons des stocks Les coûts assocés à la geston des stocks Le rôle des stocks Modèle de la quantté économque Geston calendare

Plus en détail

Electricité II : Régimes sinusoïdaux et transitoires AC and transient circuit analysis Fascicule d'exercices de Travaux Dirigés

Electricité II : Régimes sinusoïdaux et transitoires AC and transient circuit analysis Fascicule d'exercices de Travaux Dirigés Electrcté II : égmes snusoïdaux et transtores and transent crcut analyss Fasccule d'exercces de Travaux Drgés 5 cours / Séances de TD / 5 séances de TP égmes snusoïdaux Nombre de séances de TD prévues

Plus en détail

Physique UE3 PACES. 4 e édition. Salah Belazreg

Physique UE3 PACES. 4 e édition. Salah Belazreg PACES Physque UE3 PACES Physque UE3 Salah Belazreg Professeur agrégé et docteur en physque, l ensegne au lycée Camlle Guérn à Poters. Il a ensegné la bophysque en classes préparatores aux concours de

Plus en détail

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage Fche n 7 : Vérfcaton du débt et de la vtesse par la méthode de traçage 1. PRINCIPE La méthode de traçage permet de calculer le débt d un écoulement ndépendamment des mesurages de hauteur et de vtesse.

Plus en détail

Utilisation du symbole

Utilisation du symbole HKBL / 7 symbole sgma Utlsaton du symbole Notaton : Pour parler de la somme des termes successfs d une sute, on peut ou ben utlser les pontllés ou ben utlser le symbole «sgma» majuscule noté Par exemple,

Plus en détail

Les domaines d'existence des deux solides sont représentés sur le graphe ci-dessous.

Les domaines d'existence des deux solides sont représentés sur le graphe ci-dessous. Concours Centralesupélec TSI 2011 corrge sous reserves I L'élément soufre et les sources naturelles de soufre I.A.1. Les règles pour obtenr la confguraton électronque d un atome dans son état fondamental

Plus en détail

écrans de sous-toiture

écrans de sous-toiture écrans de sous-toture Les règles de bonne pratque # défnton Un écran souple de sous-toture est une feulle déroulée sur la charpente, sur un solant thermque ou sur un support contnu ventlé, avant la mse

Plus en détail

Les arbres binaires Implémentations

Les arbres binaires Implémentations Ls arbrs bnars Impémntatons Natha Jnor Bot mars 2014 Défnton : Un arbr bnar st sot vd, sot d a form B = , où G t D sont ds arbrs bnars dsjonts t o st n nœd appé racn. c o n Fgr 1 Arbr bnar 1 L

Plus en détail

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL Fiche ors Thème : Elecricié Fiche 5 : Dipôle e dipôle Plan de la fiche Définiions ègles 3 Méhodologie I - Définiions oran élecriqe : déplacemen de charges élecriqes q a mesre d débi de charges donne l

Plus en détail

TRANSFERT DE CARGAISON CALCULS ET ARRONDIS

TRANSFERT DE CARGAISON CALCULS ET ARRONDIS TRANSFERT DE CARGAISON CALCULS ET ARRONDIS SOMMAIRE 1. Méthode de détermnaton de l énerge transférée lors du transfert d une cargason de. Calcul de l énerge transférée.1 Calcul de l énerge brute transférée.1.1

Plus en détail

V FORMATION DES IMAGES DANS L EXEMPLE DU MIROIR PLAN

V FORMATION DES IMAGES DANS L EXEMPLE DU MIROIR PLAN Chaptre V page V-1 V FORMTION DES IMGES DNS L EXEMPLE DU MIROIR PLN Le but de ce chaptre est d ntrodure la noton d mage { travers l exemple du mror plan. Vous vous êtes sûrement déjà regardé(e) dans un

Plus en détail

Maquette Tournesol Soleil, Terre et rotations La géométrie et mathématiques du système Maquette pour comprendre PhM Observatoire de Lyon

Maquette Tournesol Soleil, Terre et rotations La géométrie et mathématiques du système Maquette pour comprendre PhM Observatoire de Lyon Maquette ournesol olel, erre et rotatons La géométre et mathématques du sstème Maquette pour comprendre hm Observatore de Lon Les repères classques éclptque (longtudes et lattudes éclptques) et équatoral

Plus en détail

BUREAU D'APPLICATION DES METHODES STATISTIQUES ET INFORMATIQUES

BUREAU D'APPLICATION DES METHODES STATISTIQUES ET INFORMATIQUES BUREAU D'APPLICATION DES METHODES STATISTIQUES ET INFORMATIQUES DT 0/001 Estmaton des frontères de prodcton et mesres de l effcacté technqe Samel AMBAPOUR BAMSI BAMSI B.P. 13734 Brazzavlle DT 0/001 Estmaton

Plus en détail

La fourniture de biens et facteurs publics en présence de ménages et d entreprises mobiles

La fourniture de biens et facteurs publics en présence de ménages et d entreprises mobiles La fournture de bens et facteurs publcs en présence de ménages et d entreprses mobles Pascale Duran-Vgneron évrer 007 Le modèle On suppose un pays drgé par un gouvernement central ayant compétence sur

Plus en détail

Guides d installation 300-012-581 Rév. 03

Guides d installation 300-012-581 Rév. 03 EMC Matériel VNXe3300 dans les environnements compatibles NEBS Gides d installation 300-012-581 Rév. 03 Les composants d système de stockage EMC VNXe3300 sivants ont passé avec sccès la site de tests de

Plus en détail

Remboursement d un emprunt par annuités constantes

Remboursement d un emprunt par annuités constantes Sére STG Journées de formaton Janver 2006 Remboursement d un emprunt par annutés constantes Le prncpe Utlsaton du tableur Un emprunteur s adresse à un prêteur pour obtenr une somme d argent (la dette)

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2015 2016. Statistiques Descriptives

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2015 2016. Statistiques Descriptives UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année unverstare 215 216 L1 Économe Cours de B. Desgraupes Statstques Descrptves Séance 7: Indces synthétques Table des matères 1 Introducton 1 1.1

Plus en détail

Algorithme approché d optimisation d un modèle de Processus Décisionnel de Markov sur Graphe

Algorithme approché d optimisation d un modèle de Processus Décisionnel de Markov sur Graphe Algorthme approché d optmsaton d un modèle de Processus Décsonnel de Markov sur Graphe Nathale Peyrard Régs Sabbadn INRA-MIA Avgnon et Toulouse E-Mal: {peyrard,sabbadn}@toulouse.nra.fr Réseau MSTGA, Avgnon,

Plus en détail

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2 Exo7 Nombres complexes Vdéo parte. Les nombres complexes, défntons et opératons Vdéo parte. Racnes carrées, équaton du second degré Vdéo parte 3. Argument et trgonométre Vdéo parte 4. Nombres complexes

Plus en détail

MECANIQUE QUANTIQUE Chapitre 4 : Formalisme mathématique matique de

MECANIQUE QUANTIQUE Chapitre 4 : Formalisme mathématique matique de MECNIQUE QUNTIQUE Chaptre 4 : Formalsme mathématqe matqe de la méanqe m qantqe Pr. M. BD-LEFDIL Unversté Mohammed V-V gdal Falté des Senes Département de Physqe nnée e nverstare 07-08 08 Flères SM-SMI

Plus en détail

GUIDE D INSTALLATION ET DE PROGRAMMATION CENTRALE D ALARME

GUIDE D INSTALLATION ET DE PROGRAMMATION CENTRALE D ALARME GUIDE D INSTALLATIN ET DE PRGRAMMATIN CENTRALE D ALARME Gde d nstallaton et de programmaton centrales flares 9751 / 9752. Cooper Secrty Lmted. 2002 La pls grande attenton a été apportée à l exacttde des

Plus en détail

Demande de subsides de formation

Demande de subsides de formation Service des sbsides de formation SSF Amt für Asbildngsbeitrage ABBA Rote-Neve 7, Case postale, 1701 Friborg T +41 26 305 12 51, F +41 26 305 12 54 borses@fr.ch, www.fr.ch/ssf Demande de sbsides de formation

Plus en détail

Téléphone analogique. Guide d utilisation. Téléphone analogique à touches pour le système de communication MD110

Téléphone analogique. Guide d utilisation. Téléphone analogique à touches pour le système de communication MD110 Téléphone analogiqe Téléphone analogiqe à toches por le système de commnication MD110 Gide d tilisation Cover Page Graphic Place the graphic directly on the page, do not care abot ptting it in the text

Plus en détail

MODELISATION ET SIMULATION NUMERIQUE DES SYSTEMES ANALOGIQUES

MODELISATION ET SIMULATION NUMERIQUE DES SYSTEMES ANALOGIQUES MODELISATION ET SIMULATION NUMERIQUE DES SYSTEMES ANALOGIQUES Hervé MOREL Drecteur de Recherche - CNRS Herve.Morel@nsa-lyon.fr AMPERE - INSA de LYON mard 2 octobre 24 Modélsaton et smulaton des systèmes

Plus en détail

LES POMPES. Devant la grande diversité de situations possibles, on trouve un grand nombre de machines que l on peut classer en deux grands groupes :

LES POMPES. Devant la grande diversité de situations possibles, on trouve un grand nombre de machines que l on peut classer en deux grands groupes : Ste: http://gene.ndustrel.aa.free.fr LES POMPES Les pompes sont des apparels permettant un transfert d énerge entre le flude et un dspostf mécanque convenable. Suvant les condtons d utlsaton, ces machnes

Plus en détail

JE LÈGUE À L ŒUVRE DES VOCATIONS POUR FORMER NOS FUTURS PRÊTRES NOS RÉPONSES À VOS QUESTIONS SUR LES LEGS, DONATIONS, ASSURANCES VIE

JE LÈGUE À L ŒUVRE DES VOCATIONS POUR FORMER NOS FUTURS PRÊTRES NOS RÉPONSES À VOS QUESTIONS SUR LES LEGS, DONATIONS, ASSURANCES VIE Diocèses de Paris, Nanterre, Créteil et Saint-Denis JE LÈGUE À L ŒUVRE DES VOCATIONS POUR FORMER NOS FUTURS PRÊTRES NOS RÉPONSES À VOS QUESTIONS SUR LES LEGS, DONATIONS, ASSURANCES VIE FAITES DE VOS BIENS

Plus en détail

Exercices de révision pour examen #1

Exercices de révision pour examen #1 Exercces de révson pour examen #1 Queston 1. Questons théorques. a) Nommez les courants qu exstent quand une dode est en équlbre. Courants de dffuson et de drft. b) Dessnez la structure physque réelle

Plus en détail

Dirigeant de SAS : Laisser le choix du statut social

Dirigeant de SAS : Laisser le choix du statut social Drgeant de SAS : Lasser le chox du statut socal Résumé de notre proposton : Ouvrr le chox du statut socal du drgeant de SAS avec 2 solutons possbles : apprécer la stuaton socale des drgeants de SAS comme

Plus en détail

Dans un mélange, tous les constituants ont le même statut thermodynamique.

Dans un mélange, tous les constituants ont le même statut thermodynamique. Mélanges et solutons I_ Défntons et composton. Défntons Dans un mélange, tous les consttuants ont le même statut thermodynamque. Lorsque dans un mélange solde ou lqude, un des consttuants, appelé solvant,

Plus en détail

Le Potentiel chimique

Le Potentiel chimique 44 Le Potentel chmque PIERRE DUHEM (1861 1916) 44.1 Grandeurs molares partelles 44.1.1 Varables de Gbbs Système polyphasé Nous étuderons dans la sute un système thermodynamque formé de pluseurs phases

Plus en détail

Chapitre III : Premier principe de la Thermodynamique. Système

Chapitre III : Premier principe de la Thermodynamique. Système Chaptre III : Premer prncpe de la Thermodynamque III.1. Langage thermodynamque Système : C est un corps ou un ensemble de corps de masse détermnée et délmtée dans l espace. Mleu extéreur : On consdère

Plus en détail

Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amiens.fr/pedagogie/maths/new/ue2007/synthese_atelier_annette_alain.

Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amiens.fr/pedagogie/maths/new/ue2007/synthese_atelier_annette_alain. Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amens.fr/pedagoge/maths/new/ue2007/synthese_ateler_annette_alan.pdf 1 La règle du jeu Un drecteur de casno se propose d nstaller le

Plus en détail

Effets CEM sur et des circuits imprimés

Effets CEM sur et des circuits imprimés Effets CEM sur et des crcuts mprmés 2 avrl 2009 André Trabold Tel. 026 411 93 33 1728 Rossens www.emc.montena.com 1 Programme Introducton Immunté: Sgnaux perturbateur et fltres Emsson: Sgnaux perturbateur

Plus en détail

Exercices d algorithmique

Exercices d algorithmique Exercces d algorthmque Les algorthmes proposés ne sont pas classés par ordre de dffculté Nombres Ecrre un algorthme qu renvoe la somme des nombre entre 0 et n passé en paramètre Ecrre un algorthme qu renvoe

Plus en détail

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i Exercces avec corrgé succnct du chaptre 3 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qu apparassent dans ce texte sont ben défns dans la verson écran complète

Plus en détail

Câbles d énergie : méthodes de localisation des défauts

Câbles d énergie : méthodes de localisation des défauts Câles d énergie : méthodes de localisation des défats par Henri KUZYK Formater Chef de projet a SFP (Service de la Formation Professionnelle) d Électricité de France. Atres méthodes de prélocalisation...

Plus en détail

La location de camping-cars

La location de camping-cars www.motorhomerent.fr TARIFS 2013,! La meillere formle d évasion Règlement chèqes-vacances accepté. ,! La location de camping-cars, Motorhome Rent vos accompagne sr les rotes de vos vacances! Vos sohaitez

Plus en détail

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

CONSERVATOIRE NATIONAL DES ARTS ET METIERS ONSEVAOIE NAIONAL DES AS E MEIES ELEONIQUE ANALOGIQUE PH / ELE 4 / DU GEII ere année ------------------------- ------------------------- Dder LE UYE / Perre POVEN Janer ABLE DES MAIEES APPELS D ELEOINEIQUE...5.

Plus en détail

Mémoire de Diplôme en Econométrie Analyse économétrique de la demande d'électricité solaire: le cas de la bourse solaire de Genève.

Mémoire de Diplôme en Econométrie Analyse économétrique de la demande d'électricité solaire: le cas de la bourse solaire de Genève. Mémore de Dplôme en Econométre Analyse économétrqe de la demande d'électrcté solare: le cas de la borse solare de Genève Gancarlo Forto Ma 00 0 Introdcton Il exste en Ssse ne sensblté manfeste ax problèmes

Plus en détail

Guide de présentation

Guide de présentation Syndicat Centre Héralt Gide de présentation Activités et otils pédagogiqes Por sensibiliser vos élèves à la gestion des déchets, mettre en place des projets, réaliser ne visite o réserver nos otils...

Plus en détail

CHAPITRE 2 LA SPECTROMETRIE RMN

CHAPITRE 2 LA SPECTROMETRIE RMN .J. Ducauze et D.N. Rutledge groparstech PITRE L SPETRMETRIE RMN «Spectrométre RMN» veut dre qu on s ntéresse aux nformatons qu apportent les spectres, c est-à-dre à un ensemble d observatons effectuées

Plus en détail

Présentation du Radiomètre infrarouge aéroporté CLIMAT Gérard BROGNIEZ, Laurianne BÉCU, Michel LEGRAND, Bahaiddin DAMIRI*, Jean-Pierre BUIS* LOA (V.

Présentation du Radiomètre infrarouge aéroporté CLIMAT Gérard BROGNIEZ, Laurianne BÉCU, Michel LEGRAND, Bahaiddin DAMIRI*, Jean-Pierre BUIS* LOA (V. Présentaton du Radomètre nfrarouge aéroporté CLIMAT Gérard BROGNIEZ, Lauranne BÉCU, Mchel LEGRAND, Bahaddn DAMIRI*, Jean-Perre BUIS* LOA (V. d Ascq) - *CIMEL Électronque (Pars) INTRODUCTION Il exste un

Plus en détail

MAGISTER MODÉLISATION ET SIMULATION NUMÉRIQUE DES ÉCOULEMENTS TRANSITOIRES EN CHARGE PAR LA MÉTHODE DES VOLUMES FINIS

MAGISTER MODÉLISATION ET SIMULATION NUMÉRIQUE DES ÉCOULEMENTS TRANSITOIRES EN CHARGE PAR LA MÉTHODE DES VOLUMES FINIS الجمھوریة الجزاي ریة الدیمقراطیة الشعبیة Républque Algérenne Démocratque et Populare وزارة التعلیم العالي و البحث العلمي Mnstère de l ensegnement supéreur et de la recherche scentfque Unversté Mohamed

Plus en détail

Musicothérapie. Fiches Pratiques. par Hervé Gautier / Consultant ACTIF. Les Cahiers de l'actif - N 260/261

Musicothérapie. Fiches Pratiques. par Hervé Gautier / Consultant ACTIF. Les Cahiers de l'actif - N 260/261 Msicothérapie Fiches Pratiqes Msicothérapie par Hervé Gatier / Consltant ACTIF 71 Fiches pratiqes de formation Avertissement Cet article des "fiches pratiqes de formation" n'est en acn cas n receil de

Plus en détail

Microphones d appels Cloud avec message pré-enregistrés intégré

Microphones d appels Cloud avec message pré-enregistrés intégré Microphones d appels Clod avec message pré-enregistrés intégré Clearly better sond Modèles PM4-SA et PM8-SA Description générale Les microphones d appels nmériqes Clod de la gamme PM-SA ont été développés

Plus en détail

STATISTIQUE AVEC EXCEL

STATISTIQUE AVEC EXCEL STATISTIQUE AVEC EXCEL Excel offre d nnombrables possbltés de recuellr des données statstques, de les classer, de les analyser et de les représenter graphquement. Ce sont prncpalement les tros éléments

Plus en détail

TD 1. Statistiques à une variable.

TD 1. Statistiques à une variable. Danel Abécasss. Année unverstare 2010/2011 Prépa-L1 TD de bostatstques. Exercce 1. On consdère la sére suvante : TD 1. Statstques à une varable. 1. Calculer la moyenne et l écart type. 2. Calculer la médane

Plus en détail

Cours de Calcul numérique MATH 031

Cours de Calcul numérique MATH 031 Cours de Calcul numérque MATH 03 G. Bontemp, A. da Slva Soares, M. De Wulf Département d'informatque Boulevard du Tromphe - CP22 http://www.ulb.ac.be/d Valeurs propres en pratque. Localsaton. Méthode de

Plus en détail

XXX.XX Ordonnance sur le marquage des voitures de tourisme neuves au moyen de l étiquette-environnement

XXX.XX Ordonnance sur le marquage des voitures de tourisme neuves au moyen de l étiquette-environnement XXX.XX Ordonnance sur le marquage des votures de toursme neuves au moyen de l étquette-envronnement (Ordonnance sur l étquette-envronnement, OéEnv) du xx.xx.2009 Le Consel fédéral susse, vu les art. 8,

Plus en détail

Pour la garde d enfants à domicile, référencez le leader incontesté des recrutements de qualité

Pour la garde d enfants à domicile, référencez le leader incontesté des recrutements de qualité Por la garde d enfants à domicile, référencez le leader incontesté des recrtements de qalité Depis 2005, Edcazen propose ax familles d enfants de 0 à 12 ans des nonos fiables recrtées selon le processs

Plus en détail

Les jeunes économistes

Les jeunes économistes Chaptre1 : les ntérêts smples 1. défnton et calcul pratque : Défnton : Dans le cas de l ntérêt smple, le captal reste nvarable pendant toute la durée du prêt. L emprunteur dot verser, à la fn de chaque

Plus en détail

Installation & Guide de démarrage WL510 Adaptateur sans fil /Antenne

Installation & Guide de démarrage WL510 Adaptateur sans fil /Antenne Installaton & Gude de démarrage WL510 Adaptateur sans fl /Antenne Informaton mportante à propos du WL510 Adresse IP = 192.168.10.20 Nom d utlsateur = wl510 Mot de passe = wl510 QUICK START WL510-01- VR1.1

Plus en détail

Economie Ouverte. Economie ouverte. Taux de change et balance courante. Le modèle Mundell-Fleming. Définition du taux de change

Economie Ouverte. Economie ouverte. Taux de change et balance courante. Le modèle Mundell-Fleming. Définition du taux de change Econome Ouverte Econome ouverte Taux de change et balance courante Taux de change et balance courante Modèle Mundell-Flemng Campus Moyen Orent Médterranée Défnton du taux de change Le taux de change est

Plus en détail