CHAPITRE 14 : RAISONNEMENT DES SYSTÈMES DE COMMANDE

Dimension: px
Commencer à balayer dès la page:

Download "CHAPITRE 14 : RAISONNEMENT DES SYSTÈMES DE COMMANDE"

Transcription

1 HAITRE 4 : RAISONNEMENT DES SYSTÈMES DE OMMANDE RAISONNEMENT DES SYSTÈMES DE OMMANDE... 2 INTRODUTION RAELS alcul de la valeur ntale de la répone à un échelon alcul du gan tatque omportement d'un ytème ntégrateur FONTIONNEMENT INTUITIF D'UN RÉGULATEUR NÉESSITÉ D'UN INTÉGRATEUR DANS LE RÉGULATEUR Échelon de congne erturbaton en échelon à l'entrée du procédé erturbaton en échelon à la orte du procédé ANALYSE DES ASSERVISSEMENTS AUX TEMS ZÉRO ET INFINI ROÉDÉ ET RÉGULATEUR AVE HAUN UNE INTÉGRATION

2 haptre 4 INTRODUTION ette ecton ntrodut le comportement de ytème en boucle fermée et de leur régulateur. Avant d'aborder le ujet, quelque rappel 'avèrent utle. RAELS alcul de la valeur ntale de la répone à un échelon S la foncton de tranfert du ytème et G(), alor la valeur ntale de a répone à un échelon d'ampltude u et: Y( ) G( ) U ( ) y( ) lm Y() G u lm ( ) lm u G( ) Au facteur u prè, la valeur ntale de la orte 'obtent donc en remplaçant dan la foncton de tranfert par. On contate la dualté temp-fréquence, c'et-à-dre que la valeur à t e calcule avec ω ( jω) tendant ver l'nfn. alcul du gan tatque Le gan tatque K d'un ytème aymptotquement table (an ntégraton) peut 'obtenr en calculant la répone du ytème en régme permanent à un échelon (fgure 4.). Mathématquement, on obtent: Fgure 4. Sytème et commande lnéare GEL-25 22

3 haptre 4 y( ) lm Y( ) G u lm ( ) lm u G( ) Le gan tatque et donc: K y ( ) u lm G( ) Le gan tatque d'un ytème aymptotquement table e calcule donc en remplaçant par dan la foncton de tranfert. On contate encore une fo la dualté temp-fréquence. Le gan tatque et une nformaton ur le comportement en régme permanent ( t ) et l 'obtent par une analye aux bae fréquence ( jω ). omportement d'un ytème ntégrateur Un ytème ntégrateur et un ytème qu ntègre l'entrée. Sa foncton de tranfert et K G( ). An, l'entrée et un échelon, alor la orte et une rampe (fgure 4.2). Fgure 4.2 La orte d'un ntégrateur ne peut être dcontnue car la urface de l'entrée et une foncton contnue. La eule excepton et une entrée contenant une mpulon (fgure 4.3). e réultat 'explque également par le fat que n m (tableau.). our que la orte d'un ntégrateur ot contante, l faut que l'entrée ot nulle (l n'y a plu de urface qu 'accumule et par conéquent la orte demeure contante). La fgure 4.4 llutre ce phénomène. Sytème et commande lnéare GEL-25 23

4 haptre 4 Fgure 4.3 Fgure 4.4 FONTIONNEMENT INTUITIF D'UN RÉGULATEUR L'aervement étudé et llutré à la fgure 4.5. Fgure 4.5 Sytème et commande lnéare GEL-25 24

5 haptre 4 On uppoe que le régulateur et un I (proportonnel ntégral). 'et le régulateur de lon le plu utlé. Sa foncton de tranfert et: K G ( ) K ( T ) T K T Le premer terme et un gan (proportonnel) et le econd et un ntégrateur. La fgure 4.6 montre l'aervement avec un régulateur I. Fgure 4.6 Le gnaux u p (t) et u (t) ont repectvement le acton proportonnelle et ntégrale du régulateur I. Un de objectf du régulateur et d'amener la orte égale à la congne en régme permanent: y( ) r( ) ε( ) La fgure 4.7 montre le dfférent gnaux du ytème ute à un échelon de congne d'ampltude r. On a uppoé que le procédé et aymptotquement table (pa d'ntégrateur) et à gan potf. Sytème et commande lnéare GEL-25 25

6 haptre 4 r r(t) y(t) ε(t) Temp K r u(t) u (t) u p (t) Temp Fgure 4.7 Analyon d'abord le ytème (ntalement au repo) à t : On uppoe la orte du procédé contnue (ca de ytème phyque en général, n> m ). ar conéquent, y( ) même u( ). ε( ) r( ) y( ) r u ( ) K ε( ) K r p uque la orte d'un ntégrateur n'et pa dcontnue, on a u ( ). u( ) up ( ) u ( ) Kr L'acton potve calculée par le régulateur entraîne une augmentaton de la valeur de la orte et par conéquent une dmnuton de l'erreur et de l'acton proportonnelle. Tant que l'erreur n'et pa nulle, l'acton proportonnelle et dfférente de zéro et l'acton ntégrale n'et pa contante (la orte d'un ntégrateur n'et contante que on entrée et nulle). La varable manpulée et donc actve (non contante) tant que l'erreur n'et pa nulle. Le régulateur tente donc de fare bouger la orte du procédé en varant u( t) juqu'à ce que l'erreur ot nulle. Sytème et commande lnéare GEL-25 26

7 haptre 4 En régme permanent, l'erreur et nulle et l'acton u( t) contante. L'acton proportonnelle et nulle. On contate donc que, ute à un échelon de congne: à t, l'acton provent de la parte proportonnelle du régulateur, à t, l'acton provent de la parte ntégrale du régulateur, et la combnaon de acton proportonnelle et ntégrale aure que u( t) n'et pa contante tant que ε et que u( t) prend une valeur telle en régme permanent que ε. NÉESSITÉ D'UN INTÉGRATEUR DANS LE RÉGULATEUR Et-l néceare que le régulateur poède un ntégrateur pour avor une erreur nulle en régme permanent? La répone à cette queton et obtenue mathématquement pour le ca uvant: échelon de congne, perturbaton en échelon à l'entrée du procédé, et perturbaton en échelon à la orte du procédé. Échelon de congne Le dagramme fonctonnel du ytème et tracé à la fgure 4.8. L'ampltude de l'échelon de congne et r. En régme permanent, l'objectf et d'obtenr y( ) r. Fgure 4.8 L'analye du ytème mène aux équaton uvante: Sytème et commande lnéare GEL-25 27

8 haptre 4 our obtenr y( ) r, l faut que our cela, l faut que G ( ) G ( ) Y( ) R( ) G ( ) G ( ) G ( ) G( ) r G ( ) G ( ) y( ) lm Y( ) r G ( ) Gp( ) lm G ( ) G ( ) G ( ) G ( ) lm G ( ) G ( ) lm G ( ) G ( ) >> ette relaton 'obtent G ( ) G ( ) content au mon un ntégrateur, c'et-à-dre G ( ) G ( ) et de la forme uvante: G ( ) G ( ) m Ao A Am α n α ( α enter) ( B B B ) 2 n Le ytème aerv ne préente donc pa d'erreur tatque à un échelon de congne G ( ) et/ou G ( ) poèdent au mon un ntégrateur. erturbaton en échelon à l'entrée du procédé La fgure 4.9 et le dagramme fonctonnel du ytème. L'ampltude de la perturbaton en échelon et p. En régme permanent, la valeur dérée de la orte et y( ). Fgure 4.9 Sytème et commande lnéare GEL-25 28

9 haptre 4 Un dagramme fonctonnel équvalent à la fgure 4.9 et llutré à la fgure 4.. Fgure 4. La relaton entre la orte du ytème et la perturbaton et: En régme permanent la orte et: our que y( ), l faut que 'et donc dre que G G ( ) Y( ) ( ) G ( ) G ( ) G ( ) p G ( ) G ( ) pg ( ) y( ) lm G ( ) G ( ) lm G ( ) >> ( ) dot poéder au mon un ntégrateur. Dan ce ca, on obtent: pg ( ) y( ) lm G ( ) G ( ) pg ( ) lm G ( ) G ( ) p lm G ( ) Sytème et commande lnéare GEL-25 29

10 haptre 4 Il n'y a donc pa d'erreur tatque ute à une perturbaton en échelon à l'entrée du procédé G ( ) poède au mon un ntégrateur. erturbaton en échelon à la orte du procédé La fgure 4. montre deux dagramme fonctonnel équvalent du ytème aerv attaqué par une perturbaton en échelon, d'ampltude p, à la orte du procédé. Fgure 4. L'objectf et d'obtenr y( ). Le relaton décrvant le ytème ont: Afn que y( ) tende ver zéro, l faut p Y( ) G ( ) G ( ) p y( ) lm G ( ) G ( ) lm G ( ) G ( ) >> Sytème et commande lnéare GEL-25 22

11 haptre 4 ar conéquent, ute à une perturbaton en échelon à la orte du procédé, l'erreur tatque et nulle G ( ) et/ou G ( ) poèdent au mon un ntégrateur. ANALYSE DES ASSERVISSEMENTS AUX TEMS ZÉRO ET INFINI Il et mportant pour un automatcen de pouvor analyer rapdement un ytème aerv. Dan cette ecton, le valeur à t et t de la orte du procédé et de la commande ont calculée de deux façon. La premère technque conte à écrre l'expreon de Y( ) et de U ( ) et pu à leur applquer le théorème de la valeur ntale et de la valeur u, u, y et y conte à utler beaucoup plu a tête et ben mon le technque mathématque. fnale. La econde façon d'obtenr ( ) ( ) ( ) ( ) EXEMLE 4. Le régulateur et un I, G ( ), et le procédé et un premer ordre, G ( ) (fgure 4.2). Sute à un échelon de congne d'ampltude untare applqué à t, calculez u( ), u( ), y ( ) et y( ). Le ytème et ntalement au repo. Fgure 4.2 alculon d'abord Y( ) et U ( ). ar la ute, l ne rete qu'à applquer le théorème de la valeur ntale et de la valeur fnale. Sytème et commande lnéare GEL-25 22

12 haptre 4 G ( ) G ( ) Y( ) R( ) G ( ) G ( ) ( ) [ ] [ ] U ( ) G ( ) R( ) Y( ) G ( ) R( ) G ( ) U ( ) G ( ) R( ) G ( ) G ( ) 2 y( ) lm Y( ) lm y( ) lm Y( ) lm u( ) lm U ( ) lm u( ) lm U ( ) e même réultat peuvent être rapdement obtenu en utlant effcacement no connaance ur le ytème. Le procédé et un ytème phyque dont l'ordre du numérateur de a foncton de tranfert et nféreur à l'ordre du dénomnateur. ar conéquent, a orte à t ne peut changer ntantanément même u( ) (tableau.): Sytème et commande lnéare GEL

13 haptre 4 y( ) En régme permanent la orte rejont la congne car G ( ) G ( ) poède un ntégrateur: uque r( ) et y( ) : y( ) ε( ) r( ) y( ) u p ( ) ε( ) La orte de l'ntégrateur ne bouge pa ntantanément. ar conéquent: u ( ) u( ) u ( ) u ( ) Sachant que le procédé et à gan untare et que y( ), alor l et clar que: p u( ) y( ) EXEMLE 4.2 Le ytème étudé (régulateur I et procédé ntégrateur) et llutré à la fgure 4.3. alculez u( ), u( ), y( ) et y( ). Fgure 4.3 Sytème et commande lnéare GEL

14 haptre 4 G ( ) G ( ) Y( ) G ( ) G ( ) R ( ) r K ( T ) 2 T K ( T ) y( ) lm Y( ) T r K 2 lm T T K 2 ec état prévble car la orte du procédé ne peut bouger ntantanément même u( ) ( n m ) : y( ) lm Y( ) r lm r K ( T ) 2 T K ( T ) Il et normal que la orte rejogne la congne en régme permanent car G ( ) G ( ) poède deux ntégrateur. [ ] U ( ) G ( ) R( ) G ( ) U ( ) G ( ) R( ) G ( ) G ( ) K ( T ) r 2 T K ( T ) u( ) lm U ( ) Kr T lm T T K 2 K r Il état facle de prévor cette valeur car: Sytème et commande lnéare GEL

15 haptre 4 u p ( ) K ε( ) [ ( ) ( )] K r y K r u ( ) u( ) u ( ) u ( ) p K r Fnalement, la valeur en régme permanent de la commande et: u( ) lm lm U() K r 2 ( T ) ( ) 2 T K T Encore une fo, cette valeur état prévble. En effet, puque le procédé et ntégrateur et que a orte en régme permanent et contante, y( ), alor on entrée dot nécearement être nulle. ROÉDÉ ET RÉGULATEUR AVE HAUN UNE INTÉGRATION our qu'un ytème aerv amène la orte en régme permanent à la congne dan toute le tuaton (changement de congne et perturbaton à l'entrée et à la orte du procédé), le régulateur dot poéder un ntégrateur. S de plu le procédé poède également un ntégrateur, le ytème aerv préente alor un comportement ndérable ma qu ne peut être élmné. Sute à un échelon de congne, la orte dépaera aurément, et peut-être de façon mportante, la congne. ourquo en et-l an? La fgure 4.4 montre le dagramme fonctonnel du ytème. Le ytème et ntalement au repo et l'échelon de congne d'ampltude r et applqué à t. Une analye du ytème condut aux réultat uvant: y( ) ε ( ) r u ( ) u( ) u p y( ) r u( ) K r ε( ) ( ) u ( ) p u ( ) K r Sytème et commande lnéare GEL

16 haptre 4 Fgure 4.4 On contate donc que le valeur ntale et fnale de u ( t) ont nulle. La relaton entre u ( t) et ε(t) et la uvante: K U ( ) ε ( ) T Le gnal u ( t ) et donc l'ntégraton de l'erreur. L'erreur et ntalement égale à r et vaut en régme permanent. our que u ( t), qu calcule la urface de ε( t ), ot nulle en régme permanent, l faut donc que ε( t ) change de gne (fgure 4.5). L'erreur ε( ) t et la dfférence entre la congne et la orte. uqu'elle change de gne, l y a donc un dépaement (fgure 4.6). Sytème et commande lnéare GEL

17 haptre 4 r ε(t) A A 2 A 2 A Temp K A T u (t) Temp Fgure 4.5 r r(t) y(t) ε(t) Temp Fgure 4.6 Sytème et commande lnéare GEL

Montage émetteur commun

Montage émetteur commun tour au menu ontage émetteur commun Polarsaton d un transstor. ôle de la polarsaton La polarsaton a pour rôle de placer le pont de fonctonnement du transstor dans une zone où ses caractérstques sont lnéares.

Plus en détail

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot Scence Indutrelle Précon de ytème erv Pncol Robert Lycée Jcque Amyot I - PRECISION DES SYSTEMES ASSERVIS A. Poton du roblème 1. Préentton On vu que le rôle d un ytème erv et de fre uvre à l orte (t) une

Plus en détail

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction -

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction - EXAME FIAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSIO 1 - Correcton - Exercce 1 : 1) Consdérons une entreprse E comportant deux établssements : E1 et E2 qu emploent chacun 200 salarés. Au sen de l'établssement

Plus en détail

Le théorème du viriel

Le théorème du viriel Le théorème du vrel On se propose de démontrer le théorème du vrel de deux manères dfférentes. La premère fat appel à deux "trcks" qu l faut vor. Cette preuve met en avant une quantté, notée S c, qu permet

Plus en détail

ET INCERTITUDES DE MESURE

ET INCERTITUDES DE MESURE LGCIE - Hdrologe Urbane Mater «Géne Cvl» Cour de Tronc Commun «Epérmentaton et modélaton» CAPTEURS, ETALONNAGES ET INCERTITUDES DE MESURE Jean-Luc BERTRAND-KRAJEWSKI Edton 7 Avertement Ce note de cour

Plus en détail

Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amiens.fr/pedagogie/maths/new/ue2007/synthese_atelier_annette_alain.

Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amiens.fr/pedagogie/maths/new/ue2007/synthese_atelier_annette_alain. Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amens.fr/pedagoge/maths/new/ue2007/synthese_ateler_annette_alan.pdf 1 La règle du jeu Un drecteur de casno se propose d nstaller le

Plus en détail

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h.

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h. A2 Analyser le système Converson statque de l énerge Date : Nom : Cours 2 h 1 Introducton Un ConVertsseur Statque d énerge (CVS) est un montage utlsant des nterrupteurs à semconducteurs permettant par

Plus en détail

GEA I Mathématiques nancières Poly. de révision. Lionel Darondeau

GEA I Mathématiques nancières Poly. de révision. Lionel Darondeau GEA I Mathématques nancères Poly de révson Lonel Darondeau Intérêts smples et composés Voc la lste des exercces à révser, corrgés en cours : Exercce 2 Exercce 3 Exercce 5 Exercce 6 Exercce 7 Exercce 8

Plus en détail

Exercices d Électrocinétique

Exercices d Électrocinétique ercces d Électrocnétque Intensté et densté de courant -1.1 Vtesse des porteurs de charges : On dssout une masse m = 20g de chlorure de sodum NaCl dans un bac électrolytque de longueur l = 20cm et de secton

Plus en détail

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique Spécale PSI - Cours "Electromagnétsme" 1 Inducton électromagnétque Chaptre IV : Inductance propre, nductance mutuelle. Energe électromagnétque Objectfs: Coecents d nductance propre L et mutuelle M Blan

Plus en détail

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage Fche n 7 : Vérfcaton du débt et de la vtesse par la méthode de traçage 1. PRINCIPE La méthode de traçage permet de calculer le débt d un écoulement ndépendamment des mesurages de hauteur et de vtesse.

Plus en détail

Page 5 TABLE DES MATIÈRES

Page 5 TABLE DES MATIÈRES Page 5 TABLE DES MATIÈRES CHAPITRE I LES POURCENTAGES 1. LES OBJECTIFS 12 2. LES DÉFINITIONS 14 1. La varaton absolue d'une grandeur 2. La varaton moyenne d'une grandeur (par unté de temps) 3. Le coeffcent

Plus en détail

Les jeunes économistes

Les jeunes économistes Chaptre1 : les ntérêts smples 1. défnton et calcul pratque : Défnton : Dans le cas de l ntérêt smple, le captal reste nvarable pendant toute la durée du prêt. L emprunteur dot verser, à la fn de chaque

Plus en détail

Assurance maladie et aléa de moralité ex-ante : L incidence de l hétérogénéité de la perte sanitaire

Assurance maladie et aléa de moralité ex-ante : L incidence de l hétérogénéité de la perte sanitaire Assurance malade et aléa de moralté ex-ante : L ncdence de l hétérogénété de la perte santare Davd Alary 1 et Franck Ben 2 Cet artcle examne l ncdence de l hétérogénété de la perte santare sur les contrats

Plus en détail

Editions ENI. Project 2010. Collection Référence Bureautique. Extrait

Editions ENI. Project 2010. Collection Référence Bureautique. Extrait Edtons ENI Project 2010 Collecton Référence Bureautque Extrat Défnton des tâches Défnton des tâches Project 2010 Sasr les tâches d'un projet Les tâches représentent le traval à accomplr pour attendre l'objectf

Plus en détail

LE RÉGIME DE RETRAITE DU PERSONNEL CANADIEN DE LA CANADA-VIE (le «régime») INFORMATION IMPORTANTE CONCERNANT LE RECOURS COLLECTIF

LE RÉGIME DE RETRAITE DU PERSONNEL CANADIEN DE LA CANADA-VIE (le «régime») INFORMATION IMPORTANTE CONCERNANT LE RECOURS COLLECTIF 1 LE RÉGIME DE RETRAITE DU PERSONNEL CANADIEN DE LA CANADA-VIE (le «régme») INFORMATION IMPORTANTE CONCERNANT LE RECOURS COLLECTIF AVIS AUX RETRAITÉS ET AUX PARTICIPANTS AVEC DROITS ACQUIS DIFFÉRÉS Expédteurs

Plus en détail

Oscillations électriques libres

Oscillations électriques libres Oscllatons électrues lbres A Oscllatons lbres amortes 1/ Etude expérmentale a Expérence et observatons Après avor chargé le condensateur (poston 1) On bascule l nterrupteur sur la poston, on obtent l oscllogramme

Plus en détail

BTS GPN 2EME ANNEE-MATHEMATIQUES-MATHS FINANCIERES MATHEMATIQUES FINANCIERES

BTS GPN 2EME ANNEE-MATHEMATIQUES-MATHS FINANCIERES MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES I. Concepts généraux. Le référentel précse : Cette parte du module M4 «Acquérr des outls mathématques de base nécessares à l'analyse de données économques» est en relaton avec

Plus en détail

Mesure avec une règle

Mesure avec une règle Mesure avec une règle par Matheu ROUAUD Professeur de Scences Physques en prépa, Dplômé en Physque Théorque. Lycée Alan-Fourner 8000 Bourges ecrre@ncerttudes.fr RÉSUMÉ La mesure d'une grandeur par un système

Plus en détail

ANNEXE A : MATRICES DE MAC

ANNEXE A : MATRICES DE MAC Annx ANNEXE A : MARICES DE MAC La matrc d MAC (Modal Auranc Crtron) au applé matrc d corrélaton modal t ouvnt utlé pour la comparaon ntr dux nmbl d mod propr [Y ] t [Y ]. Sont : [{ } { k} { N } ] { } {

Plus en détail

Remboursement d un emprunt par annuités constantes

Remboursement d un emprunt par annuités constantes Sére STG Journées de formaton Janver 2006 Remboursement d un emprunt par annutés constantes Le prncpe Utlsaton du tableur Un emprunteur s adresse à un prêteur pour obtenr une somme d argent (la dette)

Plus en détail

Analyse des Systèmes Asservis

Analyse des Systèmes Asservis Analyse des Systèmes Asservis Après quelques rappels, nous verrons comment évaluer deux des caractéristiques principales d'un système asservi : Stabilité et Précision. Si ces caractéristiques ne sont pas

Plus en détail

Définition des tâches

Définition des tâches Défnton des tâches Défnton des tâches Project 2010 Sasr les tâches d'un projet Les tâches représentent le traval à accomplr pour attendre l'objectf du projet. Elles représentent de ce fat, les éléments

Plus en détail

STATISTIQUE AVEC EXCEL

STATISTIQUE AVEC EXCEL STATISTIQUE AVEC EXCEL Excel offre d nnombrables possbltés de recuellr des données statstques, de les classer, de les analyser et de les représenter graphquement. Ce sont prncpalement les tros éléments

Plus en détail

Contrats prévoyance des TNS : Clarifier les règles pour sécuriser les prestations

Contrats prévoyance des TNS : Clarifier les règles pour sécuriser les prestations Contrats prévoyance des TNS : Clarfer les règles pour sécurser les prestatons Résumé de notre proposton : A - Amélorer l nformaton des souscrpteurs B Prévor plus de souplesse dans l apprécaton des revenus

Plus en détail

Cerveau & management NOVIAL - 2008 Diapositive N 1

Cerveau & management NOVIAL - 2008 Diapositive N 1 CERVEAU et MANAGEMENT Cerveau & management NOVIAL - 2008 Dapostve N 1 Connaître sa ou ses partes domnantes Nourrr les autres partes Savor fonctonner sur ses 4 cerveaux Cerveau & management NOVIAL - 2008

Plus en détail

Comment fonctionne la FX

Comment fonctionne la FX Que ont le rayon X? Comment fonctonne la FX Ad van Eenbergen Ingéneur Produt et Applcaton fluorecence X PANalytcal France S.A.S. mel Brévanne Radaton Electromagnétque ongueur d'onde de.1 nm à 1. nm Energe

Plus en détail

Mes Objectifs. De, par, avec Sandrine le Métayer Lumières de Philippe Férat. spectacle produit par la Cie DORE

Mes Objectifs. De, par, avec Sandrine le Métayer Lumières de Philippe Férat. spectacle produit par la Cie DORE Me Objectf De, par, avec Sandrne le Métayer Lumère de Phlppe Férat pectacle produt par la Ce DORE t j Me objectf numéro prx du Jury aux Gradn du rque (Le Hvernale/ Avgnon) p l e t t a r d, p Sandrne le

Plus en détail

Félicitations! Toutes nos félicitations pour vos 40 ans d activités. Nous sommes heureux de participer à cet événement!

Félicitations! Toutes nos félicitations pour vos 40 ans d activités. Nous sommes heureux de participer à cet événement! 40 an à vou accuellr et à vou offrr un ervce de qualté avec compétence, courtoe et ntégrté. Envron 150 peronne étaent réune le mercred, 26 octobre derner, au Garage L. Landry & l, pour célébrer le 40e

Plus en détail

Chapitre 6. Economie ouverte :

Chapitre 6. Economie ouverte : 06/2/202 Chaptre 6. Econome ouverte : le modèle Mundell Flemng Elsabeth Cudevlle Le développement des échanges nternatonaux (bens et servces et flux fnancers) a rendu fortement nterdépendantes les conjonctures

Plus en détail

Amélioration des Délais dans les Réseaux à Débits Garantis pour des Flux Temps-Réel Sous Contrainte «(m,k)-firm»

Amélioration des Délais dans les Réseaux à Débits Garantis pour des Flux Temps-Réel Sous Contrainte «(m,k)-firm» Améloraton des Délas dans les Réseaux à Débts Garants pour des Flux Temps-Réel Sous Contrante «(m,k)-frm» Résumé : Koubâa Ans, Yé-Qong Song LORIA UHP Nancy 1 - INPL - INRIA Lorrane 2, av. de la Forêt de

Plus en détail

Interface OneNote 2013

Interface OneNote 2013 Interface OneNote 2013 Interface OneNote 2013 Offce 2013 - Fonctons avancées Lancer OneNote 2013 À partr de l'nterface Wndows 8, utlsez une des méthodes suvantes : - Clquez sur la vgnette OneNote 2013

Plus en détail

CREATION DE VALEUR EN ASSURANCE NON VIE : COMMENT FRANCHIR UNE NOUVELLE ETAPE?

CREATION DE VALEUR EN ASSURANCE NON VIE : COMMENT FRANCHIR UNE NOUVELLE ETAPE? CREATION DE VALEUR EN ASSURANCE NON VIE : COMMENT FRANCHIR UNE NOUVELLE ETAPE? Boulanger Frédérc Avanssur, Groupe AXA 163-167, Avenue Georges Clémenceau 92742 Nanterre Cedex France Tel: +33 1 46 14 43

Plus en détail

Politique de gestion. Date : 5 avril 2004

Politique de gestion. Date : 5 avril 2004 de getion Titre : Appel d offre public Soumiion (condition de recevabilité) No : PG 4.06 Sujet : Reource matérielle et ervice profeionnel Page : 1 de : 8 Approuvée par : Directeur général Nouvelle : Réviée

Plus en détail

La lettre. La Gestion des filiales dans une PME : Bonnes Pratiques et Pièges à éviter. Implantations à l étranger : Alternatives à la création

La lettre. La Gestion des filiales dans une PME : Bonnes Pratiques et Pièges à éviter. Implantations à l étranger : Alternatives à la création Doier : Getion d entreprie 42 La Getion de filiale dan une PME : Bonne Pratique et Piège à éviter Certaine PME ont tout d une grande. entreprie. A commencer par la néceité d avoir de filiale. Quel ont

Plus en détail

EH SmartView. Identifiez vos risques et vos opportunités. www.eulerhermes.be. Pilotez votre assurance-crédit. Services en ligne Euler Hermes

EH SmartView. Identifiez vos risques et vos opportunités. www.eulerhermes.be. Pilotez votre assurance-crédit. Services en ligne Euler Hermes EH SmartVew Servces en lgne Euler Hermes Identfez vos rsques et vos opportuntés Plotez votre assurance-crédt www.eulerhermes.be Les avantages d EH SmartVew L expertse Euler Hermes présentée de manère clare

Plus en détail

MÉTHODES DE SONDAGES UTILISÉES DANS LES PROGRAMMES D ÉVALUATIONS DES ÉLÈVES

MÉTHODES DE SONDAGES UTILISÉES DANS LES PROGRAMMES D ÉVALUATIONS DES ÉLÈVES MÉTHODES DE SONDAGES UTILISÉES DANS LES PROGRAMMES D ÉVALUATIONS DES ÉLÈVES Émle Garca, Maron Le Cam et Therry Rocher MENESR-DEPP, bureau de l évaluaton des élèves Cet artcle porte sur les méthodes de

Plus en détail

Ventilation à la demande

Ventilation à la demande PRÉSENTATION Ventilation à la demande Produit de pointe pour ventilation à la demande! www.wegon.com La ventilation à la demande améliore le confort et réduit le coût d exploitation Lorque la pièce et

Plus en détail

Caractérisation de l interface Si/SiO 2 par mesure C(V)

Caractérisation de l interface Si/SiO 2 par mesure C(V) TP aractériation de l interface Si/SiO par meure (V) aractériation de l interface Si/SiO par meure (V) Introduction p I Effet de champ à l interface Si/SiO p Fonctionnement d une capacité MOS p Principe

Plus en détail

Recherche universitaire et crédits d impôt pour R-D

Recherche universitaire et crédits d impôt pour R-D Fscalté Recherche unverstare et crédts d mpôt pour R-D Le 27 novembre 2001 Nancy Avone, CA Inctatfs fscaux à la R-D très généreux dsponbles Étude du Conference Board du Canada en 1998 Québec Jurdcton au

Plus en détail

COUPLÉS THÉORIE DES OSCILLATEURS COUPLÉS APPLIQUÉE AUX ANTENNES RÉSEAUX

COUPLÉS THÉORIE DES OSCILLATEURS COUPLÉS APPLIQUÉE AUX ANTENNES RÉSEAUX Sentf Bulletn of the Eletral Engneerng Faulty no. / 9 COUPLÉS THÉOIE DES OSCILLATEUS COUPLÉS APPLIQUÉE AUX ANTENNES ÉSEAUX Iula DUMITESCU, Mhaela IONITA, Jean-Mare PAILLOT, Mha IODACHE L Unversté Poltehna

Plus en détail

TD 1. Statistiques à une variable.

TD 1. Statistiques à une variable. Danel Abécasss. Année unverstare 2010/2011 Prépa-L1 TD de bostatstques. Exercce 1. On consdère la sére suvante : TD 1. Statstques à une varable. 1. Calculer la moyenne et l écart type. 2. Calculer la médane

Plus en détail

Erreur statique. Chapitre 6. 6.1 Définition

Erreur statique. Chapitre 6. 6.1 Définition Chapitre 6 Erreur statique On considère ici le troisième paramètre de design, soit l erreur statique. L erreur statique est la différence entre l entrée et la sortie d un système lorsque t pour une entrée

Plus en détail

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks Plan Geston des stocks Abdellah El Fallah Ensa de Tétouan 2011 Les opératons de gestons des stocks Les coûts assocés à la geston des stocks Le rôle des stocks Modèle de la quantté économque Geston calendare

Plus en détail

SYSTEMES LINEAIRES DU PREMIER ORDRE

SYSTEMES LINEAIRES DU PREMIER ORDRE SYSTEMES LINEIRES DU PREMIER ORDRE 1. DEFINITION e(t) SYSTEME s(t) Un système est dit linéaire invariant du premier ordre si la réponse s(t) est liée à l excitation e(t) par une équation différentielle

Plus en détail

BAREME sur 40 points. Informatique - session 2 - Master de psychologie 2006/2007

BAREME sur 40 points. Informatique - session 2 - Master de psychologie 2006/2007 BAREME ur 40 point Informatique - eion 2 - Mater de pychologie 2006/2007 Bae de donnée PRET de MATERIEL AUDIO VISUEL. Remarque : Le ujet comporte 7 page. Vérifier qu il et complet avant de commencer. Une

Plus en détail

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN Automatique Linéaire 1 Travaux Dirigés Travaux dirigés, Automatique linéaire 1 J.M. Dutertre 2014 TD 1 Introduction, modélisation, outils. Exercice 1.1 : Calcul de la réponse d un 2 nd ordre à une rampe

Plus en détail

Calendrier 2012. Ludicosciences. Embarcadère du Savoir

Calendrier 2012. Ludicosciences. Embarcadère du Savoir Calendrer 2012 Ludcocence Embarcadère du Savor A B C A² = B² + C² Voc le calendrer 2012 de l Embarcadère du Savor, accompagné de e douze nouvelle expérence de bologe, chme, géologe, mathématque, phyque,

Plus en détail

classification non supervisée : pas de classes prédéfinies Applications typiques

classification non supervisée : pas de classes prédéfinies Applications typiques Qu est ce que le clusterng? analyse de clusterng regroupement des obets en clusters un cluster : une collecton d obets smlares au sen d un même cluster dssmlares au obets appartenant à d autres clusters

Plus en détail

Changement de fréquence, effet Doppler

Changement de fréquence, effet Doppler N 804 BULLETIN DE L'UNION DES PHYSICIENS 869 Changement de fréquence, effet Doppler par Yve BAIMA, André JORANDON, Sylvie MORLEN et Marc VINCENT Lycée La Martinière Monplaiir - 69372 Lyon Cedex 08 RÉSUMÉ

Plus en détail

Corrections adiabatiques et nonadiabatiques dans les systèmes diatomiques par calculs ab-initio

Corrections adiabatiques et nonadiabatiques dans les systèmes diatomiques par calculs ab-initio Correctons adabatques et nonadabatques dans les systèmes datomques par calculs ab-nto Compte rendu du traval réalsé dans le cadre d un stage de quatre mos au sen du Groupe de Spectroscope Moléculare et

Plus en détail

Découvrir l interface Windows 8

Découvrir l interface Windows 8 Wndows 8.1 L envronnement Wndows 8 Interfaces Wndows 8 et Bureau L envronnement Wndows 8 Découvrr l nterface Wndows 8 Après s être dentfé va un compte Mcrosoft ou un compte local, l utlsateur vot apparaître

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

Interfaces Windows 8 et Bureau

Interfaces Windows 8 et Bureau Interfaces Wndows 8 et Bureau Interfaces Wndows 8 et Bureau Découvrr l nterface Wndows 8 Après s être dentfé va un compte Mcrosoft ou un compte local, l utlsateur vot apparaître sur son écran la toute

Plus en détail

hal-00409942, version 1-14 Aug 2009

hal-00409942, version 1-14 Aug 2009 Manuscrt auteur, publé dans "MOSIM' 008, Pars : France (008)" 7 e Conférence Francophone de MOdélsaton et SIMulaton - MOSIM 08 - du mars au avrl 008 - Pars - France «Modélsaton, Optmsaton et Smulaton des

Plus en détail

IDEI Report # 18. Transport. December 2010. Elasticités de la demande de transport ferroviaire: définitions et mesures

IDEI Report # 18. Transport. December 2010. Elasticités de la demande de transport ferroviaire: définitions et mesures IDEI Report # 18 Transport December 2010 Elastctés de la demande de transport ferrovare: défntons et mesures Elastctés de la demande de transport ferrovare : Défntons et mesures Marc Ivald Toulouse School

Plus en détail

Progressons vers l internet de demain

Progressons vers l internet de demain Progreon ver l internet de demain COMPRENDRE LA NOTION DE DÉBIT La plupart de opérateur ADSL communiquent ur le débit de leur offre : "512 Kb/", "1 Méga", "2 Méga", "8 Méga". À quoi ce chiffre correpondent-il?

Plus en détail

Simulation numérique de l absorption d hydrogène dans un réacteur annulaire muni de refroidissement

Simulation numérique de l absorption d hydrogène dans un réacteur annulaire muni de refroidissement Simulation numérique de l aborption d hydroène dan un réacteur annulaire muni de refroidiement Ali Boukhari #,* 1, Rachid Beaïh * # Département de énie mécanique, Univerité d'el-oued, B.P. 789, 9000 El-Oued,

Plus en détail

RÉPONSES À UN ÉCHELON. Sortie u(t) réponse. t(s)

RÉPONSES À UN ÉCHELON. Sortie u(t) réponse. t(s) BTS S ÉPONSS À UN ÉHON. éponse à n échelon d n système d premer ordre xemple : almentaton d n condensater de capacté par ne sorce de tenson e(t) à travers résstance a tenson varable e(t) est n échelon

Plus en détail

Cours #8 Optimisation de code

Cours #8 Optimisation de code ELE-784 Ordnateurs et programmaton système Cours #8 Optmsaton de code Bruno De Kelper Ste nternet : http://www.ele.etsmtl.ca/academque/ele784/ Cours # 8 ELE784 - Ordnateurs et programmaton système 1 Plan

Plus en détail

Propagation sur réseau statique et dynamique

Propagation sur réseau statique et dynamique Université de la Méditerranée UFR Sciences de Luminy Rapport de stage informatique pour le Master 2 de Physique, Parcours Physique Théorique et Mathématique, Physique des Particules et Astroparticules.

Plus en détail

SIMULATION D UN JET TURBULENT POUR LE REFROIDISSEMENT DES AUBES DE TURBINE

SIMULATION D UN JET TURBULENT POUR LE REFROIDISSEMENT DES AUBES DE TURBINE 10 ème Sémnare Internatonal sur la Physque Energétque 10 th Internatonal Meetng on Energetcal Physcs SIMULAION D UN JE URBULEN POUR LE REFROIDISSEMEN DES AUBES DE URBINE Bounegta Bachr 1, Abdelarm Maamar

Plus en détail

Bibliothèque de documents

Bibliothèque de documents Bblothèque de documents Bblothèque de documents SharePont 2010 Vue d ensemble Dans un ste SharePont, les bblothèques permettent de stocker des éléments de types dfférents : des documents, des mages, des

Plus en détail

Donner les limites de validité de la relation obtenue.

Donner les limites de validité de la relation obtenue. olutions! ours! - Multiplicateur 0 e s alculer en fonction de. Donner les limites de validité de la relation obtenue. Quelle est la valeur supérieure de? Quel est le rôle de 0? - Multiplicateur e 0 s alculer

Plus en détail

Réseau RRFR pour la surveillance dynamique : application en e-maintenance.

Réseau RRFR pour la surveillance dynamique : application en e-maintenance. Réseau RRFR pour la survellance dynamue : applcaton en e-mantenance. RYAD ZEMOURI, DANIEL RACOCEANU, NOUREDDINE ZERHOUNI Laboratore Unverstare de Recherche en Producton Automatsée (LURPA) 6, avenue du

Plus en détail

Conception de l architecture d un système dirigée par un modèle d urbanisme fonctionnel

Conception de l architecture d un système dirigée par un modèle d urbanisme fonctionnel Concepton de l archtecture d un système drgée par un modèle d urbansme fonctonnel Jacques Smonn To cte ths verson: Jacques Smonn. Concepton de l archtecture d un système drgée par un modèle d urbansme

Plus en détail

Chapitre 1.5a Le champ électrique généré par plusieurs particules

Chapitre 1.5a Le champ électrique généré par plusieurs particules hapte.5a Le chap électque généé pa pluseus patcules Le chap électque généé pa pluseus chages fxes Le odule de chap électque d une chage ponctuelle est adal, popotonnel à la chage électque et neseent popotonnel

Plus en détail

Généralités sur les fonctions 1ES

Généralités sur les fonctions 1ES Généraltés sur les fonctons ES GENERALITES SUR LES FNCTINS I. RAPPELS a. Vocabulare Défnton Une foncton est un procédé qu permet d assocer à un nombre x appartenant à un ensemble D un nombre y n note :

Plus en détail

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix?

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix? Note méthodologque Tratements hebdomadares Questlemonscher.com Quelle méthode de collecte de prx? Les éléments méthodologques ont été défns par le cabnet FaE onsel, socété d études et d analyses statstques

Plus en détail

UNIVERSITÉ DU QUÉBEC À MONTRÉAL L ASSURANCE AUTOMOBILE AU QUÉBEC : UNE PRIME SELON LE COÛT SOCIAL MARGINAL MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE

UNIVERSITÉ DU QUÉBEC À MONTRÉAL L ASSURANCE AUTOMOBILE AU QUÉBEC : UNE PRIME SELON LE COÛT SOCIAL MARGINAL MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE UNIVERSITÉ DU QUÉBEC À MONTRÉAL L ASSURANCE AUTOMOBILE AU QUÉBEC : UNE PRIME SELON LE COÛT SOCIAL MARGINAL MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN ÉCONOMIQUE PAR ERIC LÉVESQUE JANVIER

Plus en détail

Notions d asservissements et de Régulations

Notions d asservissements et de Régulations I. Introduction I. Notions d asservissements et de Régulations Le professeur de Génie Electrique doit faire passer des notions de régulation à travers ses enseignements. Les notions principales qu'il a

Plus en détail

Réservoirs avec serpentin

Réservoirs avec serpentin Réervor avec erentn our la roducton et l'accumulaton d'eau chaude antare (un erentn) Modèle: GX-200...1000-M1 Decrton c Réervor detné à la roducton et à l'accumulaton d'eau chaude antare, oédant une caacté

Plus en détail

Prévost Kevin 1,2, Magal Pierre 1, Beaumont Catherine 2 RÉSUMÉ

Prévost Kevin 1,2, Magal Pierre 1, Beaumont Catherine 2 RÉSUMÉ INTERET UN MOELE MATHEMATIQUE AN LA COMPARAION E L EFFICACITE E IFFERENTE TRATEGIE E PREVENTION UR LA REITANCE AU PORTAGE A ALMONELLA ENTERITII CHEZ LA POULE Prévost Kevn 1,, Magal Perre 1, Beaumont Catherne

Plus en détail

CALCUL DES ELEMENTS PARASITES PAR LA METHODE PEEC

CALCUL DES ELEMENTS PARASITES PAR LA METHODE PEEC CNCEM 09 ère Conférene Natonale sur la Compatblté életromagnétque Taret, 22-24 novembre 2009 CALCUL DES ELEMENTS PARASITES PAR LA METHODE PEEC Abdelal Allal and Mah Djllal Unversty of Sene and Tehnology

Plus en détail

10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010

10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010 10ème Congrès ranças d'acoustque Lyon, 1-16 Avrl 010 Imagere acoustque en soufflere SA Arnaud Ménoret 1, Nathale Gorllot, Jean-Luc Adam 3 1 Sgnal Développement, 1 Bld Chassegne, 86000 Poters, a.menoret@sgnal-developpement.com

Plus en détail

Physique quantique. Dans l UF Physique Quantique et Statistique. 3ème année IMACS. Pierre Renucci (cours) Thierry Amand (TDs)

Physique quantique. Dans l UF Physique Quantique et Statistique. 3ème année IMACS. Pierre Renucci (cours) Thierry Amand (TDs) Physque quantque Dans l UF Physque Quantque et Statstque ème année IMACS Pee enucc cous They Aman TDs Objectfs UF Nanophysque I : De l Optque onulatoe à la Photonque et aux Nanotechnologes La physque quantque

Plus en détail

Centrale d'alarme SI 80-3

Centrale d'alarme SI 80-3 Centrale d'alarme SI 80-3 Notice d'utiliation Siemen AG Siemen AG 01.011 1 Siemen AG 01.011 Caractéritique technique ou réerve de modification. Livraion ou réerve de diponibilité. Le donnée et la conception

Plus en détail

Prise en compte des politiques de transport dans le choix des fournisseurs

Prise en compte des politiques de transport dans le choix des fournisseurs INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE N attrbué par la bblothèque THÈSE Pour obtenr le grade de DOCTEUR DE L I.N.P.G. Spécalté : Géne Industrel Préparée au Laboratore d Automatque de Grenoble Dans

Plus en détail

Prêts bilatéraux et réseaux sociaux

Prêts bilatéraux et réseaux sociaux Prêts blatéraux et réseaux socaux Quand la sous-optmalté condut au ben-être collectf Phlppe Callou, Frederc Dubut et Mchele Sebag LRI, Unverste Pars Sud F-91405 Orsay France {callou;dubut;sebag}@lr.fr

Plus en détail

Automatique (AU3): Précision. Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr

Automatique (AU3): Précision. Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr Automatique (AU3): Précision des systèmes bouclés Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr Plan de la présentation Introduction 2 Écart statique Définition Expression Entrée

Plus en détail

I. Présentation générale des méthodes d estimation des projets de type «unité industrielle»

I. Présentation générale des méthodes d estimation des projets de type «unité industrielle» Evaluaton des projets et estmaton des coûts Le budget d un projet est un élément mportant dans l étude d un projet pusque les résultats économques auront un mpact sur la réalsaton ou non et sur la concepton

Plus en détail

Analyse et Commande des systèmes linéaires

Analyse et Commande des systèmes linéaires Analyse et Commande des systèmes linéaires Frédéric Gouaisbaut LAAS-CNRS Tel : 05 61 33 63 07 email : fgouaisb@laas.fr webpage: www.laas.fr/ fgouaisb September 24, 2009 Présentation du Cours Volume Horaire:

Plus en détail

Voyez la réponse à cette question dans ce chapitre. www.lifeinsuranceinsights.com/life-insurance-2/what-will-your-hobby-cost-you.

Voyez la réponse à cette question dans ce chapitre. www.lifeinsuranceinsights.com/life-insurance-2/what-will-your-hobby-cost-you. Erwan, d une mae de 65 kg, fait un aut de Bungee. Il tombe de 0 m avant que la corde du bungee commence à étirer. Quel era l étirement maximal de la corde i cette dernière agit comme un reort d une contante

Plus en détail

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE. MEMOIRE Présentée à

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE. MEMOIRE Présentée à REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE MEMOIRE Présentée à L Unversté de Batna Faculté des Scences Département de Physque

Plus en détail

Découvrez la gamme complète des certificats de signatures électroniques ChamberSign

Découvrez la gamme complète des certificats de signatures électroniques ChamberSign Découvrez la gamme complète de certificat de électronique ChamberSign www.chamberign.fr ppel d'offre Marché ublic SYLaé Signature électronique Document dématérialié Epace Sécurié Certifié Contrôle de légalité

Plus en détail

TD1 Signaux, énergie et puissance, signaux aléatoires

TD1 Signaux, énergie et puissance, signaux aléatoires TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver

Plus en détail

Ecole Polytechnique de Montréal C.P. 6079, succ. Centre-ville Montréal (QC), Canada H3C3A7 lucas.greze@polymtl.ca robert.pellerin@polymtl.

Ecole Polytechnique de Montréal C.P. 6079, succ. Centre-ville Montréal (QC), Canada H3C3A7 lucas.greze@polymtl.ca robert.pellerin@polymtl. CIGI 2011 Processus d accélératon de proets sous contrantes de ressources avec odes de chevaucheent LUCAS GREZE 1, ROBERT PELLERIN 1, PATRICE LECLAIRE 2 1 CHAIRE DE RECHERCHE JARISLOWSKY/SNC-LAVALIN EN

Plus en détail

santé Les arrêts de travail des séniors en emploi

santé Les arrêts de travail des séniors en emploi soldarté et DOSSIERS Les arrêts de traval des sénors en emplo N 2 2007 Les sénors en emplo se dstnguent-ls de leurs cadets en termes de recours aux arrêts de traval? Les sénors ne déclarent pas plus d

Plus en détail

Somfy Box. Activation de l option io et programmation de vos produits io

Somfy Box. Activation de l option io et programmation de vos produits io Somfy Box Actvaton de l opton o et programmaton de vos produts o Sommare Pré-requs pour la programmaton de produts o sur la Somfy Box 1 Harmonser la clé système 1 Qu est-ce que la clé système? 1 Dans quel

Plus en détail

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2 Exo7 Nombres complexes Vdéo parte. Les nombres complexes, défntons et opératons Vdéo parte. Racnes carrées, équaton du second degré Vdéo parte 3. Argument et trgonométre Vdéo parte 4. Nombres complexes

Plus en détail

Corrigé du problème de Mathématiques générales 2010. - Partie I - 0 0 0. 0.

Corrigé du problème de Mathématiques générales 2010. - Partie I - 0 0 0. 0. Corrgé du problème de Mathématques générales 2010 - Parte I - 1(a. Sot X S A. La matrce A est un polynôme en X donc commute avec X. 1(b. On a : 0 = m A (A = m A (X n ; le polynôme m A (x n est annulateur

Plus en détail

La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA)

La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA) La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA) I. L'intérêt de la conversion de données, problèmes et définitions associés. I.1. Définitions:

Plus en détail

INTRODUCTION. Jean-Pierre MAGNAN Chef de la section des ouvrages en terre Département des sols et fondations Laboratoire central

INTRODUCTION. Jean-Pierre MAGNAN Chef de la section des ouvrages en terre Département des sols et fondations Laboratoire central Etude numérque de la consoldaton undmensonnelle en tenant compte des varatons de la perméablté et de la compressblté du sol, du fluage et de la non-saturaton Jean-Perre MAGNAN Chef de la secton des ouvrages

Plus en détail

FORMATION DOCTORALE EN INFORMATIQUE THESE. présentée en vue de l obtention du Doctorat en Informatique. par

FORMATION DOCTORALE EN INFORMATIQUE THESE. présentée en vue de l obtention du Doctorat en Informatique. par UNIVERSITE DE TUNIS EL MANAR FACULTE DES SCIENCES DE TUNIS INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON FORMATION DOCTORALE EN INFORMATIQUE THESE présentée en vue de l obtenton du Doctorat en Informatque

Plus en détail

La physiologie du cerveau montre que celui-ci est constitué de cellules (les neurones) interconnectées. Quelques étapes de cette découverte :

La physiologie du cerveau montre que celui-ci est constitué de cellules (les neurones) interconnectées. Quelques étapes de cette découverte : Chaptre 3 Apprentssage automatque : les réseaux de neurones Introducton Le Perceptron Les réseaux mult-couches 3.1 Introducton Comment l'homme fat-l pour rasonner, parler, calculer, apprendre,...? Comment

Plus en détail

Terminal numérique TM 13 raccordé aux installations Integral 33

Terminal numérique TM 13 raccordé aux installations Integral 33 Termnal numérque TM 13 raccordé aux nstallatons Integral 33 Notce d utlsaton Vous garderez une longueur d avance. Famlarsez--vous avec votre téléphone Remarques mportantes Chaptres à lre en prorté -- Vue

Plus en détail

Équilibre partiel et optimalité en situation de concurrence

Équilibre partiel et optimalité en situation de concurrence Chaptre 1 Éulbre partel et optmalté en stuaton de concurrence Au terme de ce chaptre, vous saurez : calculer les prx et les uanttés d éulbre ; caractérser les dfférents surplus ; défnr la noton de perte

Plus en détail

DES EFFETS PERVERS DU MORCELLEMENT DES STOCKS

DES EFFETS PERVERS DU MORCELLEMENT DES STOCKS DES EFFETS PERVERS DU MORCELLEMENT DES STOCKS Le cabnet Enetek nous démontre les mpacts négatfs de la multplcaton des stocks qu au leu d amélorer le taux de servce en se rapprochant du clent, le dégradent

Plus en détail

ÉLÉMENTS DE THÉORIE DE L INFORMATION POUR LES COMMUNICATIONS.

ÉLÉMENTS DE THÉORIE DE L INFORMATION POUR LES COMMUNICATIONS. ÉLÉMETS DE THÉORIE DE L IFORMATIO POUR LES COMMUICATIOS. L a théore de l nformaton est une dscplne qu s appue non seulement sur les (télé-) communcatons, mas auss sur l nformatque, la statstque, la physque

Plus en détail

Chapitre 3 : Incertitudes CHAPITRE 3 INCERTITUDES. Lignes directrices 2006 du GIEC pour les inventaires nationaux de gaz à effet de serre 3.

Chapitre 3 : Incertitudes CHAPITRE 3 INCERTITUDES. Lignes directrices 2006 du GIEC pour les inventaires nationaux de gaz à effet de serre 3. Chaptre 3 : Incerttudes CHAPITRE 3 INCERTITUDES Lgnes drectrces 2006 du GIEC pour les nventares natonaux de gaz à effet de serre 3.1 Volume 1 : Orentatons générales et établssement des rapports Auteurs

Plus en détail