Projet de fin d études

Dimension: px
Commencer à balayer dès la page:

Download "Projet de fin d études"

Transcription

1 Unversté Franços Rabelas Tours Ecole Polytechnque Unverstare de Tours Département Informatque Projet de fn d études Ordonnancement Juste à Temps avec geston des stocks Chopn Antone Mrault Arnaud 3ème année -3 Ensegnants : T Kndt Vncent Esteve Bertrand

2

3 3

4 I.Remercements Nous tenons à remercer toute l équpe ordonnancement du laboratore de l école polytechnque unverstare de Tours pour leur écoute et leur attenton. Nous remercons plus partculèrement Bertrand Estève et Vncent T kndt pour leur encadrement, leur patence, ans que leurs nombreux consels. Nous remercons auss Jean Charles Bllaut pour sa partcpaton à la résoluton du problème.

5 Sommare I. REMERCIEMENTS... SOMMAIRE... 5 INTRODUCTION... 7 II. ORDONNANCEMENT JUSTE À TEMPS... 8 A. LE JUSTE À TEMPS... 8 B. LE MULTICRITÈRE... 1 III. ETAT DE L ART... 1 A. ARTICLE DE OUENNICHE ET BOCTOR: LOT SIZING AND SCHEDULING PROBLEMS... 1 B. ARTICLE DE SRISKANDARAJAH ET WAGNEUR : LOT STREAMING... 1 C. ARTICLE DE YOON ET VENTURA : MINIMIZING THE MEAN WEIGHTED ABSOLUTE DEVIATION FROM DUE DATES IN LOT-STREAMING FLOW SHOP SCHEDULING D. ARTICLE DE OUENNICHE ET BOCTOR: THE MULTI-PRODUCT, ECONOMIC LOT-SIZING PROBLEM IN FLOW SHOPS E. ARTICLE DE OUENNICHE ET BOCTOR: THE TWO-GROUP HEURISTIC TO SOLVE THE MULTI-PRODUCT ECONOMIC LOT SIZING AND SCHEDULING PROBLEM IN FLOW SHOPS... 1 IV. APPROCHE PAR DÉCOMPOSITION (MÉTHODE DE MARTEL)... A. HYPOTHÈSES... B. ETUDE DU CAS OÙ PI,1 > PI,... 7 C. ETUDE DU CAS OÙ PI,1PI, D. FACTORISATION DES FONCTIONS DE COÛTS... E. CONCLUSION... 5 F. MODÈLE MATHÉMATIQUE G. RÉCAPITULATIF V. APPROCHE PAR DÉCOMPOSITION (PRODUIT-CONSOMMÉ) A. ETUDE DU CAS OÙ PI,1PI, B. ETUDE DU CAS OÙ PI,1 > PI, C. PREUVE D. GÉNÉRALISATION: PROBLÈME DE FLOWSHOP À M MACHINES E. CALCUL DES CONSOMMATIONS ET PRODUCTION

6 F. PARTICULARISATION DANS LE CAS DU FLOWSHOP MACHINES VI. IMPLÉMENTATION CPLEX A. INITIALISATION B. ETUDE DE LA FONCTION DE COÛT DANS LE CAS C. ETUDE DE LA FONCTION DE COÛT DANS LE CAS D. TABLEAU DES VARIABLES E. IMPLÉMENTATION DES CONTRAINTES F. FONCTION OBJECTIF... 7 G. FONCTIONNEMENT DU PROGRAMME VII. HEURISTIQUES A. HEURISTIQUE DÉVELOPPÉE POUR UNE PREMIÈRE APPROCHE B. IMPLÉMENTATION D ALGORITHMES GÉNÉTIQUES... 8 C. C. PREMIER ALGORITHME GÉNÉTIQUE D. SECOND ALGORITHME GÉNÉTIQUE E. IMPLÉMENTATION D UNE RECOVERY BEAM SEARCH (RBS) F. CAMPAGNES DE TESTS CONCLUSION...99 BIBLIOGRAPHIE... 1 ANNEXES

7 Introducton Le thème de notre projet de fn d études est l étude de l Ordonnancement Juste à Temps avec geston des stocks. Nous avons tout d abord étudé la lttérature exstante sur des problèmes se rapprochant du nôtre. En effet des études ont déjà été menées sur l ordonnancement avec geston de stock. Nous nous sommes donc nsprés des artcles exstants en y ajoutant les méthodes de juste à temps et multcrtères pour élaborer un premer modèle. La réalsaton de ce modèle s nspre de la méthode de Martel. Nous nous sommes attachés ensute à le smplfer pour permettre la créaton d un programme utlsant Cplex fournssant une soluton optmale au problème. Le défaut d un tel programme étant son manque de rapdté, nous avons par la sute réalsé des heurstques, dont nous avons pu tester l effcacté. Nous allons donc vous présenter dans un premer temps quelques défntons fondamentales sur les méthodes utlsées dans notre problème, pus nous nous attarderons sur les artcles étudés. Par la sute, nous aborderons la réalsaton du modèle mathématque, pus la réalsaton du programme Cplex, et enfn nous étuderons les dfférentes heurstques et évaluerons leurs performances. 7

8 II.Ordonnancement Juste à Temps A.Le juste à temps 1.Défnton Donnée par Brauer Le juste à temps (JIT) est une approche ndustrelle qu se concentre sur un but smple, à savor, produre les artcles avec la qualté et dans les quanttés au temps précs où ls sont exgés. Autre défnton (www.ashland.edu ou Le juste à temps est une phlosophe de producton qu a pour but de produre la bonne parte dans le bon endrot au bon moment, sans pertes de temps entre les actvtés qu ajoutent un coût sans valeur ajoutée, telle que déplacer et stocker. Le JIT (également connu sous le nom de producton sans stock) dot amélorer les coûts en rédusant les nveaux de stock, en amélorant la qualté du produt, en rédusant les talles de lots, les délas d'exécuton de la lvrason, et en rédusant d'autres coûts (comme ceux lés à l'nstallaton de machne et à la panne d'équpement). Dans un système juste à temps, la capacté de stockage sous utlsée est employée comme stock tampon pour fare face aux dfférents problèmes pouvant survenr. Le JIT s'applque prncpalement aux procédés de fabrcaton répéttfs dans lesquels les mêmes composants et produts sont fabrqués à pluseurs reprses. L'dée générale est de mettre en place des procédés par flux (quelque sot le mode d agencement de processus utlsé par le servce à savor, par tâche ou un tratement par lots) en lant des centres de traval de sorte qu'l y at un flux de produt égal et équlbré dans tous les procédés de la producton, semblables à ce que l on trouve dans une chaîne de montage. Pour attendre cet objectf, on tente de condure tous les nveaux de stockage vers zéro et de trouver la talle déale de lot d'une unté..poston du Problème Dans un modèle JIT tout ne concerne pas l ordonnancement, à savor : Le postonnement des machnes de sorte à rédure les temps de déplacement, Rédure la durée des temps de chargement, etc. Pour parvenr à un modèle JIT nous allons plus partculèrement nous ntéresser à : Rédure les coûts, Rédure les délas (retard pour un clent et temps de producton d une commande). Rédure la talle de lots. La phlosophe du JIT montre que le produt est le plus mportant et non la machne. Le but prncpal de cette phlosophe est de satsfare le clent, et d élmner les gaspllages. 8

9 Dans la lttérature on peut constater qu l exste deux modèles de juste à temps : Modèle 1 : Son but est de satsfare au bon moment le clent, c est à dre ne pas commencer trop tôt la producton, et optmser les stocks Modèle : Ce modèle est basé sur les prncpes de dversté et de réactvté. Il établt une réducton des temps de chargement (le mons de setup tme possble). Son fonctonnement est basé sur le prncpe du Lot-Sreamng (lsser la charge). Représentaton du Just n Tme Dsponble Ateler Setup tme Dsponble Clent Process tme Queue tme Transport tme Leadtme On peut également remarquer le modèle japonas du JIT, cependant l apparaît comme étant un cas extrême de la méthode. Modèle Japonas : - aucun défaut - aucun temps de chargement - aucun stock - aucune manutenton - aucun déla - aucune panne - talle de lot untare Le but de notre PFE est de trouver un modèle mathématque qu mnmse dans le même temps les stocks, les délas, et les talles de lot. Ce traval sera fat après avor étudé pluseurs artcles nous permettant d analyser les hypothèses de traval que nous devrons mettre en œuvre. 9

10 Exemple : Soluton déale Temps auss fable que possble d Ce schéma explcatf montre l agencement optmal des tâches, afn d obtenr le coût le plus fable (Pas de temps d attente concourt à rédure les stocks ntermédares). De plus, le fat de fnr à la date souhatée permet de ne pas ajouter de coût de retard ou d avance au job. Remarques : Notre problème ne s occupe que de la parte ordonnancement. L déal serat de prendre en compte le stock de matère premère avec la geston scentfque des stocks. Stock de matère premère Geston scentfque des stocks Stock de produts sem-fns Ordonnancement Stock de produts fns B.Le multcrtère 1.Présentaton En général, dans de nombreux artcles, le Just n Tme est représenté par un seul crtère. n mn z = α E + β T = 1 Ce crtère nous permet d obtenr une soluton optmale à mondre coût. Cependant cette soluton peut ne pas forcément convenr à un décdeur. C est pourquo une approche multcrtères apporterat un ensemble de solutons acceptables selon les crtères retenus. 1

11 Exemple : Avec jobs on obtent une soluton optmale mono-crtère (mnmsant les coûts): J1=1(Retard) et J=. Cette soluton n est pas forcement acceptable pour un décdeur car elle pénalse le clent N 1. Avec l approche multcrtères on obtent un ensemble de solutons. En reprenant l exemple on peut trouver les solutons : J1=1(Retard) et J=. J1=3(Avance) et J=5(Retard) Ces solutons ne mnmsent pas le coût mas peuvent apporter une melleure soluton pour le décdeur..optma de Pareto En reprenant la formule générale, on consdère : Z = α E + β T 1...n Les crtères Z sont appelés crtères de dévaton pondérée. Il s agt donc de trouver un optmum de Pareto pour ces crtères. On rappelle qu un ordonnancement S est un optmum de Pareto strct s et seulement s l n exste pas un autre ordonnancement S tel que Z(S') Z(S) = 1...n, avec au mons une égalté strcte. Ce problème, déjà traté dans la lttérature, est NP-dffcle au sens fort. En mnmsant la somme Z, sachant que nous bornons les Z par des valeurs b, on consdère : mn Z Sachant que Z b On retrouve c une relaton de domnance que nous allons explquer par un exemple : Z1 1 Z 3 Z3 Soluton domnée domnante La premère lgne du tableau montre que la soluton est domnée par la seconde lgne. Ce qu nous permet de dre que la soluton domnée n a plus d ntérêt pour le décdeur. Soluton domnante Soluton domnée 11

12 III.Etat de l art A.Artcle de Ouennche et Boctor: Lot szng and schedulng problems Dans cette artcle, Ouennche et Boctor se proposent de résoudre un problème de flowshop à n machnes avec stock ntermédare, nspré du modèle de Martel et du lot szng. Prenons un exemple de flowshop à deux machnes, n produts, avec stock d encours entre la machne 1 et la machne. La capacté de stockage est nfne. Chaque produt a son stock. Au début tous les stocks son consdérés vdes. Modèle Mathématque : Sur une pérode de producton H composée de cycles dentques de longueur T, Ouennche et Boctor proposent de trouver une valeur optmale de T qu mnmse le coût. Dans cet artcle le crtère est Cmax. Le but est de trouver l équlbre entre T = H et T.ε = H avec ε. 1

13 Lot szng : Découpage des jobs en lots ndépendants qu seront tratés par dfférents cycles T. Cette méthode convent pour une producton de masse. H T 1 T Cycles dentques s H=1 Le modèle proposé est de la forme : Mn z = TA + BT Avec A le coût d nstallaton d une machne qu augmente quand T1 augmente et B le coût de stockage qu dmnue quand T1 augmente. Le problème est dt NP-Dffcle. Les deux auteurs proposent de résoudre ce problème avec types de résolutons : - PSE vor PSE tronquée (solutons optmales) - heurstques (solutons approchées mas rapdes) Pour une PSE tronquée, l faut trouver une relaton de domnance afn de supprmer les morceaux d arbre qu ne peuvent pas donner de bonnes solutons. Deux heurstques sont abordées pour trouver une soluton approchée : - Recherche tabou, - Recut smulé. Exemple : Courbe de nveau nstantané de stock avec le modèle de Martel à machnes 13

14 B.Artcle de Srskandarajah et Wagneur : Lot streamng L artcle de Srskandarajah et Wagneur propose de mnmser le MakeSpan. C est à dre, rédure les temps morts entre les dfférentes opératons. Pour cela les auteurs utlsent le lot streamng, méthode qu permet de lsser la charge. Lot streamng : C est le fat de couper une tache en un certan nombre de sous lots de talles égales. Les sous lots ne sont pas ndépendants. Cec permet de commencer à produre sur la machne suvante avant la fn de la producton de la tache sur la machne courante. Exemple : Méthode tradtonnelle : Le job est transféré s l est termné sur la machne 1. M1 1 M M Lot streamng : L ntérêt est de fludfer le passage sur les dfférentes machnes. Les sous lots sont consécutfs. M M.1..3 M

15 Srskandarajah et Wagneur proposent le modèle mathématque suvant pour répondre à leur problème : Exemple d applcaton du modèle mathématque avec machnes et lot streamng : 15

16 C.Artcle de Yoon et Ventura : Mnmzng the mean weghted absolute devaton from due dates n lot-streamng flow shop schedulng L objectf de la méthode proposée est de mnmser la dévaton absolue pondérée (moyenne) avec quatre mécansmes de recherche par vosnage. Modèle mathématque : L artcle trate des sous lots de talles égales, des sous lots de talles dfférentes, des stocks ntermédares de capacté lmtée et nfne, sans délas entre les opératons successves. De plus les setup tme ne sont pas prs en compte. No-wat flowshop: Ce type de flowshop ne permet pas d nterrupton entre les tâches successves. Cec rajoute la contrante suvante au modèle : Stock ntermédare lmté : On note b la capacté du stock entre deux machnes et + 1. Il représente le nombre de tâches maxmum qu peuvent être stockées. Cec rajoute la contrante suvante au modèle : Deux cas peuvent alors se présenter : Blocage autorsé : Lorsque le stock ntermédare est plen, la machne précédente ne peux recommencer une tâche sans qu l sot en parte vdé et que la machne sot lbérée. 16

17 Exemple : Cec rajoute la contrante suvante au modèle : Blocage non autorsé : Lorsque le stock ntermédare est plen, la machne précédente ne peut commencer une tâche avant qu une place sot dsponble dans le stock. Exemple : Cec rajoute la contrante suvante au modèle : Problèmes de sous lots consstants : Des sous lots sont dts consstants lorsqu ls sont de talles dfférentes. Les contrantes suvantes sont alors rajoutées au modèle : 17

18 1.Méthode d nter changement par pare : Il exste quatre méthodes pour ntalser les séquences de jobs : Les mécansmes de recherche par vosnage utlsés sont : API (Adjacent Parwse Interchange) : cette méthode consste à nter-changer une pare de jobs consécutfs NAPI (Non Adjacent Parwse Interchange) : cette méthode consste à nter-changer une pare de jobs non consécutfs EFSR (Extracton and Forward Shft Renserton) : cette méthode consste à extrare un Job et à le rénsérer plus lon dans la séquence. EBSR (Extracton and Backward Shft Renserton) : cette méthode consste à extrare un Job et à le rénsérer avant dans la séquence. Le mécansme est stoppé lorsque plus aucune améloraton de la foncton objectf n est obtenue. 18

19 D.Artcle de Ouennche et Boctor: The mult-product, economc lot-szng problem n flow shops Cet artcle propose une heurstque effcace pour résoudre un problème de lot-szng mult produts et mult phases de mnmsaton des coûts. Modèle mathématque de base : On en dédut le cycle T* optmal : La méthode de résoluton propose alors de défnr une borne nféreure et une borne supéreure telle que : et : Une fos que ces deux bornes sont trouvées on détermne une soluton approchée en chosssant pour chaque étape une valeur de T. Pus on détermne les dates de début qu mnmsent le coût. En fxant T on obtent un programme lnéare. 19

20 1.La méthode pussance de Cette méthode permet de résoudre des problèmes mult produts, en posant l hypothèse : T = m F avec m =,1,,... T est un multple enter de F Le modèle devent alors :

21 E.Artcle de Ouennche et Boctor: The two-group heurstc to solve the mult-product economc lot szng and schedulng problem n flow shops Cet artcle consdère les problèmes mult-produts. La procédure réalsée tent compte des contrantes de capactés et garantt l obtenton d une soluton réalsable. 1.Concepts de Base : Explcaton des contrantes : Pour évter des retards quand un produt est réalsé sur des cycles de longueur T, la producton dot être de talle rt (avec r taux de demande de fn du produt). Par conséquent, le tratement à la pérode j nécesste rt / p j untés de temps. Par restrcton, l est nterdt de trater un produt à une pérode donnée, sans qu l sot termné à la pérode précédente. rt (1) d j 1 + p j 1 d j, j =,..,m De plus, le cycle T dot être suffsamment grand pour permettre le chargement et le tratement des opératons à chaque pérode. rt () t j + p j T, j = 1,..,m Le temps qu s écoule entre le début du tratement du premer produt et la fn du tratement du derner produt dans la séquence est nféreur ou égal à T A chaque pérode un produt ne peut être traté sans que le temps de chargement de la machne correspondant ne sot réalsé. Contrantes de non négatvté : (5) T dj Toutes ces contrantes sont lnéares. 1

22 .Détermnaton de la foncton objectf m Coût total de stockage entre machnes : h j= r d j + rt d j 1 rt p j p j 1 j 1 Coût total de stockage de fn : h. r 1 prm T Foncton objectf à mnmser : Le cycle optmal T* est donc : 3.Procédure de résoluton 1. On détermne une borne nféreure. On détermne une borne supéreure Où Zlb est la valeur de la foncton objectf z du cycle commun correspondant à la borne nféreure 3. On trouve une valeur approchée de T* dans l ntervalle [Tlb,Tub]. Chaque étape consste à chosr une valeur de T, pus pour cette valeur on détermne les dates de début qu mnmsent le coût total. Cec peut être réalsé en résolvant le programme lnéare obtenu à partr du cycle commun en fxant la valeur de T. Il peut être avantageux de résoudre le dual de ce problème lnéare.

23 .La méthode TG (two-group) Cette méthode restrent les cycles T à être des multples enters d une pérode élémentare F. C est à dre T = m F pour tout. Chaque multplcateur m prend comme valeur sot 1 ou sot K (où K est un enter postf). Les produts sont alors dvsés en deux prncpaux groupes. Le premer, nommé Go, content no produts devant être tratés sur chaque pérode élémentare ( m = 1 ). Les produts restants appartenant au second groupe, nommé Gk, sont tratés une fos toutes les K pérodes élémentares ( m = K ). Le cycle global sera de longueur T = KF. On dvse alors Gk en K sous ' ' ' groupes, nommés J1, J,..., J k de cardnaltés respectves n1,n,...n k. On assgne alors un unque sous-groupe à chaque pérode élémentare. Pour résumé, la méthode TG dvse les produts en groupes Go et Gk, pus calcule une lmte supéreure du multple K. Pour chaque valeur de K entre et sa lmte supéreure, on dvse Gk en K sous groupes. Pus on détermne la séquence σ k pour chaque sous produts Pk et on résout le modèle mathématque pour détermner les valeurs de F et dj qu mnmsent le coût total. Pour préserver du temps de calcul, l faut être sur que les parttons choses ans que les séquences de producton σ k sont telles que le modèle mathématque correspondant possède un ensemble non vde de solutons réalsables. 3

24 IV.Approche par décomposton (méthode de Martel) A.Hypothèses Notre étude portera sur un problème de FlowShop de permutaton à machnes en JIT, avec lot streamng. De plus, nous ntégrerons la noton de mult-crtéres. 1.Les coûts : Nous allons consdérer dans notre modèle les coûts suvants : Coût de setup (chargement et montage sur une machne). Coût de stockage de : * Produt sem fn (entre la machne 1 et la machne ), * Produt fn, Coût de dvson d un job en sous-lots, Coût de mécontentement du clent (retard). On ne prendra pas en compte la capacté des stocks ans que le coût de stockage des matères premères pour les rasons suvantes : Superflu et complqué, Lé surtout à une stratége d approvsonnement, Approvsonnement déconnecté de l ordonnancement. Dans le cas normal, s les jobs sont non dvsbles (ex : constructon d un avon) la foncton de coût se résume (s on ne prend pas en compte les stocks ntermédares) à : Z j = α j E j + β j T j j = 1,..,n Rappel de la défnton : Lot streamng : C est le fat de couper une tache en un certan nombre de sous lots de talles égales. Les sous lots ne sont pas ndépendants. Cec permet de commencer à produre sur la machne suvante avant la fn de la producton de la tache sur la machne courante. Dans le cas d opératons dvsbles, on a ntérêt à utlser la méthode du lot-streamng, car elle tend à décroître le coût de stockage de produts sem fns, et les délas de producton. Le lot-szng est quant à lu plus appropré pour la producton de masse or le juste à temps concerne prncpalement les produts fabrqués à façon. On s ntéressera dans un premer temps au cas de travaux dvsbles. C est à dre qu ls sont consttués en lots tratés successvement.

25 .Setup Tme : On a des Setup Tme dépendants de la séquence. On utlsera une matrce contenant le temps du setup du job j après le job ( Sj ).Cette matrce est la même pour toutes les machnes. j Sj En premer leu on tendra compte du temps des Setup Tme et non des coûts des Setup Tme. 3.L nserton de temps mort L nserton de temps mort volontare n est autorsée qu entre les opératons. On ne peut donc pas avor de temps morts sur la premère machne. Exemple : M1 M j : Temps morts volontare j j d j j j dj : Temps morts mposés.les données Comme on s autorse la méthode du lot-streamng, on consdère que le nombre de sous-lots par opératon, et quelque sot le traval, est découpé en sous lots de talles dentques sur toutes les machnes. La durée d un sous-lot sur la machne Mj, avec j={1,}, pour le traval P, j est. On note γ, le coût untare de stockage de entre M 1 et M pendant une unté de temps. On note λ, le coût d un sous lot ; ce qu évte au problème de tendre vers un nombre de lots contenant un seul élément. 5

26 On pose : P, j : Temps opératore de sur Mj. q : Nombre d éléments consttuant. n : Nombre de jobs : Le nombre de sous-lots par opératon. γ : Coût untare de stockage d un élément de pendant 1 unté de temps dans un stock de produt sem-fn. κ : Coût untare de stockage d un élément de pendant 1 unté de temps dans un stock de produt fn. λ : Coût untare d un sous-lot. β : Coût de mécontentement clent (retard) par unté de temps S, j : Setup tme du traval j précédé de. d : Date de fn du job Nous allons dans notre étude dstnguer deux cas : La machne 1 produt auss vte vore plus vte que la machne ne consomme ( P1 P ), et le cas où la machne 1 produt mons vte que la machne ( P1 > P ). Pour établr la foncton de coût d un traval nous allons tout d abord nous ntéresser au stock ntermédare. 6

27 B.Etude du cas où P,1 > P, 1.Coût des stocks de produt sem fn ( avec P1 > P ) Le stock ntermédare est défn entre deux machnes. Pour un modèle à deux machnes le calcul du stock ntermédare peut varer selon les dates de début des jobs sur la deuxème machne. Nous allons tout d abord supposer que P1 > P ; ce qu équvaut à dre que la machne consomme plus vte que la machne 1 ne produt. Pluseurs cas peuvent alors apparaître : Cas «ABF» M1 1 3 Nveau Instantané du stock (NIS) A µ1 B µ F µ6 M 1 3 7

28 Cas «ABCF» M1 1 3 Cas«A[DE]F»3 M1 NIS 1 A NIS B µ1 M M A µ1 D C F µ µ3 µ6 E D E F µ5 µ µ5 µ 3 µ

29 Cas «AF» M1 1 «AGF» Cas 3 1 M1 NIS 3 A NIS µ1 µ6 A M µ1 F G F 1µ7 3 µ 6 M 1 3 9

30 Cas «ABC[DE]F» M1 Nous allons étuder plus partculèrement ce derner cas pour trouver une foncton 3 ntermédare pour le job 5. Le calcul mathématque nous donnant1la valeur du coût du stock du coût de stockage ntermédare revent à calculer l are stuée sous les pentes de stockage multplée par le coût untare de stockage ntermédare. Le nombre de pentes sera foncton du nombre de sous lots. On remarque qu l y a au maxmum pentes pour le stock. NIS a)calcul de l are de A : A Calcul de µ 1 : B C D E D E F C est la date de début du lot 1 du deµ 5début µ 1 job sur la machne µ µ 3 mons µ 5 laµ date µ du lotµ 16 du job sur Mla machne 1. µ 1 = mn( P,1;t,,1 t,1,1 ) Calcul de la hauteur : C est la quantté de pèces produtes pendant µ 1 untés de temps,.e. la vtesse de producton de la machne 1 multplée par le temps de producton. h = µ 1. q P,1 La valeur de A est donc : A= 1 µ 1. q P,1 b)calcul de l are de B : Le prncpal problème pour B est de détecter les premers lots consécutfs sans temps mort. Calcul de : Supposons que k sous-lots sont tratés consécutvement sur M, sans temps mort. On a : P C,,k = t,,1 + k, P,1 C,1,k = t,1,1 + k Il faut trouver la plus pette valeur de k telle que : C,,k < C,1,k + 1 3

31 t,,1 + k. k. k> P, < t,1,1 + (k + 1) P,1 P, P,1 P < t,1,1 t,,1 +,1 ( t,1,1 t,,1 ) + P,1 P, P,1 ( t,1,1 t,,1 ) + P,1 d où = mn ;, car P, P,1 P, P,1 P,1 NB : Dans le cas où t,1,1 t,,1 = on a = (cas ADEF). Calcul de µ : C est le nombre de lots consécutfs multplé par la durée d un sous-lot. P, µ = mn. ;max(;t,1,1 + P,1 t,,1) On notera que le derner terme de µ n est le mnmum que dans le cas «ABF». Calcul de la hauteur : On notera que la grande hauteur de l are B est la valeur de la hauteur pour l are A. On s ntéresse donc à la pette hauteur qu correspond au nombre d éléments du traval dans le stock ntermédare. Autrement l s agt du nombre d éléments produts à la date t,1,1 + µ 1 + µ mons le nombre d éléments consommés à cette même date. h= ( µ + t,,1 t,1,1 ) q q q q µ. = ( µ + µ 1 ) µ. P,1 P, P,1 P, L are B se compose d un rectangle et d un trangle, et on a donc : q q B = ( µ + µ 1 ) µ..µ + 1 µ.q. 1 1.µ P, 1 P, P, P,1 c)calcul de l are de C : Calcul de µ 3 Cette valeur correspond à la largeur du premer temps mort. Ce temps mort n est pas forcément maxmal suvant la date de début du job sur la machne. Snon nous calculerons la valeur de l are de E. 31

32 Pour tenr compte du cas «ABF» afn que C dsparasse de l équaton fnale du coût de stock de produts sem fns: µ 3 = max ;mn( ; + 1). P,1 µ 1. P, Calcul de la hauteur On notera que la pette hauteur de l are C est la pette hauteur de l are B, déjà calculée. On s ntéresse donc à la grande hauteur qu est le nombre de pèces en stock (.e. nombre de pèces produtes mons le nombres de pèces consommées). On a : h= q On en dédut alors l are C, composée d un rectangle et d un trangle : q q q q q C = ( µ + µ 1 ) p,1 µ p, µ µ 3 ( µ + µ 1 ) p,1 + µ p, q q q µ µ 3+ 1 µ 3 C = 1 ( µ + µ 1) p,1 p, La valeur ½ devant la deuxème lgne correspond à une factorsaton de la forme ntale de C. Note : Dans le cas «A[DE]F, C est égal à. 3

33 d)calcul de l are de D : D et E sont un motf qu revent sans cesse suvant le nombre de sous lots et du recouvrement qu l peut se produre entre le tratement d éléments sur la machne 1 et sur la machne. Calcul de µ 5 µ 5 = p, p, Où, correspond au temps nécessare à la consommaton d un sous lot du job sur la machne quand l y a un temps mort avant le sous lots (sauf dans le cas partculer A[DE]F). Calcul de la hauteur : D correspond a une pente descendante qu démarre toujours de valeur de la producton de la machne 1. h= q et qu descend à la µ 5 q p,1 µ 5 q µ 5q on a alors : D = + p,1 e)calcul de l are de E : Calcul de µ µ = P,1 P, Largeur du temps mort après le sous lot +1 du job. Calcul des hauteurs : Elle sont les mêmes que pour D, sauf que la pente est montante. E devent donc : µ 5q q µ 5q E = µ ( P,1 + 1 P,1 ) µ q µ 5.q E = + P,1 33

34 f)calcul du plateau G : Calcul de µ 7 G n apparaît que s la date de début du job sur la machne est supéreure à la date de fn du job sur la machne 1. µ 7 = max( ; t,,1 t,1,1 P,1 ) Calcul de la hauteur La hauteur de G est fxe : elle est égale à la quantté q du job. G a donc pour valeur : G = µ 7.q g)calcul de l are F : Pour calculer F nous allons nous ntéresser à 3 ponts partculers : α, γ, β. Ces 3 ponts défnssent la hauteur et la durée de F. α F γ β Sot e la quantté produte par la machne 1 et f la quantté consommée par la machne. e = q β = t,1,1 + P,1 + µ 7 Pour le cas ABF, AF, AGF : f = max(; C,1 t,,1 ). q P, α = e f γ = t,,1 + p, γ β = t,,1 + P, t,1,1 P,1 µ 7 = mn( P,;t,,1 + P, t,1,1 P,1 ) Autre cas : 3

35 f ' = ( 1) α = e f ' q γ '= C,1 + P, γ ' β = P, En généralsant : α = e mn( f, f ' ) µ 6 = γ β = max(t,,1 + p, t,1,1 p,1 µ 7; P, )= max mn( P,;t,,1 + P, t,1,1 P,1 ); P, q F = 1.µ 6. q mn max(;c,1 t,,1). ; 1.q P, h)coût des stocks de produts sem fns ( avec P1 > P ): CSPSF = γ ( A +B + C + max ( ; 1 )( D + E ) + F +G) Remarque : Selon les dfférents cas étudés la valeur de dffère: Cas «ABF» Cas «ABCF» Cas «ABC[DE]F» Cas «A[DE]F» Cas «AGF» Cas «AF» = = 1 < = = = 35

36 .Coût des stocks de produts fns (avec P1 > P ) Nous allons mantenant nous ntéresser au stock de produts fns toujours en consdérant que P1 > P. On peut supposer 3 cas pour la lvrason du produt fn : - La lvrason est réalsée dès la mse en stock d un sous lot du produt fn, - La lvrason est réalsée progressvement dès la fn du produt sur la machne jusqu à la date due, - La lvrason est entèrement effectuée à la date due. Les deux premers cas ne sont pas consdérés car sans ntérêt : Le premer cas n est pas prs en compte car l revent à calculer des coûts de stockage ntermédare (produts sem-fns). Le clent étant consdéré comme une machne 3. Le second cas paraît redondant et mons pertnent que le trosème. On suppose donc que le produt fn est un traval lvré en un seul bloc à la date due q q A µ ' 1 C B µ ' 1 µ ' 1 D TM1 µ 3 µ ' 1 E TM µ µ ' 1 FF d a)calcul de [ABCDE] : µ '1 = P, q 1 A =.µ '1. q B = A+ P,. q C = B + P,. p q D = C +,. On peut généralser par : [ABCDE] = 1 P, q 36

37 Preuve du calcul : [ABCDE] = A + P, q 1 Moyenne de la sute [ABCDE] = A + ( j =1 1 ( j) j =1 j ) = ( + 1) P, q ( 1) [ABCDE] = P q 1 1 P, q +, ( 1) [ABCDE] = 1 P, q b)calcul de FF : Cette are correspond à l avance du produt. Plus le produt sera en avance par rapport à la date due, plus cette are sera grande. Cependant s le produt est en retard, on consdère que FF est nul. FF = max( ; d C, ).q c)calcul de TM1 : TM1 apparaît unquement s pluseurs lots se succèdent sur la machne avant un temps mort. La durée de TM1 est égale à la durée du temps mort sot µ 3 (défn page 8). TM 1 = µ 3. q où est le nombre de sous-lots tratés sans temps mort (cf page 7) d)calcul de TM : TM correspond à la somme des temps mort non transtores. TM = 1 v = + 1 µ. v.q où µ est défn page 9 e)coût des stocks de produt fns ( avec P1 > P ): CSPF = κ ( [ABCDE] + TM1 + TM +FF ) 37

38 C.Etude du cas où P,1 P, 1.Coût des stocks de produt sem fn ( avec P1 P ) Nous allons mantenant calculer les coût de stockage de produt sem-fn avec P,1 P,. Nous allons dans un premer temps calculer l are suvant les cas «ABC» et «ADE» pus nous multplerons cette are par le coût untare γ. Cas «ABC» M1 NIS B C A µ µ1 M µ3 Cas «ADE» M1 NIS A M µ1 D E µ µ3 38

39 a)calcul de l are de A : Comme dans le cas P, < P,1, et concernant la valeur de l are de A, nous allons calculer la durée pendant laquelle seule la machne 1 produt, multplée par la quantté d éléments fabrqués. Donc on pose µ 1 : µ 1 = mn( P,1 ; t,,1 t,1,1 ) Le premer terme correspond au cas «ADE» où le job sur la machne 1 est termné avant le début du job sur la machne. On prend le deuxème terme snon (.e. cela sgnfe qu l y a recouvrement). Calcul de la hauteur : Comme pour la durée, nous reprenons le calcul fat pour le cas P, < P,1. h= µ1 q P,1 On a donc : A= q 1 µ 1² P,1 Cette formule d are étant smlare au cas où P, < P,1. b)calcul de l are de B : Le calcul de l are de B revent à calculer la pente montante de durée µ. On a µ = max(; t,1,1 + P,1 t,,1 ) La valeur de µ vaut zéro s l n y a pas recouvrement. Calcul de la hauteur : On notera que la pette hauteur de l are B est la valeur de la hauteur pour l are A. On s ntéresse donc à la grande hauteur qu correspond au nombre d éléments du traval dans le stock ntermédare. Autrement l s agt du nombre d éléments produts à la date t,1,1 + µ 1 + µ mons le nombre d éléments consommés à cette même date. µ q h = q P, 39

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks Plan Geston des stocks Abdellah El Fallah Ensa de Tétouan 2011 Les opératons de gestons des stocks Les coûts assocés à la geston des stocks Le rôle des stocks Modèle de la quantté économque Geston calendare

Plus en détail

classification non supervisée : pas de classes prédéfinies Applications typiques

classification non supervisée : pas de classes prédéfinies Applications typiques Qu est ce que le clusterng? analyse de clusterng regroupement des obets en clusters un cluster : une collecton d obets smlares au sen d un même cluster dssmlares au obets appartenant à d autres clusters

Plus en détail

Remboursement d un emprunt par annuités constantes

Remboursement d un emprunt par annuités constantes Sére STG Journées de formaton Janver 2006 Remboursement d un emprunt par annutés constantes Le prncpe Utlsaton du tableur Un emprunteur s adresse à un prêteur pour obtenr une somme d argent (la dette)

Plus en détail

Les jeunes économistes

Les jeunes économistes Chaptre1 : les ntérêts smples 1. défnton et calcul pratque : Défnton : Dans le cas de l ntérêt smple, le captal reste nvarable pendant toute la durée du prêt. L emprunteur dot verser, à la fn de chaque

Plus en détail

STATISTIQUE AVEC EXCEL

STATISTIQUE AVEC EXCEL STATISTIQUE AVEC EXCEL Excel offre d nnombrables possbltés de recuellr des données statstques, de les classer, de les analyser et de les représenter graphquement. Ce sont prncpalement les tros éléments

Plus en détail

Editions ENI. Project 2010. Collection Référence Bureautique. Extrait

Editions ENI. Project 2010. Collection Référence Bureautique. Extrait Edtons ENI Project 2010 Collecton Référence Bureautque Extrat Défnton des tâches Défnton des tâches Project 2010 Sasr les tâches d'un projet Les tâches représentent le traval à accomplr pour attendre l'objectf

Plus en détail

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix?

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix? Note méthodologque Tratements hebdomadares Questlemonscher.com Quelle méthode de collecte de prx? Les éléments méthodologques ont été défns par le cabnet FaE onsel, socété d études et d analyses statstques

Plus en détail

Assurance maladie et aléa de moralité ex-ante : L incidence de l hétérogénéité de la perte sanitaire

Assurance maladie et aléa de moralité ex-ante : L incidence de l hétérogénéité de la perte sanitaire Assurance malade et aléa de moralté ex-ante : L ncdence de l hétérogénété de la perte santare Davd Alary 1 et Franck Ben 2 Cet artcle examne l ncdence de l hétérogénété de la perte santare sur les contrats

Plus en détail

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction -

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction - EXAME FIAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSIO 1 - Correcton - Exercce 1 : 1) Consdérons une entreprse E comportant deux établssements : E1 et E2 qu emploent chacun 200 salarés. Au sen de l'établssement

Plus en détail

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h.

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h. A2 Analyser le système Converson statque de l énerge Date : Nom : Cours 2 h 1 Introducton Un ConVertsseur Statque d énerge (CVS) est un montage utlsant des nterrupteurs à semconducteurs permettant par

Plus en détail

Contrats prévoyance des TNS : Clarifier les règles pour sécuriser les prestations

Contrats prévoyance des TNS : Clarifier les règles pour sécuriser les prestations Contrats prévoyance des TNS : Clarfer les règles pour sécurser les prestatons Résumé de notre proposton : A - Amélorer l nformaton des souscrpteurs B Prévor plus de souplesse dans l apprécaton des revenus

Plus en détail

Mesure avec une règle

Mesure avec une règle Mesure avec une règle par Matheu ROUAUD Professeur de Scences Physques en prépa, Dplômé en Physque Théorque. Lycée Alan-Fourner 8000 Bourges ecrre@ncerttudes.fr RÉSUMÉ La mesure d'une grandeur par un système

Plus en détail

Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amiens.fr/pedagogie/maths/new/ue2007/synthese_atelier_annette_alain.

Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amiens.fr/pedagogie/maths/new/ue2007/synthese_atelier_annette_alain. Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amens.fr/pedagoge/maths/new/ue2007/synthese_ateler_annette_alan.pdf 1 La règle du jeu Un drecteur de casno se propose d nstaller le

Plus en détail

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage Fche n 7 : Vérfcaton du débt et de la vtesse par la méthode de traçage 1. PRINCIPE La méthode de traçage permet de calculer le débt d un écoulement ndépendamment des mesurages de hauteur et de vtesse.

Plus en détail

Interface OneNote 2013

Interface OneNote 2013 Interface OneNote 2013 Interface OneNote 2013 Offce 2013 - Fonctons avancées Lancer OneNote 2013 À partr de l'nterface Wndows 8, utlsez une des méthodes suvantes : - Clquez sur la vgnette OneNote 2013

Plus en détail

hal-00409942, version 1-14 Aug 2009

hal-00409942, version 1-14 Aug 2009 Manuscrt auteur, publé dans "MOSIM' 008, Pars : France (008)" 7 e Conférence Francophone de MOdélsaton et SIMulaton - MOSIM 08 - du mars au avrl 008 - Pars - France «Modélsaton, Optmsaton et Smulaton des

Plus en détail

Le théorème du viriel

Le théorème du viriel Le théorème du vrel On se propose de démontrer le théorème du vrel de deux manères dfférentes. La premère fat appel à deux "trcks" qu l faut vor. Cette preuve met en avant une quantté, notée S c, qu permet

Plus en détail

Dirigeant de SAS : Laisser le choix du statut social

Dirigeant de SAS : Laisser le choix du statut social Drgeant de SAS : Lasser le chox du statut socal Résumé de notre proposton : Ouvrr le chox du statut socal du drgeant de SAS avec 2 solutons possbles : apprécer la stuaton socale des drgeants de SAS comme

Plus en détail

BTS GPN 2EME ANNEE-MATHEMATIQUES-MATHS FINANCIERES MATHEMATIQUES FINANCIERES

BTS GPN 2EME ANNEE-MATHEMATIQUES-MATHS FINANCIERES MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES I. Concepts généraux. Le référentel précse : Cette parte du module M4 «Acquérr des outls mathématques de base nécessares à l'analyse de données économques» est en relaton avec

Plus en détail

GENESIS - Generalized System for Imputation Simulations (Système généralisé pour simuler l imputation)

GENESIS - Generalized System for Imputation Simulations (Système généralisé pour simuler l imputation) GENESS - Generalzed System for mputaton Smulatons (Système généralsé pour smuler l mputaton) GENESS est un système qu permet d exécuter des smulatons en présence d mputaton. L utlsateur fournt un ensemble

Plus en détail

Un protocole de tolérance aux pannes pour objets actifs non préemptifs

Un protocole de tolérance aux pannes pour objets actifs non préemptifs Un protocole de tolérance aux pannes pour objets actfs non préemptfs Françose Baude Dens Caromel Chrstan Delbé Ludovc Henro Equpe Oass, INRIA - CNRS - I3S 2004, route des Lucoles F-06902 Sopha Antpols

Plus en détail

Généralités sur les fonctions 1ES

Généralités sur les fonctions 1ES Généraltés sur les fonctons ES GENERALITES SUR LES FNCTINS I. RAPPELS a. Vocabulare Défnton Une foncton est un procédé qu permet d assocer à un nombre x appartenant à un ensemble D un nombre y n note :

Plus en détail

WINDOWS 10. Prise en main de votre ordinateur ou votre tablette

WINDOWS 10. Prise en main de votre ordinateur ou votre tablette WINDOWS 10 Prse en man de votre ordnateur ou votre tablette Table des matères Wndows 10 L envronnement Wndows 10 sur un ordnateur Wndows 10 : les nouveautés................................ 7 Démarrer Wndows

Plus en détail

LA RENOVATION DE L INDICE HARMONISE DES PRIX A LA CONSOMMATION DANS LA ZONE UEMOA

LA RENOVATION DE L INDICE HARMONISE DES PRIX A LA CONSOMMATION DANS LA ZONE UEMOA Observatore Economque et Statstque d Afrque Subsaharenne LA RENOVATION DE L INDICE HARMONISE DES PRIX A LA CONSOMMATION DANS LA ZONE UEMOA Une contrbuton à la réunon commune CEE/BIT sur les ndces des prx

Plus en détail

Interfaces Windows 8 et Bureau

Interfaces Windows 8 et Bureau Interfaces Wndows 8 et Bureau Interfaces Wndows 8 et Bureau Découvrr l nterface Wndows 8 Après s être dentfé va un compte Mcrosoft ou un compte local, l utlsateur vot apparaître sur son écran la toute

Plus en détail

Montage émetteur commun

Montage émetteur commun tour au menu ontage émetteur commun Polarsaton d un transstor. ôle de la polarsaton La polarsaton a pour rôle de placer le pont de fonctonnement du transstor dans une zone où ses caractérstques sont lnéares.

Plus en détail

DES EFFETS PERVERS DU MORCELLEMENT DES STOCKS

DES EFFETS PERVERS DU MORCELLEMENT DES STOCKS DES EFFETS PERVERS DU MORCELLEMENT DES STOCKS Le cabnet Enetek nous démontre les mpacts négatfs de la multplcaton des stocks qu au leu d amélorer le taux de servce en se rapprochant du clent, le dégradent

Plus en détail

Découvrir l interface Windows 8

Découvrir l interface Windows 8 Wndows 8.1 L envronnement Wndows 8 Interfaces Wndows 8 et Bureau L envronnement Wndows 8 Découvrr l nterface Wndows 8 Après s être dentfé va un compte Mcrosoft ou un compte local, l utlsateur vot apparaître

Plus en détail

Définition des tâches

Définition des tâches Défnton des tâches Défnton des tâches Project 2010 Sasr les tâches d'un projet Les tâches représentent le traval à accomplr pour attendre l'objectf du projet. Elles représentent de ce fat, les éléments

Plus en détail

Exercices d Électrocinétique

Exercices d Électrocinétique ercces d Électrocnétque Intensté et densté de courant -1.1 Vtesse des porteurs de charges : On dssout une masse m = 20g de chlorure de sodum NaCl dans un bac électrolytque de longueur l = 20cm et de secton

Plus en détail

FORMATION DOCTORALE EN INFORMATIQUE THESE. présentée en vue de l obtention du Doctorat en Informatique. par

FORMATION DOCTORALE EN INFORMATIQUE THESE. présentée en vue de l obtention du Doctorat en Informatique. par UNIVERSITE DE TUNIS EL MANAR FACULTE DES SCIENCES DE TUNIS INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON FORMATION DOCTORALE EN INFORMATIQUE THESE présentée en vue de l obtenton du Doctorat en Informatque

Plus en détail

Integral T 3 Compact. raccordé aux installations Integral 5. Notice d utilisation

Integral T 3 Compact. raccordé aux installations Integral 5. Notice d utilisation Integral T 3 Compact raccordé aux nstallatons Integral 5 Notce d utlsaton Remarques mportantes Remarques mportantes A quelle nstallaton pouvez-vous connecter votre téléphone Ce téléphone est conçu unquement

Plus en détail

ÉLÉMENTS DE THÉORIE DE L INFORMATION POUR LES COMMUNICATIONS.

ÉLÉMENTS DE THÉORIE DE L INFORMATION POUR LES COMMUNICATIONS. ÉLÉMETS DE THÉORIE DE L IFORMATIO POUR LES COMMUICATIOS. L a théore de l nformaton est une dscplne qu s appue non seulement sur les (télé-) communcatons, mas auss sur l nformatque, la statstque, la physque

Plus en détail

CREATION DE VALEUR EN ASSURANCE NON VIE : COMMENT FRANCHIR UNE NOUVELLE ETAPE?

CREATION DE VALEUR EN ASSURANCE NON VIE : COMMENT FRANCHIR UNE NOUVELLE ETAPE? CREATION DE VALEUR EN ASSURANCE NON VIE : COMMENT FRANCHIR UNE NOUVELLE ETAPE? Boulanger Frédérc Avanssur, Groupe AXA 163-167, Avenue Georges Clémenceau 92742 Nanterre Cedex France Tel: +33 1 46 14 43

Plus en détail

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2 Exo7 Nombres complexes Vdéo parte. Les nombres complexes, défntons et opératons Vdéo parte. Racnes carrées, équaton du second degré Vdéo parte 3. Argument et trgonométre Vdéo parte 4. Nombres complexes

Plus en détail

Chapitre 6. Economie ouverte :

Chapitre 6. Economie ouverte : 06/2/202 Chaptre 6. Econome ouverte : le modèle Mundell Flemng Elsabeth Cudevlle Le développement des échanges nternatonaux (bens et servces et flux fnancers) a rendu fortement nterdépendantes les conjonctures

Plus en détail

LE RÉGIME DE RETRAITE DU PERSONNEL CANADIEN DE LA CANADA-VIE (le «régime») INFORMATION IMPORTANTE CONCERNANT LE RECOURS COLLECTIF

LE RÉGIME DE RETRAITE DU PERSONNEL CANADIEN DE LA CANADA-VIE (le «régime») INFORMATION IMPORTANTE CONCERNANT LE RECOURS COLLECTIF 1 LE RÉGIME DE RETRAITE DU PERSONNEL CANADIEN DE LA CANADA-VIE (le «régme») INFORMATION IMPORTANTE CONCERNANT LE RECOURS COLLECTIF AVIS AUX RETRAITÉS ET AUX PARTICIPANTS AVEC DROITS ACQUIS DIFFÉRÉS Expédteurs

Plus en détail

Corrigé du problème de Mathématiques générales 2010. - Partie I - 0 0 0. 0.

Corrigé du problème de Mathématiques générales 2010. - Partie I - 0 0 0. 0. Corrgé du problème de Mathématques générales 2010 - Parte I - 1(a. Sot X S A. La matrce A est un polynôme en X donc commute avec X. 1(b. On a : 0 = m A (A = m A (X n ; le polynôme m A (x n est annulateur

Plus en détail

Terminal numérique TM 13 raccordé aux installations Integral 33

Terminal numérique TM 13 raccordé aux installations Integral 33 Termnal numérque TM 13 raccordé aux nstallatons Integral 33 Notce d utlsaton Vous garderez une longueur d avance. Famlarsez--vous avec votre téléphone Remarques mportantes Chaptres à lre en prorté -- Vue

Plus en détail

Cours #8 Optimisation de code

Cours #8 Optimisation de code ELE-784 Ordnateurs et programmaton système Cours #8 Optmsaton de code Bruno De Kelper Ste nternet : http://www.ele.etsmtl.ca/academque/ele784/ Cours # 8 ELE784 - Ordnateurs et programmaton système 1 Plan

Plus en détail

Application du système immunitaire artificiel ordinaire et amélioré pour la reconnaissance des caractères artificiels

Application du système immunitaire artificiel ordinaire et amélioré pour la reconnaissance des caractères artificiels 9 Nature & Technology Applcaton du système mmuntare artfcel ordnare et améloré pour la reconnassance des caractères artfcels Hba Khell a, Abdelkader Benyettou a a Laboratore Sgnal Image Parole SIMPA-,

Plus en détail

Système solaire combiné Estimation des besoins énergétiques

Système solaire combiné Estimation des besoins énergétiques Revue des Energes Renouvelables ICRESD-07 Tlemcen (007) 109 114 Système solare combné Estmaton des besons énergétques R. Kharch 1, B. Benyoucef et M. Belhamel 1 1 Centre de Développement des Energes Renouvelables

Plus en détail

La physiologie du cerveau montre que celui-ci est constitué de cellules (les neurones) interconnectées. Quelques étapes de cette découverte :

La physiologie du cerveau montre que celui-ci est constitué de cellules (les neurones) interconnectées. Quelques étapes de cette découverte : Chaptre 3 Apprentssage automatque : les réseaux de neurones Introducton Le Perceptron Les réseaux mult-couches 3.1 Introducton Comment l'homme fat-l pour rasonner, parler, calculer, apprendre,...? Comment

Plus en détail

Amélioration des Délais dans les Réseaux à Débits Garantis pour des Flux Temps-Réel Sous Contrainte «(m,k)-firm»

Amélioration des Délais dans les Réseaux à Débits Garantis pour des Flux Temps-Réel Sous Contrainte «(m,k)-firm» Améloraton des Délas dans les Réseaux à Débts Garants pour des Flux Temps-Réel Sous Contrante «(m,k)-frm» Résumé : Koubâa Ans, Yé-Qong Song LORIA UHP Nancy 1 - INPL - INRIA Lorrane 2, av. de la Forêt de

Plus en détail

GEA I Mathématiques nancières Poly. de révision. Lionel Darondeau

GEA I Mathématiques nancières Poly. de révision. Lionel Darondeau GEA I Mathématques nancères Poly de révson Lonel Darondeau Intérêts smples et composés Voc la lste des exercces à révser, corrgés en cours : Exercce 2 Exercce 3 Exercce 5 Exercce 6 Exercce 7 Exercce 8

Plus en détail

MÉTHODES DE SONDAGES UTILISÉES DANS LES PROGRAMMES D ÉVALUATIONS DES ÉLÈVES

MÉTHODES DE SONDAGES UTILISÉES DANS LES PROGRAMMES D ÉVALUATIONS DES ÉLÈVES MÉTHODES DE SONDAGES UTILISÉES DANS LES PROGRAMMES D ÉVALUATIONS DES ÉLÈVES Émle Garca, Maron Le Cam et Therry Rocher MENESR-DEPP, bureau de l évaluaton des élèves Cet artcle porte sur les méthodes de

Plus en détail

En vue de l'obtention du. Présentée et soutenue par Meva DODO Le 06 novembre 2008

En vue de l'obtention du. Présentée et soutenue par Meva DODO Le 06 novembre 2008 THÈSE En vue de l'obtenton du DOCTORAT DE L UNIVERSITÉ DE TOULOUSE Délvré par l'unversté Toulouse III - Paul Sabater Spécalté : Informatque Présentée et soutenue par Meva DODO Le 06 novembre 2008 Ttre

Plus en détail

Calculer le coût amorti d une obligation sur chaque exercice et présenter les écritures dans les comptes individuels de la société Plumeria.

Calculer le coût amorti d une obligation sur chaque exercice et présenter les écritures dans les comptes individuels de la société Plumeria. 1 CAS nédt d applcaton sur les normes IAS/IFRS Coût amort sur oblgatons à taux varable ou révsable La socété Plumera présente ses comptes annuels dans le référentel IFRS. Elle détent dans son portefeulle

Plus en détail

EH SmartView. Identifiez vos risques et vos opportunités. www.eulerhermes.be. Pilotez votre assurance-crédit. Services en ligne Euler Hermes

EH SmartView. Identifiez vos risques et vos opportunités. www.eulerhermes.be. Pilotez votre assurance-crédit. Services en ligne Euler Hermes EH SmartVew Servces en lgne Euler Hermes Identfez vos rsques et vos opportuntés Plotez votre assurance-crédt www.eulerhermes.be Les avantages d EH SmartVew L expertse Euler Hermes présentée de manère clare

Plus en détail

I. Présentation générale des méthodes d estimation des projets de type «unité industrielle»

I. Présentation générale des méthodes d estimation des projets de type «unité industrielle» Evaluaton des projets et estmaton des coûts Le budget d un projet est un élément mportant dans l étude d un projet pusque les résultats économques auront un mpact sur la réalsaton ou non et sur la concepton

Plus en détail

Gigue temporelle et ordonnancement par échéance dans les applications temps réel

Gigue temporelle et ordonnancement par échéance dans les applications temps réel L. Davd, F. Cottet, E. Grolleau. Ggue temporelle et ordonnancement par échéance dans les applcatons temps réel. IEEE Conf. Inter. Francophone d Automatque (CIFA2000), Jullet 2000, Llle, France. Ggue temporelle

Plus en détail

Études & documents ÉCONOMIE ET ÉVALUATION. Consommation de carburant : effets des prix à court et à long termes par type de population.

Études & documents ÉCONOMIE ET ÉVALUATION. Consommation de carburant : effets des prix à court et à long termes par type de population. COMMISSARIAT GÉNÉRAL AU DÉVELOPPEMENT DURABLE n 40 Avrl 20 TRANSPORT Études & documents Consommaton de carburant : effets des prx à court et à long termes par type de populaton ÉCONOMIE ET ÉVALUATION Servce

Plus en détail

Le Prêt Efficience Fioul

Le Prêt Efficience Fioul Le Prêt Effcence Foul EMPRUNTEUR M. Mme CO-EMPRUNTEUR M. Mlle Mme Mlle (CONJOINT, PACSÉ, CONCUBIN ) Départ. de nass. Nature de la pèce d dentté : Natonalté : CNI Passeport Ttre de séjour N : Salaré Stuaton

Plus en détail

Page 5 TABLE DES MATIÈRES

Page 5 TABLE DES MATIÈRES Page 5 TABLE DES MATIÈRES CHAPITRE I LES POURCENTAGES 1. LES OBJECTIFS 12 2. LES DÉFINITIONS 14 1. La varaton absolue d'une grandeur 2. La varaton moyenne d'une grandeur (par unté de temps) 3. Le coeffcent

Plus en détail

TD 1. Statistiques à une variable.

TD 1. Statistiques à une variable. Danel Abécasss. Année unverstare 2010/2011 Prépa-L1 TD de bostatstques. Exercce 1. On consdère la sére suvante : TD 1. Statstques à une varable. 1. Calculer la moyenne et l écart type. 2. Calculer la médane

Plus en détail

Paquets. Paquets nationaux 1. Paquets internationaux 11

Paquets. Paquets nationaux 1. Paquets internationaux 11 Paquets Paquets natonaux 1 Paquets nternatonaux 11 Paquets natonaux Servces & optons 1 Créaton 3 1. Dmensons, pods & épasseurs 3 2. Présentaton des paquets 4 2.1. Face avant du paquet 4 2.2. Comment obtenr

Plus en détail

Modélisation et conception d algorithmes pour la planification automatique du personnel de compagnies

Modélisation et conception d algorithmes pour la planification automatique du personnel de compagnies Modélsaton et concepton d algorthmes pour la planfcaton automatque du personnel de compagnes aérennes Carmen Draghc To cte ths verson: Carmen Draghc. Modélsaton et concepton d algorthmes pour la planfcaton

Plus en détail

Chapitre 3 : Incertitudes CHAPITRE 3 INCERTITUDES. Lignes directrices 2006 du GIEC pour les inventaires nationaux de gaz à effet de serre 3.

Chapitre 3 : Incertitudes CHAPITRE 3 INCERTITUDES. Lignes directrices 2006 du GIEC pour les inventaires nationaux de gaz à effet de serre 3. Chaptre 3 : Incerttudes CHAPITRE 3 INCERTITUDES Lgnes drectrces 2006 du GIEC pour les nventares natonaux de gaz à effet de serre 3.1 Volume 1 : Orentatons générales et établssement des rapports Auteurs

Plus en détail

Bibliothèque de documents

Bibliothèque de documents Bblothèque de documents Bblothèque de documents SharePont 2010 Vue d ensemble Dans un ste SharePont, les bblothèques permettent de stocker des éléments de types dfférents : des documents, des mages, des

Plus en détail

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique Spécale PSI - Cours "Electromagnétsme" 1 Inducton électromagnétque Chaptre IV : Inductance propre, nductance mutuelle. Energe électromagnétque Objectfs: Coecents d nductance propre L et mutuelle M Blan

Plus en détail

Prise en compte des politiques de transport dans le choix des fournisseurs

Prise en compte des politiques de transport dans le choix des fournisseurs INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE N attrbué par la bblothèque THÈSE Pour obtenr le grade de DOCTEUR DE L I.N.P.G. Spécalté : Géne Industrel Préparée au Laboratore d Automatque de Grenoble Dans

Plus en détail

Les prix quotidiens de clôture des échanges de quotas EUA et de crédits CER sont fournis par ICE Futures Europe

Les prix quotidiens de clôture des échanges de quotas EUA et de crédits CER sont fournis par ICE Futures Europe Méthodologe CDC Clmat Recherche puble chaque mos, en collaboraton avec Clmpact Metnext, Tendances Carbone, le bulletn mensuel d nformaton sur le marché européen du carbone (EU ETS). L obectf de cette publcaton

Plus en détail

Prêts bilatéraux et réseaux sociaux

Prêts bilatéraux et réseaux sociaux Prêts blatéraux et réseaux socaux Quand la sous-optmalté condut au ben-être collectf Phlppe Callou, Frederc Dubut et Mchele Sebag LRI, Unverste Pars Sud F-91405 Orsay France {callou;dubut;sebag}@lr.fr

Plus en détail

T3 Comfort raccordé a IP Office

T3 Comfort raccordé a IP Office IP Telephony Contact Centers Moblty Servces T3 Comfort raccordé a IP Offce Benutzerhandbuch User's gude Manual de usuaro Manuel utlsateur Manuale d uso Gebrukersdocumentate Sommare Sommare Se famlarser

Plus en détail

Pro2030 GUIDE D UTILISATION. Français

Pro2030 GUIDE D UTILISATION. Français Pro2030 GUIDE D UTILISATION Franças Contents Garante... Introducton... 1 Artcle nº 605056 Rév C Schéma nº A605056 Novembre 2010 2010 YSI Incorporated. Le logo YSI est une marque déposée de YSI Incorporated.

Plus en détail

Somfy Box. Activation de l option io et programmation de vos produits io

Somfy Box. Activation de l option io et programmation de vos produits io Somfy Box Actvaton de l opton o et programmaton de vos produts o Sommare Pré-requs pour la programmaton de produts o sur la Somfy Box 1 Harmonser la clé système 1 Qu est-ce que la clé système? 1 Dans quel

Plus en détail

COMPARAISON DE MÉTHODES POUR LA CORRECTION

COMPARAISON DE MÉTHODES POUR LA CORRECTION COMPARAISON DE MÉTHODES POUR LA CORRECTION DE LA NON-RÉPONSE TOTALE : MÉTHODE DES SCORES ET SEGMENTATION Émle Dequdt, Benoît Busson 2 & Ncolas Sgler 3 Insee, Drecton régonale des Pays de la Lore, Servce

Plus en détail

Prêt de groupe et sanction sociale Group lending and social fine

Prêt de groupe et sanction sociale Group lending and social fine Prêt de roupe et sancton socale Group lendn and socal fne Davd Alary Résumé Dans cet artcle, nous présentons un modèle d antsélecton sur un marché concurrentel du crédt. Nous consdérons l ntroducton de

Plus en détail

IDEI Report # 18. Transport. December 2010. Elasticités de la demande de transport ferroviaire: définitions et mesures

IDEI Report # 18. Transport. December 2010. Elasticités de la demande de transport ferroviaire: définitions et mesures IDEI Report # 18 Transport December 2010 Elastctés de la demande de transport ferrovare: défntons et mesures Elastctés de la demande de transport ferrovare : Défntons et mesures Marc Ivald Toulouse School

Plus en détail

ErP : éco-conception et étiquetage énergétique. Les solutions Vaillant. Pour dépasser la performance. La satisfaction de faire le bon choix.

ErP : éco-conception et étiquetage énergétique. Les solutions Vaillant. Pour dépasser la performance. La satisfaction de faire le bon choix. ErP : éco-concepton et étquetage énergétque Les solutons Vallant Pour dépasser la performance La satsfacton de fare le bon chox. ErP : éco-concepton et étquetage énergétque Eco-concepton et Etquetage

Plus en détail

INTERNET. Initiation à

INTERNET. Initiation à Intaton à INTERNET Surfez sur Internet Envoyez des messages Téléchargez Dscutez avec Skype Découvrez Facebook Regardez des vdéos Protégez votre ordnateur Myram GRIS Table des matères Internet Introducton

Plus en détail

Professionnel de santé équipé de Médiclick!

Professionnel de santé équipé de Médiclick! Professonnel de santé équpé de Médclck! Dosser Médcal Partagé en Aqutane Ce gude vous présente les prncpales fonctonnaltés réservées aux professonnels de santé membres du réseau AquDMP. Sommare Connexon

Plus en détail

Be inspired. Numéro Vert. Via Caracciolo 20 20155 Milano tel. +39 02 365 22 990 fax +39 02 365 22 991

Be inspired. Numéro Vert. Via Caracciolo 20 20155 Milano tel. +39 02 365 22 990 fax +39 02 365 22 991 Ggaset SX353 / französsch / A31008-X353-P100-1-7719 / cover_0_hedelberg.fm / 03.12.2003 s Be nspred www.onedrect.fr www.onedrect.es www.onedrect.t www.onedrect.pt 0 800 72 4000 902 30 32 32 02 365 22 990

Plus en détail

Les déterminants de la détention et de l usage de la carte de débit : une analyse empirique sur données individuelles françaises

Les déterminants de la détention et de l usage de la carte de débit : une analyse empirique sur données individuelles françaises Les détermnants de la détenton et de l usage de la carte de débt : une analyse emprque sur données ndvduelles françases Davd Boune Marc Bourreau Abel Franços Jun 2006 Département Scences Economques et

Plus en détail

Des solutions globales fi ables et innovantes. www.calyon.com

Des solutions globales fi ables et innovantes. www.calyon.com Des solutons globales f ables et nnovantes www.calyon.com OPTIM Internet: un outl smple et performant Suv de vos comptes Tratement de vos opératons bancares Accès à un servce de reportng complet Une nterface

Plus en détail

Les déterminants de la détention et de l usage de la carte de débit : une analyse empirique sur données individuelles françaises

Les déterminants de la détention et de l usage de la carte de débit : une analyse empirique sur données individuelles françaises Les détermnants de la détenton et de l usage de la carte de débt : une analyse emprque sur données ndvduelles françases Davd Boune a, Marc Bourreau a,b et Abel Franços a,c a Télécom ParsTech, Département

Plus en détail

Réseau RRFR pour la surveillance dynamique : application en e-maintenance.

Réseau RRFR pour la surveillance dynamique : application en e-maintenance. Réseau RRFR pour la survellance dynamue : applcaton en e-mantenance. RYAD ZEMOURI, DANIEL RACOCEANU, NOUREDDINE ZERHOUNI Laboratore Unverstare de Recherche en Producton Automatsée (LURPA) 6, avenue du

Plus en détail

VIELLE Marc. CEA-IDEI Janvier 1998. 1 La nomenclature retenue 3. 2 Vue d ensemble du modèle 4

VIELLE Marc. CEA-IDEI Janvier 1998. 1 La nomenclature retenue 3. 2 Vue d ensemble du modèle 4 GEMINI-E3 XL France Un outl destné à l étude des mpacts ndustrels de poltques énergétques et envronnementales VIELLE Marc CEA-IDEI Janver 1998 I LA STRUCTURE DU MODELE GEMINI-E3 XL FRANCE 3 1 La nomenclature

Plus en détail

Cette documentation provient du site www.arclim.eu et fait référence au produit suivant : PWRPR0000. Prix unitaire : 1732.77 HT

Cette documentation provient du site www.arclim.eu et fait référence au produit suivant : PWRPR0000. Prix unitaire : 1732.77 HT Régulaton Sondes & Capteurs Détente frgo électronque Supervson & GTC Humdfcaton & Déshu. Vannes & Servomoteurs Comptage eau, elec., énerge Ancens artcles Cette documentaton provent du ste www.arclm.eu

Plus en détail

CHAPITRE 14 : RAISONNEMENT DES SYSTÈMES DE COMMANDE

CHAPITRE 14 : RAISONNEMENT DES SYSTÈMES DE COMMANDE HAITRE 4 : RAISONNEMENT DES SYSTÈMES DE OMMANDE RAISONNEMENT DES SYSTÈMES DE OMMANDE... 2 INTRODUTION... 22 RAELS... 22 alcul de la valeur ntale de la répone à un échelon... 22 alcul du gan tatque... 22

Plus en détail

Pour plus d'informations, veuillez nous contacter au 04.75.05.52.62. ou à contact@arclim.fr.

Pour plus d'informations, veuillez nous contacter au 04.75.05.52.62. ou à contact@arclim.fr. Régulaton Sondes & Capteurs Détente frgo électronque Supervson & GTC Humdfcaton & Déshu. Vannes & Servomoteurs Comptage eau, elec., énerge Ancens artcles Cette documentaton provent du ste www.arclm.eu

Plus en détail

Distripost. Création 7 Caractéristiques du produit et options 7. Préparation de vos envois 8 Conditionnement 8

Distripost. Création 7 Caractéristiques du produit et options 7. Préparation de vos envois 8 Conditionnement 8 Dstrpost Quo, où et comment? 1 1. Qu est-ce que Dstrpost? 1 2. Quels chox s offrent à vous pour la dstrbuton de vos envos Dstrpost? 1 2.1. Tout le monde reçot-l mon envo toutes-boîtes dans la zone sélectonnée?

Plus en détail

Méthodes d Extraction de Connaissances à partir de Données (ECD) appliquées aux Systèmes d Information Géographiques (SIG)

Méthodes d Extraction de Connaissances à partir de Données (ECD) appliquées aux Systèmes d Information Géographiques (SIG) UNIVERSITÉ DE NANTES FACULTÉ DES SCIENCES ÉCOLE DOCTORALE SCIENCES ET TECHNOLOGIES DE L INFORMATION ET DES MATÉRIAUX Année 2006 N attrbué par la bblothèque Méthodes d Extracton de Connassances à partr

Plus en détail

Mode d'emploi. Servomoteur radiofréquence 1187 00

Mode d'emploi. Servomoteur radiofréquence 1187 00 Mode d'emplo Servomoteur radofréquence 1187 00 Table des matères A propos de ce mode d'emplo... 2 Représentaton de l'apparel... 3 Montage... 3 Démontage... 3 Almentaton... 4 Mettre la ple en place... 4

Plus en détail

La théorie classique de l information. 1 ère partie : le point de vue de Kolmogorov.

La théorie classique de l information. 1 ère partie : le point de vue de Kolmogorov. La théore classque de l nformaton. ère parte : le pont de vue de Kolmogorov. La sute de caractères comme outl de descrpton des systèmes. La scence peut être vue comme l art de compresser les données quelles

Plus en détail

Impôt sur la fortune et investissement dans les PME Professeur Didier MAILLARD

Impôt sur la fortune et investissement dans les PME Professeur Didier MAILLARD Conservatore atonal des Arts et Méters Chare de BAQUE Document de recherche n 9 Impôt sur la fortune et nvestssement dans les PME Professeur Dder MAILLARD Avertssement ovembre 2007 La chare de Banque du

Plus en détail

P R I S E E N M A I N R A P I D E O L I V E 4 H D

P R I S E E N M A I N R A P I D E O L I V E 4 H D P R I S E E N M A I N R A P I D E O L I V E 4 H D Sommare 1 2 2.1 2.2 2.3 3 3.1 3.2 3.3 4 4.1 4.2 4.3 4.4 4.5 4.6 5 6 7 7.1 7.2 7.3 8 8.1 8.2 8.3 8.4 8.5 8.6 Contenu du carton... 4 Paramétrage... 4 Connexon

Plus en détail

Prévost Kevin 1,2, Magal Pierre 1, Beaumont Catherine 2 RÉSUMÉ

Prévost Kevin 1,2, Magal Pierre 1, Beaumont Catherine 2 RÉSUMÉ INTERET UN MOELE MATHEMATIQUE AN LA COMPARAION E L EFFICACITE E IFFERENTE TRATEGIE E PREVENTION UR LA REITANCE AU PORTAGE A ALMONELLA ENTERITII CHEZ LA POULE Prévost Kevn 1,, Magal Perre 1, Beaumont Catherne

Plus en détail

1.0 Probabilité vs statistique...1. 1.1 Expérience aléatoire et espace échantillonnal...1. 1.2 Événement...2

1.0 Probabilité vs statistique...1. 1.1 Expérience aléatoire et espace échantillonnal...1. 1.2 Événement...2 - robabltés - haptre : Introducton à la théore des probabltés.0 robablté vs statstque.... Expérence aléatore et espace échantllonnal.... Événement.... xomes défnton de probablté..... Quelques théorèmes

Plus en détail

Analyse des Performances et Modélisation d un Serveur Web

Analyse des Performances et Modélisation d un Serveur Web SETIT 2009 5 th Internatonal Conference: Scences of Electronc, Technologes of Informaton and Telecommuncatons March 22-26, 2009 TUNISIA Analyse des Performances et Modélsaton d un Serveur Web Fontane RAFAMANTANANTSOA*,

Plus en détail

TRAVAUX PRATIQUES SPECTRO- COLORIMETRIE

TRAVAUX PRATIQUES SPECTRO- COLORIMETRIE UNIVERSITE MONTPELLIER 2 Département de Physque TRAVAUX PRATIQUES DE SPECTRO- COLORIMETRIE F. GENIET 2 INTRODUCTION Cet ensegnement de travaux pratques de seconde année se propose de revor rapdement l'aspect

Plus en détail

Ecole Polytechnique de Montréal C.P. 6079, succ. Centre-ville Montréal (QC), Canada H3C3A7 lucas.greze@polymtl.ca robert.pellerin@polymtl.

Ecole Polytechnique de Montréal C.P. 6079, succ. Centre-ville Montréal (QC), Canada H3C3A7 lucas.greze@polymtl.ca robert.pellerin@polymtl. CIGI 2011 Processus d accélératon de proets sous contrantes de ressources avec odes de chevaucheent LUCAS GREZE 1, ROBERT PELLERIN 1, PATRICE LECLAIRE 2 1 CHAIRE DE RECHERCHE JARISLOWSKY/SNC-LAVALIN EN

Plus en détail

Stéganographie Adaptative par Oracle (ASO)

Stéganographie Adaptative par Oracle (ASO) Stéganographe Adaptatve par Oracle ASO Sarra Kouder, Marc Chaumont, Wllam Puech To cte ths verson: Sarra Kouder, Marc Chaumont, Wllam Puech. Stéganographe Adaptatve par Oracle ASO. CORESA 12: COmpresson

Plus en détail

Mode d'emploi. Capteur de température ambiante radiofréquence avec horloge 1186..

Mode d'emploi. Capteur de température ambiante radiofréquence avec horloge 1186.. Mode d'emplo Capteur de température ambante radofréquence avec horloge 1186.. Table des matères A propos de ce mode d'emplo... 2 Comment le capteur de température ambante radofréquence fonctonne... 2 Affchage

Plus en détail

Grandeur physique, chiffres significatifs

Grandeur physique, chiffres significatifs Grandeur physque, chffres sgnfcatfs I) Donner le résultat d une mesure en correspondance avec l nstrument utlsé : S avec un nstrument, ren n est ndqué sur l ncerttude absolue X d une mesure X, on consdère

Plus en détail

UNIVERSITÉ DU QUÉBEC À MONTRÉAL L ASSURANCE AUTOMOBILE AU QUÉBEC : UNE PRIME SELON LE COÛT SOCIAL MARGINAL MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE

UNIVERSITÉ DU QUÉBEC À MONTRÉAL L ASSURANCE AUTOMOBILE AU QUÉBEC : UNE PRIME SELON LE COÛT SOCIAL MARGINAL MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE UNIVERSITÉ DU QUÉBEC À MONTRÉAL L ASSURANCE AUTOMOBILE AU QUÉBEC : UNE PRIME SELON LE COÛT SOCIAL MARGINAL MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN ÉCONOMIQUE PAR ERIC LÉVESQUE JANVIER

Plus en détail

Clavier et souris virtuels pour personnes handicapées à mobilité réduite

Clavier et souris virtuels pour personnes handicapées à mobilité réduite Claver et sours vrtuels pour personnes handcapées à moblté rédute Naoures Belhabb et Ans Rojb Unversté Pars8, THIM, EA 4004 CHART 2, rue de la Lberté 93526 Sant-Dens nawres_habb@yahoo.fr ; ans.rojb@unv-pars8.fr

Plus en détail

Calcul de tableaux d amortissement

Calcul de tableaux d amortissement Calcul de tableaux d amortssement 1 Tableau d amortssement Un emprunt est caractérsé par : une somme empruntée notée ; un taux annuel, en %, noté ; une pérodcté qu correspond à la fréquence de remboursement,

Plus en détail

Le Prêt Efficience Gaz

Le Prêt Efficience Gaz Le Prêt Effcence Gaz (FICHE DE SOLVABILITÉ) À COMPLÉTER INTÉGRALEMENT EMPRUNTEUR M. Mme Mlle CO-EMPRUNTEUR M. Mme Mlle (CONJOINT, PACSÉ, CONCUBIN ) Nom : Prénom : Nom de jeune flle (pour les femmes marées)

Plus en détail

santé Les arrêts de travail des séniors en emploi

santé Les arrêts de travail des séniors en emploi soldarté et DOSSIERS Les arrêts de traval des sénors en emplo N 2 2007 Les sénors en emplo se dstnguent-ls de leurs cadets en termes de recours aux arrêts de traval? Les sénors ne déclarent pas plus d

Plus en détail