GERMINATION DES NANOTUBES DE CARBONE

Dimension: px
Commencer à balayer dès la page:

Download "GERMINATION DES NANOTUBES DE CARBONE"

Transcription

1 DEA de Physique des Liquides de l Université PIERRE & MARIE CURIE Florent Métairie Rapport de stage GERMINATION DES NANOTUBES DE CARBONE Laboratoire : Laboratoire d Etudes des Microstructures, ONERA-CNRS, Châtillon Directeur de stage : F. DUCASTELLE Rapporteur : F. LEQUEUX

2 2

3 Table des matières Introduction 1 1 Généralités sur les nanotubes de carbone Structure Propriétés et applications Synthèse des nanotubes Observations expérimentales Objectifs du stage Modèle énergétique Démarche générale Modèle énergétique du Nickel Modèle énergétique du carbone Modèle énergétique du carbure Ni-C Étude de la démixtion Considérations thermodynamiques Résultats sur l enthalpie libre et le potentiel chimique Condition de stabilité chimique Le potentiel chimique d alliage dans la limite des grandes dilutions Méthodes numériques Calcul de µ par la méthode de Widom Mise en œuvre numérique Résultats Fusion Calcul du potentiel chimique Rôle des défauts structuraux à la surface du catalyseur Ancrage d une feuille de graphène Conditions thermodynamiques Conclusion 29

4 ii TABLE DES MATIÈRES

5 Introduction Les nanotubes de carbones ont été découverts en 1991 par S. Iijima [1] alors qu il observait les sous-produits de synthèse des fullerènes. Les remarquables propriétés mécaniques et électriques de ces objets les destinent à de nombreuses applications. Cependant, la maîtrise de leur production, en terme de quantité et de géométrie, n est pas encore acquise aujourd hui car le mécanisme de leur formation reste mal connu. En particulier, le rôle du catalyseur métallique dans les premiers stades de la formation des nanotubes n est pas clairement établi. L objectif de ce stage a été de poursuivre les travaux entrepris par Hakim Amara dans la thèse qu il a réalisée au Laboratoire d Etude des Microstructures (LEM) sur ce sujet [2]. Le premier chapitre de ce rapport est une présentation générale des nanotubes de carbone : structures, propriétés physiques, applications envisagées et méthodes de synthèse. On y aborde aussi différentes observations expérimentales sur lesquelles se base notamment le modèle "Vapeur-Liquide-Solide (VLS)" qui donne une explication qualitative de la croissance des nanotubes. A partir de ces résultats, deux axes de travail ont été définis : une étude quantitative de l étape de ségrégation proposée par le scénario VLS et une analyse des conditions d auto-organisation des atomes de carbone sur la surface (111) du métal (en l occurence le Nickel) en présence d une marche. Dans son travail de thèse, H. Amara a développé un code de simulation Monte Carlo basé sur la méthode des liaisons fortes pour décrire les systèmes Nickel-Carbone. Il semblait nécessaire de décrire, au moins sommairement, cet outil très largement employé lors de ce stage. C est pourquoi le modèle énergétique utilisé fait l objet du second chapitre. Les deux derniers chapitres restituent le travail effectué durant les cinq mois passés au laboratoires. Le chapitre 3 débute par un rappel de thermodynamique de la démixtion dans un mélange binaire. Ceci permet d introduire le "potentiel chimique d alliage", grandeur clé dans l étude de ce phénomène. Les méthodes numériques pour y accéder et les résulats obtenus sont ensuite exposés. Le dernier chapitre est consacré à l étude de l influence d une marche cristalline évoquée précédemment.

6 2 TABLE DES MATIÈRES

7 Chapitre 1 Généralités sur les nanotubes de carbone 1.1 Structure Comme leur nom l indique, les nanotubes se présentent sous la forme de tubes dont la longueur peut atteindre plusieurs microns pour un diamètre compris entre 1 et 10 nm. La structure s obtient en enroulant sur elle-même une feuille de graphène ( i.e. un réseau plan d atomes de carbone organisé en hexagones). Dans cette opération, on superpose 2 atomes A et B, ce qui détermine le rayon et l angle d enroulement θ (figure 1.1). Fig. 1.1 (a) Feuille de graphène présentant le réseau hexagonal. (b) Enroulement de la feuille de graphène pour former un nanotube monofeuillet.

8 4 Généralités sur les nanotubes de carbone Compte tenu de la symétrie du réseau, θ peut être choisi entre 0 et 30 et on définit alors 3 classes de nanotubes : chaises pour θ = 0, zig-zag pour θ = 30 et chirale pour 0 < θ < 30 (figure 1.2) Fig. 1.2 Les différents types de nanotubes monoparois : (a) chaise, (b) zig-zag et (c) chiral. 1.2 Propriétés et applications Du point de vue électronique, l hélicité du nanotube en fait un bon ou un mauvais conducteur. Il a ainsi été montré, aussi bien théoriquement qu expérimentalement, que la configuration "chaise" confère un caractère métallique. Sur le plan mécanique, les nanotubes présentent une importante résistance à la déformation. Des modules d élasticité de l ordre du 1 TPa ont été mesurés, ce qui dépasse largement (d environ 100 fois) l acier. De nombreuses applications sont envisageables : - composants électroniques (transistors, diodes...), - pointe à émission de champs : intégration dans les écrans plats, utilisation comme sonde pour microscopies de surface (force atomique ou effet tunnel), - renforcement des matériaux composites, - nanocontainers pour stocker ou protéger des composés fragiles en environnement hostile, - muscles artificiels (déformation provoquée par une sollicitation électrique). Le principe de l émission de champ est l extraction, par effet tunnel, d électrons d une pointe métallique soumise à un champ électrique sous vide

9 1.3 Synthèse des nanotubes Synthèse des nanotubes Les techniques dites haute température (T > 3000 C) sont basées sur la sublimation de carbone sous atmosphère inerte : arc électrique, ablation laser ou encore l énergie solaire. La voie moyenne température (T 1000 C) est également possible par l intermédiaire de procédés chimiques tels que la décomposition catalytique d hydrocarbures. Arc électrique Cette méthode consiste à faire passer un fort courant électrique entre deux électrodes en graphite. L anode se consume et un dépôt semblable à une toile d araignée et contenant les nanotubes se dépose sur la cathode. Cette technique est peu coûteuse et facile à mettre en œuvre mais difficilement contrôlable. Vaporisation laser Un faisceau laser est focalisé sur une cible obtenue en compactant de la poudre de graphite. Cette technique peut être couplée à des mesures in situ permettant ainsi l étude et la modélisation des conditions de synthèse. L ONERA dispose de ce type de montage (figure 1.3) où la forte puissance du laser continu CO 2 permet de fournir une énergie de 1500 W suffisante pour vaporiser une quantité importante de matière par unité de temps. Fig. 1.3 Réacteur de synthèse laser continu CO 2 de l ONERA [3] Décomposition catalytique Un gaz carboné (monoxyde de carbone, acétylène, méthane...) est décomposé à la surface de particules de catalyseurs métalliques qui sont souvent des métaux de transition (Fe, Ni, Co...). Les nanotubes obtenus sont de qualité graphitique moindre mais poussent plus uniformément.

10 6 Généralités sur les nanotubes de carbone Quelle que soit la voie de synthèse, les nanotubes peuvent s assembler selon deux modes. Dans le premier, ils s emboîtent coaxialement les uns dans les autres (figure 1.4). On parle alors de nanotubes multifeuillets. Fig. 1.4 Nanotubes multifeuillets. (a) et (b) Représentation schématique d un nanotube bifeuillets (c) Images haute résolution de nanotubes multifeuillets comportant respectivement 5, 2 et 7 feuillets [1]. Dans le second, les tubes monofeuillet se regroupent en fagots qui peuvent compter plusieurs dizaines d unités (figure 1.5). Fig. 1.5 (a) Représentation schématique d un fagot de nanotubes monofeuillets. Images TEM [3] d une section de fagots de nanotubes (b), de nanotubes individuels (c), (d) et de nanotubes monofeuillets organisés en fagot (e), (f) [3].

11 1.4 Observations expérimentales 7 Quel que soit le procédé, la formation de nanotubes monofeuillets nécessite la présence d un catalyseur métallique (Fe, Co, Ni,...). La principale question soulevée est de définir le rôle exact du catalyseur dans le processus de croissance des nanotubes monofeuillets. 1.4 Observations expérimentales Des examens post mortem des produits obtenus par la voie haute température par microscopie électronique en transmission [4] ont révélé des éléments intéressants pour comprendre la formation des nanotubes. Le catalyseur métallique se retrouve sous forme de gouttelette nanométrique. On observe (figure 1.6), soit une structure en oignon dans laquelle des couches graphitiques concentriques enrobent la particule catalytique, soit l enracinement de nanotubes dans la goutte et la présence de bulles - vraisemblablement des tubes à l état embryonnaire - à sa surface. Fig. 1.6 (a) Structure oignon : encapsulation graphitique de la particule catalytique. (b) Germes de nanotubes monofeuillets à la surface de la particule sous forme de dômes de diamètre moyen d environ 1.4 nm [4] Des analyses de répartition d éléments par cartographie chimique prouvent la migration du carbone à la surface des gouttes et la persistance du métal au centre (figure 1.9). Fig. 1.7 En bas : cartographie chimique pour C, Ni et Ce sur une nanoparticule d un échantillon Ni :Ce (80/20 % atomique). La localisation de chaque élément est représentée par une zone blanche. [4]

12 8 Généralités sur les nanotubes de carbone S inspirant des phénomènes connus pour les fibres de carbone, Y. Saito [5, 6] a proposé pour les voies de synthèse haute température un modèle baptisé Vapeur-Liquide-Solide (VLS) que J. Gavillet et al. [4] ont par la suite approfondi (figure 1.8). A T > 3000 C le mélange carbone-métal est gazeux. En se refroidissant, il se condense et des gouttelettes de métal concentrées en carbone se forment (a). Une diminution de température s accompagne d une baisse de solubilité du carbone dans le métal liquide. Le carbone ségrège et on observe, soit la formation de couches graphitiques concentriques qui donne lieu à une structure en oignon (b), soit l apparition de bulles (c) qui se poursuit par la croissance des tubes grâce à un apport d atomes de carbone environnants (d). Fig. 1.8 Illustration du modèle VLS [4].

13 1.5 Objectifs du stage 9 Récemment, Helveg et al. sont parvenus à réaliser des observations en temps réel de la formation des nanotubes de carbones par décomposition catalytique [7]. Le fait essentiel est la présence de marches atomiques sur la surface du nickel dans lesquelles s ancrent les feuillets graphitiques (figure 1.9 ci-dessous). Fig. 1.9 Images et représentations schématiques des étapes successives de la croissances des nanotubes de carbone par décomposition catalytique [7]. 1.5 Objectifs du stage Le modèle VLS semble tout à fait pertinent et on aimerait bien apporter des arguments théoriques qui, pour commencer, justifieraient l étape de ségrégation. C est le premier objectif de ce stage. D autre part, les marches à la surface du catalyseur semblent jouer un rôle clé dans la germination et la croissance des nanotubes. Appronfondir ce point sera le deuxième but. Des simulation Monte Carlo seront réalisées pour tenter de répondre à ces questions. Le chapitre suivant présente le modèle énergétique utilisé à cette fin.

14 10 Généralités sur les nanotubes de carbone

15 Chapitre 2 Modèle énergétique Les méthodes ab initio sont inadaptées aux grands systèmes (plus de 100 atomes) qu on souhaite décrire car elles sont trop gourmandes en temps de calculs. Afin d être corrects, des potentiels empiriques doivent revêtir une forme plus ou moins sophistiquée qu il est difficile de justifier. Pour obtenir une description des liaisons chimiques à la fois réaliste et suffisament simple pour traiter de gros systèmes, H. Amara et F. Ducastelle ont adopté une méthode à mi-chemin entre les 2 précédentes. Elle est décrite ci-dessous. Pour plus de détails sur les calculs de structures électroniques, on pourra consulter [8] et [9]. 2.1 Démarche générale On commence par écrire l énergie totale du système comme la somme des énergies de chaque atome : E = atome i laquelle comporte une partie attractive qu on attribue aux électrons de valence et une contribution répulsive due aux interactions des ions habillés de leurs couches internes : E i E i = E el,i + E rep,i On adopte pour le terme répulsif une expression empirique qui sera precisée dans la suite. Le terme attractif quant à lui se calcule avec la mécanique quantique dans l approximation des "liaisons fortes". Il s agit de calculer l énergie des électrons de valence qui évoluent dans le potentiel des ions, chacun d eux intervenant avec un certain nombres d orbitales atomiques. Si on note iλ l état quantique d un électron localisé dans l orbitale λ de l ion i, on recherche les états propres Ψ n et les énergies propres E n de l hamiltonien Ĥ sous la forme d une combinaison linéaire des orbitales atomiques (OA) iλ : Ĥ Ψ n = E n Ψ n Ψ n = iλ c (n) iλ iλ (S ) L énergie électronique des atomes rapprochés est plus basse que celle des atomes séparés. La différence est le terme E el,i que l on cherche. Si l atome apporte N électrons, elle s écrit : E el i = n c (n) iλ 2 E n Nɛ at où ɛ at est l énergie de l électron dans l atome isolé. Le système (S ) peut s écrire sous forme d une matrice dont la taille peut rapidement devenir conséquente (typiquement pour une centaine d atomes Quand le nombre d atomes mis en jeu devient grand, les énergies sont très resserrées et forment des bandes. Les c (n) iλ 2 définissent alors la densité d états locale n iλ (E) (Local Density Of States) sur l atome i pour son OA λ.

16 12 Modèle énergétique impliquant chacun 5 OA) La diagonalisation telle quelle donnera bien les éléments propres de Ĥ mais au prix d un temps de calcul élévé. On contourne la difficulté en utilisant une technique récursive qui consiste à construire, pour chaque iλ une base orthonormale B = { φ i } dans laquelle Ĥ est tridiagonal et dont le premier élément est φ 1 = iλ : α 1 β 1 β 1 α 2 β Ĥ = Sous cette forme, la diagonalisation est nettement plus facile (on dispose de bonnes "recettes" numériques pour cela), les poids c (n) iλ 2 et énergies s obtiennent assez rapidement. En effectuant les calculs, on s aperçoit que les coefficients de la matrice convergent. On peut alors se contenter de les calculer jusqu à un certain rang et poser que tous les autres sont égaux aux derniers calculés. Bien sûr, plus on en calculera exactement et meilleure sera la précision sur les E n et les c (n) iλ. On comprend mieux ce que cela signifie quand on démontre que les coefficients de la matrice tridiagonale sont liés aux moments de la densité d états locale (LDOS). Plus on dispose de coefficients, plus on peut calculer des moments d ordre élevé et donc plus on a d informations sur la forme de la LDOS (le moment d ordre 2 donne un ordre de grandeur de la largeur, celui d ordre 3 renseigne sur l asymétrie, celui d ordre 4 permet de savoir s il y a un minimum local...). On peut ausi montrer que pour le calcul du moment d ordre 2n, on a besoin des interactions impliquant des nèmes voisins de l atome i. Cette remarque aura de l importance lors des simulations numériques. Pour construire B, on a besoin de connaître les éléments de matrice jµ Ĥ iλ. En appliquant à iλ l hamiltonien Ĥ = ˆp2 2m + ˆV i + ˆV k k i où le terme ˆp2 2m + ˆV i est l hamiltonien de l électron sur l ion i seul tandis que ˆV k k i potentiel produit par les autres ions, on obtient : Ĥ iλ = ɛ iλ iλ + k i ˆV k iλ correspond au Quand on projette sur jµ, on est amené à considérer différents termes pour lesquels on effectue les approximations suivantes : jµ iλ : on néglige les intégrales de recouvrement (iλ jµ) iµ ˆV k iλ : ce terme, appelé " intégrale de champ cristallin ", sera omis k i jµ ˆV k iλ = iµ ˆV k iλ + jµ ˆV i iλ : dans le 1 er terme du second membre figurent des k i k i,j intégrales à 3 centres qu on néglige aussi car seule l interaction entre plus proches voisins est prise en compte dans l approximation des liaisons fortes. Seul subsiste finalement le second terme, dit " intégrale de saut ". Il dépend de la nature (λ et µ) des orbitales atomiques et de la position relative des 2 ions voisins. C est pourquoi on le note µ ˆV ( r ij ) λ. Dans ce qui suit, on précise les choses pour les 3 interactions Ni-Ni, C-C et Ni-C en discutant le terme répulsif, des intégrales de saut et de l ajustement des paramètres qui apparaissent dans le modèle. on peut justifier l existence d une telle base en faisant appel à une fonction appelée résolvante de la densité d états et à son développement en fraction continue iλ est propre pour ˆp2 2m + ˆV i

17 2.2 Modèle énergétique du Nickel Modèle énergétique du Nickel On adopte pour le terme répulsif une somme de potentiels de paires de type Born-Mayer restreinte au plus proches voisins que Ducastelle [10] a proposé d écrire : E rep,i = A jvois. e prij Pour les intégrales de saut µ ˆV ( r ij ) λ, les OA de valence mises en jeu sont les 5 OA d. Des considérations de symétrie permettent d affirmer que si l on choisit r ij e z, il n y a que 3 termes non nuls et ils correspondent à µ = λ. Fig. 2.1 Représentation des termes λ ˆV (r ij ) λ : ddσ pour λ = 3z 2 r 2, ddπ pour λ = yz et zx, ddδ pour λ = x 2 y 2 et xy La disposition des OA suggère que ddδ est plus faible que les 2 autres termes (figure 2.1). Il est d usage de faire l approximation suivante : ddσ = 2ddπ et ddδ = 0. Enfin, la variation en fonction de la distance suit une loi exponentielle empruntée à celle des fonctions d onde : ddλ(r) = ddλ o e qr Dans le cas général r ij e z, Slater et Koster [11] ont montré que µ ˆV ( r ij ) λ se calculait à partir des 3 grandeurs de base ddσ, ddπ, ddδ et des cosinus directeurs de r ij. Au total, 4 paramètres interviennent dans le modèle énergétique du nickel : ddπ o, p, A, q. Ils ont été ajustés pour reproduire au mieux, dans un calcul au 4ème moment, i.e. nécessitant le calcul exact des coefficients (α 1, β 1, α 2, β 2 ), 4 grandeurs caractéristiques du métal : le paramètre de maille, l énergie de cohésion et 2 constantes élastiques. 2.3 Modèle énergétique du carbone Les OA impliquées ici sont 2s, 2p x, 2p y et 2p z. Comme pour le nickel, le calcul des intégrales de saut utilise les cosinus directeurs et cette fois 4 grandeurs de base représentées sur la figure 2.2. Le modèle utilisé ici est celui de Xu et al. (forme et valeurs numériques) [12] pour la loi en distance des intégrales de saut : Θ λ (r) = Θ 0 λ(r 0 /r) n e {n[ (r/rc)nc +(r 0/r c) nc ]} Florent Métairie, Travail de fin d études, Ecole Centrale de Lyon, 2003.

18 14 Modèle énergétique Fig. 2.2 Les 4 intégrales de saut entre les orbitales s et p. Il est complété par un terme répulsif compliqué : E rep,i = F (φ(r ij )) jvois avec : F (x) = C 1 x + C 2 x 2 + C 3 x 3 + C 4 x 4 + C 5 x 5 φ(r) = φ 0 (d 0 /r) m exp{m[ (r/d c ) mc + (d 0 /d c ) mc ]} où tous les coefficients ont été choisis pour rendre correctement compte de la compétition graphène (sp2)/diamant (sp3) cruciale dans le problème de germination des nanotubes. 2.4 Modèle énergétique du carbure Ni-C La description est faite dans le même esprit que pour le nickel. Le terme répulsif a une forme analogue (Born-Mayer) et 3 nouvelles intégrales de saut, à dépendance exponentielle de la distance, sont nécessaires : pdσ, pdπ et sdσ. L éloignement énergétique important (10 ev) entre le niveau s du carbone et le niveau d du nickel permet de négliger sdσ. Une complication sur le nombre d électrons apparaît du fait du changement de structure de bande lorsqu on passe du nickel pur au carbure NiC. Pour un métal de transition seul, la densité d état a l allure représentée sur la figure 2.3 n(e) nd (n+1)s E f E Fig. 2.3 Représentation schématique de la densité d états d un métal de transition. L énergie de bande est pour l essentiel attribuable aux électrons de la bande d car il y a peu d états dans la bande s ( 1). Dans ce cas, on ne prend en compte que n électrons.

19 2.4 Modèle énergétique du carbure Ni-C n(e) Energie (ev) Ef Fig. 2.4 Allure de la densité d états pour un carbure métal/carbone (M/C). Extrait de la thèse de H. Amara [2] Pour le carbure NiC (de structure NaCl), la densité d états a la forme indiquée sur la figure 2.4 On distingue 2 régions : la bande la plus basse en énergie provient des états s du carbone, la bande suivante, au milieu de laquelle se trouve le niveau de Fermi, est due aux combinaisons 2p carbone/3d métal. La bande des états sp métalliques, rejetée à des énergies plus hautes, est non représentée sur la figure. Elle est vide : l électrons de la bande s qu on avait négligé dans le métal pur se retrouve désormais dans la bande 2p/3d et on doit en tenir compte. En résumé, quand un atome métallique n a que des voisins métalliques il apporte n électrons et quand ses voisins sont exclusivement des carbones il en apporte n+1. Dans les cas intermédiaires, Amara et Ducastelle ont choisi une interpolation linéaire. Pour terminer, les paramètres du modèle énergétique sont calés sur l enthalpie de formation du carbure NiC, son paramètre cristallin et son module de compressibilité. Ces grandeurs ont été obtenues par des approches thermodynamiques et ab initio car la métastabilité de NiC sous la forme NaCl les rend inaccesibles expérimentalement. En insérant ce modèle énergétique dans un code de simulation Monte Carlo, on peut espérer accéder aux propriétés thermodynamiques du mélanges Ni-C. En particulier, on pourra déterminer les potentiels chimiques et l enthalpie libre de l alliage en fonction de la concentration en carbone par exemple pour mettre en évidence (ou pas!...) le phénomène de démixtion.

20 16 Modèle énergétique

21 Chapitre 3 Étude de la démixtion Les parties qui suivent montre comment se traduit le phénomène de démixtion, i.e. la séparation d un mélange initialement homogène en deux phases de compositions distinctes, au niveau de certaines fonctions thermodynamiques. Inversement, si on parvient à établir l évolution de celles-ci, on peut mettre en évidence une éventuelle démixtion. 3.1 Considérations thermodynamiques Résultats sur l enthalpie libre et le potentiel chimique L énergie interne U et l entropie S sont des grandeurs extensives donc l enthalpie libre G = U + P V T S l est également. La différentielle de G dg = V dp SdT + i µ i dn i (3.1) montre que ses variables naturelles sont T, P et les N i. On peut donc écrire : G(T, P,...(1 + ɛ)n i...) = (1 + ɛ) G(T, P,...N i...) Un développemnt au 1 er ordre en ɛ donne G(T, P,...N i...) = i ( ) G N i = N i T,P,N j i i µ i N i (3.2) résultat qui, inséré dans (3.1), conduit à la relation de Gibbs-Duhem : N i dµ i = V dp SdT (3.3) i Le cas étudié par la suite sera celui d un mélange à 2 constituants maintenu à T et P constants. Le potentiel chimique, qui est une grandeur intensive, ne peut dépendre des grandeurs extensives N 1 et N 2 qu à travers la combinaison x = N 1 /(N 1 + N 2 ) qui est donc le paramètre "pertinent" dans ce problème d alliage binaire. On choisit donc d écrire (3.2) sous la forme G N 1 + N 2 = g = xµ 1 + (1 x)µ 2 et la relation de Gibbs-Duhem x dµ 1 dx + (1 x)dµ 1 dx = 0

22 18 Étude de la démixtion Condition de stabilité chimique Pour qu un mélange de 2 constituants soit chimiquement stable à température et pression constantes, i.e. pour qu il reste homogène, il faut [13] que les potentiels chimiques et les fluctuations des nombres de particules vérifient : ( ) ( ( ) ( ) ) ( ) µ1 δn1 2 µ1 µ2 µ2 + + δn 1 δn 2 + δn2 2 0 N 1 T,P,N 2 N 2 T,P,N 1 N 1 N 2 T,P,N 1 T,P,N 2 Si on considère le premier membre comme un trinôme du 2 nd degré en δn 1 puis en δn 2, il sera bien toujours positif si d une part son discriminant est négatif et si d autre part le coefficient du terme dominant est positif, d où la condition ( ) ( ) µ1 µ2 0 0 (3.4) N 1 T,P,N 2 N 2 T,P,N 1 mais on a vu que le potentiel chimique dépend de x donc en utilisant : ( ) ( ) x N 1 N 1 x = 1 x ( ) N 1 + N 2 x et N 1 N 2 = N 2 on aboutit à : ( ) µ1 x T,P 0 ( ) µ2 x T,P Si on dérive g une première fois compte tenu de la relation de Gibbs-Duhem : puis une seconde fois avec (3.7), on trouve : dg dx = µ 1 µ 2 d 2 g dx 2 = d dx (µ 1 µ 2 ) 0 N 2 x = N 1 + N 2 x 0 (3.5) La fonction g doit donc être convexe, condition équivalente à la croissance de µ = (µ 1 µ 2 ) qu on appelle "potentiel chimique d alliage". Plutôt que de déterminer g, on peut tout aussi bien chercher à calculer µ. Typiquement, on aura démixtion quand g et µ auront l allure suivante Fig. 3.1 Variations de g et µ dans le cas d une démixtion

23 3.2 Méthodes numériques 19 On va voir dans ce qui suit comment combiner résultats théoriques et résultats numériques Le potentiel chimique d alliage dans la limite des grandes dilutions Si la solution était idéale, les potentiels chimiques auraient pour expression : µ 1 = µ o 1 + kt ln x µ 2 = µ o 2 + kt ln(1 x) Pour rendre compte de l écart à l idéalité, on introduit les "coefficients d activité " γ 1 (x) et γ 2 (x) tels que : µ 1 = µ o 1 + kt ln(γ 1 x) µ 2 = µ o 2 + kt ln(γ 2 (1 x)) de sorte que le potentiel chimique d alliage s écrit : µ(x) = (µ o 1 µ o 2) + kt ln x 1 x + kt ln γ 1 γ 2 Quand x 0, le mélange s approche d une solution idéale donc γ 1 /γ 2 1 ce qui conduit à poser : On obtient pour µ l expression approchée : γ 1 γ 2 = 1 + a 1 x + a 2 x µ = µ o + kt ln x 1 x + c 1x + c 2 x (3.6) L objectif est désomais de calculer numériquement µ pour des systèmes à faibles teneur en carbone pour vérifier (3.8), en espérant qu une extrapolation pour des x plus grands soit valable et permette de déceler (ou pas) une démixtion. 3.2 Méthodes numériques Calcul de µ par la méthode de Widom Le potentiel chimique d alliage µ peut être vu comme la variation d enthalpie libre à T et P constants quand on remplace un atome de nickel par un atome de carbone puisqu approximativement on a : µ = µ 1 µ 2 G(T, P, N 1 + 1, N 2 1) G(T, P, N 1, N 2 ) En introduisant les fonctions de partitions Z et Z telles que Z = β(ei+p Vi) e G(T, P, N 1, N 2 ) = kt lnz on obtient états i Z = e β(e j +P Vj) G(T, P, N 1 + 1, N 2 1) = kt lnz états j ( ) Z µ = kt ln Z Le calcul de Z /Z repose sur le fait que les configurations i s obtiennent à partir des configurations j et vice versa. Ainsi, à volume donné, pour passer de (N 1 +1, N 2 1) à (N 1, N 2 ), il suffit de choisir un carbone parmi les N et de le remplacer par un nickel. Autrement dit, un état j peut engendrer N états En coupant le développement au 1 er ordre en x, on retrouve ce que donne une théorie de champ moyen. On a alors affaire à une solution dite régulière

24 20 Étude de la démixtion i et si on fait le chemin à l envers on voit que N états i génèrent un même état j. C est pourquoi on peut écrire Z sous la forme : Z 1 = N (3.7) états j {i, E j =Ei+ Eij} e β(ei+ Eij+P Vi) Un état i apparaît plusieurs fois dans cette somme, N 2 pour être plus précis, car N 2 substitutions d un Ni par un C sont possibles pour former un état j. En regroupant les termes relatifs à une même configuration i, on transforme (3.9) en Z = 1 β(ei+p Vi) e N e β Eij = états i 1 N Z e β Eij j {j,e i=e j+ E ij} Le crochet désigne la moyenne sur l ensemble (canonique) des configurations (N 1, N 2 ) et la somme qui figure à l intérieur comporte N 2 termes qui correspondent au nombre de substitutions de Ni par C possibles. Le remplacement d un C par un C n a aucun effet. On peut néanmoins le prendre en compte dans la somme à condition de poser que la variation d énergie est infinie (ce qui annule l exponentielle et ne change pas la valeur de la somme). On peut ainsi ajouter N 1 termes dans Σ, opération qui conduit à : Z Z = 1 e β E ik N k N = e β E N pour aboutir au potentiel chimique d alliage : ( 1 µ = kt ln x + 1 N e β E ) (3.8) Mise en œuvre numérique étape 1 : convergence vers les états liquides les plus probables Pour obtenir simplement une structure liquide, on peut simuler la fusion d un solide, ici un cristal de nickel CFC contenant quelques atomes de carbone. Plusieurs exigences, imposées par la théorie, doivent être satisfaites : les propriétés auxquelles on s intéresse sont des propriétés en volume. Pour s affranchir de tout phénomène de surface, on utilise des conditions aux limites périodiques le calcul de l énergie électronique d un atome fait intervenir ses seconds voisins (cf. ch.2). Pour une structure CFC, cela exige un minimum de 108 atomes de nickel. µ est calculé dans un régime de grande dilution pour le carbone. Aussi les atomes de carbone doivent-ils être noyés dans le nickel et suffisament éloignés les uns des autres. Avec une boîte de 108 atomes de nickel, l éloignement n est pas bien assuré. Il est donc préférable de travailler sur un système plus grand, 500 atomes. Finalement, la stratégie adoptée est la suivante. On commence par faire fondre un cristal CFC de 500 atomes de nickel contenant un atome de carbone en insertion dans un site octaédrique. Pour avoir des mélanges (un peu) plus concentrés en carbone et sachant que pour le calcul de µ on raisonne à nombre total de particules constant, on part du liquide précédent et on substitue des atomes de nickel par des on part donc d une structure réelle

Rapport de Stage de Master

Rapport de Stage de Master Noël HADDAD Mars-Juin 2005 Rapport de Stage de Master Parcours de «Physique Expérimentale des Atomes et des Molécules» Effet de l application d un champ électrique dans la synthèse de nanotubes de carbone

Plus en détail

Chapitre 02. La lumière des étoiles. Exercices :

Chapitre 02. La lumière des étoiles. Exercices : Chapitre 02 La lumière des étoiles. I- Lumière monochromatique et lumière polychromatique. )- Expérience de Newton (642 727). 2)- Expérience avec la lumière émise par un Laser. 3)- Radiation et longueur

Plus en détail

MESURE DE LA TEMPERATURE

MESURE DE LA TEMPERATURE 145 T2 MESURE DE LA TEMPERATURE I. INTRODUCTION Dans la majorité des phénomènes physiques, la température joue un rôle prépondérant. Pour la mesurer, les moyens les plus couramment utilisés sont : les

Plus en détail

Diagramme D équilibre Binaire

Diagramme D équilibre Binaire Chapitre 4 : Diagramme D équilibre Binaire Objectifs spécifiques : -Connaitre les phases d une composition chimique de deux éléments en différentes températures. - maitriser la lecture d un diagramme d

Plus en détail

Mario Geiger octobre 08 ÉVAPORATION SOUS VIDE

Mario Geiger octobre 08 ÉVAPORATION SOUS VIDE ÉVAPORATION SOUS VIDE 1 I SOMMAIRE I Sommaire... 2 II Évaporation sous vide... 3 III Description de l installation... 5 IV Travail pratique... 6 But du travail... 6 Principe... 6 Matériel... 6 Méthodes...

Plus en détail

LES DIAGRAMMES DE PHASES BINAIRES

LES DIAGRAMMES DE PHASES BINAIRES UNIVERSITE HASSAN II AIN CHOK Faculté de Médecine Dentaire de Casablanca Département de B.M.F. LES DIAGRAMMES DE PHASES BINAIRES Pr Khalil EL GUERMAÏ PROGRAMME COURS 1- Rappel sur l Analyse l Thermique

Plus en détail

Semi-conducteurs. 1 Montage expérimental. Expérience n 29

Semi-conducteurs. 1 Montage expérimental. Expérience n 29 Expérience n 29 Semi-conducteurs Description Le but de cette expérience est la mesure de l énergie d activation intrinsèque de différents échantillons semiconducteurs. 1 Montage expérimental Liste du matériel

Plus en détail

MESURES DE DILATOMETRIE SUR DEUX NUANCES D ACIER INOX : 1.4542 ET 1.4057 le 04/01/00

MESURES DE DILATOMETRIE SUR DEUX NUANCES D ACIER INOX : 1.4542 ET 1.4057 le 04/01/00 1 EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE LAUSANNE POLITECNICO FEDERALE DI LOSANNA SWISS FEDERAL INSTITUTE OF TECHNOLOGY LAUSANNE DEPARTEMENT DE MICROTECHNIQUE INSTITUT DE PRODUCTION MICROTECHNIQUE CH - 1015

Plus en détail

Les nanotubes de carbone : 1. Structure et croissance

Les nanotubes de carbone : 1. Structure et croissance Les nanotubes de carbone : 1. Structure et croissance Les différentes formes de carbone sp 2 Structure des nanotubes mono-feuillets Structure électronique des nanotubes mono-feuillets Modèle de croissance

Plus en détail

Microscopie à force atomique

Microscopie à force atomique Microscopie à force atomique DETREZ Fabrice Table des matières 1 Principe 2 2 Analyse structurale 3 3 Interactions pointes surfaces 4 4 Boucle d asservissement et contrastes 6 5 Traitement des Images 8

Plus en détail

Diagramme de phases binaire liquide-solide

Diagramme de phases binaire liquide-solide hivebench francoise PROTOCOL ENSCM_S5_INORG Diagramme de phases binaire liquide-solide https://www.hivebench.com/protocols/6885 Created by francoise (user #1271) the Tue 30 June 2015 1. Introduction Diagramme

Plus en détail

MODELE DE PRESENTATION DU PROJET

MODELE DE PRESENTATION DU PROJET MODELE DE PRESENTATION DU PROJET SITUATION ACTUELLE DU PROJET: Intitulé du PNR Code du Projet (Réservé à l administration) SCIENCES FONDAMENTALES Nouveau projet : Projet reformule: 1.1. Domiciliation du

Plus en détail

CHAPITRE VI : HYBRIDATION GEOMETRIE DES MOLECULES

CHAPITRE VI : HYBRIDATION GEOMETRIE DES MOLECULES CAPITRE VI : YBRIDATION GEOMETRIE DES MOLECULES VI.1 : YBRIDATION DES ORBITALES ATOMIQUES. VI.1.1 : Introduction. La théorie d hybridation a été développée au cours des années 1930, notamment par le chimiste

Plus en détail

1) Explications (Expert) :

1) Explications (Expert) : 1) Explications (Expert) : Mesures expérimentales : Dans nos conditions d expérience, nous avons obtenu les résultats suivants : Les dimensions des récipients sont : 1) bocal vide : épaisseur de verre

Plus en détail

Comprendre l Univers grâce aux messages de la lumière

Comprendre l Univers grâce aux messages de la lumière Seconde / P4 Comprendre l Univers grâce aux messages de la lumière 1/ EXPLORATION DE L UNIVERS Dans notre environnement quotidien, les dimensions, les distances sont à l échelle humaine : quelques mètres,

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Propriétés électriques des semiconducteurs

Propriétés électriques des semiconducteurs Chapitre 1 Propriétés électriques des semiconducteurs De nombreux composants électroniques mettent à profit les propriétés de conduction électrique des semiconducteurs. Ce chapitre décrit comment un semiconducteur

Plus en détail

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Table des matières. Introduction....3 Mesures et incertitudes en sciences physiques

Plus en détail

Résonance Magnétique Nucléaire : RMN

Résonance Magnétique Nucléaire : RMN 21 Résonance Magnétique Nucléaire : RMN Salle de TP de Génie Analytique Ce document résume les principaux aspects de la RMN nécessaires à la réalisation des TP de Génie Analytique de 2ème année d IUT de

Plus en détail

Usage personnel uniquement. 2008 R. BALDERACCHI Page 1 DICTIONNAIRE DES TERMES UTILISES EN SCIENCES PHYSIQUES AU COLLEGE

Usage personnel uniquement. 2008 R. BALDERACCHI Page 1 DICTIONNAIRE DES TERMES UTILISES EN SCIENCES PHYSIQUES AU COLLEGE Abscisse : dans un graphique, l abscisse est l axe parallèle au bord inférieur de la feuille ou au horizontal au tableau. On représente généralement le temps sur l abscisse. Air : l air est un mélange

Plus en détail

1.2 Coordinence. Notion de liaison de coordinence : Cas de NH 3. et NH 4+ , 3 liaisons covalentes + 1 liaison de coordinence.

1.2 Coordinence. Notion de liaison de coordinence : Cas de NH 3. et NH 4+ , 3 liaisons covalentes + 1 liaison de coordinence. Règle de l octet : tendance qu on les atomes à s entourer de 8 électrons dans l édifice moléculaire. Ce n est pas une règle générale. Composés respectant la règle de l octet Composés ne respectant pas

Plus en détail

CHAPITRE 2 : Structure électronique des molécules

CHAPITRE 2 : Structure électronique des molécules CHAPITRE 2 : Structure électronique des molécules I. La liaison covalente 1) Formation d une liaison covalente Les molécules sont des assemblages d atomes liés par des liaisons chimiques résultant d interactions

Plus en détail

Microscopie à Force Atomique

Microscopie à Force Atomique M1 SCIENCES DE LA MATIERE - ENS LYON ANNEE SCOLAIRE 2009-2010 Microscopie à Force Atomique Compte-rendu de Physique Expérimentale Réalisé au Laboratoire de Physique de l ENS Lyon sous la supervision de

Plus en détail

Etude Annuelle. Analyse expérimentale et données constructeur. Comportement «durable» Contenu. Citroën C4-Coupé, Entreprise.

Etude Annuelle. Analyse expérimentale et données constructeur. Comportement «durable» Contenu. Citroën C4-Coupé, Entreprise. décembre 8 Yann DUCHEMIN Citroën C4-Coupé, Entreprise Etude Annuelle Analyse expérimentale et données constructeur Au terme d une année d utilisation d un véhicule de marque Citroën, et de type C4- coupé

Plus en détail

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN Objectifs : Exploiter un spectre infrarouge pour déterminer des groupes caractéristiques Relier un spectre

Plus en détail

Capacité Métal-Isolant-Semiconducteur (MIS)

Capacité Métal-Isolant-Semiconducteur (MIS) apacité Métal-solant-Semiconducteur (MS) 1-onstitution Une structure Métal-solant-Semiconducteur (MS) est constituée d'un empilement de trois couches : un substrat semiconducteur sur lequel on a déposé

Plus en détail

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2)

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2) Objectifs du cours d aujourd hui Informatique II : Cours d introduction à l informatique et à la programmation objet Complexité des problèmes Introduire la notion de complexité d un problème Présenter

Plus en détail

Application à l astrophysique ACTIVITE

Application à l astrophysique ACTIVITE Application à l astrophysique Seconde ACTIVITE I ) But : Le but de l activité est de donner quelques exemples d'utilisations pratiques de l analyse spectrale permettant de connaître un peu mieux les étoiles.

Plus en détail

Instrumentation électronique

Instrumentation électronique Instrumentation électronique Le cours d électrocinétique donne lieu à de nombreuses études expérimentales : tracé de caractéristiques statique et dynamique de dipôles, étude des régimes transitoire et

Plus en détail

ANALYSE SPECTRALE. monochromateur

ANALYSE SPECTRALE. monochromateur ht ANALYSE SPECTRALE Une espèce chimique est susceptible d interagir avec un rayonnement électromagnétique. L étude de l intensité du rayonnement (absorbé ou réémis) en fonction des longueurs d ode s appelle

Plus en détail

Physique Chimie. Utiliser les langages scientifiques à l écrit et à l oral pour interpréter les formules chimiques

Physique Chimie. Utiliser les langages scientifiques à l écrit et à l oral pour interpréter les formules chimiques C est Niveau la représentation 4 ème 2. Document du professeur 1/6 Physique Chimie LES ATOMES POUR COMPRENDRE LA TRANSFORMATION CHIMIQUE Programme Cette séance expérimentale illustre la partie de programme

Plus en détail

TP fibres optiques. Laser, Matériaux, Milieux Biologiques. Sécurité laser. Précautions à prendre

TP fibres optiques. Laser, Matériaux, Milieux Biologiques. Sécurité laser. Précautions à prendre TP fibres optiques Laser, Matériaux, Milieux Biologiques Sécurité laser ATTENTION : la diode laser à 810 nm est puissante (50 mw). Pour des raisons de sécurité et de sauvegarde de la santé des yeux, vous

Plus en détail

Les composites thermoplastiques

Les composites thermoplastiques Les composites thermoplastiques Définition Par définition, un thermoplastique (anglais :thermoplast) est un matériau à base de polymère (composé de macromolécules) qui peut être mis en forme, à l état

Plus en détail

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples. Référentiel CAP Sciences Physiques Page 1/9 SCIENCES PHYSIQUES CERTIFICATS D APTITUDES PROFESSIONNELLES Le référentiel de sciences donne pour les différentes parties du programme de formation la liste

Plus en détail

Recuit sous hydrogène des couches du silicium poreux

Recuit sous hydrogène des couches du silicium poreux Revue des Energies Renouvelables ICRESD-07 Tlemcen (2007) 47 52 Recuit sous hydrogène des couches du silicium poreux F. Otmani *, Z. Fekih, N. Ghellai, K. Rahmoun et N.E. Chabane-Sari Unité de Recherche

Plus en détail

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION) Terminale S CHIMIE TP n 2b (correction) 1 SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION) Objectifs : Déterminer l évolution de la vitesse de réaction par une méthode physique. Relier l absorbance

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

Exemples d utilisation de G2D à l oral de Centrale

Exemples d utilisation de G2D à l oral de Centrale Exemples d utilisation de G2D à l oral de Centrale 1 Table des matières Page 1 : Binaire liquide-vapeur isotherme et isobare Page 2 : Page 3 : Page 4 : Page 5 : Page 6 : intéressant facile facile sauf

Plus en détail

Voir dans le nanomonde

Voir dans le nanomonde Voir dans le nanomonde Spectroscopie La lumière visible permettra-t-elle de «voir» les atomes? Fréquence micro onde Infrarouge Visible et UV Rayon X réaction des molécules rotation vibration des liaisons

Plus en détail

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile?

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile? LA PUISSANCE DES MOTEURS Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile? Chaque modèle y est décliné en plusieurs versions, les différences portant essentiellement sur la puissance

Plus en détail

Découverte de la calculatrice TI-nspire CX / TI-nspire CX CAS

Découverte de la calculatrice TI-nspire CX / TI-nspire CX CAS Découverte de la calculatrice TI-nspire CX / TI-nspire CX CAS Ce document a été réalisé avec la version 3.02 de la calculatrice TI-Nspire CX CAS. Il peut être traité en une ou plusieurs séances (la procédure

Plus en détail

RELATIONS DES CONTACTS HERTZIENS

RELATIONS DES CONTACTS HERTZIENS RELATIONS DES CONTACTS HERTZIENS 2004-203 Frédy Oberson et Fred Lang LES RELATIONS DES CONTACTS HERTZIENS Lorsque deux solides non conformes sont mis en contact 2, ils se touchent initialement en un point

Plus en détail

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) BAC S 2011 LIBAN http://labolycee.org EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) Les parties A et B sont indépendantes. A : Étude du fonctionnement d un spectrophotomètre

Plus en détail

GENERALITES SUR LA MESURE DE TEMPERATURE

GENERALITES SUR LA MESURE DE TEMPERATURE Distributeur exclusif de GENERALITES SUR LA MESURE DE TEMPERATURE INTRODUCTION...2 GENERALITES SUR LA MESURE DE TEMPERATURE...2 La température...2 Unités de mesure de température...3 Echelle de température...3

Plus en détail

Microscopies en champ proche ou à sonde locale Gilles Parent

Microscopies en champ proche ou à sonde locale Gilles Parent Microscopies en champ proche ou à sonde locale Gilles Parent Nancy, 26 avril 2012 Introduction, historique STM (Scanning tunneling Microscope, microscope à effet tunnel électronique) : Binnig et Rohrer

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

CHAPITRE I Modélisation d un panneau solaire 2012

CHAPITRE I Modélisation d un panneau solaire 2012 1 I.Généralités sur les cellules photovoltaïques I.1.Introduction : Les énergies renouvelables sont des énergies à ressource illimitée. Les énergies renouvelables regroupent un certain nombre de filières

Plus en détail

Etudier le diagramme température-pression, en particulier le point triple de l azote.

Etudier le diagramme température-pression, en particulier le point triple de l azote. K4. Point triple de l azote I. BUT DE LA MANIPULATION Etudier le diagramme température-pression, en particulier le point triple de l azote. II. BASES THEORIQUES Etats de la matière La matière est constituée

Plus en détail

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS Document du professeur 1/7 Niveau 2 nde THEME : L UNIVERS Physique Chimie SPECTRES D ÉMISSION ET D ABSORPTION Programme : BO spécial n 4 du 29/04/10 L UNIVERS Les étoiles : l analyse de la lumière provenant

Plus en détail

Information quantique

Information quantique Information quantique J.M. Raimond LKB, Juin 2009 1 Le XX ème siècle fut celui de la mécanique quantique L exploration du monde microscopique a été la grande aventure scientifique du siècle dernier. La

Plus en détail

Proposition d activité utilisant l application. Tripatouille. (http://www.malgouyres.fr/tripatouille/)

Proposition d activité utilisant l application. Tripatouille. (http://www.malgouyres.fr/tripatouille/) IREM Clermont-Ferrand Algorithmique au lycée Malika More malika.more@u-clermont1.fr 28 janvier 2011 Proposition d activité utilisant l application Tripatouille (http://www.malgouyres.fr/tripatouille/)

Plus en détail

Précision d un résultat et calculs d incertitudes

Précision d un résultat et calculs d incertitudes Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................

Plus en détail

TD 9 Problème à deux corps

TD 9 Problème à deux corps PH1ME2-C Université Paris 7 - Denis Diderot 2012-2013 TD 9 Problème à deux corps 1. Systèmes de deux particules : centre de masse et particule relative. Application à l étude des étoiles doubles Une étoile

Plus en détail

Introduction au maillage pour le calcul scientifique

Introduction au maillage pour le calcul scientifique Introduction au maillage pour le calcul scientifique CEA DAM Île-de-France, Bruyères-le-Châtel franck.ledoux@cea.fr Présentation adaptée du tutorial de Steve Owen, Sandia National Laboratories, Albuquerque,

Plus en détail

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS David Ryckelynck Centre des Matériaux, Mines ParisTech David.Ryckelynck@mines-paristech.fr Bibliographie : Stabilité et mécanique non linéaire,

Plus en détail

8 Ensemble grand-canonique

8 Ensemble grand-canonique Physique Statistique I, 007-008 8 Ensemble grand-canonique 8.1 Calcul de la densité de probabilité On adopte la même approche par laquelle on a établi la densité de probabilité de l ensemble canonique,

Plus en détail

Chapitre 6 La lumière des étoiles Physique

Chapitre 6 La lumière des étoiles Physique Chapitre 6 La lumière des étoiles Physique Introduction : On ne peut ni aller sur les étoiles, ni envoyer directement des sondes pour les analyser, en revanche on les voit, ce qui signifie qu'on reçoit

Plus en détail

Voyez la réponse à cette question dans ce chapitre. www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof

Voyez la réponse à cette question dans ce chapitre. www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof Une échelle est appuyée sur un mur. S il n y a que la friction statique avec le sol, quel est l angle minimum possible entre le sol et l échelle pour que l échelle ne glisse pas et tombe au sol? www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof

Plus en détail

Un extraordinaire instrument d analyse des surfaces

Un extraordinaire instrument d analyse des surfaces Communiqué de presse Dübendorf,St. Gall, Thun, le 22 août 2013 Deux-en-un : le NanoChemiscope 3D Un extraordinaire instrument d analyse des surfaces Le NanoChemiscope 3D est une merveille issue des plus

Plus en détail

Vis à billes de précision à filets rectifiés

Vis à billes de précision à filets rectifiés sommaire Calculs : - Capacités de charges / Durée de vie - Vitesse et charges moyennes 26 - Rendement / Puissance motrice - Vitesse critique / Flambage 27 - Précharge / Rigidité 28 Exemples de calcul 29

Plus en détail

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. 1 Ce sujet aborde le phénomène d instabilité dans des systèmes dynamiques

Plus en détail

FICHE TECHNIQUE N 1 CADRE 47/2

FICHE TECHNIQUE N 1 CADRE 47/2 FICHE TECHNIQUE N 1 CADRE 47/2 Cadre 47/2 : enchaînements dans le carré central La direction technique de la fédération vous propose une série de fiches dédiées au cadre 47/2. Les situations de jeu proposées

Plus en détail

EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG

EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG Exploitations pédagogiques du tableur en STG Académie de Créteil 2006 1 EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG Commission inter-irem lycées techniques contact : dutarte@club-internet.fr La maquette

Plus en détail

Objectif du groupe GT1.1 Fusion de Données

Objectif du groupe GT1.1 Fusion de Données Objectif du groupe GT1.1 Fusion de Données Le groupe travaille dans trois directions Le vocabulaire (piloté par ADVITAM et l aide de SITE) L état de l art (piloté par SYROKKO) Deux applications illustratives

Plus en détail

FUSION PAR CONFINEMENT MAGNÉTIQUE

FUSION PAR CONFINEMENT MAGNÉTIQUE FUSION PAR CONFINEMENT MAGNÉTIQUE Séminaire de Xavier GARBET pour le FIP 06/01/2009 Anthony Perret Michel Woné «La production d'énergie par fusion thermonucléaire contrôlée est un des grands défis scientifiques

Plus en détail

Technologie des contacteurs gaz liquide : cas des colonnes à plateaux et à garnissage. M. Prévost

Technologie des contacteurs gaz liquide : cas des colonnes à plateaux et à garnissage. M. Prévost Technologie des contacteurs gaz liquide : cas des colonnes à plateaux et à garnissage M. Prévost Version V2/ nov 2006 Structure du cours Partie 1 : Introduction Partie 2 : Mise en contact de Gaz et de

Plus en détail

Molécules et Liaison chimique

Molécules et Liaison chimique Molécules et liaison chimique Molécules et Liaison chimique La liaison dans La liaison dans Le point de vue classique: l approche l de deux atomes d hydrogd hydrogènes R -0,9-1 0 0,5 1 1,5,5 3 3,5 4 R

Plus en détail

UNIVERSITÉE KASDI MERBAH OUARGLA

UNIVERSITÉE KASDI MERBAH OUARGLA UNIVERSITÉE KASDI MERBAH OUARGLA FACULTE DES SCIENCES APPLIQUÉES Département de Génie des Procédés Phénomènes de transferts Travaux pratiques de mécanique des fluides CHAOUCH Noura et SAIFI Nadia 2013

Plus en détail

I - Quelques propriétés des étoiles à neutrons

I - Quelques propriétés des étoiles à neutrons Formation Interuniversitaire de Physique Option de L3 Ecole Normale Supérieure de Paris Astrophysique Patrick Hennebelle François Levrier Sixième TD 14 avril 2015 Les étoiles dont la masse initiale est

Plus en détail

Induction électromagnétique

Induction électromagnétique Induction électromagnétique Sommaire I) Théorie de l induction électromagnétique..2 A. Introduction 2 B. Notion de force électromotrice 3 C. Loi de Faraday..5 D. Quelques applications.7 Spire circulaire

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

COUP DE PROJECTEUR Précision de mesure

COUP DE PROJECTEUR Précision de mesure Traçabilité de la puissance RF à Le présent article, émanant de l institut national de métrologie allemand (Physikalisch-Technische Bundesanstalt PTB), montre comment la mesure «Puissance haute fréquence»,

Plus en détail

Commentaires. Michael Narayan. Les taux de change à terme

Commentaires. Michael Narayan. Les taux de change à terme Commentaires Michael Narayan L étude de Levin, Mc Manus et Watt est un intéressant exercice théorique qui vise à extraire l information contenue dans les prix des options sur contrats à terme sur le dollar

Plus en détail

Le monde nano et ses perspectives très prometteuses.

Le monde nano et ses perspectives très prometteuses. Le monde nano et ses perspectives très prometteuses. I/ Présentation du monde nano. Vidéo «Science Suisse : Christian Schönenberger, nano-physicien», 12 min. «Christian Schönenberger conduit le Swiss Nanoscience

Plus en détail

Chapitre 11 Bilans thermiques

Chapitre 11 Bilans thermiques DERNIÈRE IMPRESSION LE 30 août 2013 à 15:40 Chapitre 11 Bilans thermiques Table des matières 1 L état macroscopique et microcospique de la matière 2 2 Énergie interne d un système 2 2.1 Définition.................................

Plus en détail

TEMP 1 : AI-JE LA FIEVRE?

TEMP 1 : AI-JE LA FIEVRE? Fiche professeur TEMP 1 : AI-JE LA FIEVRE? TI-82 STATS TI-83 Plus TI-84 Plus Mots-clés : température, unité, conversion, Celsius, Fahrenheit, représentation, régression, modèle. 1. Objectifs a. Aspects

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE 1. RAPPEL: L ATOME CONSTITUANT DE LA MATIERE Toute la matière de l univers, toute substance, vivante ou inerte, est constituée à partir de particules

Plus en détail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des

Plus en détail

Chapitre XIV BASES PHYSIQUES QUANTITATIVES DES LOIS DE COMPORTEMENT MÉCANIQUE. par S. CANTOURNET 1 ELASTICITÉ

Chapitre XIV BASES PHYSIQUES QUANTITATIVES DES LOIS DE COMPORTEMENT MÉCANIQUE. par S. CANTOURNET 1 ELASTICITÉ Chapitre XIV BASES PHYSIQUES QUANTITATIVES DES LOIS DE COMPORTEMENT MÉCANIQUE par S. CANTOURNET 1 ELASTICITÉ Les propriétés mécaniques des métaux et alliages sont d un grand intérêt puisqu elles conditionnent

Plus en détail

4 Distributions particulières de probabilités

4 Distributions particulières de probabilités 4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli

Plus en détail

Diagrammes de Phases

Diagrammes de Phases Diagrammes de Phases Société Francophone de Biomatériaux Dentaires P. MILLET Date de création du document 2009-2010 Table des matières I ENC :... 2 II Introduction et définitions... 4 III Construction

Plus en détail

AIDE-MÉMOIRE LA THERMOCHIMIE TABLE DES MATIERES

AIDE-MÉMOIRE LA THERMOCHIMIE TABLE DES MATIERES Collège Voltaire, 2014-2015 AIDE-MÉMOIRE LA THERMOCHIMIE http://dcpe.net/poii/sites/default/files/cours%20et%20ex/cours-ch2-thermo.pdf TABLE DES MATIERES 3.A. Introduction...2 3.B. Chaleur...3 3.C. Variation

Plus en détail

# let rec concat l1 l2 = match l1 with [] -> l2 x::l 1 -> x::(concat l 1 l2);; val concat : a list -> a list -> a list =

# let rec concat l1 l2 = match l1 with [] -> l2 x::l 1 -> x::(concat l 1 l2);; val concat : a list -> a list -> a list = <fun> 94 Programmation en OCaml 5.4.8. Concaténation de deux listes Définissons maintenant la fonction concat qui met bout à bout deux listes. Ainsi, si l1 et l2 sont deux listes quelconques, concat l1 l2 constitue

Plus en détail

Relation entre deux variables : estimation de la corrélation linéaire

Relation entre deux variables : estimation de la corrélation linéaire CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence

Plus en détail

ParMat : Parallélisation pour la simulation des Matériaux.

ParMat : Parallélisation pour la simulation des Matériaux. : Parallélisation pour la simulation des Matériaux. G. Bencteux (EDF) 3 septembre 2008 Outline 1 2 Un algorithme d ordre N pour les calculs ab initio (DFT/HF) 3 Simulation du dommage d irradiation par

Plus en détail

DÉVERSEMENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYMÉTRIQUE SOUMISE À DES MOMENTS D EXTRÉMITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE

DÉVERSEMENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYMÉTRIQUE SOUMISE À DES MOMENTS D EXTRÉMITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE Revue Construction étallique Référence DÉVERSEENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYÉTRIQUE SOUISE À DES OENTS D EXTRÉITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE par Y. GALÉA 1 1. INTRODUCTION Que ce

Plus en détail

ÉPREUVE COMMUNE DE TIPE 2010 - PARTIE D

ÉPREUVE COMMUNE DE TIPE 2010 - PARTIE D ÉPREUVE COMMUNE DE TIPE 2010 - PARTIE D TITRE : ETUDE DE L'ETAT DE SURFACE DES TEXTILES Temps de préparation :...2 h 15 minutes Temps de présentation devant le jury :.10 minutes Entretien avec le jury

Plus en détail

ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES

ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES Bertrand GOTTIN Directeurs de thèse: Cornel IOANA et Jocelyn CHANUSSOT 03 Septembre 2010 Problématique liée aux Transitoires

Plus en détail

Propriétés thermodynamiques du mélange. Eau-Ammoniac-Hélium

Propriétés thermodynamiques du mélange. Eau-Ammoniac-Hélium International Renewable Energy Congress November 5-7, 2010 Sousse, Tunisia Propriétés thermodynamiques du mélange Eau-Ammoniac-Hélium Chatti Monia 1, Bellagi Ahmed 2 1,2 U.R. Thermique et Thermodynamique

Plus en détail

Chimie Analytique II. Microscopie à force atomique

Chimie Analytique II. Microscopie à force atomique Chimie Analytique II Microscopie à force atomique Daniel Abegg Nicolas Calo Emvuli Mazamay Pedro Surriabre Université de Genève, Science II, Laboratoire 144 Groupe 4 29 décembre 2008 Résumé Les résultats

Plus en détail

LA MESURE DE PRESSION PRINCIPE DE BASE

LA MESURE DE PRESSION PRINCIPE DE BASE Page 1 / 6 LA MESURE DE PRESSION PRINCIPE DE BASE 1) Qu est-ce qu un sensor de pression? Tout type de sensor est composé de 2 éléments distincts : Un corps d épreuve soumit au Paramètre Physique φ à mesurer

Plus en détail

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION ) Caractéristiques techniques des supports. L infrastructure d un réseau, la qualité de service offerte,

Plus en détail

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année Cours d électricité Circuits électriques en courant constant Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Objectifs du chapitre

Plus en détail

L oscilloscope Cathodique

L oscilloscope Cathodique Modèle de compte-rendu de TP L oscilloscope Cathodique Ce document a été publié pour l unique but d aider les étudiants, il est donc strictement interdit de l utiliser intégralement en temps que compte-rendu

Plus en détail

Transferts thermiques en plasmas thermiques

Transferts thermiques en plasmas thermiques Arc Electrique et Procédés Plasmas Thermiques Transferts thermiques en plasmas thermiques P. Freton, M. Masquère, J.J. Gonzalez LAPLACE : «Arc électrique et procédés plasmas thermiques» Les enjeux de la

Plus en détail

13 Notions sur la combustion

13 Notions sur la combustion 1 er avril 2003 Les combustibles 344 13 Dans la plupart des cycles moteurs étudiés au chapitre 9, les quantités de chaleur nécessaires au fonctionnement du cycle sont obtenues par combustion d hydrocarbures,

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

CHOIX OPTIMAL DU CONSOMMATEUR. A - Propriétés et détermination du choix optimal

CHOIX OPTIMAL DU CONSOMMATEUR. A - Propriétés et détermination du choix optimal III CHOIX OPTIMAL DU CONSOMMATEUR A - Propriétés et détermination du choix optimal La demande du consommateur sur la droite de budget Résolution graphique Règle (d or) pour déterminer la demande quand

Plus en détail

Analyse des erreurs de mesure lors d une opération de soudage ; Définition d une instrumentation optimale.

Analyse des erreurs de mesure lors d une opération de soudage ; Définition d une instrumentation optimale. Analyse des erreurs de mesure lors d une opération de soudage ; Définition d une instrumentation optimale. Morgan DAL 1, Philippe LE MASSON 1, Michel DUMONS 1, Didier LAWRJANIEC 2 1 LIMATB, Université

Plus en détail