Probabilité mathématique et distributions théoriques

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Probabilité mathématique et distributions théoriques"

Transcription

1 Probabilité mathématique et distributions théoriques Notion de probabilité classique de la probabilité s Une expérience ou une épreuve est dite aléatoire lorsqu on ne peut en prévoir exactement le résultat, en raison du fait que tous les facteurs qui déterminent ce résultat ne sont pas maîtrisés ou contrôlés. Un événement aléatoire est un événement qui peut se réaliser ou ne pas se réaliser au cours d une expérience aléatoire. Citons comme exemples d expériences et d événements aléatoires : le tirage d une carte d un paquet de cartes à jouer et le fait d extraire un cœur, la mise en germoir d une graine et la germination de cette graine, la fécondation de deux individus l un par l autre et la naissance d un individu mâle. Si m résultats peuvent se produire avec des chances égales au cours d une expérience aléatoire, et si k de ces résultats conduisent à la réalisation de l événement A, on définit classiquement la probabilité de l événement A comme étant le rapport du nombre de cas favorables au nombre de cas possibles ou également possibles : P(A)= k m MÉTHODE 27 Si un paquet de 52 cartes contient 13 cœurs, et si toutes les cartes ont des chances égales d être tirées, quelle est la probabilité d extraire un cœur en prélevant une carte? Remarques Cette définition classique de la probabilité présente cependant divers inconvénients. Elle est tout d abord incomplète, en ce sens qu elle revient à définir la notion de probabilité à partir de la notion d égale probabilité des différents cas. En outre, cette définition n est pas suffisamment générale, car elle n est utilisable que quand les différents cas envisagés sont également probables et dénombrables. Cette définition ne s applique par exemple pas à l étude du sexe observé à la naissance, car de nombreuses observations montrent que les deux événements «naissance mâle» et «naissance femelle» ne sont pas également probables : dans l espèce humaine notamment, les naissances masculines sont plus fréquentes que les naissances féminines. De même, si on doit choisir au hasard une ou plusieurs parcelles cultivées dans une région donnée, en sélectionnant au hasard un ou plusieurs points de la carte cadastrale correspondante, la définition classique de la probabilité ne s applique pas : on peut éventuellement admettre ici que tous les cas sont également possibles, c est-à-dire que tous les points ont la même probabilité d être choisis, mais ces différents cas ne sont évidemment pas

2 BTSA 21 Cours dénombrables. Pour remédier à ces divers inconvénients, une définition plus générale de la probabilité peut être introduite par analogie avec la notion empirique de fréquence fréquentielle de la probabilité Lorsqu une expérience aléatoire a été répétée un certain nombre de fois n, on peut déterminer le nombre de réalisations de l événement A qui lui est associé, c est-à-dire son effectif n A, et en calculer la fréquence : f A = n A n Si l expérience est répétée un grand nombre de fois dans des conditions uniformes, on constate généralement que la fréquence a tendance à se stabiliser à la longue. Ce phénomène est connu sous le nom de phénomène de stabilité des fréquences ou de régularité statistique. On peut alors postuler, pour tout événement aléatoire qui satisfait à ces conditions, l existence d un nombre fixe dont la fréquence a tendance à s approcher. Ce nombre est par définition la probabilité mathématique de l événement considéré. Exemple de régularité statistique : dix mille jets d une pièce de monnaie Le jet d une pièce de monnaie est un exemple particulièrement simple d expérience aléatoire, et l apparition du côté «face» est un événement associé à cette expérience. La première idée qui vient à l esprit est basée sur la définition classique de la probabilité : elle revient à admettre la valeur 1 comme probabilité de cet événement. Il faut remarquer cependant que cette valeur 2 n a aucune raison d être rigoureusement exacte. En effet, puisque les deux faces de la pièce de monnaie considérée sont nécessairement distinctes, il n y a pas de raison de supposer a priori que les événements «face» et «pile» possèdent des probabilités strictement égales. Pour une pièce donnée, la probabilité de l événement «face» peut être déterminée par voie fréquentielle. Faisons l expérience (ou une simulation sur ordinateur). Après chaque jet, on a pu déterminer l effectif et la fréquence de l événement considéré. Le tableau suivant en donne l essentiel. La représentation graphique des valeurs observées (voir figure??), en fonction du nombre total d expériences, montre que la fréquence a bien tendance à se stabiliser aux environs de 0,5, mais sans garantir que cette valeur soit strictement exacte. n n A f A 1 0 0, , , , , , , , , , , ,571 n n A f A , , , , , , , , , , , ,438 n n A f A , , , , , , , , , , , ,502 n n A f A , , , , , , , , , , , ,509 n n A f A , , , , , , , , , ,507

3 Cours 22 BTSA 1 face pile FIGURE 3.1 fréquence d apparition de face dans jets d une pièce 3.2 Quelques propriétés de la probabilité mathématique s et axiomes de base s Lors d une expérience aléatoire, un résultat possible est appelé événement élémentaire. L ensemble des résultats possibles est appelé univers. s Un événement est un sous-ensemble de l univers. Un événement est réalisé dès que l un de ses événements élémentaires est réalisé. Ω Deux événements A et B sont incompatibles (ou disjoints) lorsque A B=. A B L événement contraire (ou complémentaire) de l événement A est l ensemble des éléments de l univers qui n appartiennent pas à A. On le note A. A A Ω

4 BTSA 23 Cours Axiomes L univers lié à une expérience aléatoire étantω, la probabilité d un événement A est noté P(A). P(A) est un nombre réel compris entre 0 et 1 tel que : P(Ω)=1 ; si A et B sont deux événements incompatibles, P(A B)=P(A)+P(B). MÉTHODE 28 L un des dés pour jeu de rôle comporte 20 faces numérotées de 1 à 20. Lorsqu on lance ce dé une fois et que on note le nombre indiqué sur la face supérieure, on procède à une expérience aléatoire. Il y a 20 résultats possibles à cette expérience. Chacun de ces résultats s appelle un événement élémentaire. L ensemble de ces résultats se nomme univers de l expérience aléatoire. Nous le noteronsω. 1. L ensemble A est l événement : «le nombre obtenu est un multiple de 5». Décrire l événement A. 2. L ensemble B={1, 3, 5, 7, 9, 11, 13, 15, 17, 19}. Quel est l événement B? 3. Décrire A B par une phrase et donner tous ses éléments. 4. Décrire A B par une phrase et donner tous ses éléments. 5. Considérons l événement C : «le nombre obtenu est inférieur ou égal à 4». Autrement dit : C={1, 2, 3, 4}. Que peut-on dire des événements A et C? 6. Décrire A par une phrase et donner tous ses éléments Quelques autres propriétés Si l univers contient n événements élémentaires équiprobables, la probabilité de chacun d eux est 1 n ; la probabilité d un événement A constitué de k événements élémentaires est k. Ce que l on écrit aussi : n nombre de résultats favorables à A P(A)= nombres de résultats possibles A et B étant deux événements d un universω: P(A)=1 P(A) P( )=0 P(A B)=P(A)+P(B) P(A B) MÉTHODE 29 Dans l expérience aléatoire qui consiste à jeter une fois un dé à 20 faces (méthode 28), on suppose que le dé est bien équilibré. 1. Quelle est la probabilité de sortir de chacun des 20 nombres? 2. A, B et C sont les événements décrits dans la méthode précédente, calculer P(A), P(B), P(C), P(A), P(A C), P(A B), P(A B).

5 Cours 24 BTSA 3.3 Probabilité conditionnelle et indépendance Probabilité conditionnelle On considère une expérience aléatoire et l ensemble des issuesωmuni d une loi de probabilité P. A et B sont deux événements de Ω, A étant de probabilité non nulle. La probabilité de B sachant que A est réalisé est notée P A (B) et est définie par le quotient : P A (B)= P(A B) P(A) P(A B)=P(A) P A (B) Dire que trois événements forment une partition de Ω signifie que, les événements pris deux à deux sont toujours disjoints et la réunion des trois est l ensembleω. A 1 A 3 A 2 Ω Si les événements A 1, A 2, A 3,... A n forment une partition deω alors la probabilité de l événement B de l ensembleωest : P(B) = P(B A 1 )+P(B A 2 )+ +P(B A n ) = P A1 (B) P(A 1 )+P A2 (B) P(A 2 )+ +P An (B) P(A n ) A 3 A B 1 A 2 Ω MÉTHODE 30 Pour fabriquer un objet, un artisan achète des pièces auprès de trois fournisseurs A 1, A 2 et A 3. 25% des pièces proviennent du fournisseur A 1, 40% des pièces proviennent du fournisseur A 2 et le reste provient du fournisseur A 3. 5% des pièces provenant du fournisseur A 1, 10% de celles provenant du fournisseur A 2 et 0, 1% de celles provenant du fournisseur A 3 ont un défaut. On prend au hasard une des pièces. 1. Construire un arbre de probabilité traduisant la situation. 2. Calculer la probabilité de l événement B : «la pièce achetée par l artisan présente un défaut» Indépendance Les événements A et B sont indépendants lorsque la probabilité de l un ne dépend pas de la réalisation de l autre. Autrement dit : P A (B)=P(B) ou P B (A)=P(A).

6 BTSA 25 Cours Autre définition Dire que les événements A et B sont indépendants signifie que la probabilité de l événement «A et B» est égale au produit de leurs probabilités : P(A B) = P(A) P(B). MÉTHODE 31 Ce tableau de contingence permet d étudier la fréquence de consommation d alcool selon le sexe d une population de lycéens français. Sexe Consommation Garçon Fille Nulle moins d une fois par semaine une fois par semaine 14 8 plus d une fois par semaine 5 2 Soient les événements suivants : G : «Le lycéen interrogé est un garçon» F : «Le lycéen interrogé est une fille» B : «Le lycéen interrogé est un buveur occasionnel (moins d une fois par semaine)» 1. Calculer P(G), P(F), et P(B). 2. Calculer P G (B) et P F (B). 3. «consommer de l alcool» est-il un phénomène indépendant du sexe du lycéen? 4. Quelle aurait dû être la répartition des élèves pour avoir deux variables indépendantes? Sexe Consommation moins d une fois par semaine Garçon Fille 3.4 Notions de variable aléatoire et de distribution théorique Approche Partie A : La loterie des couleurs Jouons à la loterie avec une roue «non truquée» divisée en 10 secteurs égaux : 1 rouge, 2 jaunes, 4 verts, 3 bleus. Quelles sont les probabilités des événements : «on a un rouge», «on a un jaune», «on a un vert», «on a un bleu»? À chaque réalisation de l expérience aléatoire consistant à faire tourner la roue, on peut associer la valeur de la variable «couleur», qui peut être l un des éléments de l ensemble{rouge, jaune, vert, bleu}, avec certaines probabilités. On dit que «couleur» est une variable aléatoire. L ensemble{ rouge, jaune, vert, bleu} n étant pas numérique, la variable «couleur» est une variable aléatoire qualitative, dont les 4 modalités, ou catégories sont : rouge, vert, bleu, jaune. Partie B : Gain à la loterie Supposons maintenant que le rouge permette de gagner 100 et le jaune 50, les autres couleurs ne rapportant rien. À chaque tour de roue, la variable X=«somme gagnée» peut prendre les valeurs numériques : { 0, 50, 100}avec certaines probabilités : X est une variable aléatoire numérique. La probabilité de gagner 50 est P(X=50)=...

7 Cours 26 BTSA La probabilité de gagner quelque chose est : P(X 0)=1 P(X=0)=1...=... (puisque «X 0» est l événement contraire de «X=0») Une variable aléatoire X est une variable associée à une expérience aléatoire et servant à caractériser le résultat de cette expérience. Par exemple, lors d un jeu de dé, X est le numéro donné par le dé ou lors du choix d une personne dans la population d un pays, X est la taille de la personne. Dans le premier exemple, on dit que la variable aléatoire est discrète ou discontinue car on peut compter tous les résultats possibles. Dans le second, on dit que la variable aléatoire est continue car on ne peut pas compter tous les résultats possibles, les résultats sont dans un intervalle de Variables aléatoires et distributions discontinues SoitΩl ensemble des n résultats provenant d une expérience aléatoire :Ω={x 1 ; x 2 ;... ; x i ;... ; x n }. Définir la loi de probabilité d une variable aléatoire X surω, c est associer à chaque résultat x i un nombre p i positif, tel que la somme de tous les p i soit égale à 1. X x 1 x 2 x 3 x n P(X= x i ) p 1 p 2 p 3 p n avec 0 p i 1 et Le tableau de la loi de X est appelé distribution de probabilité. n p i = 1. La fonction définie sur qui a x associe F(x)=P(X x) est appelée fonction de répartition de X. Il s agit de la version théorique des fréquences cumulées croissantes en statistiques. Pour tout x de, 0 F(x) 1. lim F(x)=0 et lim F(x)=1 x x + MÉTHODE 32 Le résultat du jet d un dé peut être caractérisé par une variable aléatoire dont une valeur est associé à chacune des faces du dé. Les différentes valeurs possibles de cette variable aléatoire X sont choisies le plus souvent comme suit : x= 1, 2,..., 6. Pour un dé supposé parfaitement homogène, une probabilité de 1 peut être associé à chacune de ces 6 valeurs. 1. Compléter le tableau suivant : x total P(X= x) F(x) 2. Représenter la distribution de probabilité et la fonction de répartition de X. 3. On peut utiliser la fonction de répartition pour calculer des probabilité de la forme P(1<X 4). Calculer P(1<X 4) à l aide de la distribution puis calculer F(4) F(1). 4. Calculer P(X 4). i=1

8 BTSA 27 Cours 5. À toute expérience pouvant donner naissance à l un ou l autre de deux événements totalement exclusifs A et B (ou A et A), on peut toujours associer une variable aléatoire X telle que X=1 si A se réalise et X=0 si B (ou A) se réalise. Une telle variable est appelée variable de BERNOULLI. Reprendre les deux premières questions avec un jeu de pile ou face et une pièce truquée avec laquelle face tombe deux fois plus souvent que pile. Remarque Ce type de variable peut être utilisé également dans de nombreux autres cas : sexe mâle ou femelle observé lors d une naissance, présence ou absence de pubescence sur une feuille, germination ou nongermination d une graine, etc Variables aléatoires et distributions continues Considérons une variable aléatoire susceptible de prendre n importe quelle valeur réelle appartenant à un intervalle donné. Cet intervalle peut être par exemple] ; + [, c est-à-dire l ensemble des valeurs réelles. Une telle variable aléatoire est dite continue Le poids d un individu prélevé au hasard dans une population donnée est, par exemple, une variable aléatoire continue ne pouvant prendre que des valeurs positives. On peut, dans certains cas, déterminer la probabilité d observer une valeur comprise dans un intervalle donné[x ; x+ x] : P(x X x+ x). Mais en général, cette probabilité tend vers zéro en même temps que x : la probabilité d obtenir exactement un résultat donné est généralement nulle, bien que cet événement ne soit pas strictement impossible. La notion de distribution de probabilité n a donc plus de sens pour une variable continue. Par contre, la fonction de répartition : F(x)=P(X x), conserve toute sa signification, mais cette fonction est ici continue, sauf éventuellement en un nombre fini de points. De plus, la probabilité d observer une valeur comprise dans un intervalle donné est : P(x X x+ x)=p(x x+ x) P(X x)=f(x+ x) F(x). F(x+ x) F(x) Si F(x) est dérivable, on peut écrire : lim = F (x)= f(x). x 0 x La fonction f(x) est est appelée fonction de densité de probabilité ou densité de probabilité. Elle constitue une forme idéalisée de l effectif. On retrouve notamment la fonction de répartition en intégrant cette densité : F(x)= x f(t) dt. Tout comme on obtient la fonction de répartition d une distribution discontinue en sommant les probabilités élémentaires. Les fonctions de densité de probabilité sont telles que : + f(t) dt= 1 Remarques L ensemble des valeurs admissibles pour la variable aléatoire et la fonction de densité de probabilité correspondante définissent une distribution théorique continue. Ces distributions théoriques constituent une forme idéalisée des distributions observées groupées en classes relatives à des variables continues. À la limite, lorsque l effectif n augmente indéfiniment dans des conditions uniformes et lorsqu on augmente indéfiniment le nombre de classes en les rendant de plus en

9 Cours 28 BTSA plus étroites, le polygone de fréquences cumulées d une telle distribution tend en effet à se rapprocher d une ligne, courbe représentative de la fonction de répartition. De même, le sommet de l histogramme tend à suivre la courbe de la fonction densité MÉTHODE 33 On cherche à construire une variable aléatoire X qui donne un nombre au hasard entre 0 et 1 tel qu il n y ait pas plus de chance d avoir un nombre plutôt qu un autre. Comme on ne peut compter le nombre de valeurs que peut prendre X, la variable est continue. On souhaite, par exemple que P(0, 1 X 0, 2)= P(0, 4 X 0, 5)=P(0, 9 X 1). C est-à-dire que la densité de probabilité f soit constante. f(x)= c si 0 x 1 0 si x< 0 ou x> 1 1. Trouver la valeur de c pour que f soit bien une densité de probabilité. 2. Exprimer la fonction de répartition. 3. Calculer la probabilité d obtenir un nombre compris entre 0,12 et 0,37. Remarques Cette distribution est notamment celle du temps d attente entre un instant quelconque et la première réalisation d un événement qui, se produit de manière régulière, à intervalle constant. Il peut s agir par exemple du temps d attente d un véhicule devant un signal de circulation du type «rouge et vert», si la périodicité du signal est régulière et si l arrivée du véhicule est complètement aléatoire. Dans le cas d un événement lui-même aléatoire (accident de la circulation, mort d un individu, défaillance d une lampe électrique, etc.), un autre modèle doit être utilisé. On peut alors supposer par exemple que, pour tout intervalle de temps suffisamment petit, la probabilité de réalisation de l événement considéré (accident, mort, défaillance, etc.) est proportionnelle à la longueur de l intervalle : P x (A)=a x. Après calculs hors programme (où apparaissent les équations différentielles vues en Terminale S), on obtient que la densité de probabilité du temps d attente (ou de la durée de vie) est donc : ae ax si 0 x f(x)= 0 si x< 0 MÉTHODE Trouver la fonction de répartition correspondante. 2. Tracer les courbes représentatives des fonctions densité et de répartion dans le cas où a=1. Remarque : cette distribution est aussi dite exponentielle de paramètre a. 3.5 Espérance et Variance Approche Reprenons l exemple de l approche 4.4.1, celui de la loterie. La somme que l on peut gagner est une variable aléatoire X de loi de probabilité : x i P(X= x i ) 0,7 0,2 0,1 Quelle somme peut-on espérer gagner, en moyenne? Ce sera un nombre, noté E(X), appelé espérance (mathématique) de X. Pour cette loterie, 7 fois sur 10 on ne gagne rien, 2 fois sur 10 on gagne 50, 1 fois sur 10 on en gagne 100. L espérance du gain sera donc... De même qu en statistique descriptive, le calcul d une valeur "moyenne", l espérance, ne suffit pas pour bien rendre compte d une distribution.

10 BTSA 29 Cours Si on compare notre loterie aux deux suivantes : y i P(Y= y i ) 0,98 0,02 z i 20 P(Z=z i ) 1 La loterie Y a 50 secteurs égaux (un secteur valant 1000, 49 secteur valant 0). La loterie Z avec 10 secteurs égaux (tous les secteurs valant 20). Ainsi, les trois loteries représentées ci-dessus conduisent à la même espérance de gain : 20. Mais ce gain est réalisé à coup sûr dans le cas n 3, alors que 49 fois sur 50, on ne gagne rien pour le cas n 2 (mais 1000, 1 fois sur 50!). Pour quantifier cette plus ou moins grande variabilité de X, on calculera sa variance, notée V(X) (ou la racine carrée : l écart type). Calculer la variance et l écart type de ces trois loteries Espérance L espérance mathématique, notée E(X), est la moyenne de la variable aléatoire X. C est la valeur théorique vers laquelle tendra la moyenne de chaque tirage en répétant l expérience un grand nombre de fois. i=n E(X)= P(X= x i ) x i i=1 Remarque L espérance mathématique n est pas forcément le résultat le plus probable, ni même un des résultats possibles. Dans le cas d une variable continue, la formule se transpose en : E(X)= + x f(x) dx où f est la fonction densité de X. Soit X une variable aléatoire d espérance E(X) et a et b deux réels quelconques. La variable aléatoire ax + b a pour espérance le réel ae(x) + b Variance et écart type La variance, notée V(X), est une indication sur la dispersion des valeurs autour de la moyenne. On calcule la variance par : i=n V(X)= (x i E(X)) 2 P(X= x i ). i=1 L écart type est la racine carré de la variance afin de retrouver l unité de la variable aléatoire. σ(x)= V(X)

11 Cours 30 BTSA Dans le cas d une variable continue, la formule se transpose en : + V(X)= (x E(X)) 2 f(x) dx où f est la fonction densité de X. Soit X une variable aléatoire de variance V(X). La variable aléatoire ax+ b où a et b sont deux réels donnés, a pour variance a 2 V(X)

PROBABILITÉS Variable aléatoire

PROBABILITÉS Variable aléatoire PROBABILITÉS Variable aléatoire I Langage des événements Lors d'un oral de mathématiques, quatre questions sont proposées : une question de probabilités (P) ; une question de statistiques (S) ; une question

Plus en détail

UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités

UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités 1 UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités Chapitre II : Espaces probabilisés 1 Notions d événements 1.1 Expérience

Plus en détail

I. Qu est-ce qu une probabilité?

I. Qu est-ce qu une probabilité? I. Qu est-ce qu une probabilité? 1. Première approche : Une probabilité en mathématique est un chiffre compris entre 0 et 1. Ce chiffre représente une évaluation du caractère probable d un événement. Si

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

Probabilités et statistique

Probabilités et statistique Probabilités et statistique Université Paris 1 Panthéon-Sorbonne Cours de deuxième année de licence de sciences économiques Fabrice Rossi Cette œuvre est mise à disposition selon les termes de la licence

Plus en détail

CHAPITRE II NOTIONS DE PROBABILITES

CHAPITRE II NOTIONS DE PROBABILITES CHAPITRE II NOTIONS DE PROBABILITES II.1. Un exemple : le poker Distribuer une main de poker (5 cartes sur 52) revient à tirer au hasard 5 cartes parmi 52. On appelle expérience aléatoire une telle expérience

Plus en détail

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale MT8 A 0 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale. Fonction de répartition.. Variable aléatoire à valeurs réelles Définition : Soit un ensemble fondamental

Plus en détail

Mathématique - Cours

Mathématique - Cours Mathématique - Cours Filière PRO 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : partie seconde PRO partie première PRO partie terminale PRO Sommaire

Plus en détail

1 Variable aléatoire discrète... 1. 1.1 Rappels... 1. 1.2 Exemple... 2 2 Couples de variables aléatoires... 3. 2.1 Définition... 3

1 Variable aléatoire discrète... 1. 1.1 Rappels... 1. 1.2 Exemple... 2 2 Couples de variables aléatoires... 3. 2.1 Définition... 3 CHAPITRE : LOIS DISCRÈTES Sommaire Variable aléatoire discrète................................... Rappels........................................... Exemple......................................... Couples

Plus en détail

Terminologie. La théorie des probabilités fournit des modèles mathématiques permettant l'étude des expériences aléatoires.

Terminologie. La théorie des probabilités fournit des modèles mathématiques permettant l'étude des expériences aléatoires. Probabilités Terminologie Une expérience ou une épreuve est qualiée d'aléatoire si on ne peut pas prévoir son résultat et si, répétée dans des conditions identiques, elle peut donner des résultats diérents.

Plus en détail

Probabilité conditionnelle. Probabilités. Probabilité conditionnelle et indépendance. Julian Tugaut

Probabilité conditionnelle. Probabilités. Probabilité conditionnelle et indépendance. Julian Tugaut Probabilité conditionnelle et indépendance Télécom Saint-Étienne 2014 Sommaire 1 Probabilité conditionnelle Notion de probabilité conditionnelle Définition et premières propriétés Théorème de Bayes (ou

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS ONDITIONNELLES Exercice 01 On considère une roue partagée en 15 secteurs angulaires numérotés de 1 à 15. es secteurs sont de différentes couleurs. On fait tourner la roue qui s'arrête sur

Plus en détail

Probabilités conditionnelles

Probabilités conditionnelles 22 Probabilités conditionnelles Ω, B, P est un espace probabilisé. 22. Définition et propriétés des probabilités conditionnelles Considérons l expérience aléatoire qui consiste à lancer deux fois un dé

Plus en détail

Support du cours de Probabilités et Statistiques. IUT d Orléans, Département Informatique

Support du cours de Probabilités et Statistiques. IUT d Orléans, Département Informatique Support du cours de Probabilités et Statistiques IUT d Orléans, Département informatique Pierre Andreoletti IUT d Orléans, Département Informatique Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences)

Plus en détail

Répétition d expériences identiques et indépendantes

Répétition d expériences identiques et indépendantes Répétition d expériences identiques et indépendantes I) Situation étudiée On considère une expérience aléatoire possédant un ensemble fini d issues. On répète plusieurs fois cette expérience dans les mêmes

Plus en détail

Exercices supplémentaires

Exercices supplémentaires Exercices supplémentaires Christophe Lalanne Emmanuel Chemla Exercices Exercice 1 Un grand magasin a n portes d entrée ; r personnes arrivent à des instants divers et choisissent au hasard une entrée indépendamment

Plus en détail

Mesures et analyses statistiques de données - Probabilités. Novembre 2012 - Contrôle Continu, Semestre 1 CORRECTION

Mesures et analyses statistiques de données - Probabilités. Novembre 2012 - Contrôle Continu, Semestre 1 CORRECTION MASTER 1 GSI- Mentions ACCIE et RIM La Citadelle - ULCO Mesures et analyses statistiques de données - Probabilités Novembre 2012 - Contrôle Continu, Semestre 1 CORRECTION Exercice 1 Partie I 12pts 1 Étude

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Dénombrement et probabilités Version du juillet 05 Enoncés Exercice - YouTube Sur YouTube, les vidéos sont identifiées à l aide d une chaîne

Plus en détail

Exercices corrigés de probabilités et statistique

Exercices corrigés de probabilités et statistique Exercices corrigés de probabilités et statistique Université Paris 1 Panthéon-Sorbonne Cours de deuxième année de licence de sciences économiques Fabrice Rossi & Fabrice Le Lec Cette œuvre est mise à disposition

Plus en détail

Initiation aux probabilités.

Initiation aux probabilités. Initiation aux probabilités. On place dans une boite trois boules identiques à l exception de leur couleur : une boule est noire, une est blanche, la troisième est grise. On tire une des boules sans regarder,

Plus en détail

1) On appelle expérience aléatoire tout phénomène qui a plusieurs résultats possibles, la réalisation de chacun étant due au hasard.

1) On appelle expérience aléatoire tout phénomène qui a plusieurs résultats possibles, la réalisation de chacun étant due au hasard. PROBABILITÉS 1 1 Définitions 1) On appelle expérience aléatoire tout phénomène qui a plusieurs résultats possibles, la réalisation de chacun étant due au hasard. exemple : L'expérience qui consiste à lancer

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Seconde DS de Mathématiques 29 mars 2010 1 H

Seconde DS de Mathématiques 29 mars 2010 1 H Seconde DS de Mathématiques 29 mars 2010 1 H NOM : A traiter directement sur l énoncé EXERCICE I ( 4 poiuts ) On lance deux dés ( bien équilibrés et à 6 faces numérotées de 1 à 6) et on fait le produit

Plus en détail

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année.

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année. MATHÉMATIQUES TERMINALE ES A. YALLOUZ Ce polcopié conforme au programme 00, regroupe les documents distribués au élèves en cours d année. Année 0-0 Année 0-0 T le ES A. YALLOUZ (MATH@ES) TABLE DES MATIÈRES

Plus en détail

1. Probabilités élémentaires

1. Probabilités élémentaires 1. Probabilités élémentaires MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: probabilités 1/48 Plan 1. Expériences aléatoires et événements 2. Probabilités 3. Analyse combinatoire

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

Probabilité d un événement. Combinaisons d événements. Probabilité conditionnelle

Probabilité d un événement. Combinaisons d événements. Probabilité conditionnelle Probabilités classiques Mathématiques discrètes Théorie des probabilités Cours 31, MATH/COSC 1056F Julien Dompierre Département de mathématiques et d informatique Université Laurentienne 7 novembre 00,

Plus en détail

II. Eléments des probabilités

II. Eléments des probabilités II. Eléments des probabilités Exercice II.1 Définir en extension l ensemble fondamental Ω des résultats associé à chacune des expériences aléatoires suivantes: 1. jeter une pièce de monnaie et observer

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 3 juin 2 Document diffusé via le site www.bacamaths.net de Gilles Costantini 2. frederic.demoulin

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

Tel que mentionné à la section 9.5, les probabilités utilisées dans les arbres de décision sont des probabilités conditionnelles.

Tel que mentionné à la section 9.5, les probabilités utilisées dans les arbres de décision sont des probabilités conditionnelles. 9A Probabilités conditionnelles et théorème de Bayes Probabilités conditionnelles Tel que mentionné à la section 9.5, les probabilités utilisées dans les arbres de décision sont des probabilités conditionnelles.

Plus en détail

I. LA VARIABILITE AU SEIN DES POPULATIONS

I. LA VARIABILITE AU SEIN DES POPULATIONS I. LA VARIABILITE AU SEIN DES POPULATIONS La notion de population recouvre un concept difficilement réductible à une définition unique. Au sens de la génétique, une population représente une entité de

Plus en détail

Probabilités, fiche de T.D. n o 2

Probabilités, fiche de T.D. n o 2 U.F.R. de Mathématiques Licence de Mathématiques S6, M66, année 2013-2014 Probabilités, fiche de T.D. n o 2 Ex 1. Jour de chance Un site de jeux propose le jeu suivant. Chaque internaute désireux de jouer

Plus en détail

b) Exprimer B à l aide des événements A n et en déduire la probabilité de B Exercice 1.4. Inégalité de Bonferroni.

b) Exprimer B à l aide des événements A n et en déduire la probabilité de B Exercice 1.4. Inégalité de Bonferroni. MP 205/6 Feuille d exercices - Probabilités généralités). Univers, généralités Exercice.. Langage des probabilités. Soit Ω, A) un espace probabilisable. Soit A n ) n N une famille d événements et A, B,

Plus en détail

Probabilités et Statistiques. Raphaël KRIKORIAN Université Paris 6

Probabilités et Statistiques. Raphaël KRIKORIAN Université Paris 6 Probabilités et Statistiques Raphaël KRIKORIAN Université Paris 6 Année 2005-2006 2 Table des matières 1 Rappels de théorie des ensembles 5 1.1 Opérations sur les ensembles................... 5 1.2 Applications

Plus en détail

Les probabilités. Chapitre 18. Tester ses connaissances

Les probabilités. Chapitre 18. Tester ses connaissances Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce

Plus en détail

Cours de DEUG Probabilités et Statistiques. Avner Bar-Hen

Cours de DEUG Probabilités et Statistiques. Avner Bar-Hen Cours de DEUG Probabilités et Statistiques Avner Bar-Hen Université Aix-Marseille III 3 Table des matières Table des matières i Analyse combinatoire 1 1 Arrangements................................ 1 1.1

Plus en détail

Lois de probabilité. a ; avec a < b, toute fonction f vérifiant

Lois de probabilité. a ; avec a < b, toute fonction f vérifiant Lois de probabilité A) Lois à densité Loi continue Approche : Jusqu ici, les variables aléatoires étudiées prenaient un nombre fini de valeurs Or les issues d un grand nombre d expériences aléatoires prennent

Plus en détail

Ressources pour le lycée technologique

Ressources pour le lycée technologique éduscol Enseignement de mathématiques Classe de première STMG Ressources pour le lycée technologique Échantillonnage : couleur des yeux au Canada Contexte pédagogique Objectifs Obtenir un intervalle de

Plus en détail

Mathématique - Cours

Mathématique - Cours Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : partie seconde partie 1/3 partie 2/3 partie 3/3 Sommaire 1 Ensemble

Plus en détail

Correction Bac blanc mai 2013

Correction Bac blanc mai 2013 Correction Bac blanc mai 2013 Exercice 1 Commun à tous les candidats. 4 points (1 point par bonne réponse) 1. La fonction F définie sur R par F (x) = e x2 est une primitive de la fonction f définie par

Plus en détail

LOI DE PROBABILITÉ PROBABILITÉS CONDITIONNELLES Sommaire. Logiciels

LOI DE PROBABILITÉ PROBABILITÉS CONDITIONNELLES Sommaire. Logiciels LOI D PROILITÉ PROILITÉS CONDITIONNLLS Sommaire. spérance et variance d une loi. déquation à une loi équirépartie. Probabilité conditionnelle 4. Indépendance. Loi inomiale Logiciels. déquation à une loi

Plus en détail

3D Compléments de cours. Guy GREISEN

3D Compléments de cours. Guy GREISEN 3D Compléments de cours Guy GREISEN 14 septembre 2009 3D 3 Table des matières 1 SECOND DEGRÉ 6 1.1 Introduction................................................ 6 1.2 Formule générale.............................................

Plus en détail

Sujets HEC B/L 2013-36-

Sujets HEC B/L 2013-36- -36- -37- Sujet HEC 2012 B/L Exercice principal B/L1 1. Question de cours : Définition et propriétés de la fonction de répartition d une variable aléatoire à densité. Soit f la fonction définie par : f(x)

Plus en détail

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini.

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. 1 Introduction Des actions comme lancer un dé, tirer une carte d un jeu, observer la durée de vie d une ampoule électrique, etc...sont

Plus en détail

Baccalauréat STMG Polynésie 12 septembre 2014 Correction

Baccalauréat STMG Polynésie 12 septembre 2014 Correction Baccalauréat STMG Polynésie 1 septembre 014 Correction Durée : 3 heures EXERCICE 1 6 points Pour une nouvelle mine de plomb, les experts d une entreprise modélisent le chiffre d affaires (en milliers d

Plus en détail

EXERCICES SUR LES PROBABILITÉS

EXERCICES SUR LES PROBABILITÉS EXERCICES SUR LES PROBABILITÉS Exercice 1 Dans un univers Ω, on donne deux événements A et B incompatibles tels que p(a) = 0,2 et p(b) = 0,7. Calculer p(a B), p(a B), p ( A ) et p ( B ). Exercice 2 Un

Plus en détail

Feuille d exercices 1

Feuille d exercices 1 Université Paris 7 - Denis Diderot L2 - Probabilités PS4 Année 2014-2015 Feuille d exercices 1 Exercice 1 Combien y a-t-il de paires d entiers non consécutifs compris entre 1 et n (n 1)? Exercice 2 1.

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

Statistiques: rappels et compléments

Statistiques: rappels et compléments Statistiques: rappels et compléments I) Vocabulaire élémentaire Population: Ensemble étudié. Individus: Éléments de la population. Caractère étudié ou variable statistique: Propriété étudiée dans la population.

Plus en détail

Chapitre 4 NOTIONS DE PROBABILITÉS

Chapitre 4 NOTIONS DE PROBABILITÉS Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 4 NOTIONS DE PROBABILITÉS Les chapitres précédents donnent des méthodes graphiques et numériques pour caractériser

Plus en détail

Chapitre 1 GRAPHIQUES

Chapitre 1 GRAPHIQUES Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 1 GRAPHIQUES On entend souvent qu un schéma vaut mieux qu un long discours. Effectivement, lorsque l on

Plus en détail

Chapitre 3 : Combinatoire, Probabilités

Chapitre 3 : Combinatoire, Probabilités STAT03 : probabilités COURS Décembre 2000 Chapitre 3 : Combinatoire, Probabilités 1 Dénombrement 1.1 Introduction L étude statistique nous conduit à étudier une population finie et parfaitement déterminée

Plus en détail

Les exercices donnés ici constituent des exemples, leur publication interdit que l un quelconque d entre eux fasse partie d un sujet 2004.

Les exercices donnés ici constituent des exemples, leur publication interdit que l un quelconque d entre eux fasse partie d un sujet 2004. Mathématiques, série ES Exemples d exercices, série ES Les exercices donnés ici constituent des exemples, leur publication interdit que l un quelconque d entre eux fasse partie d un sujet 2004. 20 novembre

Plus en détail

Exercices. Version du 7 janvier 2016 16:37. UE Mathématiques et statistiques appliquées AA Mathématiques et statistiques appliquées

Exercices. Version du 7 janvier 2016 16:37. UE Mathématiques et statistiques appliquées AA Mathématiques et statistiques appliquées Exercices Version du 7 janvier 2016 16:37 UE Mathématiques et statistiques appliquées AA Mathématiques et statistiques appliquées 1ère Bachelier en Informatique de Gestion Ludovic Kuty

Plus en détail

Schéma de Bernoulli Loi binomiale

Schéma de Bernoulli Loi binomiale Schéma de Bernoulli Loi binomiale I) Epreuve et loi de Bernoulli 1) Définition On appelle épreuve de Bernoulli de paramètre, toute expérience aléatoire admettant deux issues exactement : L une appelée

Plus en détail

Corrrigé du sujet de Baccalaurat S. Pondichery 2015. Spécialité

Corrrigé du sujet de Baccalaurat S. Pondichery 2015. Spécialité Corrrigé du sujet de Baccalaurat S Pondichery 2015 Spécialité EXERCICE 1 (4 points) commun à tous les candidats Partie A Soit f la fonction définie sur R par f(x) et la droite d équation et la droite d

Plus en détail

Sommaire. Les pourcentages. Les suites. Statistiques. Les probabilités. Descriptif de l épreuve... Conseils pour l épreuve...

Sommaire. Les pourcentages. Les suites. Statistiques. Les probabilités. Descriptif de l épreuve... Conseils pour l épreuve... Sommaire Descriptif de l épreuve............................................. Conseils pour l épreuve............................................ Les pourcentages FICHES Pages 1 Pourcentage Proportions....................................7

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Cours Statistiques L2 Université Nice Sophia-Antipolis. François Delarue

Cours Statistiques L2 Université Nice Sophia-Antipolis. François Delarue Cours Statistiques L2 Université Nice Sophia-Antipolis François Delarue Table des matières Chapitre 1. Rappels de Probabilités 5 1. Espaces de probabilité et Variables aléatoires 5 2. Espérances et variances

Plus en détail

Échantillonnage et estimation

Échantillonnage et estimation Échantillonnage et estimation Dans ce chapitre, on s intéresse à un caractère dans une population donnée dont la proportion est notée. Cette proportion sera dans quelques cas connue (échantillonnage),

Plus en détail

TOPOLOGIE DE LA DROITE REELLE

TOPOLOGIE DE LA DROITE REELLE TOPOLOGIE DE LA DROITE REELLE P. Pansu 16 mai 2005 1 Qu est-ce que la topologie? C est l étude des propriétés des objets qui sont conservées par déformation continue. Belle phrase, mais qui nécessite d

Plus en détail

Exercices chapitre 8. Probabilités.

Exercices chapitre 8. Probabilités. Lycée Descartes PC 2014-15 M. Besbes Exercices chapitre 8. Probabilités. Exercice 1. Soit (Ω, B, P ) un espace probabilisé. Montrer que l ensemble : A = {A B; P (A) = 0 ou P (A) = 1} est une tribu. Exercice

Plus en détail

1 C est quoi une fonction? 2. 2 Représentation graphique d une fonction. 6. 3 Fonction affine. 8. 4 Représentation graphique d une fonction affine.

1 C est quoi une fonction? 2. 2 Représentation graphique d une fonction. 6. 3 Fonction affine. 8. 4 Représentation graphique d une fonction affine. Sommaire 1 C est quoi une fonction? 2 2 Représentation graphique d une fonction. 6 3 Fonction affine. 8 4 Représentation graphique d une fonction affine. 10 5 Coefficient directeur d une fonction affine.

Plus en détail

Statistiques et estimation

Statistiques et estimation DERNIÈRE IMPRESSION LE 23 juillet 2014 à 16:35 Statistiques et estimation Table des matières 1 Intervalle de fluctuation 2 1.1 Simulation................................. 2 1.2 Définition.................................

Plus en détail

PROBABILITÉS. I) Introduction, aperçu historique. Loi de probabilité

PROBABILITÉS. I) Introduction, aperçu historique. Loi de probabilité Table des matières PROBABILITÉS Résumé de cours I) Introduction, aperçu historique 1 II) Loi de probabilité 1 III)Probabilité d évènement 2 1. Le vocabulaire des probabilités................................

Plus en détail

Statistiques descriptives Variance et écart type

Statistiques descriptives Variance et écart type Statistiques descriptives Variance et écart type I) Rappel : la moyenne (caractéristique de position ) Définition Soit la série statistique définie dans le tableau suivant : Valeur... Effectif... Fréquences

Plus en détail

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12 Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont

Plus en détail

Université de Pau et des Pays de l Adour Département de Mathématiques Année 2006-2007. Introduction aux probabilités

Université de Pau et des Pays de l Adour Département de Mathématiques Année 2006-2007. Introduction aux probabilités Université de Pau et des Pays de l Adour Département de Mathématiques Année 2006-2007 Introduction aux probabilités Série n 3 Exercice 1 Une urne contient neuf boules. Quatre de ces boules portent le numéro

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR SOUS ÉPREUVE : MATHÉMATIQUES. Le GROUPEMENT Agencement de l environnement architectural de 2001 à 2011

BREVET DE TECHNICIEN SUPÉRIEUR SOUS ÉPREUVE : MATHÉMATIQUES. Le GROUPEMENT Agencement de l environnement architectural de 2001 à 2011 BREVET DE TECHNICIEN SUPÉRIEUR A. P. M. E. P. SOUS ÉPREUVE : MATHÉMATIQUES Le GROUPEMENT Agencement de l environnement architectural de 2001 à 2011 Métropole 2001..........................................

Plus en détail

Épreuve de Mathématiques 8

Épreuve de Mathématiques 8 Lycée La Prat s Vendredi 10 avril 2015 Classe de PT Épreuve de Mathématiques 8 Durée 4 h L usage des calculatrices est interdit. La présentation, la lisibilité, l orthographe, la qualité de la rédaction

Plus en détail

Préparation aux épreuves écrites du CAPES Conseils de rédaction

Préparation aux épreuves écrites du CAPES Conseils de rédaction Préparation aux épreuves écrites du CAPES Conseils de rédaction Claire Debord Le texte qui suit est une libre compilation de plusieurs textes sur le même thème, notamment ceux de Christophe Champetier

Plus en détail

Séquence 3. 1 ère partie : 2 e partie : Second degré. Probabilités (1) Séquence 3 MA12. Cned - Académie en ligne

Séquence 3. 1 ère partie : 2 e partie : Second degré. Probabilités (1) Séquence 3 MA12. Cned - Académie en ligne Séquence 3 1 ère partie : Second degré e partie : Probabilités (1) Séquence 3 MA1 1 1 ère partie Second degré Sommaire 1. Pré-requis. Forme canonique, étude d une fonction du second degré 3. Équation du

Plus en détail

Coordination : Jean-Denis Poignet, responsable de formation

Coordination : Jean-Denis Poignet, responsable de formation Mathématiques 3 e Livret de corrigés Rédaction : Nicole Cantelou Hélène Lecoq Fabienne Meille Jean-Denis Poignet Coordination : Jean-Denis Poignet, responsable de formation Ce cours est la propriété du

Plus en détail

Chapitre I. Probabilités. Bcpst 1 2 novembre 2015. I Exemples d expériences aléatoires

Chapitre I. Probabilités. Bcpst 1 2 novembre 2015. I Exemples d expériences aléatoires Chapitre I Probabilités Bcpst 1 2 novembre 2015 I Exemples d expériences aléatoires Une expérience aléatoire est une expérience dont on ne peut pas prédire le résultat avant de l avoir réalisée... ce qui

Plus en détail

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités Sujet Métropole 01 EXERIE 1. [4 pts] Probabilités Une jardinerie vend de jeunes plants d arbres qui proviennent de trois horticulteurs : 5% des plants proviennent de l horticulteur H 1, 5% de l horticulteur

Plus en détail

Comme la moyenne au devoir est plutôt faible, le professeur propose deux possibilités pour augmenter cette moyenne :

Comme la moyenne au devoir est plutôt faible, le professeur propose deux possibilités pour augmenter cette moyenne : Chapitre 6 : Statistiques I Premières définitions - Etablir une statistique, c est relever pour tous les individus d une population les valeurs d une grandeur X, appelée caractère ou variable statistique.

Plus en détail

Chapitre 5 Les Probablilités

Chapitre 5 Les Probablilités A) Introduction et Définitions 1) Introduction Chapitre 5 Les Probablilités De nombreuses actions provoquent des résultats qui sont dus en partie ou en totalité au hasard. Il est pourtant nécessaire de

Plus en détail

TD Dérivation n 2 : étude des variations de fonctions

TD Dérivation n 2 : étude des variations de fonctions 1) f (x) = 7x+3 TD Dérivation n : étude des variations de fonctions Étude de variations f est une fonction affine, de coefficient directeur négatif, on sait donc qu elle est décroissante surê. Le calcul

Plus en détail

) 1 avec E. : «on obtient au moins une fois un 6 en n lancers». I. Méthode de dénombrement 1. Cas de deux lancers

) 1 avec E. : «on obtient au moins une fois un 6 en n lancers». I. Méthode de dénombrement 1. Cas de deux lancers première question supplémentaire. Cette méthode mène à une variable aléatoire suivant la loi binomiale. Copie n 5 : ce groupe résout très rapidement la question en considérant l'événement contraire! Heureusement

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé Baccalauréat ES/L Amérique du Sud 2 novembre 2 Corrigé A. P. M. E. P. EXERCICE Commun à tous les candidats 5 points. Diminuer le budget de 6 % sur un an revient à multiplier par 6 =,94. Diminuer le budget

Plus en détail

1 - Probabilités et probabilités conditionnelles. PAES Faculté de Médecine P. et M. Curie V. Morice

1 - Probabilités et probabilités conditionnelles. PAES Faculté de Médecine P. et M. Curie V. Morice Probabilités et Biostatistique 1 - Probabilités et probabilités conditionnelles Evaluation ation d'un test diagnostique PAES Faculté de Médecine P. et M. Curie V. Morice Pourquoi la biostatistique : la

Plus en détail

Espaces de probabilités.

Espaces de probabilités. Université Pierre et Marie Curie 2010-2011 Probabilités et statistiques - LM345 Feuille 2 Espaces de probabilités. 1. Donner un exemple d'une famille de parties d'un ensemble qui ne soit pas une tribu.

Plus en détail

Brevet de technicien supérieur Métropole Session mai 2014 - Comptabilité et gestion des organisations

Brevet de technicien supérieur Métropole Session mai 2014 - Comptabilité et gestion des organisations Brevet de technicien supérieur Métropole Session mai 2014 - Comptabilité et gestion des organisations Exercice 1 11 points Une entreprise fabrique un certain type d articles. Sa capacité maximale de production

Plus en détail

Baccalauréat STL Biotechnologies juin 2014 Polynésie Correction

Baccalauréat STL Biotechnologies juin 2014 Polynésie Correction Baccalauréat STL Biotechnologies juin 014 Polynésie Correction EXERCICE 1 Les trois parties de cet exercice peuvent être traitées de manière indépendante. Les résultats seront arrondis, si nécessaire,

Plus en détail

2 nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 2013. Lectures graphiques (9 points) Les 2 parties sont indépendantes Partie A

2 nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 2013. Lectures graphiques (9 points) Les 2 parties sont indépendantes Partie A nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 013 Lectures graphiques (9 points) Les parties sont indépendantes Partie A Tous les clients d un petit restaurant ont opté pour la formule

Plus en détail

Statistiques. IUT Biotechnologie 2ème année. Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008

Statistiques. IUT Biotechnologie 2ème année. Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008 Statistiques IUT Biotechnologie 2ème année Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008 version du 04 octobre 2008 Table des matières 1 Lois de probabilité usuelles 1 1.1 Dénombrement................................

Plus en détail

Corrigé du baccalauréat ST2S Antilles-Guyane septembre 2015

Corrigé du baccalauréat ST2S Antilles-Guyane septembre 2015 Corrigé du baccalauréat ST2S Antilles-Guyane septembre 2015 Durée : 2 heures EXERCICE 1 Les parties 1 et 2 sont indépendantes. 8 points Le tableau ci-dessous indique les dépenses de santé des soins hospitaliers

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES/spé TL Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la rédaction

Plus en détail

Extraits de l article à paraître : GALILÉE OU DESCARTES? ÉTUDE D UN SCÉNARIO D INTRODUCTION HISTORIQUE AU CALCUL DES PROBABILITÉS

Extraits de l article à paraître : GALILÉE OU DESCARTES? ÉTUDE D UN SCÉNARIO D INTRODUCTION HISTORIQUE AU CALCUL DES PROBABILITÉS Extraits de l article à paraître : GALILÉE OU DESCARTES? ÉTUDE D UN SCÉNARIO D INTRODUCTION HISTORIQUE AU CALCUL DES PROBABILITÉS Éric BUTZ IREM de la Réunion et lycée Lislet Geoffroy, Saint-Denis. Résumé

Plus en détail

Calculs de probabilités

Calculs de probabilités Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile

Plus en détail

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie... 1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................

Plus en détail

Feuille d exercices n o 1. N(x i ). 4. On rappelle qu un espace normé est séparable s il contient une partie dénombrable dense.

Feuille d exercices n o 1. N(x i ). 4. On rappelle qu un espace normé est séparable s il contient une partie dénombrable dense. 1 Feuille d exercices n o 1 1. Deuxième forme géométrique du théorème de Hahn-Banach Soient A E et B E deux convexes, non vides, disjoints (E est une espace vectoriel normé). On suppose que A est fermé

Plus en détail

Introduction à Excel

Introduction à Excel Introduction à Excel Commentaires : Cet exercice a pour but de vous apprendre les fonctions rudimentaires du logiciel excel. C est seulement par la pratique que vous connaîtrez parfaitement le logiciel.

Plus en détail

SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION

SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION Eemple Le responsable d une maison de retraite a réalisé une enquête concernant les résidents de son établissement : - L activité

Plus en détail

IUT d Orléans - Département d Informatique TD de Probabilités

IUT d Orléans - Département d Informatique TD de Probabilités IUT d Orléans - Département d Informatique TD de Probabilités Fiche 1 Dénombrement DENOMBREMENT : arrangements et combinaisons Le but de cette première partie est d introduire la fonction factorielle,

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES Série S ÉPREUVE DU JEUDI 19 JUIN 2014 Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont

Plus en détail

Bac Blanc de Mathématiques Correction Durée : 3 heures

Bac Blanc de Mathématiques Correction Durée : 3 heures Terminale STG Mercatique Jeudi 1 avril 2010 Bac Blanc de Mathématiques Correction Durée : 3 heures L usage de la calculatrice est autorisé. Le sujet comporte 6 pages. EXERCICE 1 3 points Cet eercice est

Plus en détail

PROBABILITES. Chaque élève lance 100 fois un dé à six faces et note les effectifs d apparition de chaque face dans le tableau :

PROBABILITES. Chaque élève lance 100 fois un dé à six faces et note les effectifs d apparition de chaque face dans le tableau : PROBABILITES 1 I. Expérience aléatoire 1) Exemples : - On lance une pièce de monnaie et on regarde la face supérieure. - On lance un dé à six faces et on regarde le nombre de points inscrits sur la face

Plus en détail

Contrôle de mathématiques

Contrôle de mathématiques Chapitres 5 : la fonction exponentielle 10 décembre 2012 Contrôle de mathématiques Lundi 10 décembre 2012 Exercice 1 ROC On suppose connu le résultat suivant : pour tout réel x, on a e x > x 1) Soitϕla

Plus en détail