Analyse Numérique : SMA-SMI S4 Cours, exercices et examens

Dimension: px
Commencer à balayer dès la page:

Download "Analyse Numérique : SMA-SMI S4 Cours, exercices et examens"

Transcription

1 Analyse Numérique : SMA-SMI S4 Cours, exercices et examens Boutayeb A, Derouich M, Lamlili M et Boutayeb W.

2 Table des matières Résolution numérique de systèmes linéaires AX = B 5. Méthodes directes de résolution de AX=B Exemples Méthode de Gauss(avec et sans pivot) Factorisation LU Factorisation de Choleski (matrice symétrique) Factorisation de Householder (matrice unitaire ) Méthodes indirectes de résolution de AX=B Quelques rappels sur les matrices Méthodes classiques(jacobi, Gauss Seidel, Relaxation) Exercices Approximations des solutions de l équation f(x) = 0. Rappels et notations Méthode de Newton : Méthode de Newton modifiée : Méthode de dichotomie : Méthode de fausse position ( Regula Falsi) : Exercices Inroduction à l interpolation Rappel et définitions Interpolant de Lagrange Interpolant de Newton Existence et Unicité de l interpolant Interpolation linéaire Erreur d interpolation Exercices

3 4 Intégration numérique Introduction Approximation Approximation par des rectangles à gauche Approximation par des rectangles à droite Approximation par des rectangles médians Approximations par des trapèzes Formule de Simpson Interpolation et Erreur d intégration numérique Interpolation linèaire et la formule du trapèze : Formule du trapèze composée Erreur de la formule de Simpson Exercices Analyse numérique des équations differentielles ordinaires (e.d.o) Rappels sur les équations differentielles ordinaires (e.d.o) Systèmes linéaires Notions de stabilité Système d équations aux differences linéaires avec coéfficients constants Méthodes numériques pour les problèmes de condition initiale Convergence Consistance Stabilité Méthode d Euler Méthodes de Taylor dans le cas scalaire Méthodes de Runge-Kutta (R.K) dans le cas scalaire Méthodes de Runge-Kutta explicites Exercices Examens F.S.O Session ordinaire 0-03 (Durée : h30) F.S.O Session Rattrapage 0-03 (Durée : h30) F.S.O Session ordinaire 0-0 (Durée : h30) F.S.O Session de rattrapage 0-0 (Durée : h30) F.S.O Session ordinaire 00-0 (Durée :h30) F.S.O Session Rattrapage 00-0 (Durée : h30) F.S.O Examen F.S.O Session ordinaire 008/

4 6.9 F.S.O Session rattrapage F.S.O Session ordinaire (Durée : h30) F.S.O Examen blanc F.S.O Devoir à faire chez soi F.S.O Session ordinaire Janvier

5 Table des figures. la solution est x = f(). f() < x = Interpolation de Newton Interpolation de Lagrange Approximation par des rectangles à gauche Approximation par des rectangles à droite Approximation par des rectangles médians

6 Chapitre Résolution numérique de systèmes linéaires AX = B. Méthodes directes de résolution de AX=B.. Exemples {. Résoudre(S) : Par substitution x x = 0 L x + x = L L x = x L x = x = x = x = Par combinaison de lignes L x x = 0 L = L L x = 0 = x = = x Par ( Inversion de ) la ( matrice ) ( ) x 0 (S) = AX = B x ( ) det A = ; A = t coma = det A Si A existe alors X = A B ( ) ( ) ( ) x = x 0 = par méthode de Cramer 5

7 4x + 5x + 3x 3 7x 4 = 8 L. Résoudre(S +3x + 5x 3 + 4x 4 = 0 L ) : x 3 + 5x 4 = 8 L 3 7x 4 = 4 L x 8 (S) x x3 = x4 4 Résolution par remontée ( en commençant par x4) L 4 x 4 = 4 7 = L 3 x 3 = (8 5 ) = L x = (0 4 5 ) = 3 L x = ( ) = Système triangulaire : cas général u x + u x + +u n x n = b L ST u x + +u n x n = b L ) :. u nn x n = b n L n On suppose que u kk = 0 k =,, n x x. x n = b b. b n x n = b n u nn x n = (b n u nn b n )/u n n x i = (b i j=n j=i+ u i jb j )/u ii i = n,... Algorithme de résolution pour UX = B x n = b n u nn Pour i = n à x i = b i Pour j = i+ à n x i = x i u i j x j Fin j Fin i Remarques... Remarques :. La matrice U est dite triangulaire supérieure. Elle est inversible si tous les termes diagonaux sont non nuls et det U = u u u nn 6

8 . La matrice triangulaire inférieure se traite de façon similaire 3. le nombre d opérations nécéssaires est : n(n ) multiplications, n(n ) additions et n divisions soit au total n opérations.. Méthode de Gauss(avec et sans pivot) Elle consiste à ramener un système linéaire de la forme AX = B ( A avec matrice pleine) à un système de la forme UX = D puis à résoudre ce dernier. Exemple... Résoudre (S ) : 3x + 5x + x 3 = 8 L 0x + 8x + x 3 = 7 L 6x + x + 8x 3 = 6 L 3 Etape: Etape: 3x + 5x + x 3 = 8 L () = L 0+8x + x 3 = 7 L () = L 0 8x + 4x 3 = 0 L () 3 = L 3 L 3x + 5x + x 3 = 8 L () = L 0+8x + x 3 = 7 L () = L 0+0+6x 3 = 3 L () 3 = L () 3 + L () D où : x 3 =, x = ( 7 x 3 )/8 = et x = (8 x 3 5x )/3 = 4 Méthode de Gauss sans pivot (cas général) (S 0 ) a (0) x +a (0) x +a (0) 3 x 3 + +a (0) n x n = b (0) a (0) x +a (0) x +a (0) 3 x 3 + +a (0) n x n = b (0)... a (0) n x +a (0) n x +a (0) n3 x 3 + +a (0) nn x n = b (0) n Etape : On suppose a (0) = 0 et on pose m i = a(0) i On remplace la ligne L (0) i par L () i = L (0) i m i L (0) pour i =, 3,, n a () i j = a (0) i j m i a (0) j i, j =, 3, ; n et b () i = b (0) i m i b (0) i =, 3, ; n 7 a (0)

9 On obtient alors le système(s ) suivant : (S ) a (0) x +a (0) x +a (0) 3 x 3 + +a (0) n x n = b (0) 0+a () x +a () 3 x 3 + +a () n x n = b ()... 0+a () n x +a () n3 x 3 + +a () nn x n = b () n Etape : A nouveau, on suppose a () = 0 et on pose m i = a() i On remplace la ligne L () i par L () i = L () i m i L () pour i = 3,, n a () i j = a () i j m i a () j i, j = 3,, n et b () i = b () i m i b () i = 3,, n On obtient alors le système(s ) suivant : (S ) : a () a (0) x + a (0) x +a (0) 3 x 3+ +a (0) n x n = b (0) 0+a () x +a () 3 x 3+ +a () n x n = b () a () n3 x 3+ +a () nn x n = b () n En supposant qu à chaque étape on a a () kk = 0, on poursuit la la transformation jusq à l obtention d un système triangulaire : (S n ) : a (0) x +a (0) x + +a (0) n x n = b (0) 0+a () x + +a () n x n = b () a nn (n ) x n = b n (n ) On obtient alors la solution en commençant par : x n = b(n ) n a (n ), x n,,x nn Ecriture matricielle : ètape 0 : A (0) = A = a (0) a (0) a (0) n a (0) n a (0) nn b (0) b (0) n 8

10 ètape : A () = ètape n- : A (n ) = a (0) a (0) a (0) n 0 a () a () n 0 0 a () n a () nn b (0) b (). b () n a (0) a (0) a (0) n 0 a () a () n a (n ) nn b (0) b (). b (n ) n k Matrices élementaires de Gauss Soient les matrices m M = , M 0 k =.. m.. k+k m n m k+k en posant e k = (0,,, 0,, 0) et m k = (0,, 0, m k+k,, m nk ), on obtient M k = I m k e k et on vérifie facilement que M k est inversible et que M k = I+ m k e k. On montre alors que : Etape : A () = M A (0) Etape k : A (k) = M k A (k ) = M k M k M M A (0) Etape n- :U = A (n ) = M n M M A (0) k Remarque... : Le procédé suppose que tous les a (k ) kk = 0. Si à une étape k on a a (k ) kk = 0 et s il ya au moins un des a (k ) ik = 0 (i = k+,.n) on permute les lignes k et i et on continue, sinon ça voudrait dire que la matrice A n est pas inversible. En utilisant la méthode de Gauss sans pivot, le nombre d opérations nécéssaires au calcul de la solution deax = B est égal à : 3 n3 + 3 n 7 6 n dont n(n )(n+5) 6 et n(n+) divisions. additions, n(n )(n+5) 6 multiplications La méthode de Cramer nécéssite environ n(n + )!opérations. Par exemple 9

11 Méthode de Gauss avec pivot N Gauss Cramer Exemple... Soit à résoudre le système { 0 0 x + x = 0 x x = 0 La solution théorique est x = x = /(+0 0 ). Cependant, la résolution du système par la méthode de Gauss donne des résultats différents selon qu on l applique avec ou sans pivot. i) Si on applique la méthode de Gauss sans pivot on obtient et (S ) m = a() a () { = = x + x = 0 ( 0 0 )x = 0 0 qui donne pour solution approchée x et x 0. ii) Si on adopte la stratégie du pivot partiel qui consiste à mettre en première ligne celle dont le coefficient de x est le plus grand en module alors on permute les lignes pour obtenir le système { x x = 0 (S ) 0 0 x + x = 0 Pour lequel m = 0 0 = 0 0 et qui conduit à la solution approchée : x et x = x. La méthode de Gauss avec pivot consiste à choisir à l étape k : a (k ) kk tel que a (k ) = max a (k )..3 Factorisation LU kk k i n Théorème... : Si tous les a (k ) kk = 0 alors la matrice A peut-etre décomposée sous la forme A = LU où U = A (n ) est une matrice triangulaire supérieure et L = M M Mn est une matrice triangulaire inférieure 0 ik

12 Preuve :. M k est inversible car det M k = pour k =,, n. M k est de la forme de M k en changeant les les termes m ik en m ik, i = k+,, n 3. (M n M n M ) = M M M n 4. Le produit M M Mn est une matrice triangulaire inférieure 0 0 m 0 5. L = m 3 m m n m n m nn Théorème.. (Condition suffisante de la factorisation LU). Soit A une matrice carrée d ordre n telle que toutes les sous-matrices d ordre k (k n) soient inversibles, alors il existe une matrice triangulaire inférieure L avec l ii = et une matrice triangulaire supérieure U telles que A = LU. De plus, cette factorisation est unique. Preuve : Si a = 0, la matrice a (d ordre ) est inversible, donc on peut choisir la matrice de permutation égale à l identité et appliquer la méthode de Gauss sans pivot à la première étape. Supposons qu on ait pu choisir toutes les matrices de permutation égales à l identité jusqu à l étape k, il s ensuit que Avec A (k) = M k M k M A = i= M i A. i=k A k = a (k) a (k) kk a (k) kn..... a (k) nk a (k) nn

13 ... = a (k) a (k) k.... B k a (k) kk..... a (k) nk a (k) k a (k) n a (k) kn.... a (k) nn en écrivant A sous forme de blocs et en effectuant le produit matriciel par blocs, on obtient a () a(k) kk = det(b k). Comme det(b k ) = 0 on a a (k) kk poursuivre le procédé. Unicité = 0 et par suite on peut choisir a (k) kk comme pivot et Supposons qu il existe L, L, U et U telles que A = L U = L U, comme L et U sont inversibles alors L L = U U. Ce qui impose L L = U U = I et donc L = L et U = U. Exemple..3. Résoudre(S ) : Donc A = on a M = 3 0, On a M = 0 0 = M = 0 Donc U = M M A = 0 7 x + x + x 3 = 3x x + x 3 = 6 x + 3x + 4x 3 = 4, = M = et L = M M = Résoudre AX = B revient à résoudre LUX = B qu on résoud en étapes :. LY = B donne y = ; y = 6+3 y = et y 3 = 4 y y = 0. UX = Y donne x 3 = 0 5 = ; x = 4 = ; x = ( 4+) =

14 ..4 Factorisation de Choleski (matrice symétrique) Théorème..3. Si A est une matrice symétrique, définie positive, il existe (au moins) une matrice réelle triangulaire inférieure L telle que A = LL. Si de plus on impose aux éléments diagonaux de L d être strictement positifs, alors la factorisation est unique. Preuve : Remarquons d abord que si A est définie positive, alors toutes les sous-matrices d ordre k sont inversibles. Le théorème.. permet d affirmer l existence de deux matrices L et U telles que A = LU. Ce que nous cherchons ici c est de factoriser en utilisant une seule matrice L. Raisonnons par récurrence sur n. Si k =, A = a > 0 donc a = a. a. Supposons qu on ait pu factoriser jusqu à l ordre k et soit A k une matrice d ordre k alors A k peut s écrire : A k = ( A k v v a kk ) avec A k = L k L k. Considérons alors la matrice L k obtenue à partir de L k et telle que : L k = ( L k l l l kk ) Le produit matriciel L k L k donne : ( L k L k = L k L k l L k L k l l l+ l kk ) Par identification on obtient : L k l = v (..) L k L k = A k (..) l l+lkk = a kk (..3) i) L équation (..) permet alors de résoudre un système et d obtenir la solution qui est le vecteur l. ii) L équation (..3) permet d obtenir la dernière inconnue du problème, à savoir l kk = a kk l l et on peut choisir l kk > 0. Exemple..4. Soit A la matrice de Hilbert d ordre 6, la factorisation de Choleski 3

15 est donnée par A = LL où L = Remarque... L implémentation de l algorithme Choleski est donnée par la fonction Matlab choleski..5 Factorisation de Householder (matrice unitaire ) Soit P 0 = I ω 0 ω 0 une matrice élémentaire de Householder avec On cherche une matrice unitaire P 0 telle que ω 0 ω 0 =. (..4) P 0 a = ke, (..5) pour tout vecteur a = (a,, a n ), avec k R et e = (, 0,, 0). P 0 est orthogonale c est à dire P0 P 0 = I et par suite, on doit avoir ( ) a P0 (P 0 a) = k = a a. Soit k = ± ( a a ) /, les équations (..4) et (..5) donnent : P 0 a = a ω 0 ω 0 a = ke et parsuite ω 0 ω 0 a = ke + a = v, si on poseα = ω 0 a. On obtientαω 0 = v, et comme on chercheω 0 tel queω 0 ω 0 =, il vient :α = v v. Par suite P 0 = I α vv = I vv v v. Remarques... i) Le choix de k se fait au signe près, on peut choisir le signe +. ii) Le même procédé peut être appliqué pour obtenir une matrice P k = I k ω k ω k avecω k = (0,, 0,ω k+k,,ω nk ). On a constaté que P k peut être décomposée sous la forme ( ) I P k = k avec P k = I n k ω k ω k (voir paragraphe??). Pk iii) La factorisation de Householder permet d écrire : P n P n 3 P P 0 A = U, ou encore A = QU avec Q = P 0 P P n une matrice orthogonale. 4

16 . Méthodes indirectes de résolution de AX=B.. Quelques rappels sur les matrices Soit A = (a i j ) i, j n une matrice carrée.. A est dite à diagonale strictement dominante en colonnes si elle vérifie : i=n ai j < a j j, j n i=,i = j. A est dite à diagonale strictement dominante en lignes si elle vérifie : j=n ai j < a ii, i n j=, j =i 3. Une norme matricielle. vérifie les 4 propriétés suivantes : i) A = 0 A = 0 ii) λa = λ A pour tout λ R iii) A+ B A + B iv) AB A B 4. (I+B) est inversible si B < et de plus (I+B) B 5. A = max i n j=n j= a i j ; A = max j n i=n i= a i j ρ(a) = max j n λ i (A) est dite norme spectrale (λ i (A) : valeur propore de A).. Méthodes classiques(jacobi, Gauss Seidel, Relaxation) Pour résoudre le système Ax = b, (..) on utilise des méthodes, dites indirectes, du type x (k+) = Tx (k) + C (..) où T est une matrice obtenue à partir de A et c un vecteur dépendant de A et B On écrit A sous la forme A = M N En supposant M inversible, l équation (..) donne : x =M Nx+M b et ceci suggère le procédé itératif du type (..) avec T = M N et C = M b Il ya plusieurs façons d écrire A sous la forme A = M N Dans le cadre de ce cours on se limitera aux cas les plus utilisés à partir de : A = D L U 5

17 Méthode de Jacobi : M = D, N = L+U. Méthode de Gauss-Seidel : M = D L, N = U. Méthode de relaxation : A = A(ω) = M(ω) N(ω), avec M(ω) = D L, ω N(ω) = ω D U oùω est un scalaire. ω Définition... : Une méthode de type (..) est dite convergente si pour tout x (0) initial on a : lim x(k) = x k Si une telle limite existe, alors elle vérifie : Définition... : x = Tx+c On appelle erreur de la méthode (à la k ieme itération) la quantité : e (k) = x (k) x Avec e (0) = x (0) x on obtient e (k) = T k e (0) la méthode est convergente si lim k T k = 0 Méthode de Jacobi : Si A = (a i j ) la méthode de Jacobi consiste à choisir ; M = D = diag(a ii ) et N = L+U = ( a i j ) i, = j le schéma itératif est comme suit : x (k+) = D (L+U)x (k) + D b =T J x (k) + c La matrice T J = D (L+U) est dite matrice de Jacobi associée à A Si x (0) est le vecteur initial donné, l algorithme de Jacobi est de la forme : x (k+) i Explicitement, on obtient : = a ii j=n a i j x (k) j + b i ; i =,., n a j=, j =i ii a x (k+) = a x (k) a n x (k) n + b. a nn x (k+) n.. = a n x (k) a nn x (k) n + b n Une condition suffisante pour que la méthode de Jacobi converge est : ρ(t J ) < ou T J < 6

18 Méthode de Gauss-Seidel : Pour cette méthode, les matrices M et N sont données par : M = D L (supposé inversible) et N = U où D, L et U proviennent de l écriture A = D L U, le schéma itératif est comme suit : (D L)x (k+) = Ux (k) + b (..3) ou encore x (k+) = (D L) Ux (k) +(D L) b (..4) en explicitant (..3) on obtient : a x (k+) = a x (k) a n x (k) n + b a x (k+) = a x (k+) a 3 x (k) 3 a n x (k) n + b. a ii x (k+) i. a nn x (k+) n.. = a i x (k+) a ii x (k+) i a ii+ x (k) i+ a inx (k) n + b.. = a n x (k+) a nn x (k+) n + b n La matrice T GS = (D L) U est dite matrice de Gauss-Seidel associée à A Théorème... : Si A est une matrice carrée à diagonale strictement dominante en lignes alors la méthode de Jacobi converge Preuve : Si A est une matrice carrée à diagonale strictement dominante en lignes alors on a : j=n j=, j =i a i j < a ii, i n ( ) ou encore : a ii j=n j=, j =i ai j <, i n Par ailleurs T J = D (L+U) = (t i j ) avec t i j = ( a i j a ii ) si i = j et t ii = 0 Exercice : T J = max i n j=n t i j = max j= i n a ii j=n a i j < j=, j =i Montrer un résultat analogue avec preuve similaire si A est strictement dominante en colonnes 7

19 Théorème... : Si A est une matrice carrée à diagonale strictement dominante en lignes alors la méthode de Gauss-Seidel converge Preuve : on montre que T GS = (D L) U < en passant par : On pose y =Tx =(D L) Ux T = max x =0 Tx x qui donne(d L)y =Ux et Dy =Ly+Ux ou encore y =D Ly+D Ux Soit k l indice tel que y k = max i n y i = y = Tx On a y k = j=k j= (D L) k j y j + j=n j=k+ (D U) k j x j d où y k j=k ak j j= a kk y + j=n ak j j=k+ a kk x et :( j=k ak j j= a kk ) y j=n ak j x j=k+ a kk ak j soit enfin : y x j=n j=k+ ( j=k j= a kk ak j a kk ) < Méthode de relaxation Si on considère des matrices M et N dépendantes d un paramètreω on obtient : A = M(ω) N(ω) avec M(ω) = ω D L ω et N(ω) = ω D+U T(ω) = ( ω D L ) ( ω ω D+ U) et c(ω) = ( ω D L ) b T(ω) = (I ωd L ) (( ω)i +ωd U) Remarques... : Si ω =, on retrouve la méthode de Gauss-Seidel. Si ω >, on parle de sur-relaxation. Si ω <, on parle de sous-relaxation. Théorème..3. : Condition nécessaire de convergence de la méthode de relaxation : 0 < ω < 8

20 Preuve : T(ω) = ( ) ( ω ) ω D L ω D+ U Si les valeurs propres de T(ω) sont notéesλ i (ω) on a : ( ) ω n det ω D+U det(t(ω)) = λ i (ω) = ( ) = ( ω) n. i= det ω D L D oùρ(t ω ) [ ω n ] /n = ω. Pour que la méthode converge, il est nécessaire d avoir ρ(t(ω)) < et par conséquent ω < d oùω ]0, [..3 Exercices Exercice.3.. On note e k T = (0,, 0,, 0,, 0) le transposé du k eme vecteur canonique der n, A = (a i j ) i, j n et m k T = (0,, 0, m k+,k,, m n,k ); m i, j = a i, j a i,i, i = j,. Montrer que les matrices élémentaires de Gauss M k peuvent s écrire sous la forme M k = I+ m k e k T. Vérifier que M k 3. Montrer que : = I m k e k T (I+ m e T ) (I+ m e T ) (I+ m n e n T ) = (I+ m e T +m e T + +m n e T n ) 4. Application : On considère le systéme lineaire : (S ) : AX = B 0 0 x avec A = ; X = y et B = 0 z a) Donner les matrices de Gauss M et M qui permettent de transformer (S ) en un système (S ) de la forme UX = D où U est triangulaire supérieure b) Vérifier que M k = I + m k e k T pour k =, c) Vérifier que M M = I+ m e T +m e T d) Déduire M, M et M M e) Décomposer la matrice A sous la forme A = LU où L est triangulaire inférieure 9

21 f) Résoudre le système(s ) par la méthode LU Exercice.3.. Soit L la matrice triangulaire inférieure d ordre n donnée par :. Calculer la jeme colonne de L, L = Montrer que A A = n n Exercice.3.3. On cherche à résoudre le système Ax = b par les méthodes directe et indirecte. Soit A = (a i j ) i, j n une matrice carrée vérifiant les conditions suivantes : a ii > 0, i n a i j 0, i = j n j=n j= a i j > 0, i n Soit D la matrice diagonale ( d ii = a ii et d i j = 0 si i = j). Montrer que la matrice A vérifie : j=n ai j < a ii, i n ( ) j=, j =i. Donner l expression du terme général de la matrice A () obtenue après la première étape du procédé de d élimination de Gauss sans pivot 3. Montrer que la matrice B d ordre(n ) obtenue à partir de A () en enlevant la première ligne et la première colonne vérifie une la relation similaire à( ) 4. Ecrire le schéma itératif de Jacobi x (k+) = Tx (k) + C ( T étant la matrice de Jacobi associée à A ) 5. Expliciter les composantes x (k+) j en fonction de celles de x (k) et de C 6. Montrer que la méthode de Jaobi converge ( A = max i n j=n j= ai j < ) 7. Application : On donne A = , b = a) Donner la matrice T de Jacobi associée à A, x (0) = b) Calculer la ere itération x () obtenue en utilisant la méthode de Jacobi 0

22 Exercice.3.4. Soit A = (a i j ) une matrice carrée inversible dont les éléments diagonaux sont non nuls. A est écrite sous la forme A = D L U où D est une matrice diagonale et L (respectivement U) est triangulaire inférieure (respectivement supérieure). Pour résoudre le système Ax = b, on utilise la méthode itérative suivante : ( ) a ii x (k+) i = a ii x (k) n i +ω b i a i j x (k) i ( ) j + r a i j x (k) j x (k+) j, j= j= où r etω sont des réels fixés (ω non nul ) et k = 0,,. Montrer que la méthode proposée peut s écrire sous la forme matricielle : x (k+) = M(r,ω)x (k) + c avec : M(r,ω) = (D rl) (ad+bl+eu) où a, b et e sont des réels qu on exprimera en fonction de r et/ou deω.. Vérifier que cette méthode permet d obtenir les méthodes de Jacobi, Gauss- Seidel et de relaxation pour des choix appropriés de r et ω. 3. Montrer que les valeurs propres de M(r,ω) sont les racines de l équation : det(αd βl ωu) = 0 avecα = λ+ω etβ = (λ )r+ ω. Exercice.3.5. Soit A une matrice symétrique définie positive et T la matrice définie par : T = D D AD. On suppose que D A est définie positive.. Montrer que la méthode de Jacobi appliquée au système Ax = b converge.. Soit la méthode itérative suivante : { x (0) donné x (n+) = x (n) + T (b Ax (n)) Montrer que cette méthode converge et comparer sa vitesse de convergence à celle de la la méthode de Jacobi.

23 Chapitre Approximations des solutions de l équation f(x) = 0. Rappels et notations Définition... : Soit k un réel strictement positif et g une fonction définie sur un intervalle [a, b] de R à valeurs dans R. La fonction g est dite Lipschitzienne de rapport de k (encore dite k Lipschitzienne) si pour tous x et y de[a, b] on a : g(x) g(y) k x y. Définition... : Soit g une fonction k Lipschitzienne sur [a, b]. La fonction g est dite contractante de rapport de contraction k si k ]0, [. Exemple... : La fonction g(x) = sin(x) est Lipschitzienne de rappport k = Exercice... : Montrer que la La fonction g(x) = cos(x) est Lipschitzienne et déterminer le 3 rappport k Définition..3. : Soit g une fonction définie sur un intervalle [a, b] deràvaleurs dansrla fonction g est dite uniformément continue sur[a, b] si : ε 0, ηtel que x et y de[a, b] vérifiant y x η, on ait g(y) g(x) ε Remarque... : Toute fonction Lipschitzienne sur[a, b] est unfiormément continue sur[a, b].

24 Théorème.. (des Valeurs Intermédiaires). Soit f une fonction définie et continue sur un intervalle fermé borné [a, b] der. Alors pour tout réelθ appartenant à f([a, b]), il existe un réel c [a, b] tel queθ = f(c). Si de plus f est strictement monotone alors le point c est unique. Théorème.. (des Valeurs Intermédiaires cas particulierθ = 0). Soit f une fonction définie et continue sur un intervalle[a, b] et vérifiant f(a) f(b) 0, alors il existe un réel c [a, b] tel que f(c) = 0. Si de plus f est strictement monotone alors le point c est unique. Théorème..3 (de Rolle). Soit f une fonction définie sur [a, b] et à valeurs dans R. Si f est continue sur [a, b], dérivable sur]a, b[ et vérifie f(a) = f(b), alors il existe un réel c ]a, b[ tel que : f (c) = 0. Théorème..4 (des Accroissements Finis). Soit f une fonction définie sur [a, b] et à valeurs dans R Si f est continue sur [a, b] et dérivable sur]a, b[, alors il existe un réel c ]a, b[ tel que : Théorème..5 (Formule de Taylor). f(b) f(a) = (b a) f (c). Soit f une fonction de classe C n sur[a, b] dont la dérivée f (n+) est définie sur]a, b[, alors il existe un réel c ]a, b[ tel que : f(b) = f(a)+(b a) f (a)+... n! (b a)n f (n) (a)+ Théorème..6 (Formule de MacLaurin). (n+)! (b a)n+ f (n+) (c). Soit f une fonction de classe C n sur un intervalle I contenant 0 et telle que f (n) soit dérivable à l intrérieur de I. Alors x I, il existe un réel c strictement compris entre 0 et x tel que : f(x) = f(0)+ x f () (0)+! x f (0)+... n! xn f (n) (0)+ Définition..4. : (n+)! xn+ f (n+) (c). Soit θ un réel et f une fonction définie sur un intervalle I deret à valeurs dansr. θ est dit zéro de f si f(θ ) = 0 Définition..5. : Soit θ un réel et g une fonction définie sur un intervalle I deret à valeurs dansr. θ est dit point fixe de g si g(θ ) =θ. 3

25 Lemme... : Soit I un intervalle deret f une fonction définie sur I et à valeurs dansr. Alors la recherche des zéros de f est équivalente à la recherche des points fixes de la fonction g définie sur I par : g(x) = x f(x) Preuve : En effet, si f(θ ) = 0 alors g(θ) = θ f(θ) = θ et inversement, si g(θ) = θ alors f(θ) =θ g(θ) =θ θ = 0. Lemme... : Soit g une fonction de classe C sur [a, b]. S il existe un réel k 0 tel que : g (x) k x [a, b] alors la fonction g est k Lipschitzienne sur[a, b]. Preuve : Il suffit d appliquer le théorème des accroissements finis à la fonction g sur [x, y] avec x y. Donc il existe c ]x, y[ tel que : g(y) g(x) = (y x)g (c) et comme on a : g (c) k, il s ensuit que : g(y) g(x) k x y Définition..6. : Soit (u n ) une suite admettant pour limiteθ. On appelle erreur de la n eme étape le réel défini par e n = u n θ Définition..7. : On dit que la convergence de(u n ) versθ est d order p si : e n+ lim n = C où p et C sont des réels> 0 e n p Si p = (avec C < ) la convergence est dite linéaire Si p = on dit que la convergence est quadratique. Remarque... : L ordre de convergence p n est pas nécessairement un entier. Définition..8. : On dira que le réelδ est une approximation du réelα avec la precisionε si : α δ ε. En particulier, on dira que le terme u n0 d une suite (u n ) approche la limiteθ avec précisionε si u n0 θ ε. Exemple... : la suite(u n ) = ( ) tend vers zéro quand n tend vers l infini. n Si on veut une précision ε = 0, il suffit de prendre n 0 tel que n 0 0 ou 4

26 encore n 0 0 mais si on exige une precision de 0 5 alors on doit prendre n 0 tel que n c.a.d n Remarque..3. : Il est important de saisir la notion de vitesse de convergence. Par exemple, les suites ( n ),( n ),( n4) convergent vers zéro quand n tend vers l infini mais la vitesse de convergence diffère d une suite à l autre. Théorème..7. : Soit g une fonction k contractante sur [a, b] et à valeurs dans [a, b], et (u n ) la suite récurrente définie par : u 0 [a, b], u 0 donné et u n+ = g(u n ) pour tout n 0 Alors : - la suite (u n ) converge vers un réelθ - la fonction g admet un point fixe unique 3- Pour tout n N on a : u n θ kn k u u 0 Preuve : Tout d abord, comme u 0 [a, b] et que g : [a, b] [a, b], on a u n [a, b] pour tout n N. Ensuite, le fait que g soit une fonction k contractante implique que : u n+ u n = g(u n ) g(u n ) k u n u n pour tout n. Par conséquent on obtient : u n+ u n k n u u 0 pour tout n 0 (..) A l aide de l inégalité.. on montre que la suite(u n ) vérifie : En effet : Pour tous p N et n N on a : u n+p u n k kn u u 0 u n+p u n u n+p u n+p + u n+p u n+p +... u n+ u n+ + u n+ u n k n+p u u 0 +k n+p u u 0..+k n+ u u 0 +k n u u 0 kp k kn u u 0 k kn u u 0 () 5

27 L inégalité () nous permet de prouver que la suite(u n ) est de Cauchy. En effet : Comme k n 0 alors pour toutε > 0, il existe n 0 tel que pour tout n n 0 on n + ait : k n k u u 0 ε et par suite : k kn u u 0 ε Donc pour toutε > 0, il existe n 0 tel que pour tout n n 0 on ait : u n+p u n k n k u u 0 ε La suite(u n ) est donc de Cauchy et par conséquent elle converge vers une limiteθ. Comme la fonction g est continue sur[a, b], que u n+ = g(u n ) et que u n [a, b] n N alors on a : lim n u n =θ = g(θ) c-a-d : θ est un point fixe de g Unicité du point fixe : Supposons que g admet un autre point fixeα different deθ alors on a : g(α) g(θ) = α θ k α θ ou encore( k) α θ 0 mais comme k <, alorsα =θ Enfin, en faisant tendre p vers l infini dans l inégalité u n+p u n kn k u u 0, on obtient : θ u n kn k u u 0 n N Théorème..8 (condition de convergence locale). Soit g une fonction de classe C au voisinageθ. Si g(θ) =θ et g (θ), alors il existe ε strictement positif tel que : u 0 I ε = [θ ε,θ +ε], la suite (u n ) = (g(u n )) est définie et converge vers θ, l unique solution de g(x) = x dans I ε Preuve : Puisque g est de classe C au voisinage deθ et que g (θ) < on a : g (x) < x au voisinage deθ. Par consequent, il existe ε strictement positif tel que : x I ε, g (x) < et puisque g est continue sur le fermé borné I ε, on déduit qu il existe k ]0, [ tel que : x I ε, g (x) k < Pour appliquer le théorème, il suffit de vérifier que : g(i ε ) I ε. Or, par application du théorème des accroissements finis on a : x I ε, g(x) θ x θ Remarque..4. : 6

28 Si g (θ) =, la suite peut converger ou diverger Si g (θ) et si la suite possède une infinité de termes différents deθ, alors la suite ne peut converger. En effet, si on suppose que la suite converge versθ on obtient : u n+ θ = (u n θ)g (c n ) avec c n compris entre u n etθ et de là on aboutit à une contradiction en supposant que u n est assez proche deθ de telle sorte que : g (c n ) = u n+ θ u n θ Théorème..9. : Si la suite récurrente définie par : u 0 [a, b], u 0 donné et u n+ = g(u n ), n 0, converge linéairement versθ et si g est de classe C e sur[a, b], alors C = n+ lim = g (θ). n e n Preuve : Il suffit d appliquer le théorème des accroissements finis : e n+ = u n+ θ = g(u n ) g(θ) = (u n θ)g (c n ) et de là on obtient Remarque : e n+ lim = lim g (c n ) = g (θ) n e n n On veut résoudre numériquement l équation f(x) = 0. On constate qu il existe plusieurs façon d écrire cette équation sous la forme d un problème de point fixe c est-à-dire sous la forme g(x) = x. Par exemple on à les trois écritures suivantes : x x 3 = 0 = x = x+3 = x = g (x) = ± x+3 (..) x x 3 = 0 = x = x 3 = x = g (x) = x 3 (..3) x x 3 = 0 = x = x+3 = x = g 3 (x) = x+3 (..4) x Les trois équations..,..3 et..4 admettent pour points fixes et 3. Pour la convergence locale ou globale il faut étudier g i (x), g i ( ) et g i (3) i =,, 3. Méthode de Newton : En prenant la fonction g définie par : g(x) = x f(x) f (x), on obtient le procédé de Newton donné par : x 0 donné, x n+ = x n f(x n) f (x n ) pour n 0 avec f (x n ) = 0 7

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Master de mathématiques Analyse numérique matricielle

Master de mathématiques Analyse numérique matricielle Master de mathématiques Analyse numérique matricielle 2009 2010 CHAPITRE 1 Méthodes itératives de résolution de systèmes linéaires On veut résoudre un système linéaire Ax = b, où A est une matrice inversible

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Équations non linéaires

Équations non linéaires Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Cours d analyse numérique SMI-S4

Cours d analyse numérique SMI-S4 ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 11 décembre 005 1 Calcul matriciel Une matrice n m est un tableau de nombres à n lignes( et m colonnes. 1 0 Par exemple, avec n = et m =, on peut considérer

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Mathématiques appliquées à l informatique

Mathématiques appliquées à l informatique Mathématiques appliquées à l informatique Jean-Etienne Poirrier 15 décembre 2005 Table des matières 1 Matrices 3 1.1 Définition......................................... 3 1.2 Les différents types de matrices.............................

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Chapitre 2. Matrices

Chapitre 2. Matrices Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à Intégration et probabilités 212-213 TD3 Intégration, théorèmes de convergence Corrigé xercice ayant été voué à être préparé xercice 1 (Mesure image). Soient (, A, µ) un espace mesuré, (F, B) un espace

Plus en détail

IV- Equations, inéquations dans R, Systèmes d équations

IV- Equations, inéquations dans R, Systèmes d équations IV- Equations, inéquations dans R, Systèmes d équations 1- Equation à une inconnue Une équation est une égalité contenant un nombre inconnu noté en général x et qui est appelé l inconnue. Résoudre l équation

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

Les calculatrices, téléphones, tablettes, ordinateurs et autres appareils électroniques similaires, ainsi que les documents sont interdits.

Les calculatrices, téléphones, tablettes, ordinateurs et autres appareils électroniques similaires, ainsi que les documents sont interdits. Les calculatrices, téléphones, tablettes, ordinateurs et autres appareils électroniques similaires, ainsi que les documents sont interdits 1 La qualité de la rédaction est un facteur important dans l appréciation

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

X-ENS PSI - 2009 Un corrigé

X-ENS PSI - 2009 Un corrigé X-ENS PSI - 009 Un corrigé Première partie.. Des calculs élémentaires donnent χ A(α) = χ B(α) = X X + et χ A(α)+B(α) = X X + 4α + 4 On en déduit que Sp(A(α)) = Sp(B(α)) = {j, j } où j = e iπ 3 Sp(A(α)

Plus en détail

Théorie spectrale. Stéphane Maingot & David Manceau

Théorie spectrale. Stéphane Maingot & David Manceau Théorie spectrale Stéphane Maingot & David Manceau 2 Théorie spectrale 3 Table des matières Introduction 5 1 Spectre d un opérateur 7 1.1 Inversibilité d un opérateur........................... 7 1.2 Définitions

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Corrigé du baccalauréat S Polynésie juin 2004

Corrigé du baccalauréat S Polynésie juin 2004 Durée : 4 heures Corrigé du baccalauréat S Polynésie juin 4 EXERCICE Commun à tous les candidats 4 points. X suit la loi de durée de vie sans vieillissement ou encore loi eponentielle de paramètre λ ;

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

Corrigé du baccalauréat S Asie 21 juin 2010

Corrigé du baccalauréat S Asie 21 juin 2010 Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =

Plus en détail

Polynômes à plusieurs variables. Résultant

Polynômes à plusieurs variables. Résultant Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \

Plus en détail

Leçon 6. Savoir compter

Leçon 6. Savoir compter Leçon 6. Savoir compter Cette leçon est une introduction aux questions de dénombrements. Il s agit, d une part, de compter certains objets mathématiques (éléments, parties, applications,...) et, d autre

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les

Plus en détail

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2 BTS Mécanique et Automatismes Industriels Équations différentielles d ordre, Année scolaire 005 006 . Définition Notation Dans tout ce paragraphe, y désigne une fonction de la variable réelle x. On suppose

Plus en détail

Université Joseph Fourier Premier semestre 2009/10. Licence première année - MAT11a - Groupe CHB-1. Contrôle Continu 1, le 9/10/2009

Université Joseph Fourier Premier semestre 2009/10. Licence première année - MAT11a - Groupe CHB-1. Contrôle Continu 1, le 9/10/2009 Université Joseph Fourier Premier semestre 9/ Licence première année - MATa - Groupe CHB- Contrôle Continu, le 9//9 Le contrôle dure heure. Questions de cours. ) Soit f :]a, b[ ]c, d[ unefonctionbijectiveetdérivabletelleque,pourtoutx

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

2 Opérateurs non bornés dans un espace de Hilbert

2 Opérateurs non bornés dans un espace de Hilbert 2 Opérateurs non bornés dans un espace de Hilbert 2. Opérateurs non bornés: définitions et propriétés élémentaires Soit H un espace de Hilbert et A un opérateur dans H, c est-à-dire, une application linéaire

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

Première partie. Introduction à la méthodes des différences finies

Première partie. Introduction à la méthodes des différences finies Première partie Introduction à la méthodes des différences finies 5 7 Introduction Nous allons présenter dans cettte partie les idées de base de la méthode des différences finies qui est sans doute la

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Licence à distance Chapitre V : Equations différentielles. Méthodes numériques à un pas.

Licence à distance Chapitre V : Equations différentielles. Méthodes numériques à un pas. Licence à distance Chapitre V : Equations différentielles. Méthodes numériques à un pas. M. Granger Table des matières 1 Rappels sur le cours d équations différentielles 2 1.1 Généralités..........................................

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Approximations variationelles des EDP Notes du Cours de M2

Approximations variationelles des EDP Notes du Cours de M2 Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

Formules de Taylor et développements limités

Formules de Taylor et développements limités Chapitre 4 Formules de Taylor et développements limités 4. Taylor-Lagrange Si a, b R, on note Int(a, b) l intervalle ouvert dont les bornes sont a et b, c est-à-dire Int(a, b) =]a, b[ si a b et Int(a,

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Chapitre VI Fonctions de plusieurs variables

Chapitre VI Fonctions de plusieurs variables Chapitre VI Fonctions de plusieurs variables 6. 1 Fonctions différentiables de R 2 dans R. 6. 1. 1 Définition de la différentiabilité Nous introduisons la différentiabilité sous l angle des développements

Plus en détail

Rapport sur l oral de mathématiques 2009

Rapport sur l oral de mathématiques 2009 Rapport sur l oral de mathématiques 2009 Oral spécifique E.N.S. Paris : Thomas Duquesne Oral commun Paris-Lyon-Cachan : Romain Abraham, Sorin Dumitrescu, Philippe Gille. 1 Remarques générales sur la session

Plus en détail

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES. CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Chapitre 3. Mesures stationnaires. et théorèmes de convergence Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t 3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une

Plus en détail

Objectifs. Calcul scientifique. Champ d applications. Pourquoi la simulation numérique?

Objectifs. Calcul scientifique. Champ d applications. Pourquoi la simulation numérique? Objectifs Calcul scientifique Alexandre Ern ern@cermics.enpc.fr (CERMICS, Ecole des Ponts ParisTech) Le Calcul scientifique permet par la simulation numérique de prédire, optimiser, contrôler... le comportement

Plus en détail

Fonctions de plusieurs variables. Sébastien Tordeux

Fonctions de plusieurs variables. Sébastien Tordeux Fonctions de plusieurs variables Sébastien Tordeux 22 février 2009 Table des matières 1 Fonctions de plusieurs variables 3 1.1 Définition............................. 3 1.2 Limite et continuité.......................

Plus en détail