Traitement du signal et Applications cours 9
|
|
|
- Hugues Chevalier
- il y a 9 ans
- Total affichages :
Transcription
1 Traitement du signal et Applications cours 9 Master Technologies et Handicaps 1 ère année Philippe Foucher 1
2 Traitement du signal sous Scilab Scilab : Programmer en utilisant les fonctions. SIP Toolboxes: Boite à outils de traitement d images qui regroupe des fonctions spécifiques 2
3 Étude du code et des fonctions 3
4 Fonctions pour récupérer des données. Image: Image = imread( E:\repertoire1\nom.jpg ) nom.jpg Image Imagegris Imshow(Image); affichage de l image Im2gray(Image); change une image couleur en niveaux de gris 4
5 Différences entre: Image = imread( E:\repertoire1\nom.jpg ); Image = imread( E:\repertoire1\nom.jpg ) 5
6 Quelques fonctions graphiques xdel([0:5]) efface les fenêtres graphiques de 0:5. xset ( window, n) crée la fenêtre graphique n. plot2d (x,y) affiche un graphique avec les données x en abscisse et y en ordonnée. x et y doivent être de même taille. on peut directement utiliser plot2d(y) et un graphique affiche le vecteur y. 6
7 Ajout de bruit On peut ajouter du bruit aux images. Image_bruit=imnoise(image_gris,'gaussian',0,0.02); Salt & pepper: Ajout de bruit selon une certaine densité gaussien: Densité gaussienne Speckle: bruit multiplicatif 7
8 2 sortes de bruit Bruit additif (le plus souvent), noté n(x) g(x) = f(x) + n(x) en général, gaussien: probabilité que la valeur s écarte de la moyenne Bruit multiplicatif, noté m(x) g(x) = f(x)* m(x) Exemple: speckle 8
9 Problème. Image = signal en deux dimensions. Dans le cours, plutôt des signaux 1D. Extraction d un signal 1D Je prends une ligne du de l image Signal=Imagegris (38,:) 9
10 Signal 1D (sans bruit)
11 Signal 1D (Avec bruit)
12 Enlever le bruit On peut enlever le bruit en utilisant la Transformée de Fourier. Permet d enlever les hautes fréquences Problème: on lisse souvent le signal. 12
13 Signal lissé après filtrage par TF
14 fourier_signal=fft(signal); FFT: Fast Fourier Transform: algorithme rapide de Transformée de Fourier 14
15 FFT d un signal 1D (non bruité)
16 FFT d un signal 1D (bruité)
17 FFT d un signal 1D (bruité) Fréquences facteur de bruit. Donc on enlève
18 FFT d un signal 1D (les hautes fréquence sont enlevées)
19 Ce type de filtre s appelle passe-bas, il laisse passer les basses fréquences. En fait les filtres sont basées sur des techniques appelées produits de convolution. 19
20 De façon mathématique Signal périodique (période T) = somme pondérée de signaux sinusoïdaux f ( t) = n= 0 [ a n cos 2πnt T + b n sin 2πnt T ] 1/T : fréquence fondamentale (on utilise souvent =2/T) n/t: harmonique a n et b n coefficients pondérateurs de Fourier 20
21 Exemples (1) Somme pondérée de deux signaux de fréquence f et 3f (H3) signal résultant (b): addition point par point des deux courbes de (a). 21
22 Exemples (2) Meilleure approximation d un Signal carré f(t): décomposition de la façons suivante f ( t) = sin( ϖ t) + 0 cos( 2ϖ t) + sin(3ϖ t) + 0 cos( 4ϖ t) + sin(5ϖ t) sin( 23ϖ t)
23 Analyse spectrale (1) Représentation des amplitudes des différentes harmoniques (n=1,3,5,7 23) d un signal analyse spectrale. 23
24 Remarque (1) les séries de Fourier sont une décomposition en cosinus et sinus, on utilise souvent la notation complexe: 2π int f ( t) = Fn exp( ) T n= Avec F n =(a n +ib n )/2 et F -n =(a n -ib n )/2 e ix = cos x + i sin x 24
25 Remarque (2) A partir de l équation précédente, les coefficients de Fourier se calculent de la façon suivante: T 1 2π int Fn = f ( t)exp( ) dt T T T / 2 / 2 Le nombre de descripteurs de Fourier calculés ainsi est en théorie infini 25
26 Interprétation Plus n est grand, plus les fonctions sinusoïdales varient rapidement. une fonction lisse (c.a.d qui ne varient pas beaucoup) aura des coefficients a n et b n qui prendront rapidement (hautes fréquences) des valeurs faibles une fonction très perturbée et très changeante (ou bruitée) auront des composantes importantes dans les hautes fréquences. 26
27 Transformée de Fourier (1) Souvent fonctions non périodiques et non bornées, la transformée de Fourier permet de généraliser le concept de séries de Fourier à ce type de fonction: F ( υ π υ ) = f( t)exp( 2 i t) dt On peut noter le changement de variable = n/t, ce qui explique la disparition du facteur 1/T avant la somme. 27
28 Interprétation De façon peu rigoureuse, on pourrait considérer un signal analogique non périodique comme un signal dont la période tendrait vers l infini, la fréquence tendrait alors vers 0 (dν) et on obtient un spectre de Fourier continu appelé spectre de bande (et non un spectre de raies): 28
29 Exemple de spectre de bande 29
30 Vers la transformée de Fourier discrète En pratique, signal non borné: très rare! on définit une fenêtre d application [-T/2,T/2] Échantillonnage à une fréquence f telle que T=K/f F n = ( / 2) 1 1 K k = K / 2 K f K exp( 2πink K ) 30
31 Remarque Le signal numérique est décomposé en K segments. Le nombre total de coefficients de Fourier sera K. En traitement de signal, on utilise la FFT (Fast Fourier Transform) qui, sous certaines conditions, permet d accélérer le calcul 31
32 TF inverse A partir d un signal fréquentiel, on retrouve le signal initial (temporel ou spatial) par la transformée de Fourier inverse. On parle souvent d espace dual (temps/fréquence) 32
33 ifft
34 Des questions? 34
INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE
INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE Le schéma synoptique ci-dessous décrit les différentes étapes du traitement numérique
Traitement du signal avec Scilab : la transformée de Fourier discrète
Traitement du signal avec Scilab : la transformée de Fourier discrète L objectif de cette séance est de valider l expression de la transformée de Fourier Discrète (TFD), telle que peut la déterminer un
Projet de Traitement du Signal Segmentation d images SAR
Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,
TD1 Signaux, énergie et puissance, signaux aléatoires
TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver
Intérêt du découpage en sous-bandes pour l analyse spectrale
Intérêt du découpage en sous-bandes pour l analyse spectrale David BONACCI Institut National Polytechnique de Toulouse (INP) École Nationale Supérieure d Électrotechnique, d Électronique, d Informatique,
5.2 Théorème/Transformée de Fourier a) Théorème
. Théorème de Fourier et Transformée de Fourier Fourier, Joseph (788). Théorème/Transformée de Fourier a) Théorème Théorème «de Fourier»: N importe quelle courbe peut être décomposée en une superposition
Chapitre 2 Les ondes progressives périodiques
DERNIÈRE IMPRESSION LE er août 203 à 7:04 Chapitre 2 Les ondes progressives périodiques Table des matières Onde périodique 2 2 Les ondes sinusoïdales 3 3 Les ondes acoustiques 4 3. Les sons audibles.............................
Chapitre I La fonction transmission
Chapitre I La fonction transmission 1. Terminologies 1.1 Mode guidé / non guidé Le signal est le vecteur de l information à transmettre. La transmission s effectue entre un émetteur et un récepteur reliés
Didier Pietquin. Timbre et fréquence : fondamentale et harmoniques
Didier Pietquin Timbre et fréquence : fondamentale et harmoniques Que sont les notions de fréquence fondamentale et d harmoniques? C est ce que nous allons voir dans cet article. 1. Fréquence Avant d entamer
Communication parlée L2F01 TD 7 Phonétique acoustique (1) Jiayin GAO <[email protected]> 20 mars 2014
Communication parlée L2F01 TD 7 Phonétique acoustique (1) Jiayin GAO 20 mars 2014 La phonétique acoustique La phonétique acoustique étudie les propriétés physiques du signal
TP Modulation Démodulation BPSK
I- INTRODUCTION : TP Modulation Démodulation BPSK La modulation BPSK est une modulation de phase (Phase Shift Keying = saut discret de phase) par signal numérique binaire (Binary). La phase d une porteuse
Systèmes de transmission
Systèmes de transmission Conception d une transmission série FABRE Maxime 2012 Introduction La transmission de données désigne le transport de quelque sorte d'information que ce soit, d'un endroit à un
LABO 5-6 - 7 PROJET : IMPLEMENTATION D UN MODEM ADSL SOUS MATLAB
LABO 5-6 - 7 PROJET : IMPLEMENTATION D UN MODEM ADSL SOUS MATLAB 5.1 Introduction Au cours de séances précédentes, nous avons appris à utiliser un certain nombre d'outils fondamentaux en traitement du
SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques
SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques Durée 4 h Si, au cours de l épreuve, un candidat repère ce qui lui semble être une erreur d énoncé, d une part il le signale au chef
CHAPITRE V. Théorie de l échantillonnage et de la quantification
CHAPITRE V Théorie de l échantillonnage et de la quantification Olivier FRANÇAIS, SOMMAIRE I INTRODUCTION... 3 II THÉORIE DE L ÉCHANTILLONNAGE... 3 II. ACQUISITION DES SIGNAUX... 3 II. MODÉLISATION DE
LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION
LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION ) Caractéristiques techniques des supports. L infrastructure d un réseau, la qualité de service offerte,
Statistiques Descriptives à une dimension
I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des
EMETTEUR ULB. Architectures & circuits. Ecole ULB GDRO ESISAR - Valence 23-27/10/2006. David MARCHALAND STMicroelectronics 26/10/2006
EMETTEUR ULB Architectures & circuits David MARCHALAND STMicroelectronics 26/10/2006 Ecole ULB GDRO ESISAR - Valence 23-27/10/2006 Introduction Emergence des applications de type LR-WPAN : Dispositif communicant
Recherche De Coalescences Binaires Étalonnage Du Détecteur
Recherche De Coalescences Binaires Étalonnage Du Détecteur Fabrice Beauville Journées Jeunes Chercheurs 18/12/2003 Les Coalescences Binaires & VIRGO Système binaire d objets compacts (étoiles à neutrons,
M1107 : Initiation à la mesure du signal. T_MesSig
1/81 M1107 : Initiation à la mesure du signal T_MesSig Frédéric PAYAN IUT Nice Côte d Azur - Département R&T Université de Nice Sophia Antipolis [email protected] 15 octobre 2014 2/81 Curriculum
Traitement du signal avec Scilab : transmission numérique en bande de base
Traitement du signal avec Scilab : transmission numérique en bande de base La transmission d informations numériques en bande de base, même si elle peut paraître simple au premier abord, nécessite un certain
1 Démarrer... 3 1.1 L écran Isis...3 1.2 La boite à outils...3 1.2.1 Mode principal... 4 1.2.2 Mode gadget...4 1.2.3 Mode graphique...
1 Démarrer... 3 1.1 L écran Isis...3 1.2 La boite à outils...3 1.2.1 Mode principal... 4 1.2.2 Mode gadget...4 1.2.3 Mode graphique... 4 2 Quelques actions... 5 2.1 Ouvrir un document existant...5 2.2
Mini_guide_Isis.pdf le 23/09/2001 Page 1/14
1 Démarrer...2 1.1 L écran Isis...2 1.2 La boite à outils...2 1.2.1 Mode principal...3 1.2.2 Mode gadgets...3 1.2.3 Mode graphique...3 2 Quelques actions...4 2.1 Ouvrir un document existant...4 2.2 Sélectionner
Communications numériques
Communications numériques 1. Modulation numérique (a) message numérique/signal numérique (b) transmission binaire/m-aire en bande de base (c) modulation sur fréquence porteuse (d) paramètres, limite fondamentale
Chapitre 7 : Intégration sur un intervalle quelconque
Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction
BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL
BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par
Son et Mathématiques
Son et Mathématiques Maïtine Bergounioux To cite this version: Maïtine Bergounioux. Son et Mathématiques. Association des Professeurs de Mathématiques de l Enseignement Public (APMEP). Bulletin de l APMEP,
P1PY7204 Acquisition de données Cours
ANNEE 2012-2013 Semestre d Automne 2012 Master de Sciences, Technologies, Santé Mention Physique- Spécialité Instrumentation P1PY7204 Acquisition de données Cours Denis Dumora [email protected]
Calcul des indicateurs de sonie : revue des algorithmes et implémentation
Calcul des indicateurs de sonie : revue des algorithmes et implémentation Stéphane Molla 1, Isabelle Boullet 2, Sabine Meunier 2, Guy Rabau 2, Benoît Gauduin 1, Patrick Boussard 1 1 GENESIS S.A., Domaine
Oscillations libres des systèmes à deux degrés de liberté
Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à
ArtemiS 12 HEAD Data Portal 2.0 HEAD Recorder 2.0.400
Nouvelles fonctionnalités et applications ArtemiS 12 HEAD Data Portal 2.0 HEAD Recorder 2.0.400 Présentation des résultats Avec ArtemiS 12 vous disposez maintenant de nouvelles possibilités de représentation
Systèmes de communications numériques 2
Systèmes de Communications Numériques Philippe Ciuciu, Christophe Vignat Laboratoire des Signaux et Systèmes cnrs supélec ups supélec, Plateau de Moulon, 9119 Gif-sur-Yvette [email protected] Université
TABLE DES MATIÈRES 1. DÉMARRER ISIS 2 2. SAISIE D UN SCHÉMA 3 & ' " ( ) '*+ ", ##) # " -. /0 " 1 2 " 3. SIMULATION 7 " - 4.
TABLE DES MATIÈRES 1. DÉMARRER ISIS 2 2. SAISIE D UN SCHÉMA 3! " #$ % & ' " ( ) '*+ ", ##) # " -. /0 " 1 2 " 3' & 3. SIMULATION 7 0 ( 0, - 0 - " - & 1 4. LA SOURIS 11 5. LES RACCOURCIS CLAVIER 11 STI Electronique
Chaine de transmission
Chaine de transmission Chaine de transmission 1. analogiques à l origine 2. convertis en signaux binaires Échantillonnage + quantification + codage 3. brassage des signaux binaires Multiplexage 4. séparation
Calcul intégral élémentaire en plusieurs variables
Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement
LABO 5 ET 6 TRAITEMENT DE SIGNAL SOUS SIMULINK
LABO 5 ET 6 TRAITEMENT DE SIGNAL SOUS SIMULINK 5.1 Introduction Simulink est l'extension graphique de MATLAB permettant, d une part de représenter les fonctions mathématiques et les systèmes sous forme
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
FAG Detector II le collecteur et l analyseur de données portatif. Information Technique Produit
FAG II le collecteur et l analyseur de données portatif Information Technique Produit Application La maintenance conditionnelle Principe de fonctionnement Application Le FAG II est, à la fois, un appareil
- Instrumentation numérique -
- Instrumentation numérique - I.Présentation du signal numérique. I.1. Définition des différents types de signaux. Signal analogique: Un signal analogique a son amplitude qui varie de façon continue au
Étude des Corrélations entre Paramètres Statiques et Dynamiques des Convertisseurs Analogique-Numérique en vue d optimiser leur Flot de Test
11 juillet 2003 Étude des Corrélations entre Paramètres Statiques et Dynamiques des Convertisseurs Analogique-Numérique en vue d optimiser leur Flot de Test Mariane Comte Plan 2 Introduction et objectif
Détection en environnement non-gaussien Cas du fouillis de mer et extension aux milieux
Détection en environnement non-gaussien Cas du fouillis de mer et extension aux milieux hétérogènes Laurent Déjean Thales Airborne Systems/ENST-Bretagne Le 20 novembre 2006 Laurent Déjean Détection en
Continuité d une fonction de plusieurs variables
Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs
Systèmes de communications numériques 2
Systèmes de Communications Numériques Philippe Ciuciu, Christophe Vignat Laboratoire des Signaux et Systèmes CNRS SUPÉLEC UPS SUPÉLEC, Plateau de Moulon, 91192 Gif-sur-Yvette [email protected] Université
Echantillonnage Non uniforme
Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas
Mathématiques I Section Architecture, EPFL
Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même
Mini_guide_Isis_v6.doc le 10/02/2005 Page 1/15
1 Démarrer... 2 1.1 L écran Isis... 2 1.2 Les barres d outils... 3 1.2.1 Les outils d édition... 3 1.2.2 Les outils de sélection de mode... 4 1.2.3 Les outils d orientation... 4 2 Quelques actions... 5
Géométrie discrète Chapitre V
Géométrie discrète Chapitre V Introduction au traitement d'images Géométrie euclidienne : espace continu Géométrie discrète (GD) : espace discrétisé notamment en grille de pixels GD définition des objets
Analyses psychoacoustiques dans ArtemiS SUITE
Analyses psychoacoustiques dans ArtemiS SUITE La psychoacoustique est l étude du rapport existant entre les grandeurs physiques du son et la sensation auditive qu elles provoquent. Des paramètres physiques
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.
14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,
Programme Pédagogique National du DUT «Réseaux et Télécommunications» Présentation de la formation
Programme Pédagogique National du DUT «Réseaux et Télécommunications» Présentation de la formation PPN Réseaux et Télécommunications publié par arrêté du 24 juillet 2008 Sommaire 1 Présentation générale
Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre
IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables
8563A. SPECTRUM ANALYZER 9 khz - 26.5 GHz ANALYSEUR DE SPECTRE
8563A SPECTRUM ANALYZER 9 khz - 26.5 GHz ANALYSEUR DE SPECTRE Agenda Vue d ensemble: Qu est ce que l analyse spectrale? Que fait-on comme mesures? Theorie de l Operation: Le hardware de l analyseur de
FAG Detector III la solution pour la surveillance et l équilibrage. Information Technique Produit
FAG Detector III la solution pour la surveillance et l équilibrage Information Technique Produit Principe Utilisation Hautes performances utilisation simple Le FAG Detector III est, à la fois, un appareil
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité
Automatique Linéaire 1 Travaux Dirigés 1A ISMIN
Automatique Linéaire 1 Travaux Dirigés Travaux dirigés, Automatique linéaire 1 J.M. Dutertre 2014 TD 1 Introduction, modélisation, outils. Exercice 1.1 : Calcul de la réponse d un 2 nd ordre à une rampe
Compatibilité Électromagnétique
Compatibilité Électromagnétique notions générales et applications à l électronique de puissance Ir. Stéphane COETS 18 mai 2005 Journée d étude en Électronique de Puissance 1 Plan de l exposé La Compatibilité
SYSTEME DE PALPAGE A TRANSMISSION RADIO ETUDE DU RECEPTEUR (MI16) DOSSIER DE PRESENTATION. Contenu du dossier :
SYSTEME DE PALPAGE A TRANSMISSION RADIO ETUDE DU RECEPTEUR (MI16) DOSSIER DE PRESENTATION Contenu du dossier : 1. PRESENTATION DU SYSTEME DE PALPAGE A TRANSMISSION RADIO....1 1.1. DESCRIPTION DU FABRICANT....1
Les algorithmes de base du graphisme
Les algorithmes de base du graphisme Table des matières 1 Traçage 2 1.1 Segments de droites......................... 2 1.1.1 Algorithmes simples.................... 3 1.1.2 Algorithmes de Bresenham (1965).............
Equipement. électronique
MASTER ISIC Les générateurs de fonctions 1 1. Avant-propos C est avec l oscilloscope, le multimètre et l alimentation stabilisée, l appareil le plus répandu en laboratoire. BUT: Fournir des signau électriques
Transmission d informations sur le réseau électrique
Transmission d informations sur le réseau électrique Introduction Remarques Toutes les questions en italique devront être préparées par écrit avant la séance du TP. Les préparations seront ramassées en
CCP PSI - 2010 Mathématiques 1 : un corrigé
CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P
Transmission des signaux numériques
Transmission des signaux numériques par Hikmet SARI Chef de Département d Études à la Société Anonyme de Télécommunications (SAT) Professeur Associé à Télécom Paris. Transmission en bande de base... E
Expérience 3 Formats de signalisation binaire
Expérience 3 Formats de signalisation binaire Introduction Procédures Effectuez les commandes suivantes: >> xhost nat >> rlogin nat >> setenv DISPLAY machine:0 >> setenv MATLABPATH /gel/usr/telecom/comm_tbx
Chapitre 2 : Techniques de transmission
Chapitre 2 : Techniques de transmission /home/kouna/d01/adp/bcousin/repr/cours/2.fm - 14 Janvier 1998 20:09 Plan. Introduction. Phénomènes caractéristiques. Les éléments de la transmission. La modulation.
Projet audio. Analyse des Signaux ELE2700
ÉCOLE POLYTECHNIQUE DE MONTRÉAL Département de Génie Électrique Projet audio Analyse des Signaux ELE2700 Saad Chidami - 2014 Table des matières Objectif du laboratoire... 4 Caractérisation du bruit...
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
ECTS INFORMATIQUE ET RESEAUX POUR L INDUSTRIE ET LES SERVICES TECHNIQUES
ECTS INFORMATIQUE ET RESEAUX POUR L INDUSTRIE ET LES SERVICES TECHNIQUES CHAPITRES PAGES I DEFINITION 3 II CONTEXTE PROFESSIONNEL 3 HORAIRE HEBDOMADAIRE 1 er ET 2 ème ANNEE 4 FRANÇAIS 4 ANGLAIS 5 MATHEMATIQUES
Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné :
Enoncés : Stephan de Bièvre Corrections : Johannes Huebschmann Exo7 Plans tangents à un graphe, différentiabilité Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point
Filtres passe-bas. On utilise les filtres passe-bas pour réduire l amplitude des composantes de fréquences supérieures à la celle de la coupure.
Filtres passe-bas Ce court document expose les principes des filtres passe-bas, leurs caractéristiques en fréquence et leurs principales topologies. Les éléments de contenu sont : Définition du filtre
L analyse boursière avec Scilab
L analyse boursière avec Scilab Introduction La Bourse est le marché sur lequel se traitent les valeurs mobilières. Afin de protéger leurs investissements et optimiser leurs résultats, les investisseurs
10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010
ème Congrès Français d'acoustique Lyon, -6 Avril Application de l'analyse Multirésolution en Ondelettes Pour la Prédiction de l'usure des Outils de Coupe Mohamed Khemissi Babouri, Nouredine Ouelaa Laboratoire
J AUVRAY Systèmes Electroniques TRANSMISSION DES SIGNAUX NUMERIQUES : SIGNAUX EN BANDE DE BASE
RANSMISSION DES SIGNAUX NUMERIQUES : SIGNAUX EN BANDE DE BASE Un message numérique est une suite de nombres que l on considérera dans un premier temps comme indépendants.ils sont codés le plus souvent
http://www.u-bourgogne.fr/monge/e.busvelle/teaching.php
TP1 Traitement numérique du son 1 Introduction Le but de ce TP est de mettre en pratique les notions de traitement numérique vues en cours, TDs et dans le précédent TP. On se focalisera sur le traitement
ACOUSTIQUE 3 : ACOUSTIQUE MUSICALE ET PHYSIQUE DES SONS
Matériel : Logiciel winoscillo Logiciel synchronie Microphone Amplificateur Alimentation -15 +15 V (1) (2) (3) (4) (5) (6) ACOUSTIQUE 3 : ACOUSTIQUE MUSICALE ET PHYSIQUE DES SONS Connaissances et savoir-faire
Analyse des bruits de clavier d ordinateur
Analyse des bruits de clavier d ordinateur Introduction 1 Enregistrement des bruits de clavier 2 Analyse des bruits de clavier 3 Analyse du niveau de pression acoustique vs. temps 4 Sonie vs. temps 4 Acuité
Analyse spectrale. jean-philippe muller. version juillet 2002. jean-philippe muller
Analyse spectrale version juillet 2002 Analyse spectrale des signaux continus 1) La représentation temporelle d un signal 2) La représentation fréquentielle d un signal simple 3) Exemples de spectres de
DUT Techniques de commercialisation Mathématiques et statistiques appliquées
DUT Techniques de commercialisation Mathématiques et statistiques appliquées [email protected] Université de Caen Basse-Normandie 3 novembre 2014 [email protected] UCBN MathStat
FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines
FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html
Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48
Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au
INTERPRÉTATION ET ANOMALIES DE LA PROSPECTION À RÉSONANCE MAGNÉTIQUE (MRS)
1 Géologie, géotechnique, risques naturels, hydrogéologie, environnement et services scientifico-techniques INTERPRÉTATION ET ANOMALIES DE LA PROSPECTION À RÉSONANCE MAGNÉTIQUE (MRS) INTERPRETATION DES
Caractéristiques des ondes
Caractéristiques des ondes Chapitre Activités 1 Ondes progressives à une dimension (p 38) A Analyse qualitative d une onde b Fin de la Début de la 1 L onde est progressive puisque la perturbation se déplace
5. Analyse des signaux non périodiques
5. Analyse des signaux non périodiques 5.. Transformation de Fourier 5... Passage de la série à la transformation de Fourier Le passage d'un signal périodique à un signal apériodique peut se faire en considérant
Dan Istrate. Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier
Détection et reconnaissance des sons pour la surveillance médicale Dan Istrate le 16 décembre 2003 Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier Thèse mené dans le cadre d une collaboration
= constante et cette constante est a.
Le problème Lorsqu on sait que f(x 1 ) = y 1 et que f(x 2 ) = y 2, comment trouver l expression de f(x 1 )? On sait qu une fonction affine a une expression de la forme f(x) = ax + b, le problème est donc
Angles orientés et fonctions circulaires ( En première S )
Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble
On ne peut pas entendre la forme d un tambour
On ne peut pas entendre la forme d un tambour Pierre Bérard Institut Fourier Laboratoire de Mathématiques Unité Mixte de Recherche 5582 CNRS UJF Université Joseph Fourier, Grenoble 1 Introduction 1.1 Position
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,
I- Définitions des signaux.
101011011100 010110101010 101110101101 100101010101 Du compact-disc, au DVD, en passant par l appareil photo numérique, le scanner, et télévision numérique, le numérique a fait une entrée progressive mais
n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t
3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes
1.1.1 Signaux à variation temporelle continue-discrète
Chapitre Base des Signaux. Classi cation des signaux.. Signaux à variation temporelle continue-discrète Les signaux à variation temporelle continue sont des fonctions d une ou plusieurs variables continues
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Représentation d une distribution
5 Représentation d une distribution VARIABLE DISCRÈTE : FRÉQUENCES RELATIVES DES CLASSES Si dans un graphique représentant une distribution, on place en ordonnées le rapport des effectifs n i de chaque
UNIVERSITE DE TECHNOLOGIE DE COMPIEGNE. Le Traitement du Signal aléatoire
UNIVERSITE DE TECHNOLOGIE DE COMPIEGNE Le Traitement du Signal aléatoire SY06 partie II - Printemps 2009 P.Simard 12 mai 2009 2 Table des matières 1 Besoins de modèles aléatoires pour les signaux 5 2 Principaux
Spectrophotométrie. Spectrophotomètre CCD2. Réf : 701 606. Version 1.0. Français p 2. Version : 4105
Réf : Version 1.0 Français p 2 Version : 4105 Spectrophotomètre CCD2 1 Avant-propos et description Chère cliente, cher client, nous vous félicitons d'avoir choisi notre Spectrophotomètre CCD2 pour réaliser
Les travaux doivent être remis sous forme papier.
Physique mathématique II Calendrier: Date Pondération/note nale Matériel couvert ExercicesSérie 1 : 25 septembre 2014 5% RH&B: Ch. 3 ExercicesSérie 2 : 23 octobre 2014 5% RH&B: Ch. 12-13 Examen 1 : 24
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
