Triangles Triangles.odt clicprof.free.fr 1/10

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Triangles Triangles.odt clicprof.free.fr 1/10"

Transcription

1 Triangles Table des matières 1Quelques rappels sur les triangles...2 1Médiatrices...2 2Bissectrices...2 3Nature d'un Triangle...2 Triangle isocèle...2 Triangle équilatéral...2 Triangle rectangle...2 2Construction de triangles...3 1On connaît la longueur des trois côtés du triangle...3 2On connaît la longueur de deux côtés et la mesure de l angle compris entre ces côtés On connaît la longueur d un côté et la mesure des deux angles qui lui sont adjacents...5 4Je reproduis un triangle, un angle...6 5inégalité triangulaire...7 3Cercle circonscrit à un triangle...8 1Médiatrices...8 2Définition Cercle circonscrit...8 3Méthode : Tracer un cercle circonscrit...8 4Hauteurs d'un triangle...9 1Vocabulaire...9 2Définition...9 Remarque :...9 3Méthode : Tracer la hauteur issue de A d un triangle ABC...9 5Médiane d'un triangle Définition...10 Remarque : Cas particuliers...10 Propriété :...10 Remarque : Triangles.odt clicprof.free.fr 1/10

2 1 Quelques rappels sur les triangles 1 Médiatrices La médiatrice (d) du côté [AB] est la droite perpendiculaire au segment en son milieu. 2 Bissectrices La bissectrice (g) de l'angle ÂBC est la demi-droite qui partage cet angle en deux angles adjacents de même mesure. 3 Nature d'un Triangle Un triangle est un polygone qui a trois côtés. Triangle isocèle Un triangle isocèle est un triangle qui a deux côtés de même longueur. (vient du grec, iso : égal et skelos : jambes) Triangle équilatéral Un triangle équilatéral est un triangle qui a trois côtés de même longueur. (vient du latin, equi : égal et later : côté) Triangle rectangle Un triangle rectangle est un triangle qui a un angle droit Triangles.odt clicprof.free.fr 2/10

3 2 Construction de triangles 1 On connaît la longueur des trois côtés du triangle. Tracer un triangle ABC tel que AB= 1,9cm ; AC=3,5cm et BC=2,8cm Méthode : tracer le segment [AC] tracer un arc de cercle de centre A et de rayon AB tracer un arc de cercle de centre C et de rayon BC le point B se situe à l'intersection des arcs de cercle 5 01 Triangles.odt clicprof.free.fr 3/10

4 2 On connaît la longueur de deux côtés et la mesure de l angle compris entre ces côtés. Tracer un triangle DEF tel que DE= 1,8 cm ; DF=3,5 cm et ÊDF=28 Méthode : tracer le segment [DF] tracer l'angle ÊDF tracer un arc de cercle de centre D et de rayon DE Placer le point E à l'intersection de l'arc de cercle et du côté de l'angle 5 01 Triangles.odt clicprof.free.fr 4/10

5 3 On connaît la longueur d un côté et la mesure des deux angles qui lui sont adjacents Tracer un triangle GHI tel que GH= 4,2 cm ; ÎGH=38 et ĜHI=43 Méthode : tracer le segment [DF] tracer les angles ÎGH=38 et ĜHI=43 Placer le point I à l'intersection des deux côtés d'angles 5 01 Triangles.odt clicprof.free.fr 5/10

6 4 Je reproduis un triangle, un angle Reproduire l angle ci-contre à l aide d un compas et d une règle non graduée Méthode : 5 01 Triangles.odt clicprof.free.fr 6/10

7 5 inégalité triangulaire On admet les propriétés suivantes : Propriétés : On peut construire un triangle dont les côtés ont pour longueurs trois nombres donnés si la plus grande longueur est inférieure à la somme des deux autres. AB < AM + MB Si la plus grande longueur est égale à la somme des deux autres,on obtient trois points alignés. On dit dans ce cas que l on obtient un triangle aplati. Si : AM + MB = AB alors M [AB] Si la plus grande longueur est supérieure à la somme des deux autres alors on ne peut pas construire de triangle. Si AB > AM + NB alors pas de triangle possible Remarque : Le plus court chemin entre deux points est la ligne droite. Propriétés : Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres. Si M [AB] alors AB = AM + MB Si M [AB] alors AB < AM + MB Quelle que soit la position du point M, on a toujours : AB AM + MB 5 01 Triangles.odt clicprof.free.fr 7/10

8 3 Cercle circonscrit à un triangle 1 Médiatrices Propriété : Tous les points situés sur la médiatrice de [AB] sont à égale distance de A et de B. On dit qu ils sont EQUIDISTANTS de A et de B. A M B 2 Définition Cercle circonscrit Les médiatrices des trois côtés d un triangle se coupent en un même point : on dit qu elles sont concourantes. Ce point commun est le centre d un cercle passant par les trois sommets du triangle. On dit que ce cercle est le cercle circonscrit au triangle. N Remarque : On admettra que le centre du cercle circonscrit à un triangle est le seul point équidistant des trois sommets du triangle. 3 Méthode : Tracer un cercle circonscrit 5 01 Triangles.odt clicprof.free.fr 8/10

9 4 Hauteurs d'un triangle 1 Vocabulaire [CB] est le côté opposé au sommet A [BA] est le côté opposé au sommet C [AC] est le côté opposé au sommet B 2 Définition Dans un triangle, une hauteur est une droite qui passe par un sommet et qui est perpendiculaire au côté opposé à ce sommet. Remarque : L expression «hauteur d un triangle» a plusieurs sens. La hauteur issue de C est : la droite (DC), ou le segment [DC], ou la longueur du segment [DC]. 3 Méthode : Tracer la hauteur issue de A d un triangle ABC 5 01 Triangles.odt clicprof.free.fr 9/10

10 5 Médiane d'un triangle 1 Définition Dans un triangle, on appelle médiane toute droite qui passe : par un sommet par le milieu du côté opposé à ce sommet. Remarque : Selon le contexte, une médiane est une droite, un segment, ou une longueur. La médiane issue de A est : la droite (BD) le segment [BD] la longueur BD. 6 Cas particuliers Propriété : Dans un triangle ABC isocèle en A, la médiatrice de [BC], la bissectrice de BAC, la médiane issue de A et la hauteur issue de A sont confondues. Remarque : Un triangle équilatéral EFG est isocèle en E, en F et en G. Si on trace par exemple les trois médianes du triangle, on a aussi obtenu les trois hauteurs, les trois bissectrices et les trois médiatrices Triangles.odt clicprof.free.fr 10/10

Chapitre 4 : Triangles.

Chapitre 4 : Triangles. Chapitre 4 : Triangles. I Somme des angles d un triangle. 1 Propriété. La somme des mesures des angles d un triangle est égale à 180. Dans le triangle JKL, on a + + = 180. 2 Triangles particuliers. Triangle

Plus en détail

Cours. Cas. Cas. Cas. Conclusion : = 3 cm et. BC = 3 cm. = 2 cm et. o BC AB + AC. 5 ième COURS PROFESSEUR

Cours. Cas. Cas. Cas. Conclusion : = 3 cm et. BC = 3 cm. = 2 cm et. o BC AB + AC. 5 ième COURS PROFESSEUR Cours n 4 : TRIANGLES I- L INEGALITE TRIANGULAIRE Cas n 1 : construire un segment [AB], puis un point C tel que : AB = 6 cm ; AC = 3 cm et BC = 4 cm. C A B Cas n 2 : construire un segment [AB], puis un

Plus en détail

PROPRIÉTÉS À CONNAÎTRE ABSOLUMENT :

PROPRIÉTÉS À CONNAÎTRE ABSOLUMENT : THÈMES ABORDÉS : L INÉGALITÉ TRIANGULAIRE LA SOMME DES ANGLES DANS UN TRIANGLE LES DROITES REMARQUABLES DU TRIANGLE PROPRIÉTÉS À CONNAÎTRE ABSOLUMENT : 1. La somme des angles d un triangle est égale à

Plus en détail

5 ème COURS triangles et droites remarquables. 1 Inégalité triangulaire

5 ème COURS triangles et droites remarquables. 1 Inégalité triangulaire 1 Inégalité triangulaire Quels que soient les points A, B et C on a l inégalité : AB AC + CB appelé linégalité triangulaire. A, B et C, sont trois points. On a l inégalité triangulaire : AB AC + CB Ecrire

Plus en détail

Chapitre 2 : Les triangles

Chapitre 2 : Les triangles Chapitre 2 : Les triangles Compétences à valider : Utiliser les définitions et les propriétés relatives aux angles des triangles particuliers. Utiliser l'inégalité triangulaire. Construire un triangle

Plus en détail

Triangles. I. Construction de triangles. 1. Inégalité triangulaire

Triangles. I. Construction de triangles. 1. Inégalité triangulaire Triangles I. Construction de triangles 1. Inégalité triangulaire Exercice : 1. Tracer un segment [AB] tel que AB = 8 cm. Tracer un cercle de centre A et de rayon 5 cm. 2. On veut construire un cercle de

Plus en détail

Dans un triangle non aplati, la longueur de chaque côté est inférieure à la somme des deux autres côtés.

Dans un triangle non aplati, la longueur de chaque côté est inférieure à la somme des deux autres côtés. DROITES REMARQUABLES I Construction de triangles 1. Inégalité triangulaire : Voir une présentation ici et une illustration ici Propriété admise Dans un triangle non aplati, la longueur de chaque côté est

Plus en détail

COURS. Demi-droite d origine Segment d extrémités Droite A et B (AB) ou (d) [AB) [AB]

COURS. Demi-droite d origine Segment d extrémités Droite A et B (AB) ou (d) [AB) [AB] EC 4A : ELEMENTS DE MATHEMATIQUES PARALLELISME, PERPENDICULARITE, FIGURES PLANES ELEMENTAIRES COURS Objectifs du chapitre : Reconnaître et construire les figures de base de la géométrie Caractériser, reconnaître

Plus en détail

ABC est un triangle (quelconque)

ABC est un triangle (quelconque) Triangles I) Définition : Un triangle est un polygone qui trois côtés. ABC est un triangle (quelconque) II) Construction de triangles 1) Figure à main levée : Lorsque nous voulons construire une figure

Plus en détail

#2 Triangles, médiatrices et cercle circonscrit

#2 Triangles, médiatrices et cercle circonscrit #2 Triangles, médiatrices et cercle circonscrit I Construction d un triangle connaissant ses 3 longueurs Activité 1 : Construis un triangle dont les côtés mesurent 3, 5 et 9 cm. Que remarque-t-on? Réponse

Plus en détail

I Rappels sur les symétries :

I Rappels sur les symétries : I Rappels sur les symétries : I. 1 Symétrie axiale : On note I le milieu de [ AB ]. On appelle médiatrice du segment [ AB ] la droite perpendiculaire en I à ( AB ). Propriétés : La médiatrice de [ AB ]

Plus en détail

5. Définition. Arc de cercle. Un arc de cercle est une portion de cercle comprise entre deux points quelconques de ce cercle.

5. Définition. Arc de cercle. Un arc de cercle est une portion de cercle comprise entre deux points quelconques de ce cercle. 6 e Décrire des figures usuelles Objectif 04 Livre 12 Mots clefs. Cercle Rayon, diamètre, corde et arc d un cercle Équidistance Triangle, triangle isocèle, triangle rectangle, triangle équilatéral Base

Plus en détail

LES TRIANGLES. Dans un triangle, la longueur de chaque côté est inférieure à la somme des 2 autres. L INEGALITE TRIANGULAIRE :

LES TRIANGLES. Dans un triangle, la longueur de chaque côté est inférieure à la somme des 2 autres. L INEGALITE TRIANGULAIRE : I) L inégalité triangulaire : 1) Propriété : Dans un triangle, la longueur de chaque côté est inférieure à la somme des 2 autres. B A C L INEGALITE TRIANGULAIRE : BC BA + AC BA BC + AC AC AB + BC 2) Conséquences

Plus en détail

GÉOMÉTRIE DU TRIANGLE (Partie 1)

GÉOMÉTRIE DU TRIANGLE (Partie 1) GÉOMÉTRIE DU TRINGLE (Partie 1) 1 Exercice conseillé Ex1 (page8 de ce document) I. Rappels : Constructions de triangles 1) Méthodes de construction Méthode 1 : On connaît les mesures des trois CÔTÉS Vidéo

Plus en détail

Symétrie axiale et figures usuelles

Symétrie axiale et figures usuelles Symétrie axiale et figures usuelles Chapitre 10 du livre I. Axe de symétrie d un segment La médiatrice d'un segment est l'axe de symétrie de ce segment. Construction à l équerre: On utilise une règle graduée

Plus en détail

CORRECTION DU DEVOIR DE RECHERCHE N 4 classe de 5e

CORRECTION DU DEVOIR DE RECHERCHE N 4 classe de 5e CORRECTION DU DEVOIR DE RECHERCHE N 4 classe de 5e I. PARTIE COURS: Je recherche dans mon livre et je copie sur ma feuille les définitions et dans chaque cas j'illustre la définition à l'aide d'un dessin:

Plus en détail

CHAP 5G1 LES TRIANGLES

CHAP 5G1 LES TRIANGLES CHAP 5G1 LES TRIANGLES 1 Définition, triangles particuliers. 1.1 Définition Définition : Un triangle est un polygone à 3 côtés Un triangle possède donc : - 3 sommets - 3 côtés - 3 angles Conséquence :

Plus en détail

Comment démontrer que deux droites sont parallèles

Comment démontrer que deux droites sont parallèles F1 Comment démontrer que deux droites sont parallèles P : Si deux droites sont parallèles, alors toute parallèle à l une est parallèle à l autre. P : Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

CHAPITRE 3 : PARALLELISME, PERPENDICULARITE, FIGURES PLANES ELEMENTAIRES. Demi-droite d origine A passant par B. NOTATION (AB) ou (d) [AB) [AB]

CHAPITRE 3 : PARALLELISME, PERPENDICULARITE, FIGURES PLANES ELEMENTAIRES. Demi-droite d origine A passant par B. NOTATION (AB) ou (d) [AB) [AB] CHPITRE 3 : PRLLELISME, PERPENDICULRITE, FIGURES PLNES ELEMENTIRES I Droite, demi-droite, segment: droite Demi-droite d origine passant par Segment d extrémités et NOTTION () ou [) [] REPRESENTTION GRPHIQUE

Plus en détail

DROITES REMARQUABLES CAS PARTICULIERS

DROITES REMARQUABLES CAS PARTICULIERS THEME : DROITES REMARQUABLES CAS PARTICULIERS Cas particulier 1 : Le triangle isocele Isocèle : ( de isos, " égal " et skelos, " jambe ' ) qui a deux jambes. La véritable orthographe adoptée par le Dictionnaire

Plus en détail

Droites remarquables du triangle (1) Cours 4 ème

Droites remarquables du triangle (1)   Cours 4 ème Droites remarquables du triangle (1) www.mathmaurer.com Cours 4 ème I Les médiatrices du triangle 1 - Rappels sur la médiatrice d'un segment Définition 1: On appelle médiatrice d'un segment la droite qui

Plus en détail

TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés.

TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés. TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés. Th Trois longueurs étant données, Si la plus grande est

Plus en détail

ANGLES ET TRIANGLES I- CONSTRUCTION DES ANGLES :

ANGLES ET TRIANGLES I- CONSTRUCTION DES ANGLES : Chapitre 8 ANGLES ET TRIANGLES I- CONSTRUCTION DES ANGLES : Un angle est une ouverture comprise entre deux demi-droites sécantes. La construction des angles peut se faire de plusieurs manières. I-1- Par

Plus en détail

1 - Inégalité triangulaire

1 - Inégalité triangulaire 1 - Inégalité triangulaire Bilan 1 Une évidence Le plus court chemin entre deux points est la ligne droite. Tout autre chemin, passant par un troisième point est forcément plus long (ou de même longueur

Plus en détail

Cours n 9 : SYMETRIE AXIALE

Cours n 9 : SYMETRIE AXIALE Faire l activité d introduction. I- FIGURES SYMETRIQUES Définition : deux figures sont symétriques par rapport à une droite si ces deux figures se superposent par pliage suivant cette droite (avec retournement).

Plus en détail

Mathématiques LES TRIANGLES. La somme des mesures des angles d un triangle vaut 180.

Mathématiques LES TRIANGLES. La somme des mesures des angles d un triangle vaut 180. RPE LES TRNGLES. Définition Un triangle est un polygone à trois côtés.. Somme des angles d un triangle La somme des mesures des angles d un triangle vaut 180. Démonstration : ß ß On mène la parallèle par

Plus en détail

Les triangles : droites et points remarquables

Les triangles : droites et points remarquables Fiche de cours : Configurations du plan. Les triangles : droites et points remarquables Médianes et centre de gravité : Soit un triangle ABC, on appelle médiane issue de A la droite qui passe par A et

Plus en détail

manba3math 1 ASC yassine mrazek

manba3math 1 ASC yassine mrazek manba3math 1 ASC yassine mrazek septembre 2013 2 QUI PEUT FAIRE ; PEUT FAIRE MIEUX Table des matières 1 enchaînement d opérations 7 1.1 vocabulaire........................................ 7 1.1.1 la somme

Plus en détail

S11 Autour de la GEOMETRIE PLANE Vocabulaire et constructions de base

S11 Autour de la GEOMETRIE PLANE Vocabulaire et constructions de base CRPE Mise en route S11 Autour de la GEOMETRIE PLANE Vocabulaire et constructions de base 1. A et B sont deux points du plan. que représentent (AB), [AB], [AB), AB? 2. A, B et C sont trois points distincts

Plus en détail

BOITE A OUTILS. 3ème

BOITE A OUTILS. 3ème BOITE A OUTILS 3ème 2014/2015 1 COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1) En utilisant les propriétés vues en 6 ème Si deux droites sont parallèles à une même droite alors elles sont parallèles

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui compose ce polygone

Plus en détail

Chapitre 11 : Symétrie axiale.

Chapitre 11 : Symétrie axiale. Chapitre 11 : Symétrie axiale. I Approche expérimentale. Définition : Deux figures sont symétriques par rapport à une droite si, en pliant suivant cette droite, les deux figures se superposent. Cette droite

Plus en détail

La somme des 2 plus petites longueurs est égale à la plus grande longueur (Les arcs de cercle se touchent mais en un seul point!)

La somme des 2 plus petites longueurs est égale à la plus grande longueur (Les arcs de cercle se touchent mais en un seul point!) Chapitre 5 : Les constructions de triangles I) L'énoncé nous donne les 3 longueurs Nous avons vu que 3 longueurs ne représentent pas forcément un triangle: 2 des longueurs sont trop petites par rapport

Plus en détail

Triangles. 1) Somme des angles d'un triangle Propriété: La somme des trois angles d'un triangle est égale à 180. Démonstration

Triangles. 1) Somme des angles d'un triangle Propriété: La somme des trois angles d'un triangle est égale à 180. Démonstration Triangles 1) Somme des angles d'un triangle Propriété: La somme des trois angles d'un triangle est égale à 180. Démonstration On considère un triangle ABC. Traçons la droite d parallèle à (BC) passant

Plus en détail

Livret n 4: Les triangles Nom prénom :

Livret n 4: Les triangles Nom prénom : Livret n 4: Les triangles Nom prénom : Classe : Ce que je dois savoir faire en fin de chapitre : Compétences Débutant Initié Expert Construire un triangle connaissant 3 longueurs Construire un triangle

Plus en détail

Cercles et polygones

Cercles et polygones Cercles et polygones I) Le cercle : a) Soit O un point donné et R un nombre décimal positif. On appelle cercle C de centre O et de rayon R, l ensemble des points M situés à la distance R du point O. On

Plus en détail

Géométrie. Triangles, constructions et mesures

Géométrie. Triangles, constructions et mesures Géométrie Triangles, constructions et mesures 1. Triangles et caractéristiques Un triangle est une figure qui a trois côtés, trois angles et trois sommets: Il existe trois sortes de triangles qui ont des

Plus en détail

Cours de GEOMETRIE PLANE

Cours de GEOMETRIE PLANE Institut municipal : JM Labatte Géométrie plane. 1/8 Cours de GEOMETRIE PLANE I Droites Notations : Un point du plan est représenté par une lettre majuscule : A, B Une droite est notée (d), d, (D) ou (AB)

Plus en détail

THEME : ETUDE DU TRIANGLE

THEME : ETUDE DU TRIANGLE THEME : ETUDE DU TRIANGLE Utilité du compas : Si l utilisation première d un compas est de tracer des cercles, il est très souvent employé pour reporter des longueurs. Pour tracer un segment de même longueur

Plus en détail

Chap 06 - Triangles. (Inégalité triangulaire, propriétés sur les angles, médiatrices et hauteurs d un triangle) étant. plus

Chap 06 - Triangles. (Inégalité triangulaire, propriétés sur les angles, médiatrices et hauteurs d un triangle) étant. plus hap 06 - Triangles (négalité triangulaire, propriétés sur les angles, médiatrices et hauteurs d un ) ) négalité triangulaire 1) ctivité d introduction Exercice n 1 la feuille d exercices suplémentaires

Plus en détail

Construction géométrique : les outils dont on dispose

Construction géométrique : les outils dont on dispose Construction géométrique : les outils dont on dispose I. La règle La règle a deux utilisations principales : Mesurer une distance Tracer des droites II. L équerre L équerre à deux utilisations principales

Plus en détail

Rappels de collège sur la géométrie dans le plan

Rappels de collège sur la géométrie dans le plan Rappels de collège sur la géométrie dans le plan I Rappels sur les symétries : I 1 Symétrie axiale : On note I le milieu de On appelle médiatrice du segment la droite perpendiculaire en I à Propriétés

Plus en détail

Axes de symétrie. Exemple : Considérons cette figure constituée de deux cercles C1 et C2 de même rayon.

Axes de symétrie. Exemple : Considérons cette figure constituée de deux cercles C1 et C2 de même rayon. Axes de symétrie I) Axes de symétrie d une figure : Définition : Une droite (d) est un axe de symétrie d une figure si, par pliage suivant cette droite, les deux parties de la figure se superposent. Considérons

Plus en détail

Chap 06 - Triangles. (Inégalité triangulaire, propriétés sur les angles, médiatrices et hauteurs d un triangle) triangle

Chap 06 - Triangles. (Inégalité triangulaire, propriétés sur les angles, médiatrices et hauteurs d un triangle) triangle hap 06 - Triangles (Inégalité triangulaire, propriétés sur les angles, médiatrices et hauteurs d un ) I) Inégalité triangulaire 1) des longueurs des cotés d un Dans un, la longueur d un coté est toujours

Plus en détail

(AH) est une hauteur de ABC. H est orthocentre d'un triangle si et seulement si H est le point d'intersection de 2 hauteurs du triangle

(AH) est une hauteur de ABC. H est orthocentre d'un triangle si et seulement si H est le point d'intersection de 2 hauteurs du triangle FICHE G - CONFIGURATIONS du PLAN (théorèmes importants) A savoir : On peut remplacer une définition par une équivalence : «A B». Le triangle: droites et points remarquables.. Hauteurs et orthocentre. Définition:

Plus en détail

Chapitre Bissectrice Cercle inscrit Distance d un point à une droite Tangente

Chapitre Bissectrice Cercle inscrit Distance d un point à une droite Tangente Chapitre issectrice Cercle inscrit Distance d un point à une droite Tangente Connaître et utiliser la définition de la bissectrice. Utiliser différentes méthodes pour tracer : La médiatrice d un segment.

Plus en détail

GEOMETRIE ELEMENTAIRE DU PLAN ET DE L'ESPACE

GEOMETRIE ELEMENTAIRE DU PLAN ET DE L'ESPACE GEOMETRIE ELEMENTAIRE DU PLAN ET DE L'ESPACE GEOMETRIE PLANE - CONSTRUCTIONS Exercice 1 1) combien peut-on tracer de droites passant par un point? et par deux points? 2) Combien un segment contient-il

Plus en détail

Triangle isocèle et équilatéral

Triangle isocèle et équilatéral Collège Ferdinand Sarrien Bourbon-Lancy Classe de 6 ème Classe de 5 ème Classe de 4 ème Classe de ème Droites Si deux droites sont parallèles à une même droite alors ces deux droites sont parallèles entre

Plus en détail

GÉOMÉTRIE PLANE. On écrit : AB = 4cm et pas [AB] = 4cm On écrit : (AB) l (CD) et pas [AB] l [CD].

GÉOMÉTRIE PLANE. On écrit : AB = 4cm et pas [AB] = 4cm On écrit : (AB) l (CD) et pas [AB] l [CD]. GÉOMÉTRIE PLANE Langage géométrique : notations et vocabulaire. [ ] = segment [AB] = segment d extrémités A et B. AB = longueur du segment AB (ou parfois la distance de A à B). ( ) = droite (AB) = droite

Plus en détail

Chap 5 : A la règle, à l équerre, au compas et au rapporteur

Chap 5 : A la règle, à l équerre, au compas et au rapporteur Chap 5 : A la règle, à l équerre, au compas et au rapporteur A la fin du chapitre, tu dois être capable de : 6 G 7 : Tracer, par un point donné, la perpendiculaire ou la parallèle à une droite donnée (usage

Plus en détail

Parallèles -perpendiculaires

Parallèles -perpendiculaires Parallèles -perpendiculaires I) Droites sécantes concourantes Définitions : On dit que : 1) 2 droites sont sécantes lorsqu elles ont un seul point en commun A attention : il faut parfois prolonger les

Plus en détail

Chapitre 3. Les Triangles. Savoir que la somme des mesures des angles d'un triangle vaut...

Chapitre 3. Les Triangles. Savoir que la somme des mesures des angles d'un triangle vaut... Chapitre 3 Les Triangles bjectifs : Savoir que la somme des mesures des angles d'un triangle vaut... Connaître l'inégalité triangulaire Savoir construire un triangle avec une règle, un compas, un rapporteur,

Plus en détail

Le point. 2. Axiome d'euclide (III ème IV ème siècle av J.C.) 3. Parties d'une droite. RAPPELS DE GÉOMÉTRIE

Le point. 2. Axiome d'euclide (III ème IV ème siècle av J.C.) 3. Parties d'une droite. RAPPELS DE GÉOMÉTRIE 1. Le point. C'est l élément élémentaire de la géométrie. Une infinité de points constitue une droite. Sur le dessin, la droite (D) passe par une infinité de points : on dit que ces points sont alignés.

Plus en détail

DROITES REMARQUABLES D'UN TRIANGLE. I - Médiatrices - Cercle circonscrit Les médiatrices des côtés d'un triangle se coupent en un même point

DROITES REMARQUABLES D'UN TRIANGLE. I - Médiatrices - Cercle circonscrit Les médiatrices des côtés d'un triangle se coupent en un même point DROITES REMARQUABLES D'UN TRIANGLE I - Médiatrices - Cercle circonscrit Les médiatrices des côtés d'un triangle se coupent en un même point Leur point d'intersection est le centre d'un cercle passant par

Plus en détail

Chapitre 4. Deux angles sont complémentaires lorsque la somme de leurs mesures est 90, c est-à-dire lorsqu ils forment un angle droit.

Chapitre 4. Deux angles sont complémentaires lorsque la somme de leurs mesures est 90, c est-à-dire lorsqu ils forment un angle droit. Nom : Chapitre 4 Groupe : SAVOIRS 4.1 Les différents types d angles Les angles complémentaires Deux angles sont complémentaires lorsque la somme de leurs mesures est 90, c est-à-dire lorsqu ils forment

Plus en détail

THEOREMES DE GEOMETRIE

THEOREMES DE GEOMETRIE THEOREMES DE GEOMETRIE DROITES REMARQUABLES D'UN TRIANGLE Hauteurs : On appelle hauteur d'un triangle une droite qui passe par un sommet du triangle et qui est perpendiculaire au coté opposé à ce sommet.

Plus en détail

Chap 5 : A la règle, à l équerre, au compas et au rapporteur

Chap 5 : A la règle, à l équerre, au compas et au rapporteur Chap 5 : A la règle, à l équerre, au compas et au rapporteur A la fin du chapitre, tu dois être capable de : 6 G 7 : Tracer, par un point donné, la perpendiculaire ou la parallèle à une droite donnée (usage

Plus en détail

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES?

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1 COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1) En utilisant les propriétés vues en 6 ème Si deux droites sont parallèles à une même droite alors elles sont parallèles entre elles On sait que

Plus en détail

1 La médiatrice Définition de la médiatrice Construction d une médiatrice Propriété des médiatrices d un triangle...

1 La médiatrice Définition de la médiatrice Construction d une médiatrice Propriété des médiatrices d un triangle... Sommaire 1 La médiatrice 2 1.1 Définition de la médiatrice...................... 2 1.2 Construction d une médiatrice.................... 2 1.3 Propriété des médiatrices d un triangle............... 4 2

Plus en détail

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme SOMMAIRE Fiche 1 : Démontrer que deux droites sont parallèles Fiche 2 : Démontrer que deux droites sont perpendiculaires Fiche 3 : Démontrer qu un triangle est équilatéral Fiche 4 : Démontrer qu un triangle

Plus en détail

GEOMETRIE ELEMENTAIRE DU PLAN ET DE L'ESPACE -CORRECTIONS

GEOMETRIE ELEMENTAIRE DU PLAN ET DE L'ESPACE -CORRECTIONS GEOMETRIE ELEMENTAIRE DU PLAN ET DE L'ESPACE -CORRECTIONS Exercice 1 1) On peut tracer une infinité de droites passant par un point mais on ne peut tracer qu une seule droite passant par deux points. 2)

Plus en détail

Construction de triangles

Construction de triangles Construction de triangles Résolution d'un triangle: détermination des différents éléments (longueurs des côtés, mesure des angles,...) à partir de certains autres. Sommaire Construire un triangle connaissant

Plus en détail

CORRECTION EXERCICES : DROITES ; CERCLES ; TRIANGLES

CORRECTION EXERCICES : DROITES ; CERCLES ; TRIANGLES I. CORRECTION EXERCICES : DROITES ; CERCLES ; TRIANGLES a) Un segment contient une infinité de points (tout comme une droite!) b) (AB) et (CD) se coupent car elles ne sont pas parallèles. c) On peut tracer

Plus en détail

GEOMETRIE PLANE ( suite)

GEOMETRIE PLANE ( suite) GEOMETRIE PLANE ( suite) I La médiatrice d un segment : 1. Définition : La médiatrice du segment [AB] est la droite perpendiculaire au segment [AB] et passant par le milieu de [AB] I est. ( D) est La droite

Plus en détail

Chap 5 : A la règle, à l équerre, au compas et au rapporteur

Chap 5 : A la règle, à l équerre, au compas et au rapporteur Chap 5 : A la règle, à l équerre, au compas et au rapporteur A la fin du chapitre, tu dois être capable de : 6 G 7 : Tracer, par un point donné, la perpendiculaire ou la parallèle à une droite donnée (usage

Plus en détail

Chapitre n 10 : «Les triangles»

Chapitre n 10 : «Les triangles» Chapitre n 10 : «Les triangles» I. Rappels Vocabulaire Les sommets sont A, B, C. Les côtés sont [ AB], [ BC ] et [CA]. Les angles sont ACB, CAB et ABC. Le côté [ AB] est opposé au sommet C. Le sommet A

Plus en détail

SYMETRIE AXIALE. 1 ) symétrie axiale. a) symétrique d'un point

SYMETRIE AXIALE. 1 ) symétrie axiale. a) symétrique d'un point 1 ) symétrie axiale SYMETRIE AXIALE a) symétrique d'un point Définition : A' est le symétrique du point A par rapport à la droite (d) si (d) est la médiatrice du segment [AA'] (C'est à dire si la droite

Plus en détail

1) Une demi-droite est une partie d une droite délimitée par un point appelé origine de cette demidroite

1) Une demi-droite est une partie d une droite délimitée par un point appelé origine de cette demidroite 6 ème - 5 ème Géométrie de base Notation : On note un point à l aide d une croix pour indiquer le lieu et d une lettre MAJUSCULE à côté pour indiquer son nom Attention : Une MÊME lettre ne peut désigner

Plus en détail

ÉLÉMENTS DE GÉOMÉTRIE PLANE

ÉLÉMENTS DE GÉOMÉTRIE PLANE ÉLÉMENTS DE GÉOMÉTRIE PLANE I. DROITE ET SEGMENT 1. Généralités Il existe une droite et une seule passant par deux points A et B distincts donnés, on la note (AB). On peut dire que la droite passe par

Plus en détail

Exercices : Les éléments de géométrie

Exercices : Les éléments de géométrie Exercices : Les éléments de géométrie Montrer la construction avec cabri géomètre 1. Construire un triangle ABC et son centre de gravité G sachant que AC = 8 cm, I milieu de [AC] et IG = 3 cm 2. Sur la

Plus en détail

Les axes de symétrie. des figures usuelles

Les axes de symétrie. des figures usuelles Les axes de symétrie des figures usuelles 1. Le triangle isocèle... p2 4. Le rectangle... p6 2. Le triangle équilatéral... p3 5. Le carré... p7 3. Le losange... p5 Copyright meilleurenmaths.com. Tous droits

Plus en détail

LES DROITES DU TRIANGLE

LES DROITES DU TRIANGLE LES DROITES DU TRIANGLE DÉMONSTRATION DE LA PROPRIÉTÉ DES HAUTEURS D UN TRIANGLE... 2 DÉMONSTRATION DE LA PROPRIÉTÉ DES MÉDIANES D UN TRIANGLE... 3 DÉMONSTRATION DE LA PROPRIÉTÉ DES BISSECTRICES D UN TRIANGLE...

Plus en détail

I) LES DEUX PROPRIÉTÉS FONDAMENTALES. 1) Somme des mesures des angles d'un triangle

I) LES DEUX PROPRIÉTÉS FONDAMENTALES. 1) Somme des mesures des angles d'un triangle TRINGLES Faire au préalable l'activité 4 p183 à la maison I) LES DEUX PROPRIÉTÉS FONDMENTLES 1) Somme des mesures des angles d'un triangle Dans un triangle, la somme des mesures des angles est égale à

Plus en détail

Fiches de géométrie. Pour démontrer que deux droites sont parallèles. Pour démontrer...

Fiches de géométrie. Pour démontrer que deux droites sont parallèles. Pour démontrer... 3 Pr démontrer... Fiches de géométrie Niveau 3ème...que deux droites sont parallèles... Fiche...que deux droites sont perpendiculaires... Fiche 2...que deux longueurs sont égales... Fiche 3...que deux

Plus en détail

Seconde : Géométrie plane page 1. Géométrie plane. Pour reprendre contact n o p 239

Seconde : Géométrie plane page 1. Géométrie plane. Pour reprendre contact n o p 239 Seconde : Géométrie plane page 1 Géométrie plane Pour reprendre contact n o 1-2 - 3 p 239 I. Droites et points remarquables du triangle (A) Hauteurs Définition 1 Une hauteur est une droite passant par

Plus en détail

Fiche de cours : Configurations du plan.

Fiche de cours : Configurations du plan. Fiche de cours : Configurations du plan. Les triangles. Médianes et centre de gravité : Soit un triangle ABC, on appelle médiane issue de A la droite qui passe par A et coupe le côté [BC] en son milieu.

Plus en détail

Triangle rectangle, cercle et médiane

Triangle rectangle, cercle et médiane Triangle rectangle, cercle et médiane A) Activités préparatoires. 1. Parallèles et milieux. Exercice n 1 : Recopier et compléter les chaînons suivants : 1 er cas : (AB) est parallèle à (CD). (MN) est parallèle

Plus en détail

1) Faire un schéma codé correspondant à chaque triangle 2) Donner la nature de chaque triangle

1) Faire un schéma codé correspondant à chaque triangle 2) Donner la nature de chaque triangle Chap 9 Triangles Chap 9 Triangles Activité 2p136: 1) Faire un schéma codé correspondant à chaque triangle 2) Donner la nature de chaque triangle a) EFG tel que EF=5cm, FG=7cm, EG=4cm b) KLM tel que KL=4cm,

Plus en détail

Leçon 29. Droites remarquables du triangle

Leçon 29. Droites remarquables du triangle Tout ce qui est en bleu sera dit à l'oral ou nous sera éventuellement utile pour les questions venant du jury; le reste sera projeté. Leçon 29. Droites remarquables du triangle Introduction (à l'oral):

Plus en détail

Géométrie Figures du plan

Géométrie Figures du plan Géométrie Figures du plan Angles...2 Mesure d'un angle... 2 Le rapporteur... 2 Comparaison avec l'angle droit... 2 Configurations particulières d'angles... 2 Bissectrice d'un angle.... 2 Figures planes...3

Plus en détail

Chapitre 2 Inégalité triangulaire Droites remarquables d'un triangle Initiation à la démonstration

Chapitre 2 Inégalité triangulaire Droites remarquables d'un triangle Initiation à la démonstration 5ème Chapitre 2 Inégalité triangulaire Droites remarquables d'un triangle Initiation à la démonstration I_ Inégalité triangulaire Construction de triangles A. Propriété de l'inégalité triangulaire Dans

Plus en détail

Géométrie. Constructions des droites et points remarquables dans les triangles

Géométrie. Constructions des droites et points remarquables dans les triangles Géométrie Constructions des droites et points remarquables dans les triangles 1. Droites et points remarquables dans les triangles Les médiatrices: Les médiatrices des côtés d un triangle se coupent en

Plus en détail

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles DEMONTRER 1) Démontrer qu un point est le milieu d un segment 2) Démontrer que deux droites sont parallèles 3) Démontrer que deux droites sont perpendiculaires 4) Démontrer qu un triangle est rectangle

Plus en détail

Droites, cercles et quadrilatères

Droites, cercles et quadrilatères Droites, cercles et quadrilatères «Des outils pour les démonstrations» I Droites et segments 1) Droites Propriété 1 : Par deux points distincts A et B, il passe une seule droite ; on peut la noter (AB).

Plus en détail

PROPRIETES, THEOREME DE GEOMETRIE

PROPRIETES, THEOREME DE GEOMETRIE PROPRIETES, THEOREME DE GEOMETRIE Droites Si deux droites sont parallèles à une même troisième, alors elles sont parallèles entre elles. (6ème) Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

correction EXERCICES D ENTRAINEMENT

correction EXERCICES D ENTRAINEMENT DEVOIR NUMERO 6 : REVISION DE GEOMETRIE ETUDE DES FIGURES Révision ; inégalité triangulaire et triangles particuliers quadrilatères, quadrilatères particuliers et les symétries correction EXERCICES D ENTRAINEMENT

Plus en détail

Chapitre 6 Triangle rectangle et cercle circonscrit

Chapitre 6 Triangle rectangle et cercle circonscrit Chapitre 6 Triangle rectangle et cercle circonscrit Compétences : Exemples d'activités, commentaires :. Ex N 1,,13,31,37,56 p175 Interrogation I 6 DST n 6 poly DM6 + sur chapitre et chapitre 6 ( IUFM)

Plus en détail

SYMÉTRIE AXIALE. Exercices conseillés En devoir Exercices conseillés En devoir p182 n 12, 13, 14. p182 n 15 p180 n 12, 15, 14

SYMÉTRIE AXIALE. Exercices conseillés En devoir Exercices conseillés En devoir p182 n 12, 13, 14. p182 n 15 p180 n 12, 15, 14 1 SYMÉTRIE AXIALE Du grec, syn «avec» et metron «mesure». «symmetria» désignait la juste mesure. I. Construire le symétrique d un point Construire le symétrique de A par rapport à la droite. A 1 2 M 1

Plus en détail

S11C. Autour de la GEOMETRIE PLANE Corrigé Vocabulaire et constructions de base

S11C. Autour de la GEOMETRIE PLANE Corrigé Vocabulaire et constructions de base CRPE S11C. Autour de la GEOMETRIE PLANE Corrigé Vocabulaire et constructions de base Mise en route at hs.c om 1. (AB) représente la droite (en noir) qui passe par A et B, [AB] représente le segment (en

Plus en détail

CHAPITRE 2 CONNAITRE ET UTILISER LES TRIANGLES

CHAPITRE 2 CONNAITRE ET UTILISER LES TRIANGLES CHAPITRE 2 CONNAITRE ET UTILISER LES TRIANGLES 3 semaines : 5 + 2 séances 28 septembre au 20 octobre Inégalité triangulaire Médiatrice d'un segment Hauteurs d'un triangle Constructions avec Geogebra David

Plus en détail

VOCABULAIRE DE GEOMETRIE PLANE

VOCABULAIRE DE GEOMETRIE PLANE Fiche de vocabulaire VOCABULAIRE DE GEOMETRIE PLANE Généralités... 2 1) Nom des polygones courants... 2 2) Qu est-ce qu un polygone?... 2 La médiatrice d un segment... 3 Cercle et disque... 3 1) Le disque?

Plus en détail

6.G5 Symétrie axiale

6.G5 Symétrie axiale Symétrie Axiale Géométrie 6.G5 Symétrie axiale 6.G50[S] Connaître la symétrie axiale (constructions sur quadrillage, trouver des axes de symétrie éventuels). 6.G51[S] Construire l'image d'un point, d'un

Plus en détail

Si A (d), alors le symétrique du point A par rapport à la droite (d) est lui-même.

Si A (d), alors le symétrique du point A par rapport à la droite (d) est lui-même. I. Figures symétriques Définition : CHAPITRE : SYMETRIE AXIALE Deux figures sont symétriques par rapport à une droite, si en pliant autour de cette droite, les deux figures se superposent. Cette droite

Plus en détail

CHAPITRE 2 CONNAITRE ET UTILISER LES TRIANGLES

CHAPITRE 2 CONNAITRE ET UTILISER LES TRIANGLES CHAPITRE 2 CONNAITRE ET UTILISER LES TRIANGLES 3 semaines : 10 séances 1 au 19 octobre Inégalité triangulaire Médiatrice d'un segment Hauteurs d'un triangle Constructions avec Geogebra David Prieto Colmenarejo

Plus en détail

5 eme : Triangles et ce qui s y rapporte

5 eme : Triangles et ce qui s y rapporte 5 eme : Triangles et ce qui s y rapporte Michael A. 15 octobre 2014 Ce petit cours traitera des triangles et de ce que l on peut appliquer à un triangle pour s amuser un peu. 1 Triangles 1.1 Définition

Plus en détail

1 Quelques rappels fondamentaux de géométrie

1 Quelques rappels fondamentaux de géométrie Partie D A propos des angles droits 1 Quelques rappels fondamentaux de géométrie 1.1 Médiatrice d'un segment Définition 1: la médiatrice d'un segment est la droite perpendiculaire à celui-ci passant par

Plus en détail

Figures usuelles. Copyright meilleurenmaths.com. Tous droits réservés

Figures usuelles. Copyright meilleurenmaths.com. Tous droits réservés 1. Le triangle rectangle... p2 4. Le losange... p10 2. Le parallélogramme... p4 5. Le carré... p11 3. Le rectangle... p7 6. Le trapèze... p13 Copyright meilleurenmaths.com. Tous droits réservés 1. Le triangle

Plus en détail

Droites remarquables dans les triangles

Droites remarquables dans les triangles Droites remarquables dans les triangles F.Gaudon 16 février 2005 Table des matières 1 Différentes droites 2 1.1 Médiatrices............................ 2 1.2 Hauteurs.............................. 4 1.3

Plus en détail

Symétrie centrale: AB = A'B' Figures symétriques

Symétrie centrale: AB = A'B' Figures symétriques Symétrie centrale: Figures symétriques ide mémoire Géométrie 5 ème Le symétrique d'un segment par rapport à un point est un segment de même longueur. La symétrie centrale conserve les longueurs. ' = ''

Plus en détail