1 Rappels C est quoi une propriété? Démontrer... 4

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "1 Rappels C est quoi une propriété? Démontrer... 4"

Transcription

1 Sommaire 1 Rappels C est quoi une propriété? Démontrer Théorème des milieux Propriété n Propriété n Propriété n Exemple d utilisation de ces propriétés. 8 4 Théorème de Thalès Utilisation Exemple de rédaction

2 Chapitre 1 Rappels. 1.1 C est quoi une propriété? En mathématiques, une propriété est une proposition (une phrase) qui est toujours juste. La somme des angles d un triangle est de 180. Cette phrase est une propriété, car dans le plan, tous les triangles ont une somme des 3 angles qui fait 180. Si deux droites sont perpendiculaires, alors toute parallèle à l une est perpendiculaire à l autre. Cette proposition aussi est une propriété. Si un nombre est multiple de trois, alors la somme de ses chiffres est divisible par trois. Cette proposition aussi est une propriété (c est le critère de divisibilité par trois). 2

3 La proposition suivante n est pas une propriété. Si AB = BC, alors B est le milieu de [AC]. En effet, il existe un cas de figure pour laquelle AB = BC, mais B n est pas le milieu de [BC]. Cette figure est un contre exemple. Figure 1.1 contre exemple Bien qu il y ait de nombreuses façons d écrire une propriété, il est préférable de l écrire sous la forme : Si... alors... cause conséquence En effet, ainsi on repère plus facilement la cause (avant le mot alors) et la conséquence (après le mot alors). 3

4 1.2 Démontrer. Une démonstration est une réponse à une question posée dans un énoncé. C est une justification certaine, dans laquelle on utilise une propriété pour répondre à la question. Ce petit texte comporte en général trois parties : 1 ) Les conditions d utilisation de la propriété. 2 )la propriété (sous la forme) Si... alors... conditions d utilisation but 3 )La conclusion (c est la réponse à la question posée). Ces trois parties sont liées entre elles. N importe quelle propriété ne peut pas convenir. Une propriété ne peut être utilisable que si son but correspond à la question posée, et dans ce cas elle sera utilisée que si on est certain d avoir dans l énoncé, les conditions d utilisation. 4

5 Chapitre 2 Théorème des milieux. Il existe trois propriétés qui utilisent une figure semblable. 2.1 Propriété n 1. Si une droite pa s se par le milieu de deux côtés d'un triangle, alor s elle est parallèle au troi sième côté. Figure 2.1 propriété des milieux n 1 Dans cette figure la droite (MN), qui passe par les milieux M et N des segments [AB] et [AC] est parallèle au 3e côté [BC]. Le but de cette propriété est de prouver que deux droites sont parallèles. Les conditions d utilisation de cette propriété sont : une droite qui passe par les milieux de deux côtés d un triangle. 5

6 2.2 Propriété n 2. Si un segment joint les milieux de deux côtés d'un triangle, alor s il mesure la moitié de la longueur du troi sième côté. Figure 2.2 propriété des milieux n 2 Dans cette figure le segment [MN], qui passe par les milieux M et N des segments [AB] et [AC] mesure la moitié de la longueur du segment [BC]. Le but de cette propriété est de calculer la longueur d un segment. Les conditions d utilisation de cette propriété sont : un segment qui joint les milieux de deux côtés d un triangle. 6

7 2.3 Propriété n 3. Si une droite pa s se par le milieu d'un côté d'un triangle et est parallèle à un deuxième côté, alor s elle cou pe le troi sième côté en son milieu. Figure 2.3 propriété des milieux n 3 Dans cette figure la droite (MN), qui passe par le milieu M du segment [AB] et est parallèle à la droite (BC) coupe le côté [AC] en son milieu N. Le but de cette propriété permet de prouver qu un point est le milieu d un segment. Les conditions d utilisation de cette propriété sont : une droite parallèle à un côté d un triangle et passant par le milieu d un autre côte. 7

8 Chapitre 3 Exemple d utilisation de ces propriétés. Enoncé n 1 : En utilisant les informations portées sur la figure, prouver que G est le milieu de [AF]. Rédaction de la démonstration : On sait que dans le triangle ABF, D est le milieu de [AB], et que (DE) // (BC). Or, si droite passe par le milieu d un côté d un triangle et est parallèle à un deuxième côté, alors elle coupe le troisième côté en son milieu. Donc (DE) coupe [AF] en son milieu G. Conditions d utilisation on cite la propriété la conclusion 8

9 Enoncé n 2 : En utilisant les informations portées sur la figure, calculer la longueur du segment [DA]. Rédaction de la démonstration : On sait que dans le triangle EHC, D est le milieu de [HE], et A est le milieu de [EC]. Or, si un segment joint les milieux de deux côtés d un triangle, alors il mesure la moitié de la longueur du troisième côté. Conditions d utilisation on cite la propriété Donc DA = HC 2 = 4 = 2 cm. la conclusion 2 9

10 Enoncé n 3 : En utilisant les informations portées sur la figure, démontrer que (AD) // (CG). Rédaction de la démonstration : On sait que dans le triangle ECG, D est le milieu de [EG], et A est le milieu de [EC]. Or, si une droite passe par le milieu de deux côtés d un triangle, alors elle est parallèle au troisième côté. Donc (AD) // (CG). Conditions d utilisation on cite la propriété la conclusion 10

11 Chapitre 4 Théorème de Thalès. 4.1 Utilisation. Le but de ce théorème est de calculer une longueur. Les conditions de son utilisation, c est d avoir une configuration géométrique dans laquelle il y a deux droites sécantes et deux droites parallèles. Comme dans cette configuration de figure : 11

12 En pratique pour déterminer les rapports de longueurs à partir d une figure, on commence par repèrer le point d intersection des deux sécantes. Dans la figure suivante, c est le point A Ensuite, chaque rapport est composé de deux longueurs qui sont sur la même sécante. AB, rapport de longueurs sur la sécante (AD) AD AC, rapport de longueurs sur la sécante (AE) AE d ou la formule : AB AD = AC AE = BC DE 12

13 4.2 Exemple de rédaction. Dans la figure suivante, sachant que les droites (BC) et (DE) sont parallèles, calculer EF. On sait que dans ADE, (BC)//(DE), que Cɛ(AE) et que Bɛ(AD) D après le théorème de Thalès AC AE = AB AD = BC DE 6 10 = AB AD = 4, 5 DE d où 6 10 = 4, 5 DE Conditions d utilisation nom de la propriété égalité du théorème on remplace les longueurs on ne garde qu une partie de l égalité DE = 10 4, 5 6 Donc DE = 7, 5cm la conclusion 13

COURS. Dans un triangle rectangle, le côté opposé à l angle droit est appelé hypoténuse.

COURS. Dans un triangle rectangle, le côté opposé à l angle droit est appelé hypoténuse. EC 4A : ELEMENTS DE MATHEMATIQUES THEOREMES DE PYTHAGORE ET DE THALES COURS Objectifs du chapitre : Déterminer des longueurs dans un triangle en utilisant le théorème de Pythagore ou de Thalès. Démontrer

Plus en détail

1. Tracer un triangle ABC et placer le point M milieu de [AB]. Soit le point N symétrique

1. Tracer un triangle ABC et placer le point M milieu de [AB]. Soit le point N symétrique 4 ème D DS4 triangles : milieux, parallèles sujet 1 2009-2010 Agrandissement - réduction NOM : Prénom : Note : 20 Objectif Acquis En cours Non Acquis d acquisition Connaître et utiliser les théorèmes relatifs

Plus en détail

Construire et de crire une figure ge ome trique De monstrations en ge ome trie plane

Construire et de crire une figure ge ome trique De monstrations en ge ome trie plane Analyse de la figure Notes Géométrie 2016 Construire et de crire une figure ge ome trique De monstrations en ge ome trie plane Construire et décrire une figure géométrique Un programme de tracé est une

Plus en détail

I. Propriétés de géométrie analytique.

I. Propriétés de géométrie analytique. I. Propriétés de géométrie analytique. Activité 1 Dans un repère orthonormé (O ; I ; J), a. Distance entre deux points. Dans un repère orthonormée (O ; I ; J) on considère deux point A(2 ; 1) et B(5 ;

Plus en détail

Triangles semblables/ théorème de Thalès

Triangles semblables/ théorème de Thalès Nom : Devoir de mathématique / Correction Triangles semblables/ théorème de Thalès Ex1 *: Les triangles ABC et EDR sont semblables Compléter le tableau suivant : Sommets homologues Côtés homologues Angles

Plus en détail

Théorèmes et réciproques de Pythagore et Thales

Théorèmes et réciproques de Pythagore et Thales Théorèmes et réciproques de Pythagore et Thales I) Théorème de Pythagore : Soit ABC un triangle rectangle en B : Théorème de Pythagore : Si ABC est un triangle rectangle en B alors AC² = AB² + BC² Exemple

Plus en détail

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles DEMONTRER 1) Démontrer qu un point est le milieu d un segment 2) Démontrer que deux droites sont parallèles 3) Démontrer que deux droites sont perpendiculaires 4) Démontrer qu un triangle est rectangle

Plus en détail

Triangles et parallèles

Triangles et parallèles Triangles et parallèles I) Propriétés sur les droites des milieux : a) Première propriété ( pour montrer que deux droites sont parallèles ) : Soit ABC un triangle, M le milieu de [AB] et N le milieu de

Plus en détail

Volume d une boule = 4 3 π r3

Volume d une boule = 4 3 π r3 Page 1 sur 5 Figure : Calcul d aires : exemple Parallélogramme Rectangle... Base hauteur Triangles base hauteur 2 Aire du parallélogramme ABCD = DC AE pour repérer la hauteur et la base, j ai repassé l

Plus en détail

1 Préambule Vocabulaire La racine carré d un nombre Qui était Pythagore... 3

1 Préambule Vocabulaire La racine carré d un nombre Qui était Pythagore... 3 Sommaire 1 Préambule. 2 1.1 Vocabulaire............................... 2 1.2 La racine carré d un nombre..................... 3 1.3 Qui était Pythagore.......................... 3 2 Théorème de Pythagore.

Plus en détail

I. Théorème de Thalès. a. Configuration de Thalès :

I. Théorème de Thalès. a. Configuration de Thalès : I. Théorème de Thalès. a. onfiguration de Thalès : hapitre n 1 : le théorème de Thalès et sa réciproque Soient (d)et (d ) deux droites sécantes en Soient et deux points de (d), distincts de } "configuration

Plus en détail

I. Théorème de Thalès

I. Théorème de Thalès MDI Lycée Clément Ader THEOREME DE THALES I. Théorème de Thalès 1. Rappel (4ème) Dans un triangle ABC, si M est un point du côté [AB], N un point du côté [AC], et si les droites (BC) et (MN) sont parallèles,

Plus en détail

agrandissement > 1 rapport coefficient d agrandissement réduction 0 < k < 1 rapport coefficient de réduction et k sont inverses k = 1

agrandissement   > 1 rapport coefficient d agrandissement    réduction 0 < k < 1 rapport coefficient de réduction et k sont inverses k = 1 ET SA RECIPROQUE I Agrandissement et réduction d un triangle Sur cette figure nous avons M (AB) et N () et (MN) // (). On peut dire que le triangle AMN est un agrandissement du triangle A. Toutes les longueurs

Plus en détail

LES DROITES PARALLELES

LES DROITES PARALLELES LES DROITES PARALLELES D. LE FUR Lycée Pasteur, São Paulo Le théorème de Thalès Les configurations de Thalès Le triangle N B O M A Les configurations de Thalès Le triangle La figure papillon N B B O M

Plus en détail

3 ème BREVET : théorème de Thalès

3 ème BREVET : théorème de Thalès Exercice 1 1 Tracer en triangle ABC rectangle en A tel que : AB = 5 cm et AC = 3 cm. Placer le point D sur [AB] tel que BD = 4 cm. Tracer la perpendiculaire à (AB) passant par D, elle coupe [BC] en E.

Plus en détail

Chapitre 5 : Droites perpendiculaires et droites parallèles

Chapitre 5 : Droites perpendiculaires et droites parallèles Chapitre 5 : Droites perpendiculaires et droites parallèles Dans ce chapitre, on utilisera la règle et l équerre. 1) Droites perpendiculaires : Rappel : Si deux droites se coupent en un point, on dit qu

Plus en détail

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme SOMMAIRE Fiche 1 : Démontrer que deux droites sont parallèles Fiche 2 : Démontrer que deux droites sont perpendiculaires Fiche 3 : Démontrer qu un triangle est équilatéral Fiche 4 : Démontrer qu un triangle

Plus en détail

THEOREME DE THALES et sa réciproque

THEOREME DE THALES et sa réciproque Chapitre 3 THEOREME DE THALES et sa réciproque 1 I. Théor orème de Thalès 1) Rappel Soient a, b, c et d 4 nombres tels que b 0 et d 0, Si a b = c d alors a d = b c {égalité des «produits en croix»} On

Plus en détail

Chapitre 4 : Droites perpendiculaires et droites parallèles

Chapitre 4 : Droites perpendiculaires et droites parallèles Chapitre 4 : Droites perpendiculaires et droites parallèles Dans ce chapitre, on utilisera la règle et l équerre. 1) Droites perpendiculaires : Rappel : Si deux droites se coupent en un point, on dit qu

Plus en détail

I) Milieux et droites parallèles dans un triangle

I) Milieux et droites parallèles dans un triangle Chapitre 9 Triangles et droites parallèles I) Milieux et droites parallèles dans un triangle 1) Activités Activité 1 1) Effectuer la construction suivante : Tracer un triangle ABC ; Placer le milieu I

Plus en détail

Les droites parallèles et perpendiculaires

Les droites parallèles et perpendiculaires Les droites parallèles et perpendiculaires 1. Rappels du vocabulaire Je lis Point Droite Segment Demi- droite J écris Je dessine M [AB] est (AB) est AB est Le point A appartient à la droite (d). On note

Plus en détail

DROITES ET PLANS DE L'ESPACE

DROITES ET PLANS DE L'ESPACE DROITES ET PLANS DE L'ESPACE I. Positions relatives de droites et de plans 1) Positions relatives de deux droites Deux droites de l'espace sont soit coplanaires (dans un même plan) soit non coplanaires.

Plus en détail

Collège Blanche de Castille. Les calculatrices sont autorisées (il est interdit de se les échanger) ainsi que les instruments usuels de dessin.

Collège Blanche de Castille. Les calculatrices sont autorisées (il est interdit de se les échanger) ainsi que les instruments usuels de dessin. 3 ème A - B C Composition 2 de MATHÉMATIQUES Date : 03/03/2010 Durée : 2h Collège Blanche de Castille Coefficient : Note sur : 0 Présentation : / Les calculatrices sont autorisées (il est interdit de se

Plus en détail

Le théorème de Thalès

Le théorème de Thalès Le théorème de Thalès Programmes : 4 e : - Triangles, milieux et parallèles : théorèmes relatifs aux milieux de deux côtés d un triangle - Triangles déterminés par 2 droites parallèles coupant deux demi-droites

Plus en détail

3x d) Lire sur le graphique, l abscisse du point d intersection des deux droites. Pour cette valeur de x, quelle est la nature du triangle BDC?

3x d) Lire sur le graphique, l abscisse du point d intersection des deux droites. Pour cette valeur de x, quelle est la nature du triangle BDC? 3 ème B DS5 fonctions linéaire et affine 013-014 sujet 1 Exercice 1 (1 points) Les droites (DC) et (BE) sont parallèles. a) Démontrer que la fonction qui à x associe DC est une fonction linéaire.,5 b)

Plus en détail

4 ème C IE5 triangles : milieux, parallèles sujet NOM : Prénom : Note : ème C IE5 triangles : milieux, parallèles sujet

4 ème C IE5 triangles : milieux, parallèles sujet NOM : Prénom : Note : ème C IE5 triangles : milieux, parallèles sujet NOM : Prénom : ABC est un triangle rectangle en A. Le point I est le milieu du segment [BC]. Le point J est le milieu du segment [AB]. Démontrer que les droites (IJ) et (AB) sont perpendiculaires. Note

Plus en détail

Collège Blanche de Castille. Partie I : Activités numériques (12 points)

Collège Blanche de Castille. Partie I : Activités numériques (12 points) 3 ème A - B - C Composition 1 de MATHÉMATIQUES Date : 10/11/2010 Durée : 2h Collège Blanche de Castille Coefficient : 3 Note sur : 40 Présentation : /4 Les calculatrices sont autorisées (il est interdit

Plus en détail

Chapitre 14 Propriétés de Thalès

Chapitre 14 Propriétés de Thalès Chapitre 14 Propriétés de Thalès Pour les exercices 1 et 2, écrire les égalités données par le théorème de Thalès sans rédiger la justification. 1 a. Les droites (NP) et (QM) sont parallèles. b. Les droites

Plus en détail

4 ème Cours triangles : milieux et parallèles Agrandissement et réduction. I Triangles et milieux. a) Avec deux milieux.

4 ème Cours triangles : milieux et parallèles Agrandissement et réduction. I Triangles et milieux. a) Avec deux milieux. I Triangles et milieux a) Avec deux milieux Conjecturer Tracer un triangle ABC. Placer le point I milieu de [AB] et le point J milieu de [AC]. Tracer la droite (IJ). Que semble-t-il se passer? Recommencer

Plus en détail

Les sommets homologues A et F coïncident et les droites DE et BC sont parallèles.

Les sommets homologues A et F coïncident et les droites DE et BC sont parallèles. Triangles semblables. Défintions Deux triangles sont semblables s'ils ont trois angles de même mesure. C' C A B A' [ AB] et [ A' B '], [ AC] et [ A' C '] ainsi que [ ] et [ ' '] BC B C sont des côtés homologues.

Plus en détail

S13. Autour des théorèmes de PYTHAGORE et THALES

S13. Autour des théorèmes de PYTHAGORE et THALES CRPE S1. Autour des théorèmes de PYTHAGORE et THALES Mise en route A. Dans chaque exercice, une configuration à reconnaître une propriété à connaitre une démonstration à rédiger 1. ARC est un triangle

Plus en détail

Thème N 2 : THEOREME DE THALES (1)

Thème N 2 : THEOREME DE THALES (1) Thème N 2 : THEOREME DE THLES (1) EQUTION (2) la fin du thème, tu dois savoir : Résoudre d une équation de la forme x b ou a b (rappels de 4 ). a c x c omment faire une démonstration : «chaînon» (rappels

Plus en détail

Correction Interrogation de Mathématiques

Correction Interrogation de Mathématiques Correction Interrogation de Mathématiques A Exercice 1 : En utilisant les informations portées sur le dessin, calculer les longueurs CD et E. 5,4 On donnera l arrondi à 0,1 cm près. (Les mesures sont exprimées

Plus en détail

Théorème de Thalès Corrigés d exercices / Version de décembre 2012

Théorème de Thalès Corrigés d exercices / Version de décembre 2012 Corrigés d exercices / Version de décembre 0 Les exercices du livre corrigés dans ce document sont les suivants : Page 06 : N, 4, 7, 8 Page 07 : N 0, 4 Page : N 5 Page : N 53 N page 06 Le segment [ AB

Plus en détail

DIPLÔME NATIONAL DU BREVET MÉTROPOLE - LA RÉUNION - MAYOTTE SESSION 2007

DIPLÔME NATIONAL DU BREVET MÉTROPOLE - LA RÉUNION - MAYOTTE SESSION 2007 1 sur 7 http://www.ilemaths.net/maths_3-sujet-brevet-07-07-correction.php#c... DIPLÔME NATIONAL DU BREVET MÉTROPOLE - LA RÉUNION - MAYOTTE SESSION 2007 L'emploi de la calculatrice est autorisé. La rédaction

Plus en détail

PAGE 1 EXERCICES VOCABULAIRE. 6 ème EXERCICES VOCABULAIRE : droites parallèles droites perpendiculaires. Exercice 1. Réponse

PAGE 1 EXERCICES VOCABULAIRE. 6 ème EXERCICES VOCABULAIRE : droites parallèles droites perpendiculaires. Exercice 1. Réponse Exercice 1 Les droites (AF) et (DC) sont sécantes. Les droites (BE) et (DC) sont sécantes. Les droites (EF) et (DC) ne sont pas sécantes. Les droites (AB) et (DC) ne sont pas sécantes. Construire une figure

Plus en détail

Premières notions de géométrie : Définitions : Deux droites sont dites sécantes si elles ont un point commun, appelé point d'intersection.

Premières notions de géométrie : Définitions : Deux droites sont dites sécantes si elles ont un point commun, appelé point d'intersection. Premières notions de géométrie : Définitions : Deux droites sont dites sécantes si elles ont un point commun, appelé point d'intersection. Deux droites sont dites perpendiculaires si elles sont sécantes

Plus en détail

DROITES, PLANS ET VECTEURS DE L ESPACE.

DROITES, PLANS ET VECTEURS DE L ESPACE. DROITES, PLANS ET VECTEURS DE L ESPACE. : la perspective cavalière Pour représenter un objet de l espace par une figure plane, on adopte un mode de représentation appelé «perspective cavalière» qui est

Plus en détail

Mercredi 28 janvier Collège La Charme

Mercredi 28 janvier Collège La Charme BREVET BLANC ÉPREUVE DE MATHÉMATIQUES Mercredi 28 janvier 2009 Collège La Charme Durée : 2 heures L emploi des calculatrices est autorisé En plus des point prévus pour chacune des trois parties de l épreuve,

Plus en détail

Théorème de Thalès. 1 Qui était Thalès? 2 Théorème de Thalès. 2.1 Enoncé du théorème de Thalès

Théorème de Thalès. 1 Qui était Thalès? 2 Théorème de Thalès. 2.1 Enoncé du théorème de Thalès Théorème de Thalès 1 Qui était Thalès? Thalès serait né autour de 625 avant J.C. à Milet en Asie Mineure (actuelle Turquie). Considéré comme l un des sept sages de l Antiquité, il est à la fois mathématicien,

Plus en détail

Cours 2 nde D. CRESSON

Cours 2 nde D. CRESSON Cours 2 nde D. CRESSON 15 novembre 2008 Chapitre 1 LES NOMBRES I Ensembles de nombres 1 Dénomination On note N l ensemble des nombres entiers naturels N = {0; 1; 2; 3;...; 1643722;...} On note Z l ensemble

Plus en détail

MATHÉMATIQUES 3e. 3 e - Contrôle d acquisitions. DURÉE 1h 50. Devoir n 6 - ALGEBRE. h(t) 1/7. Devoirs n 6 (Algèbre) et n 7 (géométrie)

MATHÉMATIQUES 3e. 3 e - Contrôle d acquisitions. DURÉE 1h 50. Devoir n 6 - ALGEBRE. h(t) 1/7. Devoirs n 6 (Algèbre) et n 7 (géométrie) e - Contrôle d acquisitions er Trimestre Novembre 200 MATHÉMATIQUES e Devoirs n 6 (Algèbre) et n 7 (géométrie) Les deux devoirs sont à faire sur des copies différentes. On mettra les copies l une dans

Plus en détail

Translations et vecteurs

Translations et vecteurs Translations et vecteurs A) Translation. 1. Définition. Soient trois points A, B et M. L image du point M par la translation qui transforme A en B est le point M tel que ABM M, dans cet ordre, soit un

Plus en détail

Si k > 1, il s agit d un agrandissement à l échelle k. Si 0 < k < 1, il s agit d une réduction à l échelle k. Si k = 1, on parle de reproduction.

Si k > 1, il s agit d un agrandissement à l échelle k. Si 0 < k < 1, il s agit d une réduction à l échelle k. Si k = 1, on parle de reproduction. 1 THALES : THEOREME, RECIPROQUE CONTRAPOSEE I- AGRANDISSEMENT REDUCTION Définition : On appelle agrandissement ou réduction d une figure, la figure obtenue en multipliant toutes les longueurs de la figure

Plus en détail

Configuration de Thalès

Configuration de Thalès onfiguration de Thalès H P I T R E 4 Énigme du chapitre. Tracer un segment [] de 5 cm. En utilisant le théorème de Thalès, construire le point appartenant au segment [] et tel que = 5. 7 Une construction

Plus en détail

Réciproque du théorème de Thalès Exercices corrigés

Réciproque du théorème de Thalès Exercices corrigés Réciproque du théorème de Thalès xercices corrigés Sont abordés dans cette fiche : xercices 1 et 2 : montrer le parallélisme de deux droites xercice 3 : problème de géométrie avec théorème de Pythagore

Plus en détail

x(a + b) = 2 Pythagore et Thalès

x(a + b) = 2 Pythagore et Thalès Pythagore et Thalès Exercice 1 : On a découpé 4 exemplaires de la figure 0 pour les assembler et obtenir la figure 1. La mesure de l aire de la figure 1 est celle d un carré dont le côté a pour mesure

Plus en détail

DEVOIR COMMUN DE SECONDE - MATHEMATIQUES La calculatrice est autorisée.

DEVOIR COMMUN DE SECONDE - MATHEMATIQUES La calculatrice est autorisée. Mardi 13 Mars 01 DEVOIR COMMUN DE SECONDE - MATHEMATIQUES La calculatrice est autorisée. Eercice 1 / 4 On donne dans le repère orthonormé (O ; I, J) ci-dessous la courbe représentative C d une fonction

Plus en détail

OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES SESSION Séries ES, L, STI2D, STD2A, STL, STG, ST2S. Durée : 4 heures

OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES SESSION Séries ES, L, STI2D, STD2A, STL, STG, ST2S. Durée : 4 heures OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES SESSION 2012 Séries ES, L, STI2D, STD2A, STL, STG, ST2S Durée : 4 heures Le sujet comporte 4 exercices indépendants. Les deux premiers exercices sont nationaux,

Plus en détail

Corrigé brevet Maths 2005 Série Collèges

Corrigé brevet Maths 2005 Série Collèges Corrigé brevet Maths 2005 Série Collèges Activités algébriques Exercice 1 1) Calcul de l expression 2) Expression scientifique de 3) Ecriture sous la forme le nombre Page 1 sur 10 4) Développons et simplifions

Plus en détail

3 ème BREVET THEOREME DE THALES

3 ème BREVET THEOREME DE THALES Exercice 1 1 Construire un triangle ABC tel que AB = 6 cm AC = 7,2 cm et BC = 10 cm Placer les points R, T et E tels que : R [AB] et AR = 4,5 cm T [AC] et (RT) // (BC) E [AB) et E [AB] et BE = 2 cm 1 2

Plus en détail

Le théorème de Thalès et sa réciproque

Le théorème de Thalès et sa réciproque Troisième Le théorème de Thalès et sa réciproque sguhel Collège Grand Parc ... 0 1 Le théorème de Thalès : calculer une distance... 2 1.1 Conjecture... 2 1.2 Démonstration... 3 1.3 Théorème... 4 1.4 Application...

Plus en détail

Perspective. Laurent Debize. La perspective. La perspective. La perspective centrale. Perspective. Laurent Debize MANAA 1/27

Perspective. Laurent Debize. La perspective. La perspective. La perspective centrale. Perspective. Laurent Debize MANAA 1/27 1/27 MANAA /27 But de ce cours Le but de ce cours est d analyser deux types de perspectives et leurs propriétés mathématiques : 3/27 1 2 4/27 Définition On donne un plan P et une droite D non à P. Le projeté

Plus en détail

ACTIVITES NUMERIQUES ( 18 points )

ACTIVITES NUMERIQUES ( 18 points ) points sont attribués pour l orthographe, le soin, les notations et la rédaction. L utilisation de la calculatrice est autorisée. ACTIVITES NUMERIQUES ( points ) Tous les calculs doivent être rédigés en

Plus en détail

LE THÉORÈME DE THALÈS.

LE THÉORÈME DE THALÈS. LE THÉORÈME DE THALÈS. 1. Rappels. (Cours de 4 ème ) 1.1 Droites parallèles. 1.1.1 Définition : Des droites parallèles sont des droites qui ont la même direction. 1.1.2 Propriétés : Deux droites parallèles

Plus en détail

6 ème COURS : droites perpendiculaires et droites parallèles.

6 ème COURS : droites perpendiculaires et droites parallèles. 1 Droites sécantes Définition : deux droites sécantes sont deux droites qui ont un seul point commun. Ce point commun est appelé point d intersection des deux droites. Les deux droites (d1) et (d2) se

Plus en détail

Renforcer ses compétences en mathématiques Devoir n 1

Renforcer ses compétences en mathématiques Devoir n 1 Renforcer ses compétences en mathématiques Devoir n 1 I. Conseils pour mieux réussir Le devoir 1 porte sur les notions des chapitres I, II, III, IV et V. EXERCICE 1 Voir la division euclidienne. Il peut

Plus en détail

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES?

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1 COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1) En utilisant les propriétés vues en 6 ème Si deux droites sont parallèles à une même droite alors elles sont parallèles entre elles On sait que

Plus en détail

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles.

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Angle et parallèles Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si 2 droites sont perpendiculaires, toute parallèle à l une est perpendiculaire à l autre.

Plus en détail

ANNEXES. I. Documents cinquième. a. Fiche modèle à rendre avec la figure. Données. Je sais que D après la propriété J en conclus que

ANNEXES. I. Documents cinquième. a. Fiche modèle à rendre avec la figure. Données. Je sais que D après la propriété J en conclus que ANNEXES I. Documents cinquième a. Fiche modèle à rendre avec la figure Noms : Données Je sais que D après la propriété J en conclus que Travail en groupe Exercice Groupe 1 Construire un triangle ABC rectangle

Plus en détail

Diplôme National du Brevet Métropole - La Réunion - Mayotte Session 2007

Diplôme National du Brevet Métropole - La Réunion - Mayotte Session 2007 Diplôme National du Brevet Métropole - La Réunion - Mayotte Session 2007 L emploi de la calculatrice est autorisé. La rédaction et la présentation seront notées sur 4 points. Coefficient : 2 Activités

Plus en détail

Parallélogrammes Particuliers

Parallélogrammes Particuliers Parallélogrammes Particuliers I) Définitions et propriétés Les parallélogrammes particuliers étudiés sont les rectangles, les carrés et les losanges. 1) Le rectangle a) Définition : Un rectangle est un

Plus en détail

BREVET BLANC DES 6 et 7 février 2003 SÉRIE COLLÈGE

BREVET BLANC DES 6 et 7 février 2003 SÉRIE COLLÈGE Collège LANGEVIN WALLON BREVET BLANC DES 6 et 7 février 003 SÉRIE COLLÈGE Durée heures MATHEMATIQUES Rédaction, présentation, orthographe (4 points) PARTIE I : ACTIVITES NUMERIQUES (1 points) Dans toute

Plus en détail

PARTIE NUMÉRIQUE MATHÉMATIQUE. Classe de Troisième CORRECTION DU BREVET BLANC EXERCICE N 2 : Année 2012

PARTIE NUMÉRIQUE MATHÉMATIQUE. Classe de Troisième CORRECTION DU BREVET BLANC EXERCICE N 2 : Année 2012 Classe de Troisième CORRECTION DU BREVET BLANC Année 2012 MATHÉMATIQUE PARTIE NUMÉRIQUE EXERCICE N 1 : Un nombre entier : - Est compris entre 100 et 150 ; - Est divisible par 3 ; - N est pas divisible

Plus en détail

DROITES, PLANS ET VECTEURS DE L ESPACE.

DROITES, PLANS ET VECTEURS DE L ESPACE. DROITES, PLANS ET VECTEURS DE L ESPACE. I- Droites et plans de l espace : Rappels des règles de base Par deux points distincts de l espace, passe une unique droite. Par trois points non alignés passe un

Plus en détail

EC 9A : ELEMENTS DE MATHEMATIQUES TRANSFORMATIONS EXERCICES

EC 9A : ELEMENTS DE MATHEMATIQUES TRANSFORMATIONS EXERCICES EC 9A : ELEMENTS DE MATHEMATIQUES TRANSFORMATIONS EXERCICES EXERCICE N 1 : Pour chacun des neuf cas ci-après, préciser s il existe une transformation qui permette de passer de la figure a à la figure b.

Plus en détail

Configurations fondamentales - Seconde

Configurations fondamentales - Seconde Configurations fondamentales - Seconde Exercices de géométrie plane avec GéoPlan : puzzle, triangle, point fixe. Sommaire 1. Puzzle et triangle isocèle 2. Puzzle et carrés 3. Propriété de Thalès 4. Utiliser

Plus en détail

Propriété Les 3 hauteurs d un triangle sont concourantes. Le point de concours s appelle l orthocentre du triangle.

Propriété Les 3 hauteurs d un triangle sont concourantes. Le point de concours s appelle l orthocentre du triangle. Géométrie Espace 2 nde 1 Géométrie dans l espace I. Rappels de collège A. Formumaire 1. Hauteurs Une hauteur est une droite passant par un sommet et perpendiculaire au côté opposé. Il y a donc 3 hauteurs

Plus en détail

Triangles et droites parallèles

Triangles et droites parallèles Triangles et droites parallèles I. Initiation à la démonstration 1 ) Les règles du débat mathématique En mathématiques, pour savoir si un énoncé est vrai ou faux, on utilise certaines règles : Un énoncé

Plus en détail

S13C. Autour des théorèmes de PYTHAGORE et THALES Corrigé

S13C. Autour des théorèmes de PYTHAGORE et THALES Corrigé CRPE Mise en route S13C. Autour des théorèmes de PYTHAGORE et THALES Corrigé A. Dans chaque exercice une configuration à reconnaître une propriété à connaitre une démonstration à rédiger 1. Si le triangle

Plus en détail

Chapitre 02 : THÉORÈMES DES MILIEUX

Chapitre 02 : THÉORÈMES DES MILIEUX Chapitre 02 : THÉORÈMES DES MILIEUX I) Théorème de la droite des milieux : (permet de démontrer que deux droites sont parallèles) Théorème Définition : Dans un triangle, la droite qui passe par les milieux

Plus en détail

H = H = H =30 7 F = 15 F = F = F = F = F = 23 5

H = H = H =30 7 F = 15 F = F = F = F = F = 23 5 BREVET BLANC de MATHEMATIQUES Classe de troisième Correction des exercices 1. Racines carrées Connaître les règles de calcul avec des racines carrées Savoir effectuer un produit ou un quotient avec des

Plus en détail

LA DEMONSTRATION EN GEOMETRIE PLANE

LA DEMONSTRATION EN GEOMETRIE PLANE LA DEMONSTRATION EN GEOMETRIE PLANE I. Le débat Pour discuter de la validité d'énoncés mathématiques, les mathématiciens ont mis en place des règles de débat. En mathématiques, ces principales règles sont

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui compose ce polygone

Plus en détail

Théorème de Pythagore

Théorème de Pythagore Théorème de Pythagore C H A P I T R E 6 Énigme du chapitre. Objectifs du chapitre. Tom veut rejoindre l école le plus rapidement possible. Il doit traverser une rivière de 1 mètre de large. Où faut-il

Plus en détail

Exercices sur le barycentre

Exercices sur le barycentre Exercices sur le barycentre Exercice 1 : ABCD est un quadrilatère quelconque, I le milieu de [AD] et J celui de [BC]. 1) Ecrire IJ comme la somme de AB et de deux autres vecteurs que l on précisera. 2)

Plus en détail

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012 UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL Géométrie et géométrie analytique Enoncés et solutions de l examen de première session 01 Enoncés On demandait de résoudre trois questions

Plus en détail

EXERCICES SUR LES SUITES

EXERCICES SUR LES SUITES EXERCICES SUR LES SUITES EXERCICE 1 u est une suite définie sur IN par u 7 = 6 et u 10 = 162 Déterminer sa raison, son premier terme u 0, ainsi que la somme S = u 10 + u 11 + + u 25 : 1) dans le cas où

Plus en détail

CHAPITRE IV : GÉOMÉTRIE ANALYTIQUE ET DROITES

CHAPITRE IV : GÉOMÉTRIE ANALYTIQUE ET DROITES CHAPITRE IV : GÉOMÉTRIE ANALYTIQUE ET DROITES Configurations du plan Le théorème de Pythagore s applique à un triangle rectangle ; le théorème de Thalès, à une figure qui comprend des droites parallèles

Plus en détail

PARTIE NUMERIQUE. Brevet Blanc de Mathématiques 18/01/11. Exercice 1. 1) Ecrire les nombres A et B sous la forme de fractions irréductibles

PARTIE NUMERIQUE. Brevet Blanc de Mathématiques 18/01/11. Exercice 1. 1) Ecrire les nombres A et B sous la forme de fractions irréductibles Brevet Blanc de Mathématiques 18/01/11 PARTIE NUMERIQUE Exercice 1 1) Ecrire les nombres A et B sous la forme de fractions irréductibles A= 13 3 4 3 2 5 B=5+ 1+ 1 8 3 4 A= 13 3 4 3 5 2 A= 13 3 10 3 B=

Plus en détail

Théorème de Pythagore

Théorème de Pythagore Théorème de Pythagore A) Vocabulaire. Définition : Dans un triangle rectangle l hypoténuse est le côté opposé à l angle droit. Exemple : Si ABC est un triangle rectangle en A alors le côté [BC] est sont

Plus en détail

Seconde 1 Géométrie dans l espace. page n

Seconde 1 Géométrie dans l espace. page n Seconde 1 Géométrie dans l espace. page n 1 Dans le plan, il existe autant de polygones réguliers distincts qu'il y a d'entiers supérieurs ou égaux à trois. Mais, dans l'espace, Euclide a démontré qu'il

Plus en détail

Droites, cercles et quadrilatères

Droites, cercles et quadrilatères Droites, cercles et quadrilatères «Des outils pour les démonstrations» I Droites et segments 1) Droites Propriété 1 : Par deux points distincts A et B, il passe une seule droite ; on peut la noter (AB).

Plus en détail

Configurations du plan et trigonométrie

Configurations du plan et trigonométrie Configurations du plan et trigonométrie A) Le triangle rectangle. 1. Le théorème de Pythagore et sa réciproque. Si ABC est un triangle rectangle en A, alors Théorème réciproque : Si ABC est un triangle

Plus en détail

LE CERCLE Activités portant sur les définitions (5 pages)

LE CERCLE Activités portant sur les définitions (5 pages) LE CERCLE Activités portant sur les définitions (5 pages) A. Voici une activité durant laquelle l élève doit compléter un tableau semblable à celui-ci en : a. écrivant le mot de vocabulaire ou le terme

Plus en détail

MILIEUX ET PARALLELES DANS UN TRIANGLE. CORRECTION(s) EXERCICES SERIE 1

MILIEUX ET PARALLELES DANS UN TRIANGLE. CORRECTION(s) EXERCICES SERIE 1 THEME : Correction MILIEUX ET PARALLELES DANS UN TRIANGLE CORRECTION(s) EXERCICES SERIE 1 Exercice : Soit ABC un triangle. Soit D le milieu de [BC]. Soit M le milieu de [AD]. Les parallèles à la droite

Plus en détail

Chap2 Perpendiculaires et parallèles. p 118

Chap2 Perpendiculaires et parallèles. p 118 Chap2 Perpendiculaires et parallèles p 118 Chap2- Perpendiculaires et parallèles I- Vocabulaire Ex 1p119 Ex 2p119 Ex 3p119 Chap2- Perpendiculaires et parallèles I- Vocabulaire a) Le point Toujours noté

Plus en détail

Cercles et polygones

Cercles et polygones Cercles et polygones I) Le cercle : a) Soit O un point donné et R un nombre décimal positif. On appelle cercle C de centre O et de rayon R, l ensemble des points M situés à la distance R du point O. On

Plus en détail

BREVET BLANC 14 Février Epreuve de mathématiques Durée : 2 heures. Partie I : Activités numériques (12,5 points)

BREVET BLANC 14 Février Epreuve de mathématiques Durée : 2 heures. Partie I : Activités numériques (12,5 points) BREVET BLANC 14 Février 008 Epreuve de mathématiques Durée : heures Les calculatrices sont autorisées ainsi que les instruments usuels de géométrie. Le respect de l orthographe, la qualité de la rédaction

Plus en détail

I. Angles et parallélisme II. Triangles égaux III. Triangles semblables IV. Propriété de Thalès. Triangles semblables. maths-cfm.

I. Angles et parallélisme II. Triangles égaux III. Triangles semblables IV. Propriété de Thalès. Triangles semblables. maths-cfm. III. 4e Table des matières III. 1 2 3 III. 4 a. Angles opposés III. Définition Deux angles sont opposés par le sommet s ils ont le même sommet et si leurs côtés sont dans le prolongement l un de l autre.

Plus en détail

Brevet - Session 2005 Corrigé

Brevet - Session 2005 Corrigé Brevet - Session 005 Corrigé ACTIVITES NUMERIQUES (1 points) 1. Exercice 1 : (4 points) A = 13 3 4 3 5 = 13 3 5 3 = 3 3 = 1. A = 1. = 13 3 5 3 = 13 3 10 3. B = 7 1015 8 10 8 5 10 4 = 7 8 1015 10 8 5 10

Plus en détail

Thalès et les proportions

Thalès et les proportions Thalès et les proportions 1. Introduction 1.1. En vue de doser ses cocktails toujours de la même manière, un barman désire faire graver sur ses verres une règle graduée indiquant la hauteur de liquide

Plus en détail

Corrigé non officiel de la partie mathématique de la deuxième épreuve d admissibilité. groupement académique 3 CRPE session 2014 (14 juin 2013)

Corrigé non officiel de la partie mathématique de la deuxième épreuve d admissibilité. groupement académique 3 CRPE session 2014 (14 juin 2013) Corrigé non officiel de la partie mathématique de la deuxième épreuve d admissibilité. groupement académique 3 CRPE session 2014 (14 juin 2013) Exercice 1 1. L affirmation 1 est vraie. 4 7 5 18 = 2 14

Plus en détail

I) Activités numériques

I) Activités numériques Brevet 1994 : Bordeaux I) Activités numériques Exercice 1 : Écrire sous la forme a b (où a et b sont des entiers) le nombre : E 75 + 3 1 4 3. Calculer : 3(3 3) ; G ( 5 + )( 5 ). Exercice : Résoudre les

Plus en détail

(Programmation) (Programme de Construction) Support : cahier d entrainement (1 programme par semaine, à écrire au tableau)

(Programmation) (Programme de Construction) Support : cahier d entrainement (1 programme par semaine, à écrire au tableau) (Programmation) (Programme de Construction) Support : cahier d entrainement (1 programme par semaine, à écrire au tableau) Comment faire? Le PE marque sur un côté du tableau le programme de construction.

Plus en détail

Planche n o 1 : Éléments de langage mathématique, introduction à la géométrie

Planche n o 1 : Éléments de langage mathématique, introduction à la géométrie Planche n o 1 : Éléments de langage mathématique, introduction à la géométrie Exercice 1 : Longueur d un chemin Soient A, B, C, D et E des points tels que : D appartient à [AB] et E appartient à [AC].

Plus en détail

Brevet Blanc Activités numériques ( 12 points)

Brevet Blanc Activités numériques ( 12 points) Collège FENELON Mathématiques Feuille 1 sur 6 La calculatrice est autorisée. Présentation Rédaction (4 points) Rendre une copie propre, encadrer vos résultats, soigner les constructions de figure, rédiger

Plus en détail

Triangle rectangle, cercle et médiane

Triangle rectangle, cercle et médiane Triangle rectangle, cercle et médiane A) Activités préparatoires. 1. Parallèles et milieux. Exercice n 1 : Recopier et compléter les chaînons suivants : 1 er cas : (AB) est parallèle à (CD). (MN) est parallèle

Plus en détail

THEOREMES DES MILIEUX DROITES PARALLELES Corrigés 1/9

THEOREMES DES MILIEUX DROITES PARALLELES Corrigés 1/9 DROITES PARALLELES Corrigés 1/9 Corrigé 01 Corrigé 02 On sait que ABC est un triangle, que I est le milieu de [ AB ] et J le milieu de [ BC ]. (IJ) est donc parallèle à la droite (BC). Corrigé 03 On sait

Plus en détail

Leçon 24 Théorème de Thalès. Applications à la géométrie du plan et de l espace.

Leçon 24 Théorème de Thalès. Applications à la géométrie du plan et de l espace. Leçon 24 Théorème de Thalès. Applications à la géométrie du plan et de l espace. Pré-requis : - Calcul vectoriel (en particulier la relation de Chasles) Pré-requis : - Définition et propriété d un parallélogramme

Plus en détail