DS 1. Le 13 octobre h

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "DS 1. Le 13 octobre h"

Transcription

1 DS 1. Le 13 octobre 14. 4h Le devoir est probablement trop long pour que vous puissiez le terminer (ce qui est assez classique dans les épreuves de concours). Restez donc calme, prenez le temps de regarder les énoncés de tous les exercices afin de choisir ce que vous savez le mieux faire. Il n est pas nécessaire de faire les choses dans l ordre, à condition de clairement numéroter sur sa copie. En revanche, il est déconseillé de passer sans arrêt d un exercice à un autre car cela rend la copie moins claire et vous pénalise souvent. Ponctuellement, on peut admettre un résultat en l indiquant clairement sur la copie et l utiliser ensuite plutôt que de rester bloqué trop longtemps. La rédaction (présentation et justification des résultats) est largement prise en compte dans la notation, il ne faut pas la négliger pour en faire beaucoup mais ne pas non plus rédiger inutilement trop sur les questions faciles. A vous de trouver le bon compromis. Enfin, il est fortement recommandé de bien lire les énoncés et de prendre le temps de réfléchir, même brièvement, avant de se lancer. Bon courage! Exercice 1. Exercices en vrac Chaque«grosse»question peut être traitée indépendamment des autres. 1 Soit A, B et C trois sous-ensembles de E. Justifier que A (B C) ( A B ) ( A C ). { N N L application f : n n est-elle : (a) injective? (b) surjective? (c) bijective? 3 Soit n N et P(n) : «n (n + 1)». (a) Justifier que pour tout entier n, on a (n + 1) (n + ). (b) Quel est le premier entier n pour lequel P(n ) est vraie? (c) Démontrer que pour tout entier n n, P(n) est vraie. 4 Simplifier : ( (a) 3 k 3k ) (avec n ). (b) k n 3 k 1 n+ k (avec n 1). k 5 On veut montrer par récurrence sur n N que P(n) : «p N, p n, n + 1»est vraie pour tout n N puis utiliser le résultat. p + 1 (a) Démontrer l initialisation. k p (b) En distinguant les cas p n + 1 et p n, où n est un entier naturel fixé et p un entier naturel, effectuer l étape de transmission et conclure la récurrence. [16 octobre 14] ECE , DS 1. Le 13 octobre 14. 4h 1/8

2 (c) En écrivant ce résultat pour p et p 3, montrer que, pour n 5 : (n + 1)n(n 1) i. S n (n 1) n. 3 (n + 1)n(n 1)(n ) ii. T n (n ) (n 1) n 4 Exercice. Puissances de matrice Chaque«grosse»question peut être traitée indépendamment des autres Soit A. Calculer les premières puissances de A (à partir de ) et en déduire 1 une conjecture pour l expression de A n, pour tout entier n N. Démontrer ce résultat par récurrence. 1 Soit B 3. (a) Justifier que B I 3 + N où N est une matrice vérifiant N 3 3, la matrice carrée nulle de dimension 3. (b) En déduire, l expression de B n pour n entier naturel supérieur ou égal à. Vérifier que cette formulle est également valable pour tout n N. 3 Soit C et P. 3 1 (a) Vérifier que P est inversible et calculer son inverse. 1 (b) Montrer que la matrice D P 1 CP est égale à. (c) Montrer par récurrence que C k PD k P 1 pour tout k N. ( (d) Calculer D k pour tout k N et en déduire que C k k 1 k ) k+1 k+1. 1 (e) On donne Calculer 1 C k. Exercice 3. Autour des matrices inversibles Soit p N et A M p (R) tel que (A I p ) 3 p avec A I p. 1 Justifier que A I p n est pas inversible (on pourra distinguer les cas (A I p ) p et (A I p ) p ). Justifier que A est inversible et que son inverse vaut 1 8 A 3 4 A + 3 I p. [16 octobre 14] ECE , DS 1. Le 13 octobre 14. 4h /8

3 Exercice 4. Calcul de sommes avec des factorielles La troisième question s inspire très largement de la méthode employée à la deuxième question. Il est donc préférable de les faire dans l ordre. On peut cependant admettre certains résultats pour avancer dans l exercice. Soit n N. 1 Question préliminaire : soit k N. Simplifier les quantités suivantes : (a) (k + 1)k! (b) (k + )(k + 1)k! On considère la somme S n k k!. (a) En utilisant la décomposition k k + 1 1, justifier que S n (k + 1)! k!. (b) Déduire du résultat précédent que S n (n + 1)! 1. 3 On considère la somme T n (k + 1) k!. (a) Soit k N. Justifier que k + 1 (k + )(k + 1) (k + 1) + 1 k. (b) En utilisant la décomposition précédente et la linéarité de la somme, montrer que : T n (k + )! (k + 1)! + k! S n. (c) En remarquant une propriété téléscopique sur les trois premières sommes, montrer que T n (n + )! (n + 1)! 1 S n. (d) Simplifier le résultat précédent pour obtenir T n (n + 1)!n. 4 Redémontrer le résultat de la question précédente par récurrence pour n N. Exercice 5. Matrices et coefficients indéterminés a b Soit A c, où a, b et c sont des nombres réels. Donner toutes les valeurs possibles b a de a, b et de c telles que : 1 A I 3 A A [16 octobre 14] ECE , DS 1. Le 13 octobre 14. 4h 3/8

4 Correction du DS 1. Exercice 6. Exercices en vrac 1 On utilise d abord deux fois les règles dites de Morgan puis les règles de distributivité : A (B C) A B C A ( B C ) ( A B ) ( A C ). { N N L application f : n n est-elle : (a) injective? Oui, n m avec n et m deux entiers naturels (donc deux nombres positifs), cela implique que n m. On a donc bien au maximum un antécédent par entier. (b) surjective? Non, seuls les entiers qui sont des carrés parfaits ( ;1 ;4 ;9 ;...) possèdent des antécédents. (c) bijective? Non, car elle n est pas injective. 3 Soit n N et P(n) : «n (n + 1)». (a) Cela revient à montrer que (n + 1) (n + ) est positif pour tout n. Or, (n + 1) (n + ) (n + n + 1) (n + 4n + 4) n qui est bien positif dès que n. (b) Si on teste les deux membres de l inégalité pour n ; 3; 4; 5, on trouve respectivement 4 et 9, puis 8 et 16, puis 16 et 5, puis 3 et 36 donc la propriété est fausse pour ces valeurs de n. En revanche, pour n 6, on obtient 6 64 et (6 + 1) 49 donc P(6) est vraie. (c) Soit n N avec n 6, on suppose que P(n) est vraie et on veut démontrer que P(n + 1) est vraie, c est à dire que n+1 (n + ). Or, n+1 n (n + 1) (n + ) donc P(n + 1) est vraie. La première inégalité est déduite de l hypothèse de récurrence, la seconde de la première question (car n notamment). On conclut d après cette question et la précédente que pour tout entier n 6, P(n) est vraie. n 4 (a) Soit n. S n 3 k 3k 3 k+ 3(k + ) par changement d indice. Puis, k par linéarité, n S n 3 n 3 k n 1 3 n 1 (n )(n 1) 3 k (n 1) 1 3 En simplifiant un peu, S n 9 (3n 1 1) (n 1)(n + ) 3. n (b) T n 3 k 1 n+ k (avec n 1). k n n Soit n 1. Par linéarité, T n 3 k 1 n+ k 3 1 n 3 k n k. k k Donc, d après la formule du binôme de Newton, T n 4 3 (3 + )n 4 3 5n. k n P(n) : «p N, p n,». p p + 1 (a) Pour n, on a p donc p. Il suffit donc de vérifier que + 1. Or + 1 k 1 et Donc P() est vraie. 1 k [16 octobre 14] ECE , Correction du DS 1. 4/8

5 (b) Soit n N. On suppose que P(n) est vraie. Démontrons que P(n + 1) est vraie. Attention, dans cette exercice, ceci signifie qu il ( faut démontrer ) que pour tout n+1 k n + entier p tel que p n + 1, on a. p p + 1 n+1 k n + 1 n + n + Pour p n+1, 1 et 1, donc kn+1 n + 1 n + 1 n n + c est vrai. n+1 k k n + 1 Pour p n, on utilise la décomposition habituelle + p p p et on utilise l hypothèse de récurrence (c est possible car on a bien p n + 1). n+1 k n + 1 n + 1 n + On obtient + d après la formule du triangle p p + 1 p p + 1 de Pascal, donc l égalité est vraie dans ce cas également. Finalement, on a montré que P(n + 1) est vraie et on peut donc conclure par la principe de récurrence que P(n) est vraie pour tout entier n. (n + 1)n(n 1) (c) i. S n (n 1) n. 3 k k(k 1) Pour p, en notant que pour tout entier k, et que n + 1 (n + 1)n(n 1) pour tout entier n, on a donc S n k n + 1 (n + 1)n(n 1) kn (n + 1)n(n 1)(n ) ii. T n (n ) (n 1) n 4 k k(k 1)(k ) Pour p 3, en notant que pour tout entier k 3, et 3 6 n + 1 (n + 1)n(n 1)(n ) que pour tout entier n 3, on a donc T n 6 3 k n + 1 (n + 1)n(n 1)(n ) kn Exercice 7. Puissances de matrice 1 On trouve A 4, A 3 8 et A , ce qui conduit à la conjecture suivante : 1 1 n 1 n P(n) :«A n n», qui se démontre par récurrence. En effet, pour n, 1 on trouve bien I 3 en calculant les deux termes qui composent l égalité et l étape de transmission se fait de manière classique en utilisant A n+1 A n A et en remarquant que n n+1 et que n 1 + n n 1 n (a) On trouve N B I 3 3 qui vérifie N et N 3 3 et est donc bien nilpotente. [16 octobre 14] ECE , Correction du DS 1. 5/8

6 (b) On a, pour n, B n (I 3 + N) n et on peut appliquer la formule du binôme de Newton car ces deux matrices commutent. On obtient, en tenant compte du fait que pour tout k 3, N k 3. n n n (I 3 + N) n N (I 3 ) n + N 1 (I 3 ) n 1 + N (I 3 ) n 1 Or, comme (I 3 ) p p I 3, on obtient, en remplaçant les coefficients binômiaux par leur valeur simplifiée, n n n 1 n n 1 n(n 1) + 3 n B n n 3n n 1 qu on ne cherchera pas à simplifier n ici. On peut vérifier que cette formule est également valable pour n (cela donne l identité) et n 1 (cela donne bien B Soit C et P. 3 1 (a) En prenant les notations du cours : ad bc 1 ( ) 1 ( 1) 1 donc la matrice P est inversible et P (b) Montrer que la matrice D P 1 CP est égale à. C est un calcul direct, deux produits à réaliser. (c) On a tout d abord D k P 1 C k P par une récurrence faite dans un exemple du cours. Il suffit ensuite de constater que PD k P 1 PP 1 C k PP 1 I C k I C k. On peut aussi commencer par montrer que C PDP 1 et faire une récurrence ensuite. (d) Il est très simple de montrer par une «mini-récurrence»(et, à ce stade, si vous avez déjà bien rédigé plusieurs récurrences, ( vous ) pouvez simplement rédiger «on montre 1 par récurrence que»), que D k k. On obtient ensuite l expression de ( D k par un calcul direct, là encore deux produits à réaliser. On trouve bien C k k 1 k ) k+1 k (e) On peut commencer par calculer D k via les formules de cours pour les sommes 1 11 (propriété 3 du chapitre 1). On obtient D k 1 k+1. 1 On conclut par linéarité en observant que 1 C k 1 PD k P 1 P ( 1 ) D k P 1 et il reste donc deux produits de matrices à réaliser (n hésitez pas à donner un plan de démonstration sans les calculs si vous êtes pris par le temps). Sinon, on fait directement le calcul des 4 sommes (une somme par coefficient de la matrice) qui sont toutes des applications directes de la linéarité et des sommes de la proposition 3 du chapitre 1. C est légèrement plus long. Dans tous les cas, on trouve ( ). [16 octobre 14] ECE , Correction du DS 1. 6/8

7 Exercice 8. Autour des matrices inversibles Soit p N et A M p (R) tel que (A I p ) 3 p. On suppose de plus que A I p. 1 On raisonne par l absurde en supposant cette matrice inversible. Il y a deux cas à distinguer : (A I p ) p et il suffit de multiplier cette égalité par (A I p ) 1 (à gauche ou à droite, peut importe) pour obtenir A I p p, ce qui contredit l énoncé (A I p ). Sinon, dans le cas (A I p ) p, on a de toute manière (A I p ) 3 p donc en multipliant cette égalité par (A I p ) 1 (à gauche ou à droite), on obtient (A I p ) p, ce qui est également une contradiction. On conclut que A I p n est pas inversible. On développe via la formule du binôme de Newton qui est valide car A et I p commutent. On obtient : O p (A I p ) 3 A 3 + 3A ( I p ) + 3A ( I p ) + ( I p ) 3 A 3 6A + 1A 8I p. On obtient donc, 1 ( 1 8 (A3 6A + 1A) I p, c est à dire, A 8 A 6 8 A + 1 ) 8 I p I p. Donc A est inversible et son inverse est la matrice dans la parenthèse, ce qui, après simplification des fractions, donne le résult souhaité. Exercice 9. Calcul de sommes avec des factorielles Soit n N. 1 Il n y a rien à justifier ici, ça a été fait à de multiples reprises en classe. Si on ne voit pas, il faut se forcer à passer par les pointillés. (a) (k+1)k! (k+1)! (b) (k+)(k+1)k! (k+)! On considère la somme S n k k!. (a) On a, en suivant l indication, en développant par linéarité puis en utilisant la première question préliminaire : S n (k + 1 1)k! (k + 1)k! k! (k + 1)! k!. (b) C est une somme téléscopique. Si on choisit de la traiter par les pointillés, on obtient : S n (! + 3! + + n! + (n + 1)!) (1! +! + + n!) (n + 1)! 1. Si on veut utiliser un changement d indice, on écrit : ( n+1 n ) S n k! k! k! + (n + 1)! 1! + (n + 1)! 1. k k k 3 On considère la somme T n (k + 1) k!. (a) Soit k N. (k+)(k+1) (k+1)+1 k k +k+k+ k +1 k k +1. (b) T n ((k + )(k + 1) (k + 1) + 1 k) k! donc, par linéarité : T n n (k + )(k + 1)k! n (k + 1)k! + n k! n k k! et on obtient le résultat demandé en utilisant les deux questions préliminaires. (c) ( + la simplification de la question suivante) Ici, il faut considérer les trois premières sommes simultanément pour voir le téléscopage. Je corrige avec changements d indice sur les deux premières sommes mais on peut aussi le faire via les pointillés. T n n+ k3 k! n+1 k k! + n k! S n [16 octobre 14] ECE , Correction du DS 1. 7/8

8 ( n k3 k! + (n + 1)! + (n + )!) (! + n k3 k! + (n + 1)!)+(1! +! + n k!) ((n + 1)! 1) (n + 1)! + (n + )! (n + 1)! (n + 1)! + 1 (n + )! (n + 1)! (n + )(n + 1)! (n + 1)! (n + )(n + 1)! n(n + 1)!. 4 Pour n 1 la propriété est vraie car 1(1 + 1)! et 1 (k + 1) k! (1 + 1) 1!. Supposons que la propriété soit vraie au rang n 1 et démontrons alors qu elle est vraie au rang n + 1, c est à dire que T n+1 (n + 1)(n + )! T n+1 n+1 (k + 1) k! n (k + 1) k! + ((n + 1) + 1) (n + 1)!) Par hypothèse de récurrence et en développant le dernier terme, on a : T n+1 n(n + 1)! + (n + n + ) (n + 1)! (n + 1)! (n + 3n + ). D autre part, (n + 1)(n + )! (n + 1)(n + )(n + 1)! (n + 3n + )) (n + 1)!. Donc la propriété est vraie au rang n + 1 et on peut conclure qu elle est alors vraie pour tout entier non nul. Exercice 1. Matrices et coefficients indéterminés a + b ab Soient a, b et c trois nombres réels. On a A c On a donc à résuodre ab a + b des systèmes d équations pour chacune des questions a + b 1 1 A I 3 c 1 ab donc c ±1 avec soit (a et b ±1) soit (b et a ±1), ce qui donne 8 solutions en tout. a + b a A A c c donc c ou 1 avec soit (b et a ou 1) soit (a 1 et ab b b ± 1 ), ce qui donne là encore 8 solutions en tout. [16 octobre 14] ECE , Correction du DS 1. 8/8

Opérations élémentaires et déterminants

Opérations élémentaires et déterminants 10 Opérations élémentaires et déterminants On note toujours K le corps de réels ou des complexes On se donne un entier n 1 et M n (K désigne l espace vectoriel des matrices carrées d ordre n à coefficients

Plus en détail

3. Récurrence et ensembles finis

3. Récurrence et ensembles finis 3. Récurrence et ensembles finis Le chapitre qui suit porte sur un certains nombres de calculs liés à des ensembles finis. On commence par revoir la notion de raisonnement par récurrence qui est essentielle

Plus en détail

Récurrences et sommes. () Récurrences et sommes 1 / 23

Récurrences et sommes. () Récurrences et sommes 1 / 23 Récurrences et sommes () Récurrences et sommes 1 / 23 1 Le raisonnement par récurrence 2 Sommes et produits 3 La formule du binôme de Newton Dans ce très court chapitre, on introduit deux outils : un outils

Plus en détail

Chapitre 3 : Exemples de raisonnement par récurrence

Chapitre 3 : Exemples de raisonnement par récurrence Chapitre 3 : Exemples de raisonnement par récurrence Plan de ce chapitre 1 Rappel 11 Mise en place et exemple 1 Mise en garde Exercices 1 comparaison entre n n et n! Démonstration de l inégalité de Bernoulli

Plus en détail

Chapitre 3 : Matrices

Chapitre 3 : Matrices Chapitre 3 : Matrices Sommaire I Notion de matrice et vocabulaire II Opérations de base sur les matrices 3 1 Addition de matrices et multiplication d un réel par une matrice 3 Multiplication matricielle

Plus en détail

logique I démonstration et théorie axiomatique 2 1 généralités 2 2 proposition, prédicat simple 2

logique I démonstration et théorie axiomatique 2 1 généralités 2 2 proposition, prédicat simple 2 logique Table des matières I démonstration et théorie axiomatique 1 généralités proposition, prédicat simple 3 prédicats composés 3 3.1 prédicat de négation....................................... 3 3.

Plus en détail

Chapitre 1 Le principe du raisonnement par récurrence

Chapitre 1 Le principe du raisonnement par récurrence Chapitre 1 : Principe du raisonnement par récurrence Chapitre 1 Le principe du raisonnement par récurrence 1 I Exemple introductif On considère les suites de terme général : n (n + 1) u n = 0 + 1 + + (n

Plus en détail

Chapitre 2 : Matrices

Chapitre 2 : Matrices Chapitre 2 : Matrices 1 Notion de matrice et vocabulaire Notation 1 Dans tout le chapitre n, p, q sont des entiers naturels non nuls Définition 1 Une matrice A à n lignes et p colonnes est un tableau défini

Plus en détail

5. ( ) ( ) Aller à : Correction exercice 6 : Exercice 7 : Soient et deux parties de. Ecrire en utilisant les assertions

5. ( ) ( ) Aller à : Correction exercice 6 : Exercice 7 : Soient et deux parties de. Ecrire en utilisant les assertions Logique Exercice 1 : Parmi les assertions suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi? 1. Si Napoléon était chinois alors 2. Soit Cléopâtre était chinoise, soit les grenouilles

Plus en détail

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (K) Dans tout ce chapitre, K désigne R ou C.

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (K) Dans tout ce chapitre, K désigne R ou C. Matrices Dans tout ce chapitre, K désigne R ou C Matrices rectangulaires Soient n, p deux nombres entiers non-nuls On appelle matrice à n lignes et p colonnes à coefficients dans K tout tableau rectangulaire

Plus en détail

Mathématiques _prelim.indd 1 27/06/ :11:28

Mathématiques _prelim.indd 1 27/06/ :11:28 Mathématiques PCSI l PTSI Exercices incontournables Julien Freslon Jérôme Poineau Marie Hézard Mathématiques Conception et création de couverture : Atelier 3+ Dunod, Paris, 2013 ISBN 978-2-10-059835-9

Plus en détail

Chapitre 2. Introduction aux matrices

Chapitre 2. Introduction aux matrices L1 2012-2013 Université Paris 13 Algèbre linéaire Chapitre 2 Introduction aux matrices Référence: Liret-Martinais [2], chapitre 4 Nous avons déjà rencontré des tableaux de nombres, ou matrices Nous allons

Plus en détail

Olympiades Françaises de Mathématiques Envoi Numéro 3 Corrigé

Olympiades Françaises de Mathématiques Envoi Numéro 3 Corrigé Olympiades Françaises de Mathématiques 2012-2013 Envoi Numéro 3 Corrigé 1 Exercices Juniors Exercice 1. On appelle diviseur propre d un entier n un diviseur positif de n qui est différent de 1 et de n.

Plus en détail

TS spé maths. TS spé maths. Correction Devoir Surveillé 3. Maths. Maths. Exercice 1. (2,5 points) x x (4 ) 0 (9 ) 1

TS spé maths. TS spé maths. Correction Devoir Surveillé 3. Maths. Maths. Exercice 1. (2,5 points) x x (4 ) 0 (9 ) 1 Correction Devoir Surveillé 3 TS spé maths Maths Maths TS spé maths Exercice 1. (2,5 points) 1. Compléter sur le présent sujet cette table des restes dans la congruence modulo 4. x 0 1 2 3 x 2 0 1 (4 )

Plus en détail

OLYMPIADES FRANÇAISES DE MATHÉMATIQUES

OLYMPIADES FRANÇAISES DE MATHÉMATIQUES OLYMPIADES FRANÇAISES DE MATHÉMATIQUES 05-06 OLYMPIADES FRANÇAISES MATHÉMATIQUES ENVOI NO. 3 CORRIGÉ Exercices du groupe B Exercice. Trouver toutes les fonctions f : R R telles que f(x)f(y) f(xy) = x +

Plus en détail

Lycée Dominique Villars ECE 1 CALCUL MATRICIEL

Lycée Dominique Villars ECE 1 CALCUL MATRICIEL Lycée Dominique Villars ECE 1 COURS CALCUL MATRICIEL 1 Définitions et Notations Soit n N et m N On appelle matrice à n lignes et m colonnes tout tableau de la forme suivant : a 1,1 a 1,2 a 1,m a 2,1 a

Plus en détail

MATHEMATIQUES Option économique Mardi 9 mai 2006 de 8h à 12h

MATHEMATIQUES Option économique Mardi 9 mai 2006 de 8h à 12h ECOLE DE HAUTES ETUDES COMMERCIALES DU NORD Concours d'admission sur classes préparatoires MATHEMATIQUES Option économique Mardi 9 mai 6 de 8h à h La présentation, la lisibilité, l'orthographe, la qualité

Plus en détail

Combinatoire énumérative

Combinatoire énumérative DOMAINE : Combinatoire AUTEUR : Igor KORTCHEMSKI NIVEAU : Débutants STAGE : Montpellier 2012 CONTENU : Cours et exercices Combinatoire énumérative - Introduction - La Combinatoire est un sous-art des mathématiques

Plus en détail

LFA / Terminale S SPÉCIALITÉ MATHS Mme MAINGUY. Les nombres contenus dans ce tableau sont appelés les coefficients de la matrice.

LFA / Terminale S SPÉCIALITÉ MATHS Mme MAINGUY. Les nombres contenus dans ce tableau sont appelés les coefficients de la matrice. Les matrices chapitre 2 : calcul matriciel I / Définitions Soit n et p deux entiers naturels non nuls Une matrice n p (on dit aussi de format n ; p ( ) est un tableau de nombres réels à n lignes et p colonnes

Plus en détail

Puissances n-ieme d une matrice. Application aux systèmes linéaires. x + 2y = 6 Exemple : soit à résoudre le système linéaire ( )

Puissances n-ieme d une matrice. Application aux systèmes linéaires. x + 2y = 6 Exemple : soit à résoudre le système linéaire ( ) II Application aux systèmes linéaires { x + 2y = 6 Exemple : soit à résoudre le système linéaire où x et y sont les inconnues x + 2y = 5 x 6 On forme ensuite les matrices suivantes : A =, X = et B = Donc

Plus en détail

Leçon 69 : Les différents types de raisonnement en mathématiques

Leçon 69 : Les différents types de raisonnement en mathématiques Leçon 69 : Les différents types de raisonnement en mathématiques 1 er avril 01 En mathématiques, pour démontrer divers propriétés ou théorèmes, nous avons besoin d appliquer rigoureusement un raisonnement

Plus en détail

Calcul matriciel. 1.1 Définitions Matrices carrées particulières... 3

Calcul matriciel. 1.1 Définitions Matrices carrées particulières... 3 Chapitre 10 Calcul matriciel 1 Généralités 2 11 Définitions 2 12 Matrices carrées particulières 3 2 Opérations sur les matrices 4 21 L espace vectoriel M np (R 4 22 Produit de deux matrices 5 23 Transposée

Plus en détail

Nombres réels, bornes supérieures et inférieures

Nombres réels, bornes supérieures et inférieures Nombres réels, bornes supérieures et inférieures Exercice 1 : Si et sont des réels positifs ou nuls, montrer que Allez à : Correction exercice 1 : Exercice 2 : Déterminer les ensembles suivants, mettre

Plus en détail

SUITES - RECURRENCE - SOMMES

SUITES - RECURRENCE - SOMMES SUITES - RECURRENCE - SOMMES Chapitre 1 I Généralités sur les suites Définition I.1 Une suite réelle est une fonction d une partie A de N dans R. u : A R n u(n) := u n l intervalle de définition peut donc

Plus en détail

Polynômes et fractions rationnelles

Polynômes et fractions rationnelles Polynômes et fractions rationnelles Exercice 1. Factoriser dans [ ] et dans [ ] le polynôme Allez à : Correction exercice 1 Exercice 2. Soit Factoriser dans [ ], puis dans [ ] et enfin dans [ ] Allez à

Plus en détail

Calcul matriciel : rappels et compléments

Calcul matriciel : rappels et compléments CHAPITRE 5 Calcul matriciel : rappels et compléments 5 L ensemble M n,p (K) 5 Structure d espace vectoriel Définition Soit K = R ou C On note M n,p (K) l ensemble des matrices ayant n lignes et p colonnes

Plus en détail

L p B calculer le produit matriciel ligne par ligne, ou bien colonne par colonne.

L p B calculer le produit matriciel ligne par ligne, ou bien colonne par colonne. 40 CHAPITRE 4. MATRICES ligne L M 1,n (K) et d une matrice B M n,q (K) est encore une matrice ligne. De plus, si on note L i la i-ième ligne de A, alors le produit AB est la L 1 B L 2 B matrice (la juxtaposition

Plus en détail

CAPES session 2015 Épreuve 2. Problème n o 1

CAPES session 2015 Épreuve 2. Problème n o 1 CAPES session 2015 Épreuve 2 Problème n o 1 A. P. M. E. P. Problème n o 1 Notations On note N l ensemble des entiers naturels, N l ensemble des entiers naturels non nuls et Z l ensemble des entiers relatifs.

Plus en détail

1 ère S Exercices sur le second degré

1 ère S Exercices sur le second degré ère S Eercices sur le second degré Résoudre dans l équation 0. Si m..., alors l équation (E). Si m..., alors l équation (E). Si m..., alors l équation (E). Résoudre dans l équation 0. Résoudre dans l équation.

Plus en détail

Calcul littéral, équations, inéquations

Calcul littéral, équations, inéquations Calcul littéral, équations, inéquations 1) Calcul littéral a. Égalités des expressions littérales Des expressions sont littérales quand elles sont écrites avec des lettres. Elles sont égales quand elles

Plus en détail

Polycopié de Logique Mathématique

Polycopié de Logique Mathématique 1. Propositions. Université de la Nouvelle Calédonie. Licences Math, PC, SPI. Semestre 2. Polycopié de Logique Mathématique Une proposition est un enoncé mathématique qui peut être soit vrai (V) soit faux

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction exponentielle 1 Fonction exponentielle Définition et variation Théorème Définition Il existe une unique fonction définie et dérivable sur telle que et Cette fonction est appelée fonction exponentielle

Plus en détail

Devoir Surveillé Samedi 24 Mars 2012

Devoir Surveillé Samedi 24 Mars 2012 Devoir Surveillé Samedi 4 Mars 01 BCPST Lycée Hoche Pelletier Sylvain $\ CC BY: = Durée : 3h Eercice 1 Une urne contient n boules numérotées de 1 à n. On en choisit 3 au hasard et 7 simultanément. 1. Quel

Plus en détail

Exercices du chapitre 3 avec corrigé succinct

Exercices du chapitre 3 avec corrigé succinct Exercices du chapitre 3 avec corrigé succinct Exercice III.1 Ch3-Exercice1 Calculer les déterminants suivants : a b c d, 3a 3b c d, 4 2 3 0 3 4 0 0 5, 4 2 3 0 1 2 4 1 2, 4 3 2 0 2 1 4 2 1, 1 2 2 3 1 1

Plus en détail

Chapitre 1. Nombres Trouver les valeurs réelles x telles que a. 1 x = 3 b. 1 = 2x + 3 c. x 2 3x x + 2 = 0 d. 8 1 x 2 = 0

Chapitre 1. Nombres Trouver les valeurs réelles x telles que a. 1 x = 3 b. 1 = 2x + 3 c. x 2 3x x + 2 = 0 d. 8 1 x 2 = 0 Chapitre Nombres.. Un ensemble est donné avec une opération. Vérifier si cette opération est partout définie et si elle admet dans l ensemble un élément neutre. Chaque élément de l ensemble possède-t-il

Plus en détail

LES MATRICES. Chapitre Premières définitions

LES MATRICES. Chapitre Premières définitions Chapitre 1 LES MATRICES 11 Premières définitions Définition Une matrice à n lignes et p colonnes et à coefficients dans R est un tableau de np éléments de R que l on représente sous la forme : a 11 a 12

Plus en détail

Devoir non surveillé Matrices, systèmes linéaires

Devoir non surveillé Matrices, systèmes linéaires Devoir non surveillé Matrices, systèmes linéaires Pelletier Sylvain, BCPST Lycée Hoche $\ CC BY: = our le 15 décembre Exercice 1 Puissance d une matrice 3 1 2 Soit A = 0 2 0. 1 1 0 On se roose de calculer

Plus en détail

Intégration Encadrement d intégrale Exercices corrigés

Intégration Encadrement d intégrale Exercices corrigés Intégration Encadrement d intégrale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : encadrer une intégrale Exercice 2 : donner un encadrement

Plus en détail

Devoir maison n 2 Corrigé

Devoir maison n 2 Corrigé ECE Année scolaire 017-018 Lycée Marcelin Berthelot Mathématiques Exercice 1 Devoir maison n Corrigé 0 1 1 Soit f L (R 3 ) de matrice dans la base canonique : A 0 1 1. 0 1 1 1. Montrer que f 0. Un calcul

Plus en détail

Algèbre linéaire pour GM Jeudi 01 novembre 2012 Prof. A. Abdulle

Algèbre linéaire pour GM Jeudi 01 novembre 2012 Prof. A. Abdulle Algèbre linéaire pour GM Jeudi novembre Prof A Abdulle EPFL Série 6 Corrigé Exercice a Calculer la décomposition LU de la matrice A = 9 6 6 On effectue la réduction de la matrice A jusqu à obtenir une

Plus en détail

Exercices : Matrices

Exercices : Matrices Exercices : Matrices Exercice Soient A, B matrices de M n (K). On note I la matrice identité. On suppose que AB = I + A + A. Montrer que A est inversible, calculer A en fonction de A, B, I.. En déduire

Plus en détail

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompriscom Reconnaitre les formes indéterminées Dans chaque cas, on donne la ite de u n et v n Déterminer si possible,

Plus en détail

exercices types sur limite de suites

exercices types sur limite de suites exercices types sur ite de suites 1. Utiliser la définition de la ite finie d une suite : a. Démonter que la suite définie par a pour ite 0. On doit démontrer que tout intervalle ouvert contenant 0 contient

Plus en détail

TS spé Exercices sur le calcul matriciel

TS spé Exercices sur le calcul matriciel TS spé Exercices sur le calcul matriciel ) A 0 0 0 et 0 0 B 0 On pose A et B 0 Calculer A B On pose A et B 0 8 Déterminer la matrice X carrée d ordre telle que A X B Calculer les matrices : A ; B ; C ;

Plus en détail

Dans tout ce devoir, la qualité de la rédaction et le soin seront pris en compte dans la notation.

Dans tout ce devoir, la qualité de la rédaction et le soin seront pris en compte dans la notation. Externat Notre Dame Bac Blanc n Tle S) janvier 206 durée : 4 h calculatrice autorisée Dans tout ce devoir, la qualité de la rédaction et le soin seront pris en compte dans la notation. Les exercices pourront

Plus en détail

Chapitre I : MATRICES ET OPERATIONS

Chapitre I : MATRICES ET OPERATIONS I- Notion de matrice Chapitre I : MATRICES ET OPERATIONS Définition 1 : et désignent deux entiers naturels non nuls. On appelle matrice de format (,) tout tableau de nombres réels à lignes et colonnes.

Plus en détail

ENSI 98 - Filière MP - MATHÉMATIQUES 2. Thème : Pseudo-inverse d une matrice - Méthode des moindres carrés discrets

ENSI 98 - Filière MP - MATHÉMATIQUES 2. Thème : Pseudo-inverse d une matrice - Méthode des moindres carrés discrets ENSI 98 - Filière MP - MATHÉMATIQUES 2 Thème : Pseudo-inverse d une matrice - Méthode des moindres carrés discrets PARTIE I - CONSTRUCTION D UNE MATRICE INVERSE A GAUCHE On suppose dans cette partie que

Plus en détail

Groupes finis et arithmétique basique. Si p, q sont deux entiers relatifs, on note p q le pgcd de p et q et p q le ppcm de p et q.

Groupes finis et arithmétique basique. Si p, q sont deux entiers relatifs, on note p q le pgcd de p et q et p q le ppcm de p et q. Groupes finis et arithmétique basique Énoncé Si p, q sont deux entiers relatifs, on note p q le pgcd de p et q et p q le ppcm de p et q. I Les nombres de Fermat On appelle nombre de Fermat tout entier

Plus en détail

Nombres réels. Exercice 3 : Déterminer les ensembles suivants, mettre ces ensemble sous la forme d un intervalle de R ou une réunion d intervalles.

Nombres réels. Exercice 3 : Déterminer les ensembles suivants, mettre ces ensemble sous la forme d un intervalle de R ou une réunion d intervalles. Nombres réels Exercice 1 : Si a et b sont des réels positifs ou nuls, montrer que Allez à : Correction exercice 1 : a + b a + b Exercice : Montrer que pour tous réels a et b strictement positifs 1 a +

Plus en détail

Correction des exercices du TD1

Correction des exercices du TD1 Correction des exercices du TD1 Rappel : des aides vous sont fournies sur le site «www4.utc.fr /~mt21/» à la fin des fichiers consacrés aux chapitre de cours. N hésitez pas à les consulter pour refaire

Plus en détail

CORRECTION - FX 0. ab a b + 1 1

CORRECTION - FX 0. ab a b + 1 1 Lycée Thiers CORRECTION - FX 0 Exercice. Somme et produit... qui est le plus grand? On considère deux entiers a, b >. Comparer et ab. On constate que : ab a b + = a ) b ) > 0 Or, si p, q sont entiers,

Plus en détail

Matrice et vocabulaire associé

Matrice et vocabulaire associé I Matrice et vocabulaire associé I1 Définitions Définition 1 Deux entiers naturels m et n étant donnés non nuls, on appelle matrice de format m, n tout tableau rectangulaire ayant m n éléments, disposés

Plus en détail

Devoir non surveillé Équation différentielle, fonction définie par une intégrale

Devoir non surveillé Équation différentielle, fonction définie par une intégrale Devoir non surveillé Équation différentielle, fonction définie par une intégrale Pelletier Sylvain, BCPST Lycée Hoche $\ CC BY: pour le 0 juin Eercice Résoudre l équation différentielle : E y y + 5y cos

Plus en détail

DS 9 Correction EXERCICE Etude d'une fonction auxiliaire.

DS 9 Correction EXERCICE Etude d'une fonction auxiliaire. DS 9 Correction EXERCICE On considère la fonction déterminée sur 0, par : ln On se propose dans cet exercice d'étudier la fonction et de la représenter relativement à un repère orthonormal,,, l'unité choisie

Plus en détail

Chapitre 13 : Matrices

Chapitre 13 : Matrices Chapitre 13 : Matrices ECE3 Lycée Carnot 9 février 01 Introduction Pour introduire le concept de matrice, intéressons-nous au problème très concret suivant : dans le village de Trouperdu, le boulanger

Plus en détail

2,5 0 0,3 2 1, , π π 2. (b) Les propriétés se vérifient en regardant les coefficients des matrices.

2,5 0 0,3 2 1, , π π 2. (b) Les propriétés se vérifient en regardant les coefficients des matrices. Exercices du chapitre II : Opérations sur les matrices N o 1 a Effectuer les additions suivantes : 1 3 2 + 3 2 1 2 3 1 3 1 2 π π 2 2 25 3 + 1 2 3 2 14 3 0 2 2 b Vérifier les propriétés suivantes i A B

Plus en détail

Limite, continuité, théorème des valeurs intermédiaires, dérivabilité, théorèmes de Rolle et des accroissements finis

Limite, continuité, théorème des valeurs intermédiaires, dérivabilité, théorèmes de Rolle et des accroissements finis Limite, continuité, théorème des valeurs intermédiaires, dérivabilité, théorèmes de Rolle et des accroissements finis I Limites Continuités Exercice 1 : Soit ] [ la fonction définie par : Déterminer les

Plus en détail

EXERCICES MPSI A 8 B. MATRICES R. FERRÉOL 13/14

EXERCICES MPSI A 8 B. MATRICES R. FERRÉOL 13/14 EXERCICES MPSI A 8 B MATRICES R FERRÉOL 13/14 1 : Calculer si c est possible : (a) (b) (c) 1 2 3 4 5 6 7 8 9 1 i i 0 1 2 1 2 1 2 1 2 3 2 1 i 0 i 1 2 1 0 ; 1 2 3 4 5 6 2 1 2 1 2 3 1 2 1 2 MATRICES 1 0 2

Plus en détail

Exercices 3. Sommes, produits et coefficients binomiaux. Manipulation des symboles Σ et Π, formules usuelles.

Exercices 3. Sommes, produits et coefficients binomiaux. Manipulation des symboles Σ et Π, formules usuelles. Exercices 3 Sommes, produits et coefficients binomiaux Manipulation des symboles Σ et Π, formules usuelles 3 Sommes, produits et coefficients binomiaux 1 1 Sommes 11 Techniques de calcul 1 Enfer trigonométrique

Plus en détail

Corrigé du Devoir Surveillé n 7

Corrigé du Devoir Surveillé n 7 Corrigé du Devoir Surveillé n 7 Exercice : Série harmonique incomplète Série harmonique On considère la série harmonique n. On note pour tout entier n N n T n = n k= k = + 2 + 3 + +. Soit n N, alors T

Plus en détail

Chapitre X. Chapitre X : Matrice inverse et réciproque d une application

Chapitre X. Chapitre X : Matrice inverse et réciproque d une application Chapitre X Chapitre X : Matrice inverse et réciproque d une application Introduction Dans ce chapitre, on fera le lien entre la matrice d une application linéaire et l inverse d une matrice (notion vue

Plus en détail

Chapitre 11. (Étude élémentaire des) Séries numériques

Chapitre 11. (Étude élémentaire des) Séries numériques ECE - Année 206-207 Lycée français de Vienne Mathématiques - F. Gaunard http://frederic.gaunard.com Chapitre. (Étude élémentaire des) Séries numériques Ce chapitre présente la notion de série numérique

Plus en détail

Congruences. DOMAINE : Arithmétique. NIVEAU : Débutants STAGE : Montpellier 2014 CONTENU : Cours et exercices

Congruences. DOMAINE : Arithmétique. NIVEAU : Débutants STAGE : Montpellier 2014 CONTENU : Cours et exercices DOMAINE : Arithmétique AUTEUR : Nicolas SÉGARRA NIVEAU : Débutants STAGE : Montpellier 014 CONTENU : Cours et exercices Congruences Commençons par trois exercices permettant de rappeler ce qui a été vu

Plus en détail

Préparation à l'agrégation Interne Ce devoir est constitué de deux problèmes totalement indépendants. PROBLÈME 1

Préparation à l'agrégation Interne Ce devoir est constitué de deux problèmes totalement indépendants. PROBLÈME 1 Préparation à l'agrégation Interne 2005-2006 F. Dupré Ce devoir est constitué de deux problèmes totalement indépendants. PROBLÈME On notera N n l'ensemble des entiers compris entre et n, n désignant un

Plus en détail

MATRICES e) f) k) m)

MATRICES e) f) k) m) MATRICES Rang Pour chacune des matrices A suivantes, déterminer d abord son rang r A Trouver ensuite une matrice B extraite de A carrée (r A,r A ) et de rang exactement r A a) ( ) 2 3 2 4 b) 2 c) 4 5 6

Plus en détail

Définition Soient a et b deux entiers non tous nuls. Le plus grand diviseur commun à a et b est le PGCD de a et b. On le note PGCD (a ; b) ou a b.

Définition Soient a et b deux entiers non tous nuls. Le plus grand diviseur commun à a et b est le PGCD de a et b. On le note PGCD (a ; b) ou a b. PGCD de deux entiers naturels Diviseurs communs à deux entiers naturels Soient a et b deux entiers naturels non tous les deux nuls. L ensemble des diviseurs communs à a et b est une partie de Z non vide

Plus en détail

Exo7. Arithmétique dans Z. 1 Divisibilité, division euclidienne

Exo7. Arithmétique dans Z. 1 Divisibilité, division euclidienne Exo7 Arithmétique dans Z 1 Divisibilité, division euclidienne Exercice 1 Sachant que l on a 96842 = 256 375+842, déterminer, sans faire la division, le reste de la division du nombre 96842 par chacun des

Plus en détail

Université Claude Bernard - Lyon 1 Semestre d automne Partie CCP - Devoir numéro 5

Université Claude Bernard - Lyon 1 Semestre d automne Partie CCP - Devoir numéro 5 Université Claude Bernard - Lyon Semestre d automne 202-203 Math III - PMI Durée : heure et 30 minutes Partie CCP - Devoir numéro 5 Le candidat attachera la plus grande importance à la clarté, à la précision

Plus en détail

La décomposition de Dunford des endomorphismes.

La décomposition de Dunford des endomorphismes. Document de travail pour l atelier de la journée régionale APMEP d Aix-Marseille du 17 mai André BONNET andre.bonnet9@orange.fr La décomposition de Dunford des endomorphismes. En travaillant avec un jeune

Plus en détail

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions 1 Les suites numériques (rappel de première)... 4 1.1 Généralités... 4 1.2 Plusieurs méthodes pour générer une suite... 4 2 Exemples d algorithmes

Plus en détail

MHT201. Quelques indications de TD 12 (suite)

MHT201. Quelques indications de TD 12 (suite) MHT01 Quelques indications de TD 1 (suite) Exo 1 (1) Notons e 1 = (1, 0, 0), e = (0, 1, 0), et e 3 = (0, 0, 1) Alors {e 1, e, e 3 } est la base canonique de R 3 D après la définition de f, on a f(e 1 )

Plus en détail

pgcd, ppcm dans Z, théorème de Bézout. Applications

pgcd, ppcm dans Z, théorème de Bézout. Applications 7 pgcd, ppcm dans Z, théorème de Bézout. Applications Le théorème de division euclidienne et les sous-groupes de (Z, +) sont supposés connus. Pour tout entier relatif n, on note : nz = {n q q Z} l ensemble

Plus en détail

Chapitre 2. Langage et raisonnement en mathématiques. 2.1 Les règles du jeux

Chapitre 2. Langage et raisonnement en mathématiques. 2.1 Les règles du jeux Chapitre 2 Langage et raisonnement en mathématiques 2.1 Les règles du jeux En mathématique, il y a deux processus fondamentaux : 1. construire des objets mathématiques (nombres, fonctions, figures géométriques,...)

Plus en détail

Commentaires préliminaires. Partie I: cas de la dimension 1.

Commentaires préliminaires. Partie I: cas de la dimension 1. Préparation au CAPES externe -, Correction succincte du problème sur le laplacien discret Commentaires préliminaires Ce document n est pas à proprement parler une correction, mais plutôt une série d indications

Plus en détail

On conclut : B 1. mpsi. 3 Calculer le déterminant suivant : 1 a 2 0 c 2 1 b 2 c 2 0. Indication : Si A et C sont des matrices carrées, alors : A B

On conclut : B 1. mpsi. 3 Calculer le déterminant suivant : 1 a 2 0 c 2 1 b 2 c 2 0. Indication : Si A et C sont des matrices carrées, alors : A B Khôlles MPSI Calcul matriciel - Déterminant Sujet A mpsi Correction 5 4 1 Calculer A 100, avec A = 4 3 5 4 1 1 On a A = = I + 4J avec J = On a J 2 = 0 4 3 1 1 A 100 = (I + 4J) 100 401 400 = I + 400J =

Plus en détail

Feuille 6 - Calcul matriciel

Feuille 6 - Calcul matriciel IUT d Orsay - Département Informatique 22-23 Exercices de mathématiques DUT A - S Feuille 6 - Calcul matriciel Opérations sur les matrices. Exercice corrigé en amphi Calculer, quand cela est possible,

Plus en détail

Exercices supplémentaires : Etude de fonctions

Exercices supplémentaires : Etude de fonctions Exercices supplémentaires : Etude de fonctions Partie A : Avec les fonctions de référence Dans chacun des cas, comparer et sans utiliser la calculatrice ) =,40 et =,4 ) = 7 et = 4 ) = 0,5 et = 4) =,4 et

Plus en détail

Bibliothèque d exercices L1 Feuille n 6. Arithmétique dans Z

Bibliothèque d exercices L1 Feuille n 6. Arithmétique dans Z Bibliothèque d exercices Énoncés L1 Feuille n 6 Arithmétique dans Z 1 Divisibilité, division euclidienne Exercice 1 Combien 15! admet-il de diviseurs? Exercice 2 Trouver le reste de la division par 13

Plus en détail

Crochet de Lie. [http://mp.cpgedupuydelome.fr] édité le 28 décembre 2016 Enoncés 1

Crochet de Lie. [http://mp.cpgedupuydelome.fr] édité le 28 décembre 2016 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 28 décembre 2016 Enoncés 1 Crochet de Lie Exercice 1 [ 00775 ] [Correction] Soient A, B M n (R) vérifiant AB BA = A. (a) Calculer A k B BA k pour k N. (b) À quelle

Plus en détail

Algèbre linéaire pour GM Jeudi 07 novembre 2013 Prof. A. Abdulle. Exercice 1 Calculer les produits suivants en utilisant la multiplication par bloc :

Algèbre linéaire pour GM Jeudi 07 novembre 2013 Prof. A. Abdulle. Exercice 1 Calculer les produits suivants en utilisant la multiplication par bloc : Algèbre linéaire pour GM Jeudi 07 novembre 2013 Prof A Abdulle EPFL Série 7 Corrigé Exercice 1 Calculer les produits suivants en utilisant la multiplication par bloc : a b c 3 1 0 4 1 2 1 1 2 2 1 1 2 1

Plus en détail

n a k x k = 0, k=0 n a k x k. k=0

n a k x k = 0, k=0 n a k x k. k=0 Université Claude Bernard Lyon I CAPES de Mathématiques : Oral Année 2006 2007 Fonctions polynômes On travaille sur un corps K infini, par exemple R ou C. Définition, structures (a) Définition On appelle

Plus en détail

Correction des exercices du TD1

Correction des exercices du TD1 Correction des exercices du TD1 Rappel : des aides vous sont fournies sur le site «www4.utc.fr /~mt21/» à la fin des fichiers consacrés aux chapitre de cours. N hésitez pas à les consulter pour refaire

Plus en détail

CH V : Généralités sur les suites réelles

CH V : Généralités sur les suites réelles CH V : Généralités sur les suites réelles I. Notion de suite I.1. Définition générale Définition Une suite de nombre réels u est une application de N dans R i.e. une fonction de N dans R telle que tout

Plus en détail

Limites de suites. Révisions

Limites de suites. Révisions Limites de suites Révisions Soit ( ) une suite définie pour tout n N par = n 2 + n Exprimer en fonction de n : a b + c + 2 La suite ( ) est-elle arithmétique? 3 Quel est le sens de variation de ( )? 2

Plus en détail

ARITHMETIQUE. Exercice 4 :

ARITHMETIQUE. Exercice 4 : ARITHMETIQUE Exercice 1 : Étant donnés cinq nombres entiers consécutifs, on trouve toujours parmi eux (vrai ou faux et pourquoi) : 1. au moins deux multiples de 2. 2. au plus trois nombres pairs. 3. au

Plus en détail

Construction des entiers naturels

Construction des entiers naturels Construction des entiers naturels Tout ce qui suit est une définition et l étude des propriétés élémentaires de l ensemble des entiers naturels, définis dans le cadre axiomatique de la théorie des ensembles.

Plus en détail

On appelera énoncé élementaire toute phrase fabriquée a l aide des symboles précédents, ayant un sens.

On appelera énoncé élementaire toute phrase fabriquée a l aide des symboles précédents, ayant un sens. Chapitre 1 Éléments de logique Dans cette première partie du cours, on introduit trés rapidement quelques outils permettant de formaliser les idées mathématiques et d obtenir des moyens systématiques de

Plus en détail

Chapitre 2 - Les matrices carrées

Chapitre 2 - Les matrices carrées Chapitre - Les matrices carrées I) Produit et puissance des matrices carrées ) Propriétés Nous avons défini le produit de deux matrices dans le chapitre précédent Dans ce paragraphe nous allons nous intéresser

Plus en détail

Bibliothèque d exercices L1 Feuille n 10. Suites

Bibliothèque d exercices L1 Feuille n 10. Suites Bibliothèque d exercices Énoncés L Feuille n 0 Suites Convergence Exercice Soit (u n ) n N une suite de R. Que pensez-vous des propositions suivantes : Si (u n ) n converge vers un réel l alors (u n )

Plus en détail

Factorisation et études de signes

Factorisation et études de signes MS_F4_chapitrecomplet 4/3/4 :45 page # Factorisation et études de signes FONCTIONS Connaissances du collège nécessaires à ce chapitre Résoudre une équation de type ab = une équation produit une inéquation

Plus en détail

Compléments sur les matrices : exercices

Compléments sur les matrices : exercices Compléments sur les matrices : exercices ECT 6/7 Résoudre le système suivant : On pose A 7 7 (S et B Exercice 7x +y +z x +y +7z x +y +z Résoudre l équation AX B (d inconnue X Que constate-on? x y z M,

Plus en détail

Le Dénombrement. MPSI Prytanée National Militaire. Pascal Delahaye 1 er juin 2017

Le Dénombrement. MPSI Prytanée National Militaire. Pascal Delahaye 1 er juin 2017 Le Dénombrement MPSI Prytanée National Militaire Pascal Delahaye 1 er juin 2017 L objectif de ce chapitre est de présenter les concepts et résultats fondamentaux permettant de calculer le cardinal d ensembles

Plus en détail

CHAPITRE 1 : L ensemble Z=nZ

CHAPITRE 1 : L ensemble Z=nZ CHAPITRE 1 : L ensemble Z=nZ Dans tout ce chapitre, n désigne un entier supérieur ou égal à 2. I Dé nitions. Dé nition I.1 Soit a et b deux entiers relatifs. On dit que a est congru à b modulo n si a de

Plus en détail

TD : Algèbre. Université Pierre et Marie Curie Les 7 et 8 février 2013 http ://www.eleves.ens.fr/home/waldspur/lm125.html.

TD : Algèbre. Université Pierre et Marie Curie Les 7 et 8 février 2013 http ://www.eleves.ens.fr/home/waldspur/lm125.html. Université Pierre et Marie Curie Les 7 et 8 février 203 LM25 http ://www.eleves.ens.fr/home/waldspur/lm25.html TD : Algèbre Corrigé Exercice : 4 2 2 4 2 3 3 0 2 3 0 2 2 4 6 4 5 6 2 0 5 0 2 3 4 0 + 3 2

Plus en détail

EXERCICES D ARITHMÉTIQUE

EXERCICES D ARITHMÉTIQUE 101. 1. n désigne un entier naturel. a. Vérifier que, pour n = 15, le reste de la division euclidienne de (n + 2) 3 par n 2 est égal à 12n + 8. b. Déterminer tous les entiers n pour lesquels cette propriété

Plus en détail

1 ère S Exercices sur les formules d addition et de duplication

1 ère S Exercices sur les formules d addition et de duplication ère S Eercices sur les formules d addition et de duplication Soit un réel quelconque «Développer» cos 4 et sin (en calculant ce qui est calculable) Soit un réel quelconque Réduire les epressions suivantes

Plus en détail

Algèbre linéaire avancée I Jeudi 17 septembre 2015 Prof. A. Abdulle

Algèbre linéaire avancée I Jeudi 17 septembre 2015 Prof. A. Abdulle Algèbre linéaire avancée I Jeudi 17 septembre 015 Prof. A. Abdulle EPFL Série 1 (Corrigé) Exercice 1 Soit f : R R définie par f(x) = x 4x. Répondre à chacune des questions suivantes en cochant la case

Plus en détail

Séance de soutien PCSI2 numéro 7 : Calcul matriciel - Correction des exercices

Séance de soutien PCSI2 numéro 7 : Calcul matriciel - Correction des exercices Séance de soutien PCSI2 numéro 7 : Calcul matriciel - Correction des exercices Tatiana Labopin-Richard 21 janvier 2015 1 Somme et produit Exercice 1 : Pour A M n (K), on note σ(a) la somme des termes de

Plus en détail

Examen du 12/01/2016 : Correction

Examen du 12/01/2016 : Correction L3 Mathématiques Site Nancy, S5 2015/16 Algèbre 2 Examen du 12/01/2016 : Correction Calculatrices et documents non autorisés. Durée 3h Exercice 1. (a) Déterminer, à isomorphisme près, tous les groupes

Plus en détail

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (R)

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (R) Matrices Matrices rectangulaires Soient n, p deux nombres entiers non-nuls On appelle matrice à n lignes et p colonnes un tableau rectangulaire de nombres réels comportant n lignes et p colonnes } }{{}

Plus en détail