Limites d une fonction Continuité ponctuelle

Dimension: px
Commencer à balayer dès la page:

Download "Limites d une fonction Continuité ponctuelle"

Transcription

1 Limites d une fonction Continuité ponctuelle Bcpst 1 3 janvier 2017 I Parties de et ordre I.1 Intervalles Definition 1.1 Intervalle de Un intervalle de est un ensemble d une des formes suivantes (a, b) 2, a < b,, ] a ; b [, ] a ; b ], [ a ; b [, [ a ; b ], {a}, ] a ; + [, [ a ; + [, ] ; a [, ] ; a ] Propriété 1.2 Un intervalle I de vérifie la propriété de continuité (α, β) I 2, α < < β = I Dém. En énumérant les différentes formes d intervalles. Definition 1.3 Segment de Un segment de est un intervalle de la forme [ a ; b ] avec (a, b) 2, a < b. Definition 1.4 Voisinage Soit 0. Un voisinage de 0 est un intervalle ouvert de la forme ] 0 α ; 0 + α[ avec α > 0. α α Un voisinage de + est un intervalle ouvert de la forme ]a ; + [ avec a.

2 II Limites d une fonction en un point 2 a II Limites d une fonction en un point Notations du chapitre Dans tout ce chapitre, est un domaine de, c est-à-dire un intervalle de non vide et non réduit à un point, ou bien une réunion finie de tels intervalles de. Tpiquement : = + ou = +. a (eclu) Figure I.1 Un eemple de domaine de définition II.1 Limites finies Definition 2.2 Limite finie en un point Soit f est une fonction de dans et 0 un point ou une borne finie de. La fonction f tend vers l en 0 si et seulement si ε > 0, α > 0, ] 0 α ; 0 + α[, f () l < ε l + ε l ε 0 α α 1 La fonction représentée ci-dessus admet une limite en 0. Elle n admet pas de limite en 1.

3 Remarque I.0 II Limites d une fonction en un point 3 n demande à d être dans ] 0 α ; 0 + α[ afin d une part que f soit définie en et d autre part que soit dans un voisinage de 0. n peut montrer que les inégalités dans la définition précédente peuvent être larges ou strictes : la notion définie est la même. Proposition 2.3 Unicité de la limite Soit f est une fonction de dans et 0 un point ou une borne finie de. Si f tend vers l en 0, alors il eiste un seul réel l vérifiant cette propriété. Dém. Soit l et l deu réels vérifiant ε > 0, α > 0 tel que ] 0 α ; 0 + α[ = f () l < ε 0 α ; 0 + α = f () l < ε Prenons ε quelconque dans + et α = inf(α, α ). Prenons alors quelconque dans 0 α ; 0 + α. Comme f () l < ε et f () l < ε l l = l + f () f () l < f () l + f () l < 2ε avec l inégalité triangulaire Ainsi, pour tout ε > 0, l l < 2ε, ce qui prouve que l = l. Notation n parle de la limite de f en 0 et on note indifféremment lim f = l, lim f () = l ou f () l. Eemple n peut démontrer que lim 2 = 0 : on prend α = ε dans la définition 0 de la limite. Théorème & Définition 2.4 Continuité ponctuelle Soit f est une fonction de dans et 0 un point de. Si f admet une limite en 0 alors nécessairement cette limite est égale à f ( 0 ). Dans ce cas, on dit que f est continue en 0. Dém. Revenons à la définition de la limite ε > 0, α > 0 tel que

4 II Limites d une fonction en un point 4 ] 0 α ; 0 + α[ = f () l < ε Si 0, alors on peut toujours prendre = 0 dans la seconde partie de la formule. n ainsi ε > 0, f ( 0 ) l < ε Ce qui prouve que l = f ( 0 ). La différence entre la notion de limite en 0 et la notion de continuité en 0 est qu une fonction continue en 0 doit être définie en 0. Eemple La plupart des fonctions usuelles sont réputées continues sur leur domaine de définition. II.2 Limites infinies Limite en l infini Definition 2.5 Limites infinies en un point fini Soit f : et 0 un point ou une borne finie de. La fonction f tend vers + en 0 si et seulement si M > 0, α > 0 ] 0 α ; 0 + α[, f () > M. La fonction f tend vers en 0 si et seulement si f tend vers +. n note lim f () = +, lim f = +, ou encore f () +. Dans ce cas la courbe représentative de f présente une asptote verticale en 0. 0 Figure I.2 Asmptote verticale = 0.

5 II Limites d une fonction en un point 5 Definition 2.6 Limite finie en + n suppose que contient un voisinage de +. Soit f :. La fonction f tend vers l en + si et seulement si ε > 0, A > 0, ]A ; + [ = f () l < ε Dans ce cas, la courbe représentative de f présente une asmptote horizontale en +. l Figure I.3 Asmptote horizontale = l Definition 2.7 Limite infinie en + n suppose que contient un voisinage de +. Soit f :. La fonction f tend vers + en + si et seulement si M > 0, A > 0 ]A ; + [ = f () > M. n définit de même les limites en. Notez qu il a également unicité de la limite finie en + ou en.

6 II Limites d une fonction en un point 6 Figure I.4 Différents comportements possibles en + Application I.0 Limite de ln en + Voici la démonstration d un résultat que nous avons vu dans la partie sur le logarithme : ln() + +. Soit A +. Alors pour tout réel plus grand que 3 A +1, ln > ( A + 1) ln 3 > ln 3 A > A. Ainsi, A +, M R, > M = ln() > A Definition 2.8 Limites par valeurs supérieures, inférieures f :, 0 un point ou une borne finie ou infinie de. La fonction f tend vers l par valeurs supérieures en 0 si et seulement si lim f () = l et si f () l sur un voisinage de 0. n note lim f () = l + ou bien f () l +. La fonction f tend vers l par valeurs inférieures quand tend vers 0 si et seulement si lim f () = l et si f () < l sur un voisinage de 0. n note lim f () = l ou bien f () l.

7 II Limites d une fonction en un point 7 II.3 Limite à gauche, à droite Definition 2.9 Limite à gauche en 0 Soit f : et 0 un point ou une borne supérieure de. La fonction f admet une limite à gauche en 0 si et seulement si la restriction de f à ] ; 0 [ admet une limite en 0. Cette limite est notée lim f () = l ou f () < 0 < 0 l. Definition 2.10 Limite à droite en 0 Soit f : et 0 un point ou une borne inférieure de. La fonction f admet une limite à droite en 0 si et seulement si la restriction de f à ] 0 ; + [ admet une limite en 0. Cette limite est notée lim f () = l ou > 0 f () l. > 0 Ces limites peuvent être finies ou infinies. 0 0 Figure I.5 Limites à gauche et à droite Eemple La fonctionφ : + > 2 1 sinon en 2 et 2 comme limite à droite en 0 = 2. admet 1 comme limite à gauche

8 II Limites d une fonction en un point 8 f ( 0 ) = 2 0 Remarquez que la limite à gauche est différente de la valeur de la fonction en 2. En effet, pour étudier la limite à gauche, on prend la restriction de f à [ 0 ; 2 [, ce qui permet d obtenir une limite différente de f (2). Important! Au bornes de, il est sous-entendu qu on prend la limite à gauche ou à droite, selon les cas. Eemple lim = 0 (en fait c est une limite à droite) ; 0 Soit f :. À droite en 0, la fonction tend vers 0. À gauche elle tend vers 1. lim H() = 1 et lim H() = 0 où H désigne la fonction de Heaviside, qui vaut 1 0 >0 0 <0 sur + et 0 sur. Definition 2.11 Continuité à gauche, à droite Soit f : et 0 un point de. La fonction f est continue......à gauche en 0 si elle admet une limite à gauche en 0 et que lim f = f ( 0 ) ; < 0...à droite en 0 si elle admet une limite à droite en 0 et que lim f = f ( 0 ) ; > 0 Proposition 2.12 Lien entre limite, limites à gauche et à droite Soit 0 un point ou une borne de et f : \ { 0 }.

9 II Limites d une fonction en un point 9 La fonction f admet une limite en 0 si et seulement si elle admet une limite à gauche et à droite en 0 et que lim f () = lim f () auquel cas lim f ( 0 ) = lim f () < 0 > 0 < 0 Dém. Il suffit d aligner les définitions. Eemple L eemple tpique d application de ce théorème est la fonction sinuscardinal, définie sur par, f () = sin() Cette fonction, non définie en 0, admet tout de même une limite en 0, à savoir 1. Proposition 2.13 Lien entre continuité, limites à gauche et à droite Soit f : et 0 un point à l intérieur de. La fonction f est continue en 0 si et seulement si elle admet une limite à gauche et à droite en 0 et que lim f () = lim f () = f ( 0 ) < 0 > 0 Dém. Il suffit d aligner les définitions. La dernière condition est rendu nécessaire par le fait que la limite à gauche ou à droite eclut le point 0. Eemple La fonction φ : + > 2 1 sinon n est donc pas continue en 2. Eemple La fonction sinus-cardinal peut être prolongé par continuité en 0 de la façon suivante sin() 0, f () = 1 sinon Cette façon de procéder est tellement commode qu elle mérite un théorème. Théorème & Définition 2.14 Prolongement par continuité Soit 0 un point de et f : \ { 0 }. Si f admet une limite en 0, alors il eiste un unique prolongement f de f à { 0 } tel que f soit continue en 0.

10 III pérations sur les limites 10 n parle du prolongement par continuité de f en 0. Dém. Soit f une telle fonction. Comme c est un prolongement de f, on a bien sûr f () = f () pour. Comme f est continue en 0, nécessairement f ( 0 ) = lim f + f ( 0 ) = lim f + puisque f () = f () sur Ce qui fie la valeur de f en 0. Ainsi { 0 }, f () = f () lim f = 0 Cette fonction est bien un prolongement de f sur { 0 } continue en 0, et c est le seul. Au sens strict, f et f ne sont pas la même fonction. Mais elles partagent de nombreuses propriétés en commun, ce qui conduit en pratique à confondre f et f. Figure I.6 Prolongement par continuité III pérations sur les limites III.1 pérations algébriques J appelle «théorèmes générau» les résultats permettant de calculer une limite à partir d autres limites connues. Ces résultats sont admis.

11 III pérations sur les limites 11 Théorème 3.1 pérations algébriques Limites finies Soit f :, g :, 0 un point ou une borne éventuellement infinie de et λ. n suppose que f () l et que g() l, avec l et l deu réels. f () + g() l + l f () g() l l λ f () λl 1 f () 1 l si l 0 Ce théorème est également valable pour des limites à gauche et à droite. Il se transcrit directement en terme de continuité ponctuelle. Corollaire 3.2 pérations algébriques et continuité ponctuelle Soit f :, g :, 0 un point de et λ. Si f et g sont continues en 0 alors λ f, f + g et f g sont continues en 0. Si, de plus, f ( 0 ) 0 alors 1/f est continue en 0. Théorème 3.3 pérations algébriques Limites infinies Soit f de. :, g : et 0 un point ou une borne éventuellement infinie Si f () si f () si f () si f () Si f () g() 1 + alors f () alors f () + ; l et g() l > 0 et g() +. + et g() 0 et f () ; + alors f () + g() + ; + alors f () g() + + alors f () + g() + et f () En modifiant le signe de f et/ou de g, on traite le cas des limites, etc. Tous les autres cas relèvent de ce qu on appelle les «formes indéterminées». Aucun théorème général ne s applique dans ces cas-là. Des méthodes plus pointues peuvent parfois permettre de déterminer ces limites. «1». «0 0» = «0» =

12 III pérations sur les limites 12 III.2 Composée Théorème 3.4 Composée Soit f : f et g : g deu fonctions numériques et 0 un point ou une borne éventuellement infinie de f, n suppose que f admet une limite (finie ou infinie) l en 0, l est un point ou une borne éventuellement infinie de g et que g admet une limite l en l. Dans ce cas g f () l. Ce théorème a l énoncé complee est etrêmement utile. Il permet, en pratique, de calculer la plupart des limites. Eemple lim 0 sin = lim + sin(1/ ) = lim e 1 0+ sin() = Corollaire 3.5 Continuité d une composée Soit f : f et g : g et 0 un point de f. n suppose que f est continue en 0, que f ( 0 ) g et que g est continue en f ( 0 ). Alors g f est continue en 0. Le théorème de composition peut se particulariser dans le cas de la composée d une fonction et d une suite. Théorème 3.6 Limite de fonction et de suite Soit f : et 0 un point de ou une borne de. Soit (u n ) n telle que u n n + 0. Si f tend vers l en 0 alors f (u n ) n + l. Eemple Limite de 4 n sin(4 n ) : Application I.0 Fonction n admettant pas de limite en 0 La fonction f () = sin(1/) n a pas de limite en 0. De même la faonction sin n admet pas de limite en +.

13 IV Limites et ordre 13 u n = 1 π 2 + 2πn 1 v n = π 2 + 2πn Figure I.7 Une fonction sans limite en 0 IV Limites et ordre IV.1 À partir d une limite connue, renseignements sur f Soit f :. Soit 0 un point de, éventuellement une borne finie ou infinie. Proposition 4.1 Si f admet une limite finie en 0 alors f est bornée sur un voisinage de 0. Dém. n prend ε = 1 dans la définition. M m 0 Proposition 4.2 Si f admet une limite strictement positive en 0 alors f est strictement positive sur un voisinage de 0. Dém. n prend ε = l/2 dans la définition. Ce résultat rend de multiples services : par eemple il assure que 1/f est définie sur un voisinage de 0.

14 IV Limites et ordre 14 0 Figure I.8 1/f est définie sur un voisinage de 0 Corollaire 4.3 Si f admet une limite strictement négative en 0 alors f est négative sur un voisinage de 0. Corollaire 4.4 Si f admet une limite finie non nulle en 0 alors f est non nulle sur un voisinage de 0. En particulier, si f admet une limite non nulle en 0 alors 1/f est définie sur un voisinage de 0. IV.2 À partir d un encadrement sur f, renseignements sur la limite Proposition 4.5 Soit f : et 0 un point ou une borne finie ou infinie de. n suppose que f admet une limite en 0., f () > a = lim f a Dém. Considérons le cas d une limite finie, le seul qui soit vraiment intéressant ici. ε > 0, α > 0 tel que ] 0 α ; 0 + α[ = f () l < ε Ainsi, ε étant quelconque, ] 0 α ; 0 + α[ f () ε < l < f () + ε ou encore, puisque f () > a, ε > 0, a ε < l Cette inégalité assure que l a, mais aucunement que l > a. De façon smétrique si, f () < a alors lim f < a.

15 IV Limites et ordre 15 Eemple Par eemple 1/ > 0 sur +, mais 1/ 0. + Corollaire 4.6 Soit f : et g :, soit 0 un point ou une borne finie ou infinie de. Si f et g admettent toutes deu une limite en 0, et si, f () < g() alors lim f < lim g Dém. En appliquant la proposition précédente à la fonction f g. Eemple sin < sur ]0 ; 1[ et pourtant elles ont la même limite en 0. de même avec 1/ 2 et 1/ en l infini : IV.3 Théorèmes d encadrement Nous voons maintenant les résultats les plus puissants permettant de déterminer l eistence et la valeur d une limite. Théorème 4.7 Théorème d encadrement Soit f, u et v trois fonctions définies sur et 0 un point ou une borne finie ou infinie de. Si si et si alors et \ { 0 }, u() < f () < v() u et v admettent une limite en 0 lim u = lim v f admet une limite en 0 lim f = lim u = lim v

16 IV Limites et ordre 16 Théorème 4.8 Théorème de minoration/majoration Soit 0 un point de, ou une borne finie ou infinie de. Soit f et g deu fonctions définies sur telles que \ { 0 }, f () < g() Si Si lim f = + alors lim g = +. lim g = alors lim f =. IV.4 Limites et monotonie Théorème 4.9 Soit f est une fonction monotone sur un intervalle ] a ; b [, avec éventuellement a et b infinis. Alors f admet une limite (finie ou infinie) en a et en b. La démonstration de ce théorème touche à la définition même de. Corollaire 4.10 Si f est une fonction monotone sur un intervalle I alors f admet une limite finie à gauche et à droite en tout point de I. Attention! n ne peut pas affirmer, en toute généralité, que ces limites soient égales à la valeur de f, ni même qu elles soient égales entre elles. Pensez par eemple à la fonction.

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours. Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Leçon 01 Exercices d'entraînement

Leçon 01 Exercices d'entraînement Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Optimisation des fonctions de plusieurs variables

Optimisation des fonctions de plusieurs variables Optimisation des fonctions de plusieurs variables Hervé Hocquard Université de Bordeaux, France 8 avril 2013 Extrema locaux et globaux Définition On étudie le comportement d une fonction de plusieurs variables

Plus en détail

Logique. Plan du chapitre

Logique. Plan du chapitre Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels

Plus en détail

Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2

Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2 Les parties A et B sont indépendantes. Partie A Exercice 3 (5 points) Commun à tous les candidats On considère la fonction A définie sur l'intervalle [1 ; + 00 [ par A(x) = 1-e -0039' ' x 1. Calculer la

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

Chap 4. La fonction exponentielle Terminale S. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R.

Chap 4. La fonction exponentielle Terminale S. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R. Démonstration : Soit la fonction %:& %&!= &!, elle est dérivable sur R et & R, %. &!= &! = &! = %&! gaelle.buffet@ac-montpellier.fr

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

La persistance des nombres

La persistance des nombres regards logique & calcul La persistance des nombres Quand on multiplie les chiffres d un nombre entier, on trouve un autre nombre entier, et l on peut recommencer. Combien de fois? Onze fois au plus...

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

FONCTION EXPONENTIELLE ( ) 2 = 0.

FONCTION EXPONENTIELLE ( ) 2 = 0. FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons

Plus en détail

III- Raisonnement par récurrence

III- Raisonnement par récurrence III- Raisonnement par récurrence Les raisonnements en mathématiques se font en général par une suite de déductions, du style : si alors, ou mieux encore si c est possible, par une suite d équivalences,

Plus en détail

Maple: premiers calculs et premières applications

Maple: premiers calculs et premières applications TP Maple: premiers calculs et premières applications Maple: un logiciel de calcul formel Le logiciel Maple est un système de calcul formel. Alors que la plupart des logiciels de mathématiques utilisent

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Intégration et probabilités TD1 Espaces mesurés

Intégration et probabilités TD1 Espaces mesurés Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Sur certaines séries entières particulières

Sur certaines séries entières particulières ACTA ARITHMETICA XCII. 2) Sur certaines séries entières particulières par Hubert Delange Orsay). Introduction. Dans un exposé à la Conférence Internationale de Théorie des Nombres organisée à Zakopane

Plus en détail

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de

Plus en détail

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2. Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3

Plus en détail

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Manuel d utilisation 26 juin 2011. 1 Tâche à effectuer : écrire un algorithme 2

Manuel d utilisation 26 juin 2011. 1 Tâche à effectuer : écrire un algorithme 2 éducalgo Manuel d utilisation 26 juin 2011 Table des matières 1 Tâche à effectuer : écrire un algorithme 2 2 Comment écrire un algorithme? 3 2.1 Avec quoi écrit-on? Avec les boutons d écriture........

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout

Plus en détail

F1C1/ Analyse. El Hadji Malick DIA

F1C1/ Analyse. El Hadji Malick DIA F1C1/ Analyse Présenté par : El Hadji Malick DIA dia.elmalick1@gmail.com Description sommaire du cours Porte sur l analyse réelle propose des outils de travail sur des éléments de topologie élémentaire

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

F411 - Courbes Paramétrées, Polaires

F411 - Courbes Paramétrées, Polaires 1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013

Plus en détail

Cours d Analyse 3 Fonctions de plusieurs variables

Cours d Analyse 3 Fonctions de plusieurs variables Université Claude Bernard, Lyon I Licence Sciences, Technologies & Santé 43, boulevard 11 novembre 1918 Spécialité Mathématiques 69622 Villeurbanne cedex, France L. Pujo-Menjouet pujo@math.univ-lyon1.fr

Plus en détail

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t 3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes

Plus en détail

Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné :

Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné : Enoncés : Stephan de Bièvre Corrections : Johannes Huebschmann Exo7 Plans tangents à un graphe, différentiabilité Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

EXERCICES - ANALYSE GÉNÉRALE

EXERCICES - ANALYSE GÉNÉRALE EXERCICES - ANALYSE GÉNÉRALE OLIVIER COLLIER Exercice 1 (2012) Une entreprise veut faire un prêt de S euros auprès d une banque au taux annuel composé r. Le remboursement sera effectué en n années par

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

La mesure de Lebesgue sur la droite réelle

La mesure de Lebesgue sur la droite réelle Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Optimisation Discrète

Optimisation Discrète Prof F Eisenbrand EPFL - DISOPT Optimisation Discrète Adrian Bock Semestre de printemps 2011 Série 7 7 avril 2011 Exercice 1 i Considérer le programme linéaire max{c T x : Ax b} avec c R n, A R m n et

Plus en détail

Chapitre 2. Matrices

Chapitre 2. Matrices Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7 Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Cours d Analyse I et II

Cours d Analyse I et II ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Cours d Analyse I et II Sections Microtechnique & Science et génie des matériaux Dr. Philippe Chabloz avril 23 Table des matières Sur les nombres. Les nombres

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable

Plus en détail

PRIME D UNE OPTION D ACHAT OU DE VENTE

PRIME D UNE OPTION D ACHAT OU DE VENTE Université Paris VII - Agrégation de Mathématiques François Delarue) PRIME D UNE OPTION D ACHAT OU DE VENTE Ce texte vise à modéliser de façon simple l évolution d un actif financier à risque, et à introduire,

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail