Comparatif ancien et nouveau programme MP / MP
|
|
|
- Jean-Marie Richard
- il y a 9 ans
- Total affichages :
Transcription
1 Comparatif ancien et nouveau programme MP / MP I OBJECTIFS DE FORMATION Les sous-paragraphes concernant le rôle de la pensée algorithmique et l emploi des calculatrices sont supprimés mais font l objet d un chapeau dans le programme à proprement parlé (voir II). Sous-paragraphe supplémentaire concernant les épreuves écrites en temps limité : connaissances exigibles, indications à fournir, barème. II PROGRAMME DES CLASSES MP ET MP AVERTISSEMENT Le paragraphe concernant les travaux pratiques et l emploi d un logiciel est supprimé et reporté au chapeau suivant. Même organisation de la présentation (par colonnes suivant le caractère exigible, non exigible, hors programme des connaissances). Un paragraphe supplémentaire quant à la différentiation de l enseignement entre classe MP et MP remplace le supplément de l ancien programme concernant les classes PSI : désormais la différence n intervient que dans le niveau d approfondissement variable suivant les objectifs de formation des élèves. ACTIVITÉS ALGORITHMIQUES ET INFORMATIQUE Le texte général est repris des anciens paragraphes sur le sujet, mais les algorithmes proposés sont ici rassemblés, étant précisé qu ils ne constituent nullement une extension de programme. Cette liste diffère de l ensemble des algorithmes qui étaient proposés en rubrique Travaux Pratiques. ALGÈBRE ET GÉOMÉTRIE I. ALGÈBRE GÉNÉRALE 1- Groupes a) Groupes Z/nZ b) Groupes Disparition : action (ou opération) d un groupe sur un ensemble et les approfondissements associés (en particulier l ordre d un sous-groupe d un groupe fini et l ordre d un élément d un tel groupe). 2- Anneaux et corps a) Idéaux d un anneau commutatif Pas de changement b) Idéaux de Z, anneau Z/nZ Disparition : intervention de Z/nZ pour l étude des congruences, théorème chinois (ces deux points étaient des approfondissements MP ). Ajout : on pourra donner des exemples d utilisation de Z/nZ en cryptographie, indicatrice d Euler. c) Idéaux de K[X] Disparition : morphisme a K[a] et son noyau, étude de K[a], élément algébrique et polynôme minimal d un tel élément. II. ALGÈBRE LINÉAIRE ET GÉOMÉTRIE AFFINE Les espaces vectoriels sont supposés, en MP, définis sur un corps de caractéristique nulle (et non plus seulement sur un sous-corps de C). On peut toujours, en MP, donner des exemples où le corps est de caractéristique non nulle. Espaces vectoriels ; applications linéaires a) Somme directe de sous-espaces vectoriels 1
2 Ajout : définition d une application bilinéaire, notion d algèbre (auparavant au programme de première année), algèbre des fonctions polynomiales sur R n ou C n et base canonique de cette algèbre. b) Image et noyau d une application linéaire Passage en colonne droite du sujet interpolation de Lagrange. Disparition : propriétés de P (P(a 0 ),...,P(a n )) de K[X] dans K n+1. Disparition : forme bilinéaire canonique (ϕ,x) < ϕ,x > sur E E. c) Dualité en dimension finie Disparition : étude, si (e 1,...,e p ) est une famille de E, de l application linéaire u : E K p définie par u(f) = (f(e 1,...,e p )). (e 1,...,e p ) libre si et seulement si u est surjective. Ajout : Existence d une base anté-duale. Disparition : étude, si (ϕ 1,...,ϕ p ) est une famille de E, de l application linéaire u : E K p définie par u(x) = (ϕ 1 (x),...,ϕ 2 (x)). (ϕ 1,...,ϕ p ) libre si et seulement si u est surjective. On a seulement les résultats suivants : si F est un sous-espace vectoriel de E de dimension p, l ensemble des formes linéaires s annulant sur F est un sous-espace vectoriel de E de dimension n p. Si (ϕ 1,...,ϕ q ) est une famille libre de formes linéaires sur un espace vectoriel E de dimension n, l intersection des noyaux respectifs H i des formes linéaires ϕ i est un sous-espace vectoriel F de E de dimension n q. Toute forme linéaire s annulant sur F est combinaison linéaire de ϕ 1,...,ϕ q d) Trace d un endomorphisme. e) Calcul matriciel et système d équations linéaires. Formes bilinéaires symétriques et formes quadratiques Ce chapitre est supprimé et est remplacé par un paragraphe sur les formes bilinéaires symétriques dans le chapitre IV.1- Espaces préhilbertiens réels. La méthode de Gauss, la signature d une forme quadratique et le théorème d inertie de Sylvester ne sont plus au programme. III. RÉDUCTION DES ENDOMORPHISMES 1- Sous-espaces stables, polynômes d endomorphismes a) Sous-espaces stables Disparition de la définition de drapeau. b) Polynôme d un endomorphisme 2- Réduction d un endomorphisme a) Valeurs propres, vecteurs propres d un endomorphisme b) Valeurs propres, vecteurs propres d une matrice carrée c) Polynôme caractéristique Ajout : lien entre l ordre de multiplicité d une valeur propre et la dimension du sous-espace propre associé. d) Réduction en dimension finie Pas de changement hormis une condition nécessaire et suffisante de diagonalisabilité supplémentaire qui utilise (X λ). λ Sp(u) 2
3 IV. ESPACES EUCLIDIENS, GÉOMÉTRIE EUCLIDIENNE, ESPACES HERMI- TIENS 1- Espaces préhilbertiens réels a) Formes bilinéaires symétriques Nouvelle présentation. On conserve la définition d une forme bilinéaire symétrique et de la forme quadratique associée, la polarisation, la matrice (en dimensionfinie) d une forme bilinéaire symétrique ou d une forme quadratique. On conserve également les formes bilinéaires symétriques positives (resp définies positives), les formes quadratiques positives (resp définies positives) et l inégalité de Cauchy-Schwarz. Le rang d une forme bilinéaire symétrique est maintenant défini lors de l étude des endomorphismes autoadjoints d un espace euclidien. b) Produit scalaire Précision : identité du parallélogramme, identité de polarisation. 2- Espaces euclidiens a) Bases orthonormales Disparition en colonne de droite de l existence d une base orthonormale adaptée à un drapeau. Apparition du procédé d orthonormalisation de Gram-Schmidt qui figurait avant dans le cadre Travaux pratiques. b) Projections orthogonales L expression de la distance de x à F à l aide de p F (x) a disparu. c) Adjoint d un endomorphisme Disparition de la réflexion s a,b échangeant deux vecteurs unitaires. Le reste du paragraphe est récrit mais garde le même contenu. d) Réduction des endomorphismes autoadjoints On définit ici le rang d une forme bilinéaire symétrique (d une forme quadratique), une forme non dégénérée. e) Application aux coniques et aux quadriques En plus de la recherche d une équation réduite de conique qui figurait déjà dans le cadre Travaux Pratiques et qui est reconduit, exemples de telles recherches pour une quadrique, description des quadriques usuelles et génération par une famille de droites d un hyperboloïde de révolution à une nappe et d un paraboloïde hyperbolique. 3- Espaces préhilbertiens complexes, espaces hermitiens a) Espaces préhilbertiens complexes Pas de changement (toutefois les différentes relations entre produit scalaire et norme ne sont plus explicitées). b) Espaces vectoriels hermitiens L expression de la distance de x à F à l aide de p F (x) a disparu. Disparition : les notions d adjoint d un endomorphisme, d endomorphisme autoadjoint, de matrice hermitienne, d automorphisme unitaire et de matrice unitaire ne sont plus au programme (elles apparaissaient avant dans les approfondissements MP ). ANALYSE ET GÉOMÉTRIE DIFFÉRENTIELLE I. SUITES ET FONCTIONS 1- Espaces vectoriels normés réels ou complexes a) Normes et distances b) Suites d éléments d un espace vectoriel normé 3
4 Disparition : caractérisation de N αn à l aide de suites convergeant vers 0 au sens de N ou de N. Les énoncés relatifs à l étude du comportement global et asymptotique de suites qui figuraient dans le cadre Travaux pratiques sont maintenant dans ce paragraphe. Il en est de même de l étude des suites définies par une relation de récurrence u n+1 = f(u n ). c) Topologie d un espace vectoriel normé d) Etude locale d une application, continuité e) Applications linéaires continues f) Complétude, compacité Disparition des approfondissements MP : théorème du point fixe pour les contractions d une parie complète, B(A,F) muni de la norme N est complet lorsque F est complet, l espace des applications linéaires continues de E dans F est complet. 2- Espaces vectoriels normés de dimension finie Disparition des approfondissements MP : théorème de Borel-Lebesgue, si A est connexe par arcs toute partie non vide P de A à la fois ouverte et fermée dans A est égale à A, toute application définie sur A et localement constante est constante. 3- Séries d éléments d un espace vectoriel normé Disparition : introduire le concept de suite sommable n est plus un objectif de ce chapitre. a) Suites et séries Pas de changement b) Séries de nombres réels positifs Disparition : comparaison logarithmique. On conserve toutefois la règle de d Alembert. c) Sommation des relations de comparaison Ce paragraphe est inchangé mais se trouvait avant dans la partie III. d) Comparaison d une série à une intégrale Ce paragraphe est inchangé mais se trouvait avant dans la partie III. e) Séries d éléments d un espace vectoriel normé de dimension finie Ce paragraphe est complété par les résultats sur le produit de Cauchy qui figurait dans la partie III et par le théorème de Fubini pour les séries doubles. Disparition : les suites sommables ne sont plus au programme. 4- Suites et séries de fonctions On précise que les fonctions sont définies sur une partie d un espace vectoriel de dimension finie sur le corps R ou C. a) Convergence simple, convergence uniforme, convergence normale Disparition : convergence normale sur tout compact. b) Liens avec l intégration et la dérivation Ce paragraphe reprend les anciens paragraphes II.2.b : Intégration sur un segment des suites de fonctions continues et II.3.e : Suites et séries de fonctions de classe C k. c) Approximation des fonctions d une variable réelle Paragraphe inchangé. 4
5 II. FONCTIONS D UNE VARIABLE RÉELLE : DÉRIVATION ET INTÉGRATION 1) Dérivée des fonctions à valeurs vectorielles a) Dérivée en un point, fonctions de classe C 1 Pas de changement dans ce paragraphe (le cas particulier des fonctions à valeurs complexes n apparaît plus mais figure dans le programme de première année). b)- Fonctions de classe C k Le paragraphe est complété par l extension aux applications de classe C k des théorèmes de dérivation de suites et séries de fonctions (cette extension figurait avant au II.3.e : Suites et séries de fonctions de classe C k ). Le paragraphe Fonctions de classe C k par morceaux disparaît, la définition est introduite dans le paragraphe Séries de Fourier. Le chapitre Intégration sur un segment des fonctions à valeurs vectorielles est supprimé. Le contenu du paragraphe Intégration sur un segment des suites de fonctions continues est transféré dans le paragraphe I.4.b) Liens avec l intégration et la dérivation. Le paragraphe Intégrale d une fonction continue par morceaux disparaît, il est remplacé par le paragraphe Compléments de calcul intégral du chapitre IV.1- Equations différentielles linéaires, dans lequel est faite une brève extension des fonctions continues par morceaux sur un intervalle compact à valeurs dans un espace vectoriel normé de dimension finie. Le chapitre Dérivation et intégration est supprimé. Le paragraphe Théorème de relèvement est transféré dans le chapitre 3- Courbes d un espace vectoriel normé de dimension finie. Le contenu du paragraphe Suites et séries de fonctions de classe C k est transféré dans le paragraphe I.4.b) Liens avec l intégration et la dérivation. Les intégrales à paramètres sont étudiées dans le chapitre suivant. 2) Intégration sur un intervalle quelconque a) Fonctions intégrables à valeurs positives b) Fonctions intégrables à valeurs complexes Disparition : intégration des relations de comparaison. Ajout : un théorème de changement de variable (bijectif). on ne parle plus d intégrale semi-convergente mais d intégrale impropre (ou généralisée). c) Convergence en moyenne, en moyenne quadratique Ne figure plus la remarque : lorsque I est borné, la convergence uniforme implique la convergence en moyenne. d) Théorème de convergence dominée Disparition : le théorème de convergence monotone. Disparition en colonne de droite du cas où (f n ) converge uniformément sur tout segment, cas où la démonstration du théorème de convergence dominée était exigible des étudiants. e) Intégration terme à terme d une série de fonctions Logiquement, ne subsiste plus que le théorème général : disparaissent les cas particuliers d une série de fonctions à valeurs positives, le cas d une convergence uniforme sur tout segment, ainsi que les inégalités faisant intervenir N 1 (f n ). f) Intégrales dépendant d un paramètre Reformulation complète pour un unique théorème de continuité et un unique théorème de dérivation : plus de séparation des cas suivant le type d intervalle d intégration, hypothèses de régularité qui portent sur les fonctions partielles. À noter que contrairement aux paragraphes concernant les suites et séries de fonctions, le programme comporte une extension au cas d une 5
6 condition de domination vérifiée sur tout segment. Par contre, aucune extension au cas de fonctions de classe C k n est précisée. g) Intégrales doubles ce paragraphe est sensiblement étoffé par rapport à l ancien programme. On définit en particulier l intégrabilité d une fonction à valeurs complexes sur un produit I I de deux intervalles. On donne alors la version adaptée du théorème de Fubini. h) Intégrale sur une partie simple du plan, notion d aire C est un nouveau paragraphe. Il précise les connaissances exigibles sur le sujet. 3- Courbes d un espace vectoriel normé de dimension finie Pas de changement particulier. Un paragraphe spécifique à l étude des branches infinies, notamment dans le cas particulier des courbes données par une équation polaire. On notera que le paragraphe sur le théorème de relèvement figure maintenant dans ce chapitre. III. SÉRIES ENTIÈRES, SÉRIES DE FOURIER Disparition : le chapitre Séries, suites doubles sommables est supprimé. La notion de suite double sommable n est plus au programme. Les résultats sur la sommation des relations de comparaison, sur la comparaison d une série à une intégrale et sur le produit de Cauchy de deux séries figurent désormais au I.3- Séries d éléments d un espace vectoriel normé. 1) Séries entières Seule modification : le lemme d Abel est appelé par son nom. 2) Séries de Fourier Seules modifications : la définition d une fonction C k par morceaux sur R est introduite dans ce paragraphe et on étend à ces fonctions (pour k = 1) la formule d intégration par parties. IV. ÉQUATIONS DIFFÉRENTIELLES 1) Équations différentielles linéaires a) Complément de calcul intégral Nouveau paragraphe dans lequel est faite une brève extension de l intégrale aux fonctions continues par morceaux sur un intervalle compact à valeurs dans un espace vectoriel normé de dimension finie. b) Equations linéaires d ordre 1 Aucun changement. c) Equations linéaires à coefficients constants b) Equations linéaires scalaires d ordre 1 ou 2 2) Notions sur les équations différentielles non linéaires La présentation de ce chapitre est modifiée, l étude générale des équations non linéaires précédant maintenant celle des systèmes non autonomes. Le contenu du chapitre est inchangé. V. FONCTIONS DE PLUSIEURS VARIABLES 1) Calcul différentiel a) Applications continûment différentiables b) Fonctions numériques continûment différentiables c) Dérivées partielles d ordre supérieur Disparition des opérateurs D j. 6
7 L ancien paragraphe Coordonnées polaires disparaît, il figure au programme de première année, l expression du gradient en coordonnées polaires est donnée dans le paragraphes b) Fonctions numériques continûment différentiables d) Notions sur les courbes et les surfaces L étude des nappes paramétrées et des surfaces est détaillée davantage. Ajout : illustrer par des exemples de cônes, cylindres, quadriques et surfaces de révolution. Ajout : position d une surface par rapport au plan tangent. 2) Intégrales curvilignes Ajout : formule de Green-Riemann. 7
Programme de la classe de première année MPSI
Objectifs Programme de la classe de première année MPSI I - Introduction à l analyse L objectif de cette partie est d amener les étudiants vers des problèmes effectifs d analyse élémentaire, d introduire
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois
ENSAE - DAKAR BROCHURE D'INFORMATION SUR LE CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS STATISTICIENS ÉCONOMISTES (I S E) Option Mathématiques CAPESA
ENSEA - ABIDJAN ENSAE - DAKAR ISSEA - YAOUNDÉ BROCHURE D'INFORMATION SUR LE CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS STATISTICIENS ÉCONOMISTES (I S E) Option Mathématiques CAPESA CENTRE D APPUI AUX
MATHÉMATIQUES EN PREMIER CYCLE PRÉSENTATION DU PROGRAMME
Notre cadre de réflexion MATHÉMATIQUES EN PREMIER CYCLE PRÉSENTATION DU PROGRAMME La proposition de programme qui suit est bien sûr issue d une demande du Premier Cycle : demande de rénovation des contenus
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
NOTICE DOUBLE DIPLÔME
NOTICE DOUBLE DIPLÔME MINES ParisTech / HEC MINES ParisTech/ AgroParisTech Diplômes obtenus : Diplôme d ingénieur de l Ecole des Mines de Paris Diplôme de HEC Paris Ou Diplôme d ingénieur de l Ecole des
Master de Recherche première année. Programme de cours 2008-2011
Master de Recherche première année Mention : Mathématiques et Applications Spécialité : Mathématiques fondamentales et appliquées Responsable : Xue Ping WANG Programme de cours 2008-2011 Module M1 : Analyse
Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions
Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires
Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples
45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
Cours d Analyse 3 Fonctions de plusieurs variables
Université Claude Bernard, Lyon I Licence Sciences, Technologies & Santé 43, boulevard 11 novembre 1918 Spécialité Mathématiques 69622 Villeurbanne cedex, France L. Pujo-Menjouet [email protected]
Licence STS mention Mathématiques Parcours Ingénieur Télécom Bretagne (ITB)
Licence STS mention Mathématiques Parcours Ingénieur Télécom Bretagne (ITB) FICHE D IDENTITE DE LA FORMATION Domaine de formation : Sciences, Technologies, Santé Intitulé : Licence Sciences, Technologies,
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
Calcul différentiel. Chapitre 1. 1.1 Différentiabilité
Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante
Continuité d une fonction de plusieurs variables
Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
Table des matières. I Mise à niveau 11. Préface
Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3
Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48
Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation
Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre
IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables
Dualité dans les espaces de Lebesgue et mesures de Radon finies
Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Cours de mathématiques
DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................
Calcul fonctionnel holomorphe dans les algèbres de Banach
Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte
Amphi 3: Espaces complets - Applications linéaires continues
Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite
Différentiabilité ; Fonctions de plusieurs variables réelles
Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2
Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?
Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version
Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?
Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version
I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...
TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................
Introduction à l étude des Corps Finis
Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur
Chp. 4. Minimisation d une fonction d une variable
Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie
CCP PSI - 2010 Mathématiques 1 : un corrigé
CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P
Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)
Examen optimisation Centrale Marseille (28) et SupGalilee (28) Olivier Latte, Jean-Michel Innocent, Isabelle Terrasse, Emmanuel Audusse, Francois Cuvelier duree 4 h Tout resultat enonce dans le texte peut
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Image d un intervalle par une fonction continue
DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction
Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands.
Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Pourquoi un autre catalogue en Suisse romande Historique En 1990, la CRUS (Conférences des
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles
Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Physique, chimie et sciences de l ingénieur (PCSI) Discipline : Mathématiques Première année Classe préparatoire
Approximations variationelles des EDP Notes du Cours de M2
Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation
Ce cours introduit l'électrodynamique classique. Les chapitres principaux sont :
11P001 ELECTRDYNAMIQUE I Automne 4 crédits BACHELR 1ère ANNEE MASTER BIDISCIPLINAIRE MINEURE PHYSIQUE CURS BLIGATIRES Enseignant(s) G. Iacobucci P Automne (A) Horaire A C2 E2 LU 1113 EPA JE 810 EPA = obligatoire
Cours d analyse numérique SMI-S4
ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
Capes 2002 - Première épreuve
Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : [email protected] Mots-clés : équation fonctionnelle, série
Modèles bi-dimensionnels de coques linéairement élastiques: Estimations de l écart entre leurs solutions.
Problèmes mathématiques de la mécanique/mathematical problems in Mechanics Modèles bi-dimensionnels de coques linéairement élastiques: Estimations de l écart entre leurs solutions. Cristinel Mardare Laboratoire
Calcul intégral élémentaire en plusieurs variables
Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement
www.h-k.fr/publications/objectif-agregation
«Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se
TABLE DES MATIÈRES CHAPITRE I. Les quanta s invitent
TABLE DES MATIÈRES AVANT-PROPOS III CHAPITRE I Les quanta s invitent I-1. L Univers est en constante évolution 2 I-2. L âge de l Univers 4 I-2.1. Le rayonnement fossile témoigne 4 I-2.2. Les amas globulaires
n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t
3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes
Cours d Analyse I et II
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Cours d Analyse I et II Sections Microtechnique & Science et génie des matériaux Dr. Philippe Chabloz avril 23 Table des matières Sur les nombres. Les nombres
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Fonctions de plusieurs variables
Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les
Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,
Non-linéarité Contexte Pour permettre aux algorithmes de cryptographie d être sûrs, les fonctions booléennes qu ils utilisent ne doivent pas être inversées facilement. Pour cela, elles doivent être très
Cours Fonctions de deux variables
Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité
C1 : Fonctions de plusieurs variables
1er semestre 2012/13 CPUMP 3 U 11 : Abrégé de cours Compléments Analyse 3 : fonctions analytiques Les notes suivantes, disponibles à l adresse http://www.iecn.u-nancy.fr/~bertram/, contiennent les définitions
Chapitre 7 : Intégration sur un intervalle quelconque
Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction
Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée
EXAMENS D'ADMISSION Admission RÉCAPITULATIFS DES MATIÈRES EXAMINÉES MATIÈRES Préparation en 3 ou 4 semestres Formation visée Préparation complète en 1 an 2 ème partiel (semestriel) Niveau Durée de l examen
Développements limités. Notion de développement limité
MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un
Mesures gaussiennes et espaces de Fock
Mesures gaussiennes et espaces de Fock Thierry Lévy Peyresq - Juin 2003 Introduction Les mesures gaussiennes et les espaces de Fock sont deux objets qui apparaissent naturellement et peut-être, à première
RO04/TI07 - Optimisation non-linéaire
RO04/TI07 - Optimisation non-linéaire Stéphane Mottelet Université de Technologie de Compiègne Printemps 2003 I Motivations et notions fondamentales 4 I1 Motivations 5 I2 Formes quadratiques 13 I3 Rappels
Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe
Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe des n n groupes quantiques compacts qui ont la théorie
LES MÉTHODES DE POINT INTÉRIEUR 1
Chapitre XIII LES MÉTHODES DE POINT INTÉRIEUR 1 XIII.1 Introduction Nous débutons par un rappel de la formulation standard d un problème d optimisation 2 linéaire et donnons un bref aperçu des différences
Calculer avec Sage. Revision : 417 du 1 er juillet 2010
Calculer avec Sage Alexandre Casamayou Guillaume Connan Thierry Dumont Laurent Fousse François Maltey Matthias Meulien Marc Mezzarobba Clément Pernet Nicolas Thiéry Paul Zimmermann Revision : 417 du 1
Groupoïdes quantiques mesurés : axiomatique, étude, dualité, exemples
Groupoïdes quantiques mesurés : axiomatique, étude, dualité, exemples Franck LESIEUR Mathématiques et Applications, Physique Mathématique d Orléans UMR 6628 - BP 6759 45067 ORLEANS CEDEX 2 - FRANCE e-mail
Chapitre VI Fonctions de plusieurs variables
Chapitre VI Fonctions de plusieurs variables 6. 1 Fonctions différentiables de R 2 dans R. 6. 1. 1 Définition de la différentiabilité Nous introduisons la différentiabilité sous l angle des développements
Plan du cours : électricité 1
Semestre : S2 Module Physique II 1 Electricité 1 2 Optique géométrique Plan du cours : électricité 1 Partie A : Electrostatique (discipline de l étude des phénomènes liés aux distributions de charges stationnaires)
3. Conditionnement P (B)
Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte
Fonctions de plusieurs variables et applications pour l ingénieur
Service Commun de Formation Continue Année Universitaire 2006-2007 Fonctions de plusieurs variables et applications pour l ingénieur Polycopié de cours Rédigé par Yannick Privat Bureau 321 - Institut Élie
Calcul Différentiel. I Fonctions différentiables 3
Université de la Méditerranée Faculté des Sciences de Luminy Licence de Mathématiques, Semestre 5, année 2008-2009 Calcul Différentiel Support du cours de Glenn Merlet 1, version du 6 octobre 2008. Remarques
Chapitre 0 Introduction à la cinématique
Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à
Correction de l examen de la première session
de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi
Maîtrise universitaire ès sciences en mathématiques 2012-2013
1 / 6 Remarques liminaires : Ce master à (3 semestres) permet 2 orientations distinctes : - Un master général : "Mathématiques, Systèmes dynamiques et phénomènes d'évolution" - Un master qui permet de
Master of Science en mathématiques 2013-2014
Remarques liminaires : 1 Ce master à (3 semestres) permet 2 orientations distinctes : 1) Un master général en mathématiques 2) Un master qui permet de choisir des mineurs en finance, statistique, informatique
Programmation linéaire et Optimisation. Didier Smets
Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des
Master of Science en mathématiques 2015-2016
Remarques liminaires : 1/9 Ce master à 90 ECTS (3 semestres) permet 2 orientations distinctes : - Un master général en mathématiques - Un master qui permet de choisir des mineurs en finance, statistique
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
MESURE ET INTÉGRATION EN UNE DIMENSION. Notes de cours
MSUR T INTÉGRATION N UN DIMNSION Notes de cours André Giroux Département de Mathématiques et Statistique Université de Montréal Mai 2004 Table des matières 1 INTRODUCTION 2 1.1 xercices.............................
C algèbre d un certain groupe de Lie nilpotent.
Université Paul Verlaine - METZ LMAM 6 décembre 2011 1 2 3 4 Les transformations de Fourier. Le C algèbre de G/ Z. Le C algèbre du sous-groupe G 5 / vect{u,v }. Conclusion. G un groupe de Lie, Ĝ l ensemble
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières
Calcul différentiel sur R n Première partie
Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité
Cours de Mécanique du point matériel
Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels
Commun à tous les candidats
EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle
Chapitre VI - Méthodes de factorisation
Université Pierre et Marie Curie Cours de cryptographie MM067-2012/13 Alain Kraus Chapitre VI - Méthodes de factorisation Le problème de la factorisation des grands entiers est a priori très difficile.
STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE
ÉCOLE D'INGÉNIEURS DE FRIBOURG (E.I.F.) SECTION DE MÉCANIQUE G.R. Nicolet, revu en 2006 STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE Eléments de calcul vectoriel Opérations avec les forces Equilibre du point
Fonctions de plusieurs variables. Sébastien Tordeux
Fonctions de plusieurs variables Sébastien Tordeux 22 février 2009 Table des matières 1 Fonctions de plusieurs variables 3 1.1 Définition............................. 3 1.2 Limite et continuité.......................
1S Modèles de rédaction Enoncés
Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC
aux différences est appelé équation aux différences d ordre n en forme normale.
MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire
Table des matières. Introduction Générale 5
Table des matières Introduction Générale 5 1 Généralités et rappels 16 1.1 Rappels... 16 1.1.1 Introduction... 16 1.1.2 Notion de stabilité...... 17 1.1.3 Stabilité globale et stabilité locale... 17 1.1.4
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.
CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires
Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015
Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k
Problème 1 : applications du plan affine
Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées
Complément d information concernant la fiche de concordance
Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours
La fonction exponentielle
DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction
Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière
Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière Algèbre 1 : (Volume horaire total : 63 heures) UE1 : Analyse et algèbre
