P (X) = (X a) 2 T (X)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "P (X) = (X a) 2 T (X)"

Transcription

1 Université Bordeaux I - année 00-0 MHT0 Structures Algébriques Correction du devoir maison Exercice. Soit P (X) Q[X]\Q.. Soit D(X) := pgcd(p (X), P (X)). a) Montrer que si deg D alors il existe α C tel que P (α) = D(α) = 0. En déduire que α est une racine multiple de P. b) Montrer que D(X) = si et seulement si P (X) n a que des racines simples.. Montrer que si P (X) est irréductible sur Q[X] alors P (X) n a pas de racines complexes multiples. 3. Montrer que la réciproque de la question précédente est fausse.. a) Par définition D divise P donc : P (X) Q[X] telque P (X) = D(X)P (X) Or deg D donc deg P deg P, en particulier il existe α C tel que P (α) = 0 et P (α) 0. Comme C est un corps, on a D(α) = 0. Par définition du pgcd, D divise P, donc T (X) Q[X] telque P (X) = D(X)T (X) En particulier D(α)T (α) = 0 = P (α), i.e. α est une racine multiple de P (X).. b) A la question précédente on a montré que si P n a que des racines simples alors deg D = 0, i.e. D =. Inversement, si P a une racine multiple a C alors (X a) divise P : d où P (X) = (X a) T (X) P (X) = (X a)t (X) + (X a) T (X) donc X a divise P (X) et P (X) donc X a divise D(X), en particulier deg D.. Soit D(X) := pgcd(p (X), P (X)), comme D divise P et que P est irréductible, on a soit deg D = 0, soit deg D = deg P. Supposons que deg D = deg P. Comme P est irréductible on a deg P donc P 0. Puisque D divise P on a deg D deg P = deg P, ce qui est une contradiction avec deg D = deg P. Ainsi deg D = 0 i.e. D =. D après.b) P n a que des racines simples. 3. La réciproque de la question. est : si P Q[X] n a pas de racines multiples, alors P est irréductible dans Q[X] qui est évidemment fausse car P (X) = X(X ) n a que des racines simples, mais n est évidemment pas irréductible.

2 Exercice. Soient a, b C, a 0 et P (X) := X 4 + 4aX + b.. Montrer que si z C est une racine multiple de P (X) alors z 3 = a.. Montrer que P (X) a une racine multiple α si et seulement si b 3 = 7a Calculer l ordre de multiplicité de la racine α de P (X).. On a P (X) = 4(X 3 + a). Soit z C, z est une racine multiple de P si et seulement si P (z) = 0 = P (z). En particulier si z est racine multiple z 3 = a.. Si z est racine multiple on doit avoir { z 3 = a z 4 + 4az + b = 0 Or az + 4az = b 3az = b 7a 3 z 3 = b 3 7a 4 = b 3 Inversement, si 7a 4 = b 3, soit z C une racine de X 3 + a. On a donc z 3 7a 3 = b 3 d où ( b 3za )3 = et b 3za = ou j ou j Si on est dans un des deux derniers cas, quitte à remplacer z par jz ou j z (qui sont encore des racines de X 3 + a) on peut supposer que ( b ) = i.e. 3za b = 3az = 4az + az = 4az z 4. Finalement on a trouvé z C tel que z 3 + a = 0 et z 4 + 4az + b = 0, autrement dit z est racine multiple de P (X). 3. On a P (X) = X. Or z 3 = a 0 donc z 0 et en particulier P (z) 0, c est-à-dire z est racine double de P. Exercice 3. Soit E un C-espace vectoriel. Soient F, G et H trois sous-espaces de E.. Montrer que F G est un sous-espace vectoriel de E F G ou G F.. Montrer que G F = F (G + H) = G + (F H). Si F G alors F G = G est bien un sous-espace de E. Si G F alors F G = F est bien un sous-espace de E. Inversement, si F G et G F il existe a F \G et b G\F. On a bien a F G F et b G G F pourtant a + b / G F. En effet si a + b G F alors soit a + b = g G soit a + b = f F. Par exemple si a+b = g G alors a = g b G car G est un espace vectoriel donc stable par combinaison linéaire, ce qui est en contradiction avec a F \G. Ainsi F G n est pas un sous-espace de E car a, b F G et a + b / F G.

3 . On va montrer la double inclusion. Soit t F (G + H), il existe f F, g G et h H tels que t = f = g + h Comme g G F on a h = f g F car F est un espace vectoriel donc stable par combinaison linéaire. Ainsi h F H et t = g + h G + (F H). Soit t G + (F H), il existe g G et u F H tels que t = g + u Or g G F et u F H F donc t = g + u F. Comme u F H H on a bien t = g + u G + H. Finalement t F (G + H). Exercice 4.. Factoriser le polynôme X 6 + en produit des facteurs irréductibles dans R[X], puis dans C[X].. Décomposer la fraction rationnelle en éléments simples à coefficients X 6 + dans R, puis dans C. ) On a X 6 + = (X ) 3 + = (X + )(X 4 X + ), puis X 4 X + = (X 4 + X + ) 3X = (X + ) ( 3X) = (X + 3X + )(X 3X + ). Donc X 6 + = (X + )(X + 3X + )(X 3X + ). Il est clair que X + n a pas de racine réelle. Pour P = X + 3X +, on a = ( 3) 4 = < 0, donc P n a pas de racines réelles. Idem pour P = X 3X +. On a donc obtenu une factorisation de X 6 + en facteurs irréductibles dans R[X]. X + a deux racines complexes X = ±ı, les racines complexes de P sont 3 ± ı, 3 ± ı et celles de P sont. D où 3 ı 3 + ı 3 ı 3 + ı X 6 + = (X ı)(x + ı)(x + )(X + )(X )(X ). ) On a d où X 6 + = ax + b X + + cx + d X + 3X + + ex + f X 3X +, 3

4 = (ax + b)(x 4 X + ) + (cx + d)(x + )(X 3X + ) +(ex + f)(x + )(X + 3X + ) = (a + c + e)x 5 + (b + d + f 3c + 3e)X 4 + ( a + c + e 3d + 3f)X 3 +( b + d + f 3c + 3e)X + (a + c + e 3d + 3f)X + (b + d + f). On en déduit a + c + e = 0 () b + d + f + 3(e c) = 0 () a + c + e + 3(f d) = 0 (3) b + d + f + 3(e c) = 0 (4) a + c + e + 3(f d) = 0 (5) b + d + f = (6) () et (5) impliquent Combinant avec (3), on a f d = 0 (7) (8) et () impliquent a = 0 et () et (6) impliquent a + c + e = 0 (8) c + e = 0 (9) 3(e c) = (0) On déduit de (9) et (0) que c = 3, et e =. En utilisant (4), on obtient 3 b + d + f = () () et (6) implique 3(d + f) =, et avec (7), on obtient d = f = 3, et donc b = 3. Il vient puis On a X 6 + = 3(X + ) + X X + 3X + + X X 3X +. X + = ı X + ı ı X ı, 3 X + 3 X + 3X + = 3 X + 3 (X + 3 ı )(X + 3+ı ) = 4 4 ı 3 X + 3 ı ı 3 X + 3+ı

5 et Donc X X 3X + = X (X 3 ı)(x 3+ı) = ı X 3 ı ı X 3+ı X 6 + = ı 6 X + ı ı 6 X ı ı X + 3 ı ı 3 X + 3+ı ı X 3 ı + 4 ı 3 X 3+ı. Exercice 5. Soit P (X) := X n 0, où n est un entier.. Trouver toutes les racines de P, et factoriser P dans C[X] (Indication : on pourra commencer par chercher les racines du polynôme X n ).. Montrer que l on a l égalité suivante P (X) = n k= a k X z k, où a k C, et z,..., z n sont les racines de P. 3. Montrer que a k = z k, pour tout k =,..., n. 0n ) Soit ρ = n 0 R. En posant X = ρy, on a X n 0 = ρ n Y n 0 = 0(Y n ). On en déduit que l ensemble des racines de P est {ρη, ρη,..., ρη n }, où les η k sont les racines du polynômes P n (Y ) = Y n. On sait que l ensemble des racines de P n est {e πık πık n, k =,..., n}, donc l ensemble des racines de P est {ρe n, k =,..., n}. On pose z k = ρe πık n, k =,..., n. Comme P est unitaire, on a P (X) = (X z )(X z )... (X z n ). ) D après un théorème du cours, on a P (X) = n (X z )... (X z n ) = a k (*) X z k où a k sont des constantes. 3) Pour calculer a i, on multiplie l égalité (*) par (X z i ), puis évalue les deux côtés en X = z i, on obtient alors k= (z i z )... (z i z i )(z i z i+ )... (z i z n ) = a i. 5

6 Montrons que (z i z )... (z i z i )(z i z i+ )... (z i z n ) = P (z i ). On a P (X) = Appliquant la règle de Leibniz, on a n (X z k ) k= P (X) = (X z k ) + (X z k ) + + z k ), k k k n(x donc P (X) = (X z i )Q i (X) + k i(x z k ), avec Q i C[X]. Il vient alors P (z i ) = k i(z i z k ) = (z i z )... (z i z i )(z i z i+ )... (z i z n ). Comme P (X) = X n 0, on a P (X) = nx n, donc P (z i ) = nz n i. Rappelons que z i est une racine de P, donc zi n 0 = 0, autrement-dit zi n = 0. Il s ensuit P (z i ) = nz n i = nzn i z i = 0n z i, et donc a i = P (z i ) = z i 0n. 6

Université Joseph Fourier MAT231 2008-2009

Université Joseph Fourier MAT231 2008-2009 Université Joseph Fourier MAT231 2008-2009 mat231-exo-03.tex (29 septembre 2008) Feuille d exercices n o 3 Exercice 3.1 Soit K un corps commutatif et soit {P 0, P 1,... P n } une famille de polynômes de

Plus en détail

Polynômes. Motivation. 1. Définitions. Exo7. 1.1. Définitions

Polynômes. Motivation. 1. Définitions. Exo7. 1.1. Définitions Exo7 Polynômes Vidéo partie 1. Définitions Vidéo partie 2. Arithmétique des polynômes Vidéo partie 3. Racine d'un polynôme, factorisation Vidéo partie 4. Fractions rationnelles Exercices Polynômes Exercices

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-201 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre III : Polynômes 1 Fonctions polynômes & polynômes Définition 1. Soit

Plus en détail

Résumé du cours d algèbre de Maths Spé MP

Résumé du cours d algèbre de Maths Spé MP 1 POLYNÔMES Résumé du cours d algèbre de Maths Spé MP 1 Polynômes 1) Formule de Taylor pour les polynômes. Soit P un polynôme non nul de degré n N. a K, P(X) = k=0 P (k) (a) (X a) k et en particulier P(X)

Plus en détail

Exo7. Devoir à la maison et sujet de partiel. Énoncés : V. Gritsenko Corrections : J.-F. Barraud. Exercice 1 Soit d non rationel.

Exo7. Devoir à la maison et sujet de partiel. Énoncés : V. Gritsenko Corrections : J.-F. Barraud. Exercice 1 Soit d non rationel. Énoncés : V. Gritsenko Corrections : J.-F. Barraud Exo7 Devoir à la maison et sujet de partiel Exercice 1 Soit d non rationel. Dans l anneau on definit la conjugaison" z : Z[ d] = {n + m d n,m Z} si z

Plus en détail

Exo7. Polynômes. 1 Opérations sur les polynômes. 2 Division, pgcd. Corrections de Léa Blanc-Centi.

Exo7. Polynômes. 1 Opérations sur les polynômes. 2 Division, pgcd. Corrections de Léa Blanc-Centi. Exo7 Polynômes Corrections de Léa Blanc-Centi. 1 Opérations sur les polynômes Exercice 1 Trouver le polynôme P de degré inférieur ou égal à 3 tel que : P(0) = 1 et P(1) = 0 et P( 1) = 2 et P(2) = 4. [000427]

Plus en détail

Université de Cergy-Pontoise Département de Mathématiques L1 MIPI - S2. Cours de Mathématiques : Polynômes et Suites

Université de Cergy-Pontoise Département de Mathématiques L1 MIPI - S2. Cours de Mathématiques : Polynômes et Suites Université de Cergy-Pontoise Département de Mathématiques L MIPI - S Cours de Mathématiques : Polynômes et Suites Table des matières Nombres complexes 5. Le corps C des nombres complexes.................................

Plus en détail

Polynômes à plusieurs variables. Résultant

Polynômes à plusieurs variables. Résultant Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \

Plus en détail

Applications linéaires

Applications linéaires Bibliothèque d exercices Énoncés L1 Feuille n 18 Applications linéaires 1 Définition Exercice 1 Déterminer si les applications f i suivantes (de E i dans F i ) sont linéaires : f 1 : (x, y) R (x + y, x

Plus en détail

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays.

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays. Maquette de couverture : Graphir Maquette intérieure : Frédéric Jély Mise en page : CMB Graphic Dessins techniques : Gilles Poing Hachette Livre 008, 43, quai de Grenelle, 790 Paris Cedex ISBN : 978--0-8-

Plus en détail

Exercices - Réduction des endomorphismes : énoncé. Réduction pratique de matrices

Exercices - Réduction des endomorphismes : énoncé. Réduction pratique de matrices Réduction pratique de matrices Exercice 1 - Diagonalisation - 1 - L1/L2/Math Spé - Diagonaliser les matrices suivantes : 0 2 1 A = 3 2 0 B = 2 2 1 0 3 2 2 5 2 2 3 0 On donnera aussi la matrice de passage

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Chapitre 7. Polynômes I.

Chapitre 7. Polynômes I. Université de la Nouvelle Calédonie. Licence de Mathématiques. Semestre 3. Eric Edo et Bianca Travain. Programme 0-06. Polycopié d Algèbre 3 Ce cours est la suite des cours d Arithmétique et d Algèbre.

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

Base : une axiomatique

Base : une axiomatique Autour des groupes de réflexions Master 2 Mathématiques fondamentales Cours : Michel Broué Université Paris VII Denis Diderot TD : Vincent Beck Année 2005 2006 Base : une axiomatique a) D après (i), on

Plus en détail

Fiche n 1: Groupe, sous-groupe, ordre

Fiche n 1: Groupe, sous-groupe, ordre Université Lille 1 Algèbre 2010/11 M51.MIMP Fiche n 1: Groupe, sous-groupe, ordre Exercice 1 On considère sur R la loi de composition définie par x y = x + y xy. Cette loi est-elle associative, commutative?

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

(c) Si F (X) est unitaire, irréductible dans Q[X], alors il est irréductible

(c) Si F (X) est unitaire, irréductible dans Q[X], alors il est irréductible Université Bordeaux 1 Année 2006 2007 Session janvier 2007 Scolarité Licence Étape : MAP5 UE : MAP501 ; Épreuve d Algèbre 4 Date : 6 janvier 2007, 8h30-11h30 Durée : 3 heures Documents interdits Épreuve

Plus en détail

Algèbre M1 Cours 4. Extensions séparables. 5 octobre 2010

Algèbre M1 Cours 4. Extensions séparables. 5 octobre 2010 Algèbre M1 Cours 4 Extensions séparables 5 octobre 2010 La théorie de Galois Théorie de Galois = étude des «bonnes» extensions algébriques «bonnes» où sont les racines? combien ai-je de racines? polynômes

Plus en détail

Problèmes de Mathématiques Noyaux et images itérés

Problèmes de Mathématiques Noyaux et images itérés Énoncé Soit E un espace vectoriel sur IK (IK = IR ou lc). Soit f un endomorphisme de E. On pose f 0 = Id E, et pour tout entier k 1, f k = f f k 1. 1. Montrer que (Im f k ) k 0 et (Ker f k ) k 0 forment

Plus en détail

Cours fonctions, expressions algébriques

Cours fonctions, expressions algébriques I. Expressions algébriques, équations a) Développement factorisation Développer Développer un produit, c est l écrire sous forme d une somme. Réduire une somme, c est l écrire avec le moins de termes possibles.

Plus en détail

1. a) question de cours b) P(f) est un polynôme de l endomorphisme f donc commute avec f.

1. a) question de cours b) P(f) est un polynôme de l endomorphisme f donc commute avec f. escp-eap 2(Ecole de commerce) OPTION SCIENTIFIQUEMATHEMATIQUES I adapté en retirant certaines question qui sont du cours de PC et en ajoutant le dernier exemple.. a) question de cours b) P(f) est un polynôme

Plus en détail

Anneaux, algèbres. Chapitre 2. 2.1 Structures

Anneaux, algèbres. Chapitre 2. 2.1 Structures Chapitre 2 Anneaux, algèbres 2.1 Structures Un anneau est un ensemble A muni de deux opérations internes + et et d éléments 0 A et 1 A qui vérifient : associativité de l addition : commutativité de l addition

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

NOMBRES COMPLEXES. Exercice 1 :

NOMBRES COMPLEXES. Exercice 1 : Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1

Plus en détail

Une forme générale de la conjecture abc

Une forme générale de la conjecture abc Une forme générale de la conjecture abc Nicolas Billerey avec l aide de Manuel Pégourié-Gonnard 6 août 2009 Dans [Lan99a], M Langevin montre que la conjecture abc est équivalente à la conjecture suivante

Plus en détail

Cours de mathématiques.

Cours de mathématiques. Orsay 008-009 IFIPS S Mathématiques (M160). Cours de mathématiques. 1. Equations différentielles linéaires du second ordre. La fonction C : x cos x est indéfiniment dérivable sur R, et C (x) = S(x), avec

Plus en détail

GEL-7064 : Théorie et pratique des codes correcteurs Codes cycliques Notes de cours

GEL-7064 : Théorie et pratique des codes correcteurs Codes cycliques Notes de cours linéaires GEL-7064 : Théorie et pratique des codes correcteurs Notes de cours Département de génie électrique et de génie informatique Université Laval jean-yves.chouinard@gel.ulaval.ca 12 février 2013

Plus en détail

Équations du troisième degré

Équations du troisième degré par Z, auctore L objet de cet article est d exposer deux méthodes pour trouver des solutions à une équation du troisième degré : la recherche de racines évidentes d une part, et la formule de Cardan d

Plus en détail

Arithmétique Algorithmique.

Arithmétique Algorithmique. Arithmétique Algorithmique http://www.math.univ-lyon1.fr/~roblot/ens.html Partie II Arithmétique rapide 1 Opérations de base sur les entiers longs 2 Polynômes à coefficients dans Z/2 w Z 3 Multiplication

Plus en détail

Exo7. Espaces vectoriels. 1 Définition, sous-espaces. Fiche amendée par David Chataur et Arnaud Bodin.

Exo7. Espaces vectoriels. 1 Définition, sous-espaces. Fiche amendée par David Chataur et Arnaud Bodin. Exo7 Espaces vectoriels Fiche amendée par David Chataur et Arnaud Bodin. Définition, sous-espaces Exercice Montrer que les ensembles ci-dessous sont des espaces vectoriels (sur R) : E = { f : [,] R } :

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Exo7. Applications linéaires. 1 Définition. 2 Image et noyau. Exercice 1 Déterminer si les applications f i suivantes sont linéaires :

Exo7. Applications linéaires. 1 Définition. 2 Image et noyau. Exercice 1 Déterminer si les applications f i suivantes sont linéaires : Exo7 Applications linéaires 1 Définition Exercice 1 Déterminer si les applications f i suivantes sont linéaires : f 1 : R R f 1 x,y = x + y,x y f : R R f x,y,z = xy,x,y f : R R f x,y,z = x + y + z,y z,x

Plus en détail

www.h-k.fr/publications/objectif-agregation

www.h-k.fr/publications/objectif-agregation «Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se

Plus en détail

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité?

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité? Université Paris Dauphine DEMIE e année Algèbre linéaire 3 Examen - septembre 01 Le sujet comporte pages. L épreuve dure heures. Les documents, calculatrices et téléphones portables sont interdits. Question

Plus en détail

Les fractions rationnelles

Les fractions rationnelles [http://mp.cpgedupuydelome.fr] édité le 24 septembre 206 Enoncés Les fractions rationnelles Généralités Exercice [ 02007 ] [Correction] Soit F K(X) de représentant irréductible P/Q. Montrer que F est paire

Plus en détail

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé November 23, 2006 Table des Matières Espaces vectoriels Applications linéaires - Espaces vectoriels............................... 3 -. Approche

Plus en détail

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : Accès à l'université chez DUNOD Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD Les supports de cours ne sont pas complets, ils ne contiennent ni les démonstrations,

Plus en détail

Exo7. Lemme Chinois. Énoncés : V. Gritsenko Corrections : J.-F. Barraud

Exo7. Lemme Chinois. Énoncés : V. Gritsenko Corrections : J.-F. Barraud Énoncés : V. Gritsenko Corrections : J.-F. Barraud Exo7 Lemme Chinois Exercice 1 Soient A un anneau et I et J les idéaux de A tels que I + J = (1). Démontrer que I n + J m = (1) quels que soient entiers

Plus en détail

Second degré et polynômes Résolution d équation, inéquations et problèmes du second

Second degré et polynômes Résolution d équation, inéquations et problèmes du second Second degré et polynômes Résolution d équation, inéquations et problèmes du second degré Y. Morel Table des matières 1 Trinôme du second degré 1 1.1 Equations du second degré...............................

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

Espaces vectoriels. Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires. 2MA01-Licence de Mathématiques

Espaces vectoriels. Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires. 2MA01-Licence de Mathématiques Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires 2MA01-Licence de Mathématiques Espaces vectoriels Exercice 1 Soit E un espace vectoriel. Pour x, y E et λ, µ K, montrer

Plus en détail

1 Codes linéaires. G = [I k A]. Dans ce cas on constate que la matrice. H = [ t A I n k ] est une matrice de contrôle de C. Le syndrome de x F n q

1 Codes linéaires. G = [I k A]. Dans ce cas on constate que la matrice. H = [ t A I n k ] est une matrice de contrôle de C. Le syndrome de x F n q 1 Codes linéaires Un code de longueur n est une partie de F n q. Un code linéaire C de longueur n sur le corps ni F q est un sous-espace vectoriel de F n q. Par défaut, un code sera supposé linéaire. La

Plus en détail

Applications de la décomposition en éléments simples

Applications de la décomposition en éléments simples [http://mp.cpgedupuydelome.fr] édité le 24 septembre 206 Enoncés Applications de la décomposition en éléments simples Exercice [ 0205 ] [Correction] Soit la fraction X(X + ) (a) Réaliser la décomposition

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

Contrôle de mathématiques

Contrôle de mathématiques Contrôle de mathématiques Correction du Lundi 18 octobre 2010 Exercice 1 Diviseurs (5 points) 1) Trouver dans N tous les diviseurs de 810. D 810 = {1; 2; 3; 5; 6; 9; 10; 15; 18; 27; 30; 45; 54; 81; 90;

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Licence M.A.S.S. 1 ère année Algèbre S1 (MI0B01X) Feuille de T.D. n 3 Jolie môme, euh non poly nôme

Licence M.A.S.S. 1 ère année Algèbre S1 (MI0B01X) Feuille de T.D. n 3 Jolie môme, euh non poly nôme 1 UTM Département de Mathématiques et Informatique Année 2010-2011 Licence M.A.S.S. 1 ère année Algèbre S1 (MI0B01X) Feuille de T.D. n 3 Jolie môme, euh non poly nôme emmanuel bureau 1698 tél : 05 61 50

Plus en détail

Fiche n 2: Morphisme, sous-groupe distingué, quotient

Fiche n 2: Morphisme, sous-groupe distingué, quotient Université Lille 1 Algèbre 2010/11 M51.MIMP Fiche n 2: Morphisme, sous-groupe distingué, quotient Exercice 1 Soient G, G deux groupes et f un homomorphisme de G dans G. Montrer que si A G, alors f( A )

Plus en détail

Indication Prendre une combinaison linéaire nulle et l évaluer par ϕ n 1.

Indication Prendre une combinaison linéaire nulle et l évaluer par ϕ n 1. 1 Définition Exercice 1 Déterminer si les applications f i suivantes (de E i dans F i ) sont linéaires : f 1 : (x, y) R 2 (2x + y, x y) R 2, f 2 : (x, y, z) R 3 (xy, x, y) R 3 f 3 : (x, y, z) R 3 (2x +

Plus en détail

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html Arithmétique Algorithmique http://www.math.univ-lyon1.fr/~roblot/ens.html Partie III Algorithmes classiques 1 Coût de la multiplication et de la division 2 Exponentiation rapide 3 Algorithme d Euclide

Plus en détail

X-ENS PSI - 2009 Un corrigé

X-ENS PSI - 2009 Un corrigé X-ENS PSI - 009 Un corrigé Première partie.. Des calculs élémentaires donnent χ A(α) = χ B(α) = X X + et χ A(α)+B(α) = X X + 4α + 4 On en déduit que Sp(A(α)) = Sp(B(α)) = {j, j } où j = e iπ 3 Sp(A(α)

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot

Laurent Garcin MPSI Lycée Jean-Baptiste Corot ESPACES VECTORIELS 1 Définition et exemples fondamentaux 1.1 Définition Définition 1.1 Espace vectoriel Soient K un corps et E un ensemble muni d une loi interne + et d une loi externe. i.e. d une application

Plus en détail

Sécurité des Réseaux Jean-Yves Antoine LI - Université François Rabelais de Tours Jean-Yves.Antoine AT univ-tours.fr J.-Y. Antoine & L.

Sécurité des Réseaux Jean-Yves Antoine LI - Université François Rabelais de Tours Jean-Yves.Antoine AT univ-tours.fr J.-Y. Antoine & L. Sécurité des Réseaux Jean-Yves Antoine LI - UniversitéFrançois Rabelais de Tours Jean-Yves.Antoine AT univ-tours.fr Sécurité des réseaux Codage : codes polynomiaux et cycliques application aux réseaux

Plus en détail

MPSI 3 - Cahier de vacances... MPSI 3-2004/2005

MPSI 3 - Cahier de vacances... MPSI 3-2004/2005 MPSI 3 - Cahier de vacances... MPSI 3-2004/2005 Voici une fiche contenant 100 exercices de difficulté raisonable, plutôt techniques, qui recouvrent l ensemble du programme étudié cette année. A raison

Plus en détail

CYCLE D ORIENTATION DE L ENSEIGNEMENT SECONDAIRE MATHÉMATIQUES. S, L, M, GnivA NA 11.038.48

CYCLE D ORIENTATION DE L ENSEIGNEMENT SECONDAIRE MATHÉMATIQUES. S, L, M, GnivA NA 11.038.48 1 CYCLE D ORIENTATION DE L ENSEIGNEMENT SECONDAIRE MATHÉMATIQUES 9E S, L, M, GnivA NA DÉPARTEMENT DE L INSTRUCTION PUBLIQUE GENÈVE 1995 11.038.48 TABLE DES MATIÈRES 3 Table des matières 1 Les ensembles

Plus en détail

Polynômes et fractions rationnelles Trinômes du second degré

Polynômes et fractions rationnelles Trinômes du second degré Polynômes et fractions rationnelles Trinômes du second degré 1 Rappels 1. Carré d une somme : 2. Carré d une différence : 3. Différence de deux carrés : Pour tous réels a et b, a + b) 2 =........ Pour

Plus en détail

Réduction des endomorphismes et des matrices carrées

Réduction des endomorphismes et des matrices carrées 48 Chapitre 4 Réduction des endomorphismes et des matrices carrées La motivation de ce chapitre est la suivante. Étant donné un endomorphisme f d un espace E de dimension finie, déterminé par sa matrice

Plus en détail

Examen de l UE LM125 Janvier 2007 Corrigé

Examen de l UE LM125 Janvier 2007 Corrigé Université Pierre et Marie Curie Licence Sciences et Technologies MIME L énoncé est repris sur fond mauve. En prune : des commentaires. Examen de l UE LM15 Janvier 007 Corrigé Commentaires généraux barème

Plus en détail

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015 Énoncé Dans tout le problème, K est un sous-corps de C. On utilisera en particulier que K n est pas un ensemble fini. Tous les espaces vectoriels considérés sont des K espaces vectoriels de dimension finie.

Plus en détail

Corrigé Feuille 4. et sa matrice dans la base canonique, qui est orthonormée pour le produit scalaire canonique, est. P (x)q(x)dx,

Corrigé Feuille 4. et sa matrice dans la base canonique, qui est orthonormée pour le produit scalaire canonique, est. P (x)q(x)dx, Université Paris Panthéon-Sorbonne L MASS 0/03 Algèbre Corrigé Feuille 4 Exercice. a On remarque que dim F car F R 3 en effet,,, F. D autre part, soient e = 3,,, e =, 0,. On vérifie que {e, e } est une

Plus en détail

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES VINCENT GUEDJ 1. Notions fondamentales 1.1. Noyau, Image. On se donne E un K-espace vectoriel de dimension finie (K = R, C principalement) et f L(E) un

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Cours de Mathématiques Lycee Gustave Eiffel PTSI 02/03 Chapitre 3 Fonctions usuelles 3.1 Théorème de la bijection Une fonction dérivable sur un intervalle I, strictement monotone déþnit une bijection.

Plus en détail

Espaces vectoriels 2006-2007. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F.

Espaces vectoriels 2006-2007. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle 2006-2007 Espaces vectoriels Convention 1. Dans toute la suite, k désignera un corps quelconque. Définition 2.

Plus en détail

Université Paris IX Dauphine UFR Mathématiques de la décision Notes de cours ALGEBRE 2. Guillaume CARLIER

Université Paris IX Dauphine UFR Mathématiques de la décision Notes de cours ALGEBRE 2. Guillaume CARLIER Université Paris IX Dauphine UFR Mathématiques de la décision Notes de cours ALGEBRE 2 Guillaume CARLIER L1, année 2006-2007 2 Ce support de cours est basé sur le poly de Tristan Tomala des années précédentes.

Plus en détail

CALCUL LITTÉRAL : CORRIGÉS

CALCUL LITTÉRAL : CORRIGÉS Seconde 7, année 2013-2014 CALCUL LITTÉRAL Exercices: corrigés 1/6 CALCUL LITTÉRAL : CORRIGÉS Exercice 1 DÉVELOPPER A(x) = (4x 1) 2 + (3x 2)(x + 4) = (16x 2 8x + 1) + ( 3x 2 + 12x 2x 8 ) = 16x 2 8x + 1

Plus en détail

FACTORISATIONS POLYNOMIALES ÉLÉMENTAIRES

FACTORISATIONS POLYNOMIALES ÉLÉMENTAIRES FACTORISATIONS POLYNOMIALES ÉLÉMENTAIRES CHRISTIAN AEBI C est en donnant un cours privé de math à une élève terminant sa scolarité obligatoire, que mon regard a croisé l exercice de factorisation du polynôme

Plus en détail

TP 4 : Polynômes et Fractions rationnelles

TP 4 : Polynômes et Fractions rationnelles TP 4 : Polynômes et Fractions rationnelles Définitions Une fonction polynôme est une fonction P : définie par une expression du type : P(x) = a n x n + a n-1 x n-1 +... + a 1 x + a 0 - Les nombres a 0,...,a

Plus en détail

Extrait du poly de Stage de Grésillon 1, août 2010

Extrait du poly de Stage de Grésillon 1, août 2010 MINI-COURS SUR LES POLYNÔMES À UNE VARIABLE Extrait du poly de Stage de Grésillon 1, août 2010 Table des matières I Opérations sur les polynômes 3 II Division euclidienne et racines 5 1 Division euclidienne

Plus en détail

Fractions rationnelles

Fractions rationnelles 8 Chapitre 4 Fractions rationnelles 4. Corps de fractions d un anneau intègre. Fractions rationnelles Soit A un anneau commutatif intègre (par exemple Z, ou l anneau K[X] des polynômes à coefficients dans

Plus en détail

Exo7. Topologie générale. Enoncés : M. Quéffelec Corrections : A. Bodin

Exo7. Topologie générale. Enoncés : M. Quéffelec Corrections : A. Bodin Enoncés : M. Quéffelec Corrections : A. Bodin Exo7 Topologie générale Exercice 1 1. Rappeler les définitions d une borne supérieure (inférieure) d un ensemble de nombres réels. Si A et B sont deux ensembles

Plus en détail

Equations Différentielles

Equations Différentielles Cours optionnel S4 - Maths Renforcées 1 Equations Différentielles I- Définitions élémentaires. On appelle Equation Différentielle Ordinaire (EDO) toute équation (E) du type (E) : y (n) (t) = F (t; y(t);

Plus en détail

EXERCICES : GROUPES, ANNEAUX, CORPS

EXERCICES : GROUPES, ANNEAUX, CORPS EXERCICES : GROUPES, ANNEAUX, CORPS Dans les exercices suivants (G,.) est un groupe dont l élément neutre est noté e. 1. Soient x, y, z trois éléments de G tels que x 3 = y 2, y 3 = z 2, z 3 = x 2. (a)

Plus en détail

DX - FRACTIONS RATIONNELLES

DX - FRACTIONS RATIONNELLES DX - FRACTIONS RATIONNELLES On désigne une fraction rationnelle non nulle irréductible à coefficients réels par fx) = Px) Qx). où P et Q sont des polynômes de degrés respectifs p et q. On note deg f =

Plus en détail

XI- Division euclidienne, pgcd et algorithme d Euclide

XI- Division euclidienne, pgcd et algorithme d Euclide XI- Division euclidienne, pgcd et algorithme d Euclide L arithmétique consiste à travailler exclusivement avec des nombres entiers. Quand on additionne deux nombres entiers, on obtient un nombre entier,

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Direction des Admissions et concours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Seul document autorisé : le polycopié du cours Examen du 3 juin 2009 Durée : 3 heures

Seul document autorisé : le polycopié du cours Examen du 3 juin 2009 Durée : 3 heures Université P. et M. Curie (Paris VI) Master de sciences et technologies ère année - applications Spécialité : Mathématiques Fondamentales code UE : MMAT4020 Mention : Mathématiques et MO : (2 ECTS) code

Plus en détail

Cours MP. Espaces vectoriels normés

Cours MP. Espaces vectoriels normés Table des matières Espaces vectoriels normés B. Seddoug. Médiane Sup, Oujda I Norme et distance 1 I.1 Définitions..................... 1 I.2 Evn produit.................... 12 I.3 Notions topologiques

Plus en détail

Applications linéaires

Applications linéaires Chapitre IV Applications linéaires Révisions Définition. Soient E, deux espaces vectoriels sur le même corps commutatif est dite linéaire si quels que soient x, y E et λ,. Une application f : E f x y f

Plus en détail

TD2 Fonctions mesurables Corrigé

TD2 Fonctions mesurables Corrigé Intégration et probabilités 2012-2013 TD2 Fonctions mesurables Corrigé 0 Exercice qui avait été préparé chez soi Exercice 1. Soit (Ω, F, µ) un espace mesuré tel que µ (Ω) = 1. Soient A, B P (Ω) deux sousensembles

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

COURS SUR LES POLYNÔMES À UNE VARIABLE

COURS SUR LES POLYNÔMES À UNE VARIABLE 1 COURS SUR LES POLYNÔMES À UNE VARIABLE - Opérations sur les polynômes - On commence par définir la notion de polynôme et voir quelques propriétés. Définition 1. Une fonction P de R dans R est appelée

Plus en détail

Exercices d oraux de la banque CCP BANQUE ALGÈBRE

Exercices d oraux de la banque CCP BANQUE ALGÈBRE Exercices d oraux de la banque CCP 2014-2015 20 exercices sur les 37 d algèbre peuvent être traités en Maths Sup. BANQUE ALGÈBRE EXERCICE 59 Soit E l espace vectoriel des polynômes à coefficients dans

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

0.2.3 Polynômes Monômes Opérations entre monômes... 4

0.2.3 Polynômes Monômes Opérations entre monômes... 4 Table des matières 0 Rappels sur les polynômes et fractions algébriques 1 0.1 Puissances............................................... 1 0.1.1 Puissance d un nombre réel.................................

Plus en détail

THEORIE DES CORPS Cours de mathématiques pour Licence L3 et Master M1 Cours et Exercices corrigés 1

THEORIE DES CORPS Cours de mathématiques pour Licence L3 et Master M1 Cours et Exercices corrigés 1 THEORIE DES CORPS Cours de mathématiques pour Licence L3 et Master M1 Cours et Exercices corrigés 1 Michel Goze, Elisabeth Remm 1. Edité par Ramm Algebra Center 2 Introduction Ce cours s adresse aux étudiants

Plus en détail

Décomposition des fractions rationnelles

Décomposition des fractions rationnelles Décomposition des fractions rationnelles Cas des fractions rationnelles réelles Johan MILLAUD Département Génie Civil de l IUT du Limousin Mars 2006 version 2 I Avant-propos 4 I.1 Navigation dans le cours......................

Plus en détail

Exo7. Formes quadratiques. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

Exo7. Formes quadratiques. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr Exo Formes quadratiques Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Plus en détail

1 Quelques rappels sur les polynômes.

1 Quelques rappels sur les polynômes. Polynômes et fractions rationelles Dans ce chapitre, on ne considère que des polynômes à coefficients réels ou complexes. On notera R[X] l ensemble des polynômes à coefficients réels et C[X] l ensemble

Plus en détail

J. Sauloy 1. 19 novembre 2012

J. Sauloy 1. 19 novembre 2012 ALGÈBRE (COURS DE L3, PREMIER SEMESTRE 2012/2013) J. Sauloy 1 19 novembre 2012 1. Institut mathématique de Toulouse et U.F.R. M.I.G., Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse CEDEX

Plus en détail

Université Sultan Moulay Slimane

Université Sultan Moulay Slimane Université Sultan Moulay Slimane Faculté des sciences et techniques de Beni Mellal Année universitaire : 2012/2013 Cours du Module Algèbre I Abdesselam BOUARICH Deuxième version : 14/01/2013 Table des

Plus en détail

S5-4 périodes semaine Page 1 sur 12

S5-4 périodes semaine Page 1 sur 12 1. Rappel : Résoudre dans IR Chapitre 3 : Equation du second degré a) 3x x = 0 b) 7 x + 3 = 0 c) 4x 9 = 0 d) x 7 = 1 e) x² = 7 f) x² = 0 g) -4x² + 100 = 0 h) 3x² - 7x = 0 i) -5x² - 50 = 0 j) x² + 8x -6

Plus en détail

Chapitre 9. Polynômes. 1 Généralités. 1.1 Définitions

Chapitre 9. Polynômes. 1 Généralités. 1.1 Définitions Chapitre 9 Polynômes Dans tout le chapitre K désigne R ou C. 1 Généralités 1.1 Définitions Définition 1 Polynôme Une fonction P : K K est une fonction polynôme (ou plus simplement un polynôme) à coefficients

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

Mathématiques autour de la cryptographie.

Mathématiques autour de la cryptographie. Mathématiques autour de la cryptographie. Index Codage par division Codage série Code cyclique Code dual Code linéaire Corps de Galois Elément primitif m séquence Matrice génératrice Matrice de contrôle

Plus en détail

FRACTIONS RATIONNELLES

FRACTIONS RATIONNELLES FRACTIONS RATIONNELLES Dans tout ce chapitre, K désigne les corps R ou C. 1 Corps des fractions rationnelles Définition 1.1 Fraction rationnelle On appelle fraction rationnelle à coefficients dans K toute

Plus en détail

Exo7. Sujets de l année Devoir à la maison. Enoncés et corrections : Sandra Delaunay

Exo7. Sujets de l année Devoir à la maison. Enoncés et corrections : Sandra Delaunay Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 26-27 1 Devoir à la maison Exercice 1 Soit a R, notons A la matrice suivante ( ) 1 A =. a 1 + a On définit une suite (u n ) n N, par la donnée

Plus en détail