Methodes d Optimisation Assimilation de données Méthode du gradient conjugué

Dimension: px
Commencer à balayer dès la page:

Download "Methodes d Optimisation Assimilation de données Méthode du gradient conjugué"

Transcription

1 Methodes d Optimisation Assimilation de données Méthode du gradient conjugué BIZZARI Romain MUSCAT Laurent VAUBOURG Audrey 3HY MSN 24 Octobre 2014

2 Sommaire Introduction 3 1 Explication de la méthode 4 2 Résultats 7 3 Alternative : Méhode de Quasi-Newton 10 4 Résolution du problème physique 15 5 Comparaison des méthodes 17 Conclusion 19 2

3 Introduction Dans le cadre du cours "Méthodes d optimisation", on a étudié dans un premier temps plusieurs techniques d assimilation de données. Dans les problèmes d optimisation, l objectif principal est de minimiser la fonction coût. Le minimum d une fonction se détermine de plusieurs manières, selon si cette fonction est linéaire ou non. Dans certains cas, le minimum est compliqué à trouvé, il existe alors plusieurs approximations.on a décidé d étudier la méthode du gradient conjugué et de la programmer afin de résoudre un problème physique : la résolution de l équation de Poisson : Φ = f. Cela revient à minimiser la fonction quadratique F (x) = 1 2 xt Ax fx où A est la matrice du Laplacien. 3

4 Chapitre 1. Explication de la méthode Chapitre 1 Explication de la méthode Explication de la méthode La méthode du gradient conjugué permet de trouver le minimum d une fonction quadratique à plusieurs variables. Cette fonction à image réelle admet un unique minimum puisqu il existe un seul point pour lequel les derivées de la fonction selon toutes les directions sont nulles. La fonction quadratique s écrit de la forme suivante : f(x) = 1 2 xt Ax b T x + c (1.0.1) Avec : A matrice symétrique définie positive de taille n*n, b : vecteur de taille n, c : constante Comme on souhaite minimiser cette fonction, on obtient alors un système linéaire à résoudre : f = A.x b = 0. (1.0.2) 4 Bizzari-Muscat-Vaubourg

5 Chapitre 1. Explication de la méthode Cette méthode est une méthode itérative. En effet, après avoir initialisé le premier "minimum", pour chaque itération, une direction sera choisie, et l algorithme cherche le minimum de la fonction dans cette direction. Une fois ce minimum trouvé, il recommence pour l itération suivante en définissant une nouvelle direction. Les itérations se font jusqu à converger vers le minimum de la fonction. La figure suivante illustre cette méthode. Figure 1.1 Illustration de la méthode En pratique : 1. Initialisation avec un x 0 arbitraire 2. Première direction de recherche d 1 = f1 3. Recherche du point suivant x k+1 = x k + α k d k, avec α k = dt k r k d T k Ad k 4. Direction suivante d k+1 = f k+1 + f k+1 2 f k 2 5. Répétition de l étape 3 jusqu à convergence Le nombre d itération est inférieur ou égal à la taille n de la matrice A pour les fonctions quadratiques. Le x pour lequel la fonction est minimum est facilement trouvé, souvent avant n itérations. d k 5 Bizzari-Muscat-Vaubourg

6 Chapitre 1. Explication de la méthode Variantes du gradient conjugué Par ailleurs, pour les problèmes non quadratiques, il existe trois variantes qui sont équivalentes dans le cas quadratique. Nous allons tenter de les modéliser dans notre script et de vérifier qu elles sont équivalentes pour le cas quadratique. Hestenes-Stiefel : γ k = ( f k+1) T ( f k+1 f k ) d k T ( f k+1 f k ) Polak-Rebiere : γ k = ( f k+1) T ( f k+1 f k ) ( f k ) T f k Fletcher-Reeves : γ k = ( f k+1) T ( f k+1 ( f k ) T f k Algorithme Matlab Figure 1.2 Algorithme Matlab 6 Bizzari-Muscat-Vaubourg

7 Chapitre 2. Résultats Chapitre 2 Résultats Après avoir codé nos gradient conjugué, on a décidé de le tester dans un premier temps sur des fonctions simples dont le minimum était connu, afin de vérifier que le code était valide et nous donnait des résultats cohérents. Première fonction de vérification On a trouvé cette première fonction dans le cours de Serge Gratton 1 f(x) = 2x x x 1 x 2 + x 1 x 2 (2.0.1) On a alors tracé la fonction pour se faire une idée de son allure puis on a tracé ses contours ainsi que les points corrrespondant aux différentes itérations avant l obtention du minimum. Son minimum est atteint en (-1, 3 2 ). Visualisation de la fonction 2 Contour de la fonction Fonction Z 10 5 X X X X1 Figure 2.1 Fonction de vérification simple 1. Engineering Optimization, Concepts and Applications Serge Gratton 7 Bizzari-Muscat-Vaubourg

8 Chapitre 2. Résultats Deuxième fonction : fonction banana On a ensuite travaillé sur la fonction banana (fonction de Rosenbrock), qui est souvent utilisée comme test pour des problèmes d optimisation. f(x) = (1 x 2 ) (y x 2 ) 2 (2.0.2) Pour cette fonction, le minimum local est obtenu au point (1,1) pour lequel la fonction vaut 0. Figure 2.2 Fonction banana A-travers ces deux exemples simples, on a pu vérifier la cohérence des résultats fournis par nos codes, on a alors décidé de les améliorer en utilisant d autres alternatives que l on va présenter dans les parties suivantes, et de le tester pour notre problème physique (résolution de l équation de Poisson φ = f). 8 Bizzari-Muscat-Vaubourg

9 Chapitre 2. Résultats Equation de Poisson Pour notre problème physique, qui est l équation de Poisson, on a résolu cette équation grâce au gradient conjugué, en minimisant la fonction quadratique associée au système linéaire φ = f. On a encore une fois tracé la surface de la fonction pour se faire une idée de son allure, et les contours ainsi que les différents points correspondants aux itérations nécessaires pour atteindre le minimum de la fonction quadratique, qui est alors la solution de notre système. Ainsi, on constate que le minimum est atteint en (2,2), donc la solution de notre équation de Poisson est (2,2). Figure 2.3 Equation de Poisson 9 Bizzari-Muscat-Vaubourg

10 Chapitre 3. Alternative : Méhode de Quasi-Newton Chapitre 3 Alternative : Méhode de Quasi-Newton Après les solutions obtenues avec la méthode du gradient conjugué qui nous a fait remarquer le nombre trop important d itérations pour atteindre la valeur du minimun de la fonction de rosenbourg(fonction banana), nous nous sommes interessés à d autre méthode pour l obtention de son minimun. On s est alors interéssés à la méthode de Newton, qui consiste à prendre pour direction de descente le gradient de la fonction ainsi qu un paramètre β en utilisant la hessienne de la fonction, mais étant donné que souvent dans la pratique la hessienne est très difficile à évaluer dans le cas où la fonction n est pas analytique, on s est tourné vers une méthode de Quasi newton. On souhaite donc ne plus calculer exctement la hessienne mais simplement en évaluer une approximation. Il existe bon nombre de méthodes, nous avons utilisé la méthode BFGS pour Broyden-Fletcher- Godfarb-Shanno. Dans ce qui suit on note s k = x k+1 x k et y k = f k+1 f k et on choisit une matrice B 0 que l on prend égal à l identité. Dans l approche BFGS la hessienne est donné par : B k+1 = B k + y T ky k B ks k s T k B k (3.0.1) y kt s k s kt B k s k Une chose à remarquer est l importance du premier pas alpha, en effet pour un pas très faible, la méthode de quasi-newton a besoin de plus d itération pour atteindre le minimun de la fonction de rosenbourg. En effet pour un α = 10 3 on a 4223 itérations pour la méthode de quasi-newton et 3561 dans le cas la méthode de la plus grande descente. 10 Bizzari-Muscat-Vaubourg

11 Chapitre 3. Alternative : Méhode de Quasi-Newton Figure 3.1 Méthode de la Descente Figure 3.2 Méthode de Quasi-Newton 11 Bizzari-Muscat-Vaubourg

12 Chapitre 3. Alternative : Méhode de Quasi-Newton Par contre pour un α plus grand (par exemple 0.05) la méthode de qasi-newton est plus intéressante, en effet on a juste besoin de 261 itérations. Figure 3.3 Méthode de Quasi-Newton avec α = 0.05 pas. On notera que pour cette valeur de α que la méthode de la descente ne converge Figure 3.4 Méthode de Descente avec α = Bizzari-Muscat-Vaubourg

13 Chapitre 3. Alternative : Méhode de Quasi-Newton On notera donc que le choix de α est crucial, en effet dans la méthode de la plus grande descente, plus le α est important plus le nombre d itération diminue jusqu à un point où l algo ne converge plus. Dans le cas de la méthode de quasi-newton, on a le même problème pour α > 1. Néanmoins on s est intéressé à une méthode linéaire permettant d avoir à chaque itération le α k optimal et les résultats montrent bien que le nombre d itérations diminue grâce à l implantation de ce nouvel algorithme. Là encore la méthode de quasi-newon est plus interessante. En effet comme on cherche à minimiser la fonction f, il semble naturel de chercher à minimiser le critère le long de d k et donc de déterminer un pas α k qui verifie les deux objectifs : faire décroire f suffisament et empécher le pas d être trop petit. Ce qui se traduit par les règles de Wolf. L algo est nommé Fletcher-Lemaréchal et est basé sur les conditions de Wolf : f(x k + α k d k ) f(x k ) + ω 1 α k gk T d k ( Condition 1 ) ( f(x k + α k d k )) T d k ω 2 gk T d k ( Condition 2 ) Avec 0 < ω 1 < ω 2 < 1. On obtient que l algorithme, avec quasi-newton, converge pour 195 itérations avec α = Figure 3.5 Méthode de Quasi-Newton + Fletcher-Lemaréchal 13 Bizzari-Muscat-Vaubourg

14 Chapitre 3. Alternative : Méhode de Quasi-Newton Ce qu on peut néanmoins remarquer c est l importance de la première itération du pas α. En effet, si l on ne prend pas la valeur adéquate, la méthode de quasinewton est moins performante que la méthode de la plus grande descente. L algorithme de Fletcher-Lemaréchal permet d obtenir, en suivant les régles de Wolf, un α k optimal pour chaque itération, mais là encore l importance de la première itération est primordiale. Il est donc nécessaire de faire plusieurs tests pour voir quelle valeur du premier pas fait converger la solution avec un nombre minimum d itération. Algorithme de Fletcher-Lemaréchal Figure 3.6 Algorithme de Fletcher-Lemaréchal 14 Bizzari-Muscat-Vaubourg

15 Chapitre 4. Résolution du problème physique Chapitre 4 Résolution du problème physique Dans cette partie, on va s intéresser au problème physique, on se propose d étudier la diffusion de température en 2D. Pour cela nous allons faire un maillage Nx*Nx et le résoudre grace aux volumes finis. Pour cela il faut résoudre : d 2 T dx + d2 T 2 dy = 0 2 Ce qui nous donne : T (i, j + 1) 2T (i, j) + T (i, j 1) dx 2 + T (i + 1, j) 2T (i, j) + T (i 1, j)) dy 2 = 0 Puis grace aux conditions limites de type Dirichlet, on parvient a mettre cette équation sous la forme : Avec : A matrice de poisson Ax = B (4.0.1) X vecteur des inconnues en chaque point de discrétisation (ici : température) B contenant les conditions limites Ainsi, la résolution de cette équation revient à minimiser la fonction quadratique F (x) = 1 2 xt Ax Bx. En effet, comme on l a expliqué précedemment, la minimisation de cette équation revient à calculer le point où le gradient de F s annule, c est-à-dire F = 0, ce qui revient à trouver x tel que Ax B = 0. Pour résoudre cette équation plusieurs méthodes existent : Jacobi, Gauss-seidel, gradient conjugué, gradient conjugé precondtionné Bizzari-Muscat-Vaubourg

16 Chapitre 4. Résolution du problème physique On a dans un premier temps étudié comment résoudre cette equation avec la méthode de Gauss-seidel, puis avec la methode du gradient conjugé sur un maillage regulier (dx=dy). Il en revient l equation : 4T (i, j) = T (i, j + 1) + T (i, j 1) + T (i + 1, j) + T (i 1, j)) Il suffit d imposer les conditions limites souhaitées et de faire une boucle sur le calcul de la température. Résultats : Figure 4.1 Diffusion maillage 64*64 16 Bizzari-Muscat-Vaubourg

17 Chapitre 5. Comparaison des méthodes Chapitre 5 Comparaison des méthodes Comme on l a expliqué précedemment, on a chacun codé un gradient conjugué, et on a également codé les alternatives : Hestenes-Stiefel (HS), Polak-Rebiere (PR) et Fletcher-Reeves (FR). Afin de les comparer,on a résolu l équation de Poisson ( φ = f, qui est la minimisation d une fonction quadratique simple, et on a décidé de s intéresser au nombre d itérations nécessaires pour trouver la solution, pour différents nombres d inconnues, ainsi que le temps de résolution pour chacune des méthodes. Les résultats sont présentés sur les figures suivantes. Nombre d itérations 10 4 Itérations en fonction du nombre d"inconnues 10 3 itérations Gradient Laurent FR HS PR Gradient Audrey Gradient Romain nombre d "inconnues Figure 5.1 Comparaison du nombre d itérations Comme on peut le constater sur la figure 5.1, le nombre d itérations est le même pour nos trois gradients codés ainsi que pour l algorithme de Polak-Riebere. Le plus rapide à converger (en terme d itérations) et l alternative de Hestenes-Stiefel, qui utilise une interpolation de la Hessienne sans réellement la calculer. 17 Bizzari-Muscat-Vaubourg

18 Chapitre 5. Comparaison des méthodes Temps de résolution 30 Temps en fonction du nombre d"inconnues 25 Gradient Laurent FR HS PR Gradient Audrey Gradient Romain 20 temps nombre d "inconnues Figure 5.2 Comparaison du temps On constate que l algorithme de Polak-Riebere est encore une fois le plus rapide (environ 2s pour inconnues) tandis que le gradient conjugué codé par Romain est le plus long. Ce qui montre que le fait de coder différement peut changer énormément le temps de résolution, ainsi que le choix des coefficients. 18 Bizzari-Muscat-Vaubourg

19 Conclusion Au travers de ce deuxième bureau d étude sur les méthodes d optimisation, on a codé un gradient conjugué ainsi que différentes alternatives. Cela nous a permis de mieux comprendre le gradient conjugué, et de mieux voir les différences entre les méthodes. Celui-ci permet de minimiser une solution, mais aussi de trouver les zéros d une équation linéaire, ce que l on a utilisé dans ce projet. On a ainsi constaté que le choix des coefficients est important grâce aux comparaisons entre les différentes possibilités pour γ k pour la méthode du gradient conjugué. Mais aussi grâce à la méthode de quasi-newton, qui prouve que le choix de α est crucial, et à la méthode de la plus grande descente, pour laquelle si le α choisi est trop grand, l algorithme ne converge plus. Par ailleurs, on a également pu constater que la manière de coder peut changer beaucoup sur le temps de résolution. Le nombre d itérations est à peu près le même, mais le temps de calcul peut augmenter énormément si le code est écrit différement. La méthode du gradient conjugé est plus compliquée à coder mais converge beaucoup plus vite, elle est donc une meilleur méthode pour la CFD, cependant d autres methodes encore plus rapides existent. 19

RO04/TI07 - Optimisation non-linéaire

RO04/TI07 - Optimisation non-linéaire RO04/TI07 - Optimisation non-linéaire Stéphane Mottelet Université de Technologie de Compiègne Printemps 2003 I Motivations et notions fondamentales 4 I1 Motivations 5 I2 Formes quadratiques 13 I3 Rappels

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Mathématique et Automatique : de la boucle ouverte à la boucle fermée Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Maitine.Bergounioux@labomath.univ-orleans.fr Plan 1. Un peu de

Plus en détail

Optimisation et programmation mathématique. Professeur Michel de Mathelin. Cours intégré : 20 h

Optimisation et programmation mathématique. Professeur Michel de Mathelin. Cours intégré : 20 h Télécom Physique Strasbourg Master IRIV Optimisation et programmation mathématique Professeur Michel de Mathelin Cours intégré : 20 h Programme du cours d optimisation Introduction Chapitre I: Rappels

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

C f tracée ci- contre est la représentation graphique d une

C f tracée ci- contre est la représentation graphique d une TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

de calibration Master 2: Calibration de modèles: présentation et simulation d

de calibration Master 2: Calibration de modèles: présentation et simulation d Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe

Plus en détail

Les équations différentielles

Les équations différentielles Les équations différentielles Equations différentielles du premier ordre avec second membre Ce cours porte exclusivement sur la résolution des équations différentielles du premier ordre avec second membre

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

CHAPITRE I. Modélisation de processus et estimation des paramètres d un modèle

CHAPITRE I. Modélisation de processus et estimation des paramètres d un modèle CHAPITRE I Modélisation de processus et estimation des paramètres d un modèle I. INTRODUCTION. Dans la première partie de ce chapitre, nous rappelons les notions de processus et de modèle, ainsi que divers

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Figure 3.1- Lancement du Gambit

Figure 3.1- Lancement du Gambit 3.1. Introduction Le logiciel Gambit est un mailleur 2D/3D; pré-processeur qui permet de mailler des domaines de géométrie d un problème de CFD (Computational Fluid Dynamics).Il génère des fichiers*.msh

Plus en détail

Équations non linéaires

Équations non linéaires CHAPTER 1 Équations non linéaires On considère une partie U R d et une fonction f : U R d. On cherche à résoudre { x U 1..1) f x) = R d On distinguera les cas d = 1 et d > 1. 1.1. Dichotomie d = 1) 1.1.1.

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Équations non linéaires

Équations non linéaires Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et

Plus en détail

Cours d analyse numérique SMI-S4

Cours d analyse numérique SMI-S4 ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,

Plus en détail

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008) Examen optimisation Centrale Marseille (28) et SupGalilee (28) Olivier Latte, Jean-Michel Innocent, Isabelle Terrasse, Emmanuel Audusse, Francois Cuvelier duree 4 h Tout resultat enonce dans le texte peut

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

Introduction à MATLAB R

Introduction à MATLAB R Introduction à MATLAB R Romain Tavenard 10 septembre 2009 MATLAB R est un environnement de calcul numérique propriétaire orienté vers le calcul matriciel. Il se compose d un langage de programmation, d

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES. CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

Licence 2 Mathématiques- Semestre 3 Introduction aux mathématiques

Licence 2 Mathématiques- Semestre 3 Introduction aux mathématiques Licence 2 Mathématiques- Semestre 3 Introduction aux mathématiques financières Année universitaire 2010-11 1 Version Septembre 2010 1 Responsable du cours: Marie-Amélie Morlais 2 0.1 Plan sommaire du cours

Plus en détail

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique 1 ANALYSE NUMERIQUE ET OPTIMISATION Une introduction à la modélisation mathématique et à la simulation numérique G. ALLAIRE 28 Janvier 2014 CHAPITRE I Analyse numérique: amphis 1 à 12. Optimisation: amphis

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Fonctions de plusieurs variables. Sébastien Tordeux

Fonctions de plusieurs variables. Sébastien Tordeux Fonctions de plusieurs variables Sébastien Tordeux 22 février 2009 Table des matières 1 Fonctions de plusieurs variables 3 1.1 Définition............................. 3 1.2 Limite et continuité.......................

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Sur certaines séries entières particulières

Sur certaines séries entières particulières ACTA ARITHMETICA XCII. 2) Sur certaines séries entières particulières par Hubert Delange Orsay). Introduction. Dans un exposé à la Conférence Internationale de Théorie des Nombres organisée à Zakopane

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

= constante et cette constante est a.

= constante et cette constante est a. Le problème Lorsqu on sait que f(x 1 ) = y 1 et que f(x 2 ) = y 2, comment trouver l expression de f(x 1 )? On sait qu une fonction affine a une expression de la forme f(x) = ax + b, le problème est donc

Plus en détail

Modélisation et simulation

Modélisation et simulation Modélisation et simulation p. 1/36 Modélisation et simulation INFO-F-305 Gianluca Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Modélisation et simulation p.

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Introduction à l analyse numérique : exemple du cloud computing

Introduction à l analyse numérique : exemple du cloud computing Introduction à l analyse numérique : exemple du cloud computing Tony FEVRIER Aujourd hui! Table des matières 1 Equations aux dérivées partielles et modélisation Equation différentielle et modélisation

Plus en détail

Chapitre 6 Apprentissage des réseaux de neurones et régularisation

Chapitre 6 Apprentissage des réseaux de neurones et régularisation Chapitre 6 : Apprentissage des réseaux de neurones et régularisation 77 Chapitre 6 Apprentissage des réseaux de neurones et régularisation Après une introduction rapide aux réseaux de neurones et à la

Plus en détail

Approximations variationelles des EDP Notes du Cours de M2

Approximations variationelles des EDP Notes du Cours de M2 Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

Les algorithmes de base du graphisme

Les algorithmes de base du graphisme Les algorithmes de base du graphisme Table des matières 1 Traçage 2 1.1 Segments de droites......................... 2 1.1.1 Algorithmes simples.................... 3 1.1.2 Algorithmes de Bresenham (1965).............

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

LES MÉTHODES DE POINT INTÉRIEUR 1

LES MÉTHODES DE POINT INTÉRIEUR 1 Chapitre XIII LES MÉTHODES DE POINT INTÉRIEUR 1 XIII.1 Introduction Nous débutons par un rappel de la formulation standard d un problème d optimisation 2 linéaire et donnons un bref aperçu des différences

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

BACCALAURÉAT PROFESSIONNEL SUJET

BACCALAURÉAT PROFESSIONNEL SUJET SESSION 203 Métropole - Réunion - Mayotte BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)

Plus en détail

Optimisation, traitement d image et éclipse de Soleil

Optimisation, traitement d image et éclipse de Soleil Kléber, PCSI1&3 014-015 I. Introduction 1/8 Optimisation, traitement d image et éclipse de Soleil Partie I Introduction Le 0 mars 015 a eu lieu en France une éclipse partielle de Soleil qu il était particulièrement

Plus en détail

Monitoring continu et gestion optimale des performances énergétiques des bâtiments

Monitoring continu et gestion optimale des performances énergétiques des bâtiments Monitoring continu et gestion optimale des performances énergétiques des bâtiments Alexandre Nassiopoulos et al. Journée d inauguration de Sense-City, 23/03/2015 Croissance de la demande énergétique et

Plus en détail

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Fausto Errico Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2012 Table des matières

Plus en détail

Master IMA - UMPC Paris 6 RDMM - Année 2009-2010 Fiche de TP

Master IMA - UMPC Paris 6 RDMM - Année 2009-2010 Fiche de TP Master IMA - UMPC Paris 6 RDMM - Année 2009-200 Fiche de TP Préliminaires. Récupérez l archive du logiciel de TP à partir du lien suivant : http://www.ensta.fr/~manzaner/cours/ima/tp2009.tar 2. Développez

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

TRACER LE GRAPHE D'UNE FONCTION

TRACER LE GRAPHE D'UNE FONCTION TRACER LE GRAPHE D'UNE FONCTION Sommaire 1. Méthodologie : comment tracer le graphe d'une fonction... 1 En combinant les concepts de dérivée première et seconde, il est maintenant possible de tracer le

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007 Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

Optimisation des fonctions de plusieurs variables

Optimisation des fonctions de plusieurs variables Optimisation des fonctions de plusieurs variables Hervé Hocquard Université de Bordeaux, France 8 avril 2013 Extrema locaux et globaux Définition On étudie le comportement d une fonction de plusieurs variables

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

Algorithmes pour la planification de mouvements en robotique non-holonome

Algorithmes pour la planification de mouvements en robotique non-holonome Algorithmes pour la planification de mouvements en robotique non-holonome Frédéric Jean Unité de Mathématiques Appliquées ENSTA Le 02 février 2006 Outline 1 2 3 Modélisation Géométrique d un Robot Robot

Plus en détail

IV- Equations, inéquations dans R, Systèmes d équations

IV- Equations, inéquations dans R, Systèmes d équations IV- Equations, inéquations dans R, Systèmes d équations 1- Equation à une inconnue Une équation est une égalité contenant un nombre inconnu noté en général x et qui est appelé l inconnue. Résoudre l équation

Plus en détail

Circuits RL et RC. Chapitre 5. 5.1 Inductance

Circuits RL et RC. Chapitre 5. 5.1 Inductance Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Corrigé des TD 1 à 5

Corrigé des TD 1 à 5 Corrigé des TD 1 à 5 1 Premier Contact 1.1 Somme des n premiers entiers 1 (* Somme des n premiers entiers *) 2 program somme_entiers; n, i, somme: integer; 8 (* saisie du nombre n *) write( Saisissez un

Plus en détail

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot Chapitre 5 Arithmétique binaire L es codes sont manipulés au quotidien sans qu on s en rende compte, et leur compréhension est quasi instinctive. Le seul fait de lire fait appel au codage alphabétique,

Plus en détail

Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes.

Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes. Introduction L'objectif de mon TIPE est la reconnaissance de sons ou de notes de musique à l'aide d'un réseau de neurones. Ce réseau doit être capable d'apprendre à distinguer les exemples présentés puis

Plus en détail

Première partie. Introduction à la méthodes des différences finies

Première partie. Introduction à la méthodes des différences finies Première partie Introduction à la méthodes des différences finies 5 7 Introduction Nous allons présenter dans cettte partie les idées de base de la méthode des différences finies qui est sans doute la

Plus en détail

Initiation à l algorithmique

Initiation à l algorithmique Informatique S1 Initiation à l algorithmique procédures et fonctions 2. Appel d une fonction Jacques TISSEAU Ecole Nationale d Ingénieurs de Brest Technopôle Brest-Iroise CS 73862-29238 Brest cedex 3 -

Plus en détail

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M belayach@fsr.ac.ma 1 1.Le réseau

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Plus courts chemins, programmation dynamique

Plus courts chemins, programmation dynamique 1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

INITIATION AU LANGAGE C SUR PIC DE MICROSHIP

INITIATION AU LANGAGE C SUR PIC DE MICROSHIP COURS PROGRAMMATION INITIATION AU LANGAGE C SUR MICROCONTROLEUR PIC page 1 / 7 INITIATION AU LANGAGE C SUR PIC DE MICROSHIP I. Historique du langage C 1972 : naissance du C dans les laboratoires BELL par

Plus en détail

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA 75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Coup de Projecteur sur les Réseaux de Neurones

Coup de Projecteur sur les Réseaux de Neurones Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche

Plus en détail

Thème 17: Optimisation

Thème 17: Optimisation OPTIMISATION 45 Thème 17: Optimisation Introduction : Dans la plupart des applications, les grandeurs physiques ou géométriques sont exprimées à l aide d une formule contenant une fonction. Il peut s agir

Plus en détail

F411 - Courbes Paramétrées, Polaires

F411 - Courbes Paramétrées, Polaires 1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013

Plus en détail

TD1 Signaux, énergie et puissance, signaux aléatoires

TD1 Signaux, énergie et puissance, signaux aléatoires TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver

Plus en détail

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique : Chapitre Chapitre. Séries de Fourier Nous supposons connues les formules donnant les coefficients de Fourier d une fonction - périodique : c c a0 f x dx c an f xcosnxdx c c bn f xsinn x dx c L objet de

Plus en détail

Manuel de validation Fascicule v4.25 : Thermique transitoire des structures volumiques

Manuel de validation Fascicule v4.25 : Thermique transitoire des structures volumiques Titre : TTLV100 - Choc thermique dans un tuyau avec condit[...] Date : 02/03/2010 Page : 1/10 Manuel de Validation Fascicule V4.25 : Thermique transitoire des structures volumiques Document : V4.25.100

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Cours de méthodes de scoring

Cours de méthodes de scoring UNIVERSITE DE CARTHAGE ECOLE SUPERIEURE DE STATISTIQUE ET D ANALYSE DE L INFORMATION Cours de méthodes de scoring Préparé par Hassen MATHLOUTHI Année universitaire 2013-2014 Cours de méthodes de scoring-

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

1 Introduction et modèle mathématique

1 Introduction et modèle mathématique Optimisation parallèle et mathématiques financières Optimisation parallèle et mathématiques financières Pierre Spiteri 1 IRIT ENSEEIHT, UMR CNRS 5505 2 rue Charles Camichel, B.P. 7122 F-31 071 Toulouse,

Plus en détail

Formation à la C F D Computational Fluid Dynamics. Formation à la CFD, Ph Parnaudeau

Formation à la C F D Computational Fluid Dynamics. Formation à la CFD, Ph Parnaudeau Formation à la C F D Computational Fluid Dynamics Formation à la CFD, Ph Parnaudeau 1 Qu est-ce que la CFD? La simulation numérique d un écoulement fluide Considérer à présent comme une alternative «raisonnable»

Plus en détail

ALGORITHMIQUE II NOTION DE COMPLEXITE. SMI AlgoII

ALGORITHMIQUE II NOTION DE COMPLEXITE. SMI AlgoII ALGORITHMIQUE II NOTION DE COMPLEXITE 1 2 Comment choisir entre différents algorithmes pour résoudre un même problème? Plusieurs critères de choix : Exactitude Simplicité Efficacité (but de ce chapitre)

Plus en détail

Méthodes de Simulation

Méthodes de Simulation Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents

Plus en détail

F7n COUP DE BOURSE, NOMBRE DÉRIVÉ

F7n COUP DE BOURSE, NOMBRE DÉRIVÉ Auteur : S.& S. Etienne F7n COUP DE BOURSE, NOMBRE DÉRIVÉ TI-Nspire CAS Mots-clés : représentation graphique, fonction dérivée, nombre dérivé, pente, tableau de valeurs, maximum, minimum. Fichiers associés

Plus en détail