Ville de Bruxelles Programme de 3 ème année

Dimension: px
Commencer à balayer dès la page:

Download "Ville de Bruxelles Programme de 3 ème année"

Transcription

1 Ville de Bruxelles Programme de 3 ème année 1. Algèbre Les compétences algébriques reposent sur la connaissance de propriétés articulées entre elles et sur la capacité à traduire une situation en langage mathématique. Leur mise en œuvre requiert d avoir acquis des routines de calcul, mais surtout de savoir élaborer et mener à bien les plans de calcul utiles à la solution. Cette habileté comporte le bon usage des outils de calcul électroniques, quand la difficulté ou l efficacité l imposent, ainsi que l interprétation des résultats ainsi obtenus. I. Savoir, connaître, définir Les propriétés des opérations fondamentales sur les nombres et les formes littérales. Les propriétés de compatibilité des opérations avec les égalités, les inégalités (, ). Les propriétés des opérations sur les polynômes, incluant celles relatives à l égalité et à la factorisation. Propriétés des opérations sur les nombres réels. Puissances à exposants entiers. Racine carrée d un nombre réel positif. Formules de produits remarquables. Polynômes : degré d un polynôme, valeur numérique d un polynôme. Fractions rationnelles. II. Calculer (déterminer, estimer, approximer) 1 ) Calculer l ensemble des solutions d une équation, d une inéquation. 2 ) Calculer l ensemble des solutions d un système de 2 équations linéaires. Résolution d une équation et d une inéquation du premier degré à une inconnue. Résolution d un système de 2 équations du premier degré à 2 inconnues. Résolution d équations réductibles au premier degré. Programme Math3.p65 1

2 III. Appliquer, analyser, résoudre des problèmes 1 ) Organiser une suite d opérations conduisant à la résolution d un problème. 2 ) Interpréter le résultat des calculs en les replaçant dans le contexte du problème. 3 ) Présenter les résultats oralement ou par écrit dans une expression claire, concise, exempte d ambiguïté. Propriétés de compatibilité des opérations avec les égalités et les inégalités. Racine carrée d un nombre réel positif : valeur approchée, encadrement. Propriétés des puissances à exposants entiers. Formules de produits remarquables. Somme, différence, produit et quotient de polynômes. Méthodes de factorisation. Somme, différence, produit et quotient de fractions rationnelles. IV. Représenter, modéliser Traduire une situation en langage mathématique sous forme d équation, d inéquation ou d autres formes de conditions. Résolution de problèmes faisant intervenir une équation ou un système d équations du premier degré. V. Démontrer Justifier les étapes d un calcul (en relation avec le niveau mathématique envisagé). Racine carrée d un produit, d un quotient. VI. Résumer, organiser les savoirs, synthétiser, généraliser 1 ) Commenter les extensions successives de la notion de nombre et les utiliser (y compris les nombres réels). 2 ) Au moyen d une droite graduée, représenter R et en illustrer les propriétés fondamentales. 3 ) Reconnaître une structure de groupe dans des ensembles numériques. L ensemble des nombres réels (nombres rationnels et irrationnels), structures de groupe. Interprétation graphique des solutions d une équation et d une inéquation du premier degré à une inconnue. Programme Math3.p65 2

3 2. Géométrie et trigonométrie Les compétences géométriques prennent appui sur la connaissance de figures et de solides, tant issus de l espace physique qu idéalisés dans des configurations. La première compétence réside dans les tracés à main levée et aux instruments, éventuellement à l aide de logiciels ou encore dans la réalisation d un modèle. Quelques notions constituent les bases des compétences géométriques : l incidence, le théorème de Thalès, la similitude de figures et le théorème de Pythagore sont utilisés dans différents domaines. Les compétences calculatoires qui s y rapportent sont amplifiées ensuite par la géométrie vectorielle. Les compétences liées à l argumentation sont au cœur de toute activité géométrique. Elles sont à l œuvre dans la réalisation et la justification de constructions, dans la recherche de propriétés et dans la rédaction de démonstrations, qu elles soient synthétiques ou vectorielles. Les translations, les symétries, les rotations et les homothéties sont utilisées pour décrire et organiser les propriétés des figures. I. Savoir, connaître, définir 1 ) Les grands théorèmes de la géométrie classique et de la trigonométrie relatifs aux longueurs, aux rapports de longueurs, aux angles, aux aires et aux figures en général. 2 ) Les translations, les symétries, les rotations, les homothéties de figures dans le plan. 3 ) Les projections parallèles de figures ou de solides. 4 ) Le calcul vectoriel dans le plan. Théorème de Pythagore. Théorème de Thalès. Vecteurs : addition et multiplication par un nombre réel, relation de Chasles. Angles au centre, angles inscrits, angles tangentiels. Caractérisation d un triangle rectangle par son inscriptibilité dans un demi-cercle. Cas d isométrie des triangles. Homothéties, invariants de l homothétie. Cas de similitude des triangles. Nombres trigonométriques dans un triangle rectangle. II. Calculer, déterminer un élément géométrique Sur base des notions de la rubrique I, déterminer une longueur, un angle, une relation entre points, droites, une propriété de figure, par une méthode routinière. Calcul de la longueur d un côté, de l amplitude d un angle dans un triangle rectangle. Calcul de la longueur d un segment (en appliquant les propriétés des proportions). Programme Math3.p65 3

4 III. Appliquer, analyser, résoudre des problèmes Parmi les notions de la rubrique I, choisir des propriétés, organiser une démarche en vue de - déterminer des éléments d une figure; - dégager de nouvelles propriétés géométriques; - résoudre des problèmes. Le professeur fera résoudre des problèmes qui mettent en œuvre les outils mathématiques mentionnés au cadre I. IV. Représenter, modéliser Effectuer des tracés de figures générales ou de leurs cas particuliers, à la main, aux instruments, éventuellement à l aide de logiciels, en vue d illustrer un énoncé, d éclairer une recherche. Vecteurs. Triangles isométriques. Homothéties. Triangles semblables. V. Démontrer 1 ) Organiser les étapes d une construction et les justifier. 2 ) Dans un énoncé (propriété, définition, théorème, ), distinguer l hypothèse et la thèse. 3 ) Rédiger une démonstration en faisant apparaître les étapes, les liens logiques, les théorèmes utilisés au moyen de phrases complètement formulées. Théorème de Pythagore. Théorème de Thalès. Propriétés des angles inscrits dans un cercle, des angles au centre d un cercle, des angles tangentiels à un cercle. Propriétés vectorielles. Cas d isométrie des triangles. Cas de similitude des triangles. Programme Math3.p65 4

5 3. Etude des fonctions L étude des fonctions est un domaine privilégié pour apprendre à modéliser. L accent est mis sur la fonction de référence f(x) = ax + b. Représenter, modéliser 1 ) Esquisser, construire un graphique. 2 ) Interpréter un graphique. Construction point par point et première analyse des graphiques de fonctions à coefficients numériques. La fonction du premier degré. Notion de coefficient angulaire. Programme Math3.p65 5

Troisième - Objectifs de l année en mathématique

Troisième - Objectifs de l année en mathématique Troisième - Objectifs de l année en mathématique Chapitre 0 : Les nombres réels *Document téléchargeable sur http://www.cspu.be/~termollem dans «Documents» 1. Nommer les ensembles de nombres et donner

Plus en détail

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE MOYEN

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE MOYEN LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE MOYEN Introduction. page 2 Classe de cinquième page 3 Classe de quatrième page 7-1 - INTRODUCTION D une manière générale on mettra

Plus en détail

Progression en cycle 4

Progression en cycle 4 Progression en cycle 4 Nombres et calculs Sens des nombres Conforter la maitrise des procédures de calcul. Nombres rationnels de signe quelconque. Un même nombre peut avoir plusieurs écritures (notamment

Plus en détail

SOMMAIRE du Cours de Mathématiques

SOMMAIRE du Cours de Mathématiques SOMMAIRE du Cours de Mathématiques Thème : NOMBRES ET CALCULS Chapitre 01 : NOMBRES DECIMAUX Fiche 1 : Fractions décimales et nombres décimaux Fiche 2 : Demi-droite graduée Fiche 3 : Comparer des nombres

Plus en détail

CERTIFICAT, GEOMETRIE. Liste des sujets

CERTIFICAT, GEOMETRIE. Liste des sujets 9VSB CERTIFICAT, GEOMETRIE Liste des sujets 1. Notions préliminaires 2. Cercle, Cylindre et Cône 3. Angles 4. Polygones et Polyèdres 5. Transformations géométriques 6. Triangles isométriques 7. Théorème

Plus en détail

Fiche de programmation

Fiche de programmation Collège des Sœurs des Saints-Cœurs -Tripoli Email : tripoli@sscc.edu.lb Site : www.tripoli.sscc.edu.lb Année scolaire: (2013-2014) Fiche de programmation Classe : EB8 Professeurs : Manal Hajjeh et Fadi

Plus en détail

PROGRESSION «SPECIALE » EN CLASSE DE QUATRIEME

PROGRESSION «SPECIALE » EN CLASSE DE QUATRIEME PROGRESSION «SPECIALE 2014-2015» EN CLASSE DE QUATRIEME THEME 1 : CALCUL NUMERIQUE (1) ECRITURES FRACTIONNAIRES (1) ECRITURES FRACTIONNNAIRES DE NOMBRES POSITIFS Connaissances et capacités Opérations (+,,

Plus en détail

Progressivité en Mathématiques (Collège Anne Frank à Sauzé-Vaussais) CYCLE 4 Thème 5ème 4ème 3ème

Progressivité en Mathématiques (Collège Anne Frank à Sauzé-Vaussais) CYCLE 4 Thème 5ème 4ème 3ème CYCLE 4 Thème 5ème 4ème 3ème Calcul numérique Calculer avec des parenthèses Calculer sans parenthèses Thème A NOMBRES et CALCULS Nombres relatifs Fractions Calcul littéral Puissance Racines carrées Equation

Plus en détail

Progressivité cycle 3 cycle 4 programmes En rouge ce qui doit démarrer à un instant précis du cycle et clairement indiqué dans le programme

Progressivité cycle 3 cycle 4 programmes En rouge ce qui doit démarrer à un instant précis du cycle et clairement indiqué dans le programme Progressivité cycle 3 cycle 4 programmes 2016 En rouge ce qui doit démarrer à un instant précis du cycle et clairement indiqué dans le programme En vert, ce qui n apparait plus explicitement dans le programme

Plus en détail

Progression 4e - MATHEMATIQUES

Progression 4e - MATHEMATIQUES PREMIER TRIMESTRE ADDITION ET SOUSTRACTION DES NOMBRES RELATIFS (Chap1) I) Addition de deux nombres relatifs II) Soustraction de deux nombres relatifs III) Notation simplifiée Activités : CALCUL MENTAL,

Plus en détail

PROGRAMME DE MATHEMATIQUES POUR LES CLASSES DE 9 e DE L ENSEIGNEMENT SECONDAIRE TECHNIQUE ECOLE PRIVEE NOTRE-DAME SAINTE SOPHIE

PROGRAMME DE MATHEMATIQUES POUR LES CLASSES DE 9 e DE L ENSEIGNEMENT SECONDAIRE TECHNIQUE ECOLE PRIVEE NOTRE-DAME SAINTE SOPHIE PROGRAMME DE MATHEMATIQUES POUR LES CLASSES DE 9 e DE L ENSEIGNEMENT SECONDAIRE TECHNIQUE ECOLE PRIVEE NOTRE-DAME SAINTE SOPHIE Remarques générales: Les compétences minimales exigibles sont indiquées en

Plus en détail

Programme de mathématiques de la classe de cinquième

Programme de mathématiques de la classe de cinquième Programme de mathématiques de la classe de cinquième L enseignement des mathématiques en classe de cinquième doit consolider et approfondir les acquis de la scolarité élémentaire et de la sixième et doter

Plus en détail

Cliquez sur le titre du cours ou de l'exercice pour plus de détails.

Cliquez sur le titre du cours ou de l'exercice pour plus de détails. Niveau 3 ème Cliquez sur le titre du cours ou de l'exercice pour plus de détails. Liste des cours et exercices Calcul Littéral...3 Cours...3 Leçon 1: Identités remarquables....4 Leçon 2: Factoriser une

Plus en détail

MATHS QUATRIEME CYCLE CENTRAL (progression B.O. Août 2 008)

MATHS QUATRIEME CYCLE CENTRAL (progression B.O. Août 2 008) 1. Organisation et gestion de données. Fonctions Utilisation de la proportionnalité Quatrième proportionnelle Calculs faisant intervenir des pourcentages Proportionnalité * Représentations graphiques.

Plus en détail

Mathématiques de la 1 re année du secondaire

Mathématiques de la 1 re année du secondaire Mathématiques de la 1 re année du secondaire 563-100 Le programme de mathématiques de la première année du secondaire comporte les trois compétences principales présentées cidessous. Chaque compétence

Plus en détail

Examen d admission aux études de l enseignement supérieur de 1 er cycle

Examen d admission aux études de l enseignement supérieur de 1 er cycle Examen d admission aux études de l enseignement supérieur de 1 er cycle Programme de Mathématiques COMPÉTENCES GÉNÉRALES Le ou la candidat e doit être capable d'utiliser les notions de base énumérées ci-après

Plus en détail

Le classeur peut comporter cinq parties, puis au choix de chacun de modifier ce choix. Voici les parties du classeur au lycée :

Le classeur peut comporter cinq parties, puis au choix de chacun de modifier ce choix. Voici les parties du classeur au lycée : Le classeur Comment faire pour consignes Les élèves peuvent se créer un outil mathématiques qui les aide du début du collège jusqu au baccalauréat. Un classeur dans lequel toutes les méthodes de chaque

Plus en détail

Première - Objectifs de l année en mathématique

Première - Objectifs de l année en mathématique Première - Objectifs de l année en mathématique *Document téléchargeable sur http://www.cspu.be/~termollem dans «Documents» Chapitres 1&2 : Calcul mental, diviseurs et multiples 1. Définir et distinguer

Plus en détail

RÉFÉRENTIEL MATHÉMATIQUES CYCLE 4 Joan MAGNIER, collège Anne Frank (Sauzé-Vaussais) 44 compétences

RÉFÉRENTIEL MATHÉMATIQUES CYCLE 4 Joan MAGNIER, collège Anne Frank (Sauzé-Vaussais) 44 compétences RÉFÉRENTIEL MATHÉMATIQUES CYCLE 4 Joan MAGNIER, collège Anne Frank (Sauzé-Vaussais) 44 compétences NOMBRES et CALCULS N1- Utiliser les nombres pour comparer N2- Utiliser les nombres pour calculer N3- Utiliser

Plus en détail

Commission des Outils d Évaluation pour les Humanités Générales et Technologiques

Commission des Outils d Évaluation pour les Humanités Générales et Technologiques Commission des Outils d Évaluation pour les Humanités Générales et Technologiques Mathématiques Troisième degré, mathématique pour scientifiques. Note : cet exercice peut s adresser aux élèves de 5 e qui

Plus en détail

Chapitre 1 - L algèbre de base

Chapitre 1 - L algèbre de base Mathématique d appoint 4 e édition Table des matières Chapitre 1 - L algèbre de base 1.1 Les ensembles de nombres 1.2 Les intervalles 1.3 Les relations entre deux ensembles 1.4 Les opérations sur les ensembles

Plus en détail

Enseigner les mathématiques aux élèves de SEGPA

Enseigner les mathématiques aux élèves de SEGPA Enseigner les mathématiques aux élèves de SEGPA E. HERNANDEZ IEN ASH G. DERMIGNY CPC ASH L enseignement des mathématiques en SEGPA a une triple visée : - consolider, enrichir et structurer les acquis de

Plus en détail

programme de mathématiques 6ème Temps Espace Vocabulaire Catégorisation

programme de mathématiques 6ème Temps Espace Vocabulaire Catégorisation programme de mathématiques 6ème Temps Espace Vocabulaire Catégorisation 1. Organisation et gestion de données. Fonctions 1.1. Proportionnalité 1.2. Organisation et représentation de données - Lire, utiliser

Plus en détail

Seconde ; année scolaire 2008 / 2009 Mathématiques

Seconde ; année scolaire 2008 / 2009 Mathématiques 04 / 09 08 / 09 09 / 09 11 / 09 15 / 09 16 / 09 18 / 09 22 / 09 23 / 09 25 / 09 Chapitre 1 : Ensembles de nombres Cours : Historique I. Classification des nombres II. Nombres premiers III. Calculs avec

Plus en détail

Mathématiques 4 ème Chapitre 1 Multiplications, divisions de nombres relatifs

Mathématiques 4 ème Chapitre 1 Multiplications, divisions de nombres relatifs Mathématiques 4 ème Chapitre 1 Multiplications, divisions de nombres relatifs R.1. Additionner et soustraire des nombres relatifs R.2. Effectuer une somme algébrique. 4.1 Donner la règle des signes dans

Plus en détail

Progression pour la classe de 3 ème

Progression pour la classe de 3 ème Progression pour la classe de 3 ème N Axe Chapitre Descriptif Remarques ; durée 1 Nombres et 2 Nombres et Chap 5 I- équation du 1er degré à 1 inconnue Chap 4 I- racine carrée d'un nombre positif Mettre

Plus en détail

LES OISEAUX ET LE PUITS Sommaire

LES OISEAUX ET LE PUITS Sommaire Fiche d identification Fiche professeur Fiche élève Scénario(s) d'usage Fiche technique (pour une utilisation de Cabri géomètre) IREM de Montpellier Groupe ZEP Page 1 décembre 2003 Programme officiel :

Plus en détail

Programme de mathématiques

Programme de mathématiques Enseignement Secondaire et Secondaire Technique 32 avenue de la Gare, L-9233 Diekirch boîte postale 39, L-9201 Diekirch www.lcd.lu Lycée classique de Diekirch t (+352) 26 807 210 f (+352) 80 95 84 Programme

Plus en détail

Mathématiques - Progression 3 e

Mathématiques - Progression 3 e Chap 1. Tests de valeur Utiliser la distributivité simple Réduire une expression Calculer une expression littérale en donnant aux variables des valeurs numériques Tester une égalité Utiliser / écrire un

Plus en détail

Cahier de texte de Mathématiques (M.Bueno) SEMAINE 01 : du 6/9/10 au 12/9/10

Cahier de texte de Mathématiques (M.Bueno) SEMAINE 01 : du 6/9/10 au 12/9/10 SEMAINE 01 : du 6/9/10 au 12/9/10 CHAPITRE 1 : REPERAGE DANS LE PLAN I ] Repère 1 ) Définition d un repère Application dans un rectangle 2 ) Coordonnées d un point du plan Reprise du rectangle Cours :

Plus en détail

*********************** Un Peuple Un But Une Foi Institut Pédagogique National ***************** OPÉRATION MATHÉMATIQUES SAVOIR FAIRE

*********************** Un Peuple Un But Une Foi Institut Pédagogique National ***************** OPÉRATION MATHÉMATIQUES SAVOIR FAIRE MINISTÈRE DE L ÉDUCATION NATIONALE RÉPUBLIQUE DU MALI *********************** Un Peuple Un But Une Foi Institut Pédagogique National ***************** OPÉRATION MATHÉMATIQUES SAVOIR FAIRE 10 è SCIENCES

Plus en détail

PROGRESSION 3ème PGCD. vocabulaire. Détermination du PGCD. Rappel sur le calcul numérique: calcul de base

PROGRESSION 3ème PGCD. vocabulaire. Détermination du PGCD. Rappel sur le calcul numérique: calcul de base PROGRESSION 3ème Algèbre PGCD Je sais Ne sais pas vocabulaire + Connaître la définition et donner un multiple, un diviseur d'un nombre, + divisibilité savoir si un nombre est divisible par 2 3 5 9 10 (rappel

Plus en détail

MATHÉMATIQUES CINQUIÈME

MATHÉMATIQUES CINQUIÈME Collège STANISLAS de QUÉBEC ( 2011-2012 ) MATHÉMATIQUES CINQUIÈME 1. OBJECTIFS. Acquérir des connaissances pratiques et utiles dans des situations de la vie pratique.. Acquérir des notions fondamentales

Plus en détail

Mathématiques en SEGPA : pour aller vers le CAP

Mathématiques en SEGPA : pour aller vers le CAP Mathématiques en SEGPA : pour aller vers le CAP E. HERNANDEZ IEN ASH G. DERMIGNY CPC ASH Si l une des finalités des enseignements adaptés du second degré est d obtenir le CFG, l autre est de parvenir à

Plus en détail

Considérations générales

Considérations générales Considérations générales - Heures complémentaires non certificatives: les matières reprises dans ce document constituent un supplément aux matières des cours de mathématique dans l optique d apporter aux

Plus en détail

MATHÉMATIQUES PRÉ-CALCUL 11 e ANNÉE. Algèbre et nombre. Résultat d apprentissage général : Développer le raisonnement algébrique et le sens du nombre.

MATHÉMATIQUES PRÉ-CALCUL 11 e ANNÉE. Algèbre et nombre. Résultat d apprentissage général : Développer le raisonnement algébrique et le sens du nombre. MATHÉMATIQUES PRÉ-CALCUL 11 e ANNÉE Algèbre et nombre 1. Démontrer une compréhension de la valeur absolue de nombres réels. [R, V] 2. Résoudre des problèmes comportant des opérations impliquant des radicaux

Plus en détail

Objectifs. Connaissances Capacités Commentaires

Objectifs. Connaissances Capacités Commentaires Classe de quatrième Note : les points du programme (connaissances, capacités et exemples) qui ne sont pas exigibles pour le socle sont écrits en italiques. Si la phrase en italiques est précédée d un astérisque

Plus en détail

MATHÉMATIQUES PRÉ-CALCUL 12 E ANNÉE. Trigonométrie. Résultat d apprentissage général : Développer le raisonnement trigonométrique.

MATHÉMATIQUES PRÉ-CALCUL 12 E ANNÉE. Trigonométrie. Résultat d apprentissage général : Développer le raisonnement trigonométrique. MATHÉMATIQUES PRÉ-CALCUL 12 E ANNÉE Trigonométrie A1. Démontrer une compréhension des angles en position standard exprimés en degrés et en radians. [CE, L, R, V] Résultat d apprentissage général : Développer

Plus en détail

Remarques : les activités suivantes seront anticipées : enroulement des réels sur le cercle, fluctuation d'échantillonage

Remarques : les activités suivantes seront anticipées : enroulement des réels sur le cercle, fluctuation d'échantillonage Seconde 2014-2015 Découpage du programme Outils de calculs (dans chaque chapitre sur les fonctions) 1 : expressions algébriques 2 : résolution d équations 3 : résolution d inéquations Algorithmes Outils

Plus en détail

Le classeur peut comporter cinq parties, puis au choix de chacun de modifier ce choix. Voici les cinq parties :

Le classeur peut comporter cinq parties, puis au choix de chacun de modifier ce choix. Voici les cinq parties : Le classeur Comment faire pour consignes Les élèves peuvent se créer un outil mathématiques qui les aide du début du collège jusqu au baccalauréat. Un classeur dans lequel toutes les méthodes de chaque

Plus en détail

Les programmes de géométrie plane en

Les programmes de géométrie plane en Les programmes de géométrie plane en 2011-2012 1 Ecole primaire CYCLE 1 Dessiner un rond, un carré, un triangle 2 CYCLE 2 Les élèves enrichissent leurs connaissances en matière d orientation et de repérage.

Plus en détail

Fonctions 1 : généralités

Fonctions 1 : généralités Fonctions 1 : généralités Acquis de troisième : Déterminer l image d un nombre par une fonction déterminée par une courbe, un tableau de données ou une formule. Déterminer un antécédent par lecture directe

Plus en détail

COURS EULER: PROGRAMME DE LA DEUXIÈME ANNÉE

COURS EULER: PROGRAMME DE LA DEUXIÈME ANNÉE COURS EULER: PROGRAMME DE LA DEUXIÈME ANNÉE Le cours de deuxième année termine l étude des sujets de l école obligatoire (quelques éléments de la 10e année, mais principalement les sujets étudiés en 11e)

Plus en détail

Révisions de Mathématique

Révisions de Mathématique Révisions de Mathématique Chapitre I Chapitre II Chapitre III Algèbre Trigonométrie Analyse Chapitre I Algèbre 1 Opérations élémentaires sur les nombres réels................ I 3 1.1 Les ensembles IN,

Plus en détail

L essentiel des notions

L essentiel des notions L essentiel des notions Sésamath Troisième L essentiel des notions http://www.sesamath.net/ Association Sésamath http://manuel.sesamath.net/ Adaptation réalisée par Marie-Laure Besson Table des matières

Plus en détail

Table des matières. Avant propos... 3

Table des matières. Avant propos... 3 Table des matières Avant propos... 3 Chapitre 1 NOTIONS DE BASE SUR LES ENSEMBLES 1.1 Inclusion... 7 1.2 Intersection... 8 Propriétés... 9 1.3 Réunion... 9 Propriétés... 9 1.4 Ensemble complémentaire...

Plus en détail

PARTIE C. Le sujet est composé de 2 feuilles (1 pour la géométrie et 1 pour le calcul littéral)

PARTIE C. Le sujet est composé de 2 feuilles (1 pour la géométrie et 1 pour le calcul littéral) PARTIE C Cette troisième partie est constituée : - d un exercice de calcul littéral - d un exercice de géométrie La durée totale prévue est d une séquence de 55 minutes. La calculatrice et le brouillon

Plus en détail

MATHÉMATIQUES SECONDE BAC PRO

MATHÉMATIQUES SECONDE BAC PRO MATHÉMATIQUES SECONDE BAC PRO PROGRESSION SPIRALÉE Définitions Compétence : connaissance(s), capacité(s), attitude(s). Connaissance : définie dans le BO pour chaque thème. Capacité : définie dans le BO

Plus en détail

K.Fares Progression mathématiques seconde Lycée Hélène Boucher

K.Fares Progression mathématiques seconde Lycée Hélène Boucher K.Fares Progression mathématiques seconde Lycée Hélène Boucher 2014-2015 Les di érents chapitres de l année rangés suivant les 3 parties du programme : Fonctions, Géométrie, Statistiques et. Chapitre Axe

Plus en détail

Livret mathématique de la 4 ème

Livret mathématique de la 4 ème Collège Marmontel MATHS 4 ème 100 rue des écoles, 19110 BORT-LES-ORGUES Année 2008 09 Tél : 05 55 96 73 61 Fax : 05 55 96 88 26 M Mouton Livret mathématique de la 4 ème Nom : Prénom Classe : Ce document

Plus en détail

Supérieur universitaire

Supérieur universitaire Lois 19829 p.1 Arrêté du Gouvernement de la Communauté française relatif au programme de l'examen spécial d'admission aux études universitaires de 1er cycle en sciences appliquées A.Gt 29-05-1996 M.B.

Plus en détail

FONCTIONS POLYNÔMES et SECOND DEGRE

FONCTIONS POLYNÔMES et SECOND DEGRE FONCTIONS POLYNÔMES et SECOND DEGRE I/ Fonctions polynômes et rationnelles a- Fonctions polynômes Une fonction polynôme (ou plus simplement un polynôme) est une fonction définie sur R par: f (x) = a n

Plus en détail

Banque d exercices. Des exercices adaptés aux besoins de chaque élève

Banque d exercices. Des exercices adaptés aux besoins de chaque élève Banque d exercices Des exercices adaptés aux besoins de chaque élève Dans BaREM, plus de 2 000 exercices sont proposés pour travailler l ensemble des notions au programme du cycle 4, en s adaptant au rythme

Plus en détail

PUZZLE À 3 PIÈCES 1. DESCRIPTION 2. UTILISATIONS

PUZZLE À 3 PIÈCES 1. DESCRIPTION 2. UTILISATIONS 1 PUZZLE À 3 PIÈCES 1. DESCRIPTION Ce jeu est construit à partir du découpage d un carré en 3 pièces à l aide de deux segment (l un joignant le milieu d un côté à l un des deux sommets opposés, l autre

Plus en détail

Les programmes de géométrie en

Les programmes de géométrie en Les programmes de géométrie en 2010-2011 Ecole primaire CYCLE 1 Dessiner un rond, un carré, un triangle CYCLE 2 Les élèves enrichissent leurs connaissances en matière d orientation et de repérage. Ils

Plus en détail

Racine carrée d un nombre positif ou nul

Racine carrée d un nombre positif ou nul Racine carrée d un nombre positif ou nul Introduction (Sésamath) 1) Quelques racines carrées simples a) Trouver tous les nombres dont le carré est 16 b) Même question avec 0,81 c) Donner la mesure du côté

Plus en détail

COMPETENCE (Pilier du socle commun) :

COMPETENCE (Pilier du socle commun) : COMPETENCE (Pilier du socle commun) : DOMAINE : Nombres et Calculs ATTITUDES Connaissances Capacités Préalables nécessaires 2.1 Nombres entiers et décimaux Désignation - Connaître et utiliser la valeur

Plus en détail

Projet : Pour un monde équitable Manuel P

Projet : Pour un monde équitable Manuel P Mathématique Manuel «À vos maths» de Graficor Chapitre 1 : Les variables Variable Données : qualitatif discret ou continu Représentation globale d une situation par un graphique Semaine 1 1. Manuel p.2-3

Plus en détail

Comparaison des Connaissances et compétences associées Nombres et calculs

Comparaison des Connaissances et compétences associées Nombres et calculs Comparaison des Connaissances et compétences associées Nombres et calculs Dénombrer, constituer et comparer des collections. Utiliser diverses stratégies de dénombrement. Cycle 2 Cycle 3 Cycle 4 Procédures

Plus en détail

En cohérence avec l ensemble des programmes de mathématiques, l objectif général vise au développement de compétences.

En cohérence avec l ensemble des programmes de mathématiques, l objectif général vise au développement de compétences. Programme de première STI2D et STL Analyse et comparaison aux anciens programmes de STI Préambule Le programme est commun aux deux séries STI2D et STL. On ne distingue plus les six séries de STI (BO 1994),

Plus en détail

Les mathématiques dans les nouveaux programmes de cycles 3 et 4

Les mathématiques dans les nouveaux programmes de cycles 3 et 4 Les mathématiques dans les nouveaux programmes de cycles 3 et 4 Cliquez pour ajouter un texte Inspection pédagogique régionale Académie de Créteil Sommaire de cette présentation Organisation générale des

Plus en détail

A retenir : Chapitre 1

A retenir : Chapitre 1 A retenir : Chapitre 1 C1 * 1 et * 2 Définition de division euclidienne et vocabulaire Effectuer la DIVISION EUCLIDIENNE de D par d non nul, c est trouver le quotient q et le reste r tel que : D = d. q

Plus en détail

Introduction 1. I Géométrie plane 11

Introduction 1. I Géométrie plane 11 Table des matières Introduction 1 I Géométrie plane 11 1 Géométrie pure 13 1.1 Parallélisme......................... 13 1.1.1 Axiomes d incidence................ 13 1.1.2 Positions relatives de deux droites.........

Plus en détail

Progression 5ème. Thème Titre du chapitre Connaissances Capacités Commentaires Socle Ressources

Progression 5ème. Thème Titre du chapitre Connaissances Capacités Commentaires Socle Ressources N chapitre 1 5 Durée Thème Titre du chapitre Connaissances Capacités Commentaires Socle Ressources heure s Proportionnalité calcul calculs (1) Valeur approchée Troncature Arrondi Critères de divisibilité

Plus en détail

MATHÉMATIQUES 7 e ANNÉE. Le nombre (les concepts numériques)

MATHÉMATIQUES 7 e ANNÉE. Le nombre (les concepts numériques) MATHÉMATIQUES 7 e ANNÉE Le nombre (les concepts numériques) Démontrer une compréhension du concept des nombres et les utiliser pour décrire des quantités du monde réel. A- faire preuve de sa compréhension

Plus en détail

Polynômes et fractions rationnelles Trinômes du second degré

Polynômes et fractions rationnelles Trinômes du second degré Polynômes et fractions rationnelles Trinômes du second degré 1 Rappels 1. Carré d une somme : 2. Carré d une différence : 3. Différence de deux carrés : Pour tous réels a et b, a + b) 2 =........ Pour

Plus en détail

XIV. Objectifs du cours de 5 ème - mathématique 6h

XIV. Objectifs du cours de 5 ème - mathématique 6h XIV. Objectifs du cours de 5 ème - mathématique 6h Dans les objectifs développés ci-dessous, nous regrouperons différentes compétences terminales sous une même dénomination. A savoir : Compétence 1 : savoir,

Plus en détail

Matière: Maths Fiche de programmation : Année scolaire : 2013/2014

Matière: Maths Fiche de programmation : Année scolaire : 2013/2014 Matière: Maths Fiche de programmation : Année scolaire : 2013/2014 Classe : EB6 Nom du professeur : roula makdessy Compétences transversales : 1- Trier et saisir des informations et les traiter dans la

Plus en détail

Programmation Mathématiques sur le cycle 4

Programmation Mathématiques sur le cycle 4 LEGENDE DES TABLEAUX Attendus de Savoir-faire 5ème 4ème 3ème Repère de progressivité donnant une progression obligatoire sur les 3 niveaux Savoir-faire issu des programmes 2008 de 6 ème Repère de progressivité

Plus en détail

Mathématiques Programme pour l année scolaire 2014/2015 Classe de 8e TE / 8e PO

Mathématiques Programme pour l année scolaire 2014/2015 Classe de 8e TE / 8e PO Mathématiques Programme pour l année scolaire 2014/2015 Classe de 8e TE / 8e PO Manuel : Transmath 5e Format compact 2014 (Nathan, ISBN: 978-209-171-78-4) Les élèves ne sont pas censés acheter le livre

Plus en détail

NOMBRES ET CALCUL. Connaissances et compétences du socle commun. Compétences et capacités des programmes 2008.

NOMBRES ET CALCUL. Connaissances et compétences du socle commun. Compétences et capacités des programmes 2008. NOMBRES ET CALCUL - écrire, nommer, comparer et utiliser les nombres entiers, les nombres décimaux (jusqu au centième) et quelques fractions simples - restituer les tables d addition et de multiplication

Plus en détail

BACCALAURÉATS PROFESSIONNELS EN 3 ANS

BACCALAURÉATS PROFESSIONNELS EN 3 ANS BACCALAURÉATS PROFESSIONNELS EN ANS Carrosserie (réparation) Exemple de progression pédagogique Programmes : BOEN n 11 du 1/06/199 / A 8/07/99 modifié A 19/07/0 Mathématiques I : Activités numériques et

Plus en détail

Mathématiques Complément et synthèse II

Mathématiques Complément et synthèse II Définition du domaine d'examen MAT-5111-2 Mathématiques Complément et synthèse II Mise à jour novembre 2004 Définition du domaine d'examen MAT-5111-2 Mathématiques Complément et synthèse II Mise à jour

Plus en détail

Programme de mathématiques. Classe de troisième

Programme de mathématiques. Classe de troisième Programme de mathématiques Classe de troisième Sommaire Classe de troisième... 3 1. Organisation et gestion de données, fonctions... 3 2. Nombres et calculs... 6 3. Géométrie... 8 4. Grandeurs et mesures...

Plus en détail

Pour démarrer la classe de seconde. Paul Milan

Pour démarrer la classe de seconde. Paul Milan Pour démarrer la classe de seconde Tout ce qu il faut savoir Paul Milan DERNIÈRE IMPRESSION LE 1 juin 014 à 1:7 Table des matières 1 Calcul 1 Calcul sur les fractions................................ Calcul

Plus en détail

PROJET DE PROGRAMMATION EN MATHÉMATIQUES AU CYCLE 4

PROJET DE PROGRAMMATION EN MATHÉMATIQUES AU CYCLE 4 CYCLE 4 Collège Pierre Mendès-France LABARTHE-SUR-LÈZE PROJET DE PROGRAMMATION EN MATHÉMATIQUES AU CYCLE 4 CYCLE 4 Attendus de fin de cycle : Utiliser les nombres pour comparer, calculer et résoudre des

Plus en détail

PROGRESSION 3ème

PROGRESSION 3ème PROGRESSION 3ème 2010-2011 S1 S2 S3 S4 S5 Connaissances Socle Capacités Commentaires 3.2 Configurations dans l espace Problèmes de sections planes de solides. 2.1. Nombres entiers et rationnels Diviseurs

Plus en détail

Repères de progressivité programmes 2016

Repères de progressivité programmes 2016 Repères de progressivité programmes 2016 En rouge, ce qui doit démarrer à un instant précis du cycle, clairement indiqué dans les programmes En vert, ce qui n'apparait plus mais qui peut, si besoin, être

Plus en détail

- Construire le tableau de variation d une telle fonction en association avec la courbe représentative.

- Construire le tableau de variation d une telle fonction en association avec la courbe représentative. Mathématiques - classe de 1ère des séries STD2A 1. Analyse Le programme d analyse met en évidence l apport des fonctions et de leurs représentations graphiques dans des situations purement mathématiques

Plus en détail

Carnet de bord de 5M4 de Ir D. Vandenberge Athénée Royal Jean Absil 1/7

Carnet de bord de 5M4 de Ir D. Vandenberge Athénée Royal Jean Absil 1/7 Chapitre 1 : Calcul vectoriel dans l espace (2h/s) reporté en 6 ième - I-C1-1) 1. Rappels et introduction AD (1 4) 2. Représentation d un vecteur 3. Egalité de deux vecteurs 4. Translation 5. Addition

Plus en détail

I. Calculer avec les fractions et les racines

I. Calculer avec les fractions et les racines I. Calculer avec les fractions et les racines 1. Calcul avec les fractions Soient a, b, c et d des entiers relatifs, avec b et d non nuls. 2. Calcul avec les racines carrées Soient a et b deux réels positifs.

Plus en détail

L essentiel des mathématiques du CO au collège ( 2 e )

L essentiel des mathématiques du CO au collège ( 2 e ) L essentiel des mathématiques du CO au collège ( 2 e ) Le but de ce document est de mettre en lumière les connaissances de base en mathématiques que tout élève gymnasial (standard ou idéal?) de 3 e année

Plus en détail

N1 La valeur des chiffres CE1 CE2 CM1 CM2. N2 Le tableau des nombres jusqu à 99 CE1 CE2 CM1 CM2. N3 La lecture des nombres CE1 CE2 CM1 CM2

N1 La valeur des chiffres CE1 CE2 CM1 CM2. N2 Le tableau des nombres jusqu à 99 CE1 CE2 CM1 CM2. N3 La lecture des nombres CE1 CE2 CM1 CM2 CE CM CE CM N1 La valeur des chiffres N2 Le tableau des nombres jusqu à 99 N3 La lecture des nombres N4 Les nombres de 100 à 999 N5 Comparer, ranger, encadrer des nombres N6 Placer des nombres sur une

Plus en détail

Mathématiques 3 ème année

Mathématiques 3 ème année et solides simples, les décrire, les comparer Reproduire et réaliser des formes planes à l aide de pavages, de frises Construire un solide avec du matériel de construction Décrire un trajet Utiliser un

Plus en détail

Rainbowinschool.eklablog.net Programmation mathématiques : «A portée de maths» CM2

Rainbowinschool.eklablog.net Programmation mathématiques : «A portée de maths» CM2 Rainbowinschool.eklablog.net Programmation mathématiques : «A portée de maths» CM2 Nombres et Calcul et OGD (lundi) Géométrie/Grandeurs et mesures (mardi) Nombres et Calcul et OGD (jeudi) Géométrie/Grandeurs

Plus en détail

PROGRAMMATION CM1 Maths Titre de la séquence. Objectifs Pages du manuel Période 1

PROGRAMMATION CM1 Maths Titre de la séquence. Objectifs Pages du manuel Période 1 Titre de la séquence. Objectifs Pages du manuel Période 1 Les nombres jusqu à 9999. - Connaître, savoir écrire (en lettres et en chiffres), décomposer et p.8 et p.9 nommer les nombres de 0 à 999. - Distinguer

Plus en détail

CONTENU SAVOIR SAVOIR-FAIRE METHODE

CONTENU SAVOIR SAVOIR-FAIRE METHODE Chiffres et Nombres* Ecriture en toutes lettres des nombres entiers Vocabulaire mathématique Ecrire et lire les nombres de 1-1000 dans un français correct Cours de Français Nombres entiers et nombres décimaux

Plus en détail

Compétences (en référence au programme)

Compétences (en référence au programme) Séance N Lycée HONNORAT BARCELONNETTE Durée effectif 0 1h 29 Classes :5 e Planification prévisionnelle des enseignements de mathématiques Mise en œuvre des programmes de 5 ème à la rentrée 2011 Cette planification

Plus en détail

Programme de mathématiques

Programme de mathématiques Enseignement Secondaire et Secondaire Technique 32 avenue de la Gare, L-9233 Diekirch boîte postale 39, L-9201 Diekirch www.lcd.lu Lycée classique de Diekirch t (+352) 26 807 210 f (+352) 80 95 84 Programme

Plus en détail

DE L ART DE BIEN SE POSER Fiche professeur

DE L ART DE BIEN SE POSER Fiche professeur NIVEAU Classe de 4 ème / 3 ème MODALITÉS DE GESTION POSSIBLES Travail individuel ou en binôme. De très nombreux scénarios, plus ou moins longs et complexes sont envisageables (cf situation et variantes).

Plus en détail

Correspondances Poly / Leçons CAPES Sessions suivantes

Correspondances Poly / Leçons CAPES Sessions suivantes Correspondances Poly / Leçons CAPES Sessions suivantes * Option Mathématiques Intitulé des leçons Poly 2013 2014 2015 2016 2017* Résolution de problèmes à l'aide de graphes 1 1 1 1 1 Résolution de problèmes

Plus en détail

Mathématiques Géométrie III

Mathématiques Géométrie III Définition du domaine d'examen MAT-4102-1 Mathématiques Géométrie III Isométries et similitudes Mise à jour novembre 2004 Définition du domaine d'examen MAT-4102-1 Mathématiques Géométrie III Isométries

Plus en détail

Progressions Mathématiques cycle 3

Progressions Mathématiques cycle 3 Progressions Mathématiques cycle 3 Nombres et calcul CM1 CM2 6ème Utiliser et représenter les grands nombres entiers Utiliser et représenter les grands nombres entiers Utiliser et représenter les grands

Plus en détail

PROGRESSION CALCUL MENTAL

PROGRESSION CALCUL MENTAL PROGRESSION CALCUL MENTAL Additionner rapidement Soustraire rapidement Multiplier et diviser rapidement Consolider les connaissances et capacités en calcul mental sur les nombres Estimer mentalement un

Plus en détail

Socle Commun des Connaissances - Compétences Mathématiques - Classement adapté à Sésamath / MathenPoche

Socle Commun des Connaissances - Compétences Mathématiques - Classement adapté à Sésamath / MathenPoche Compétence exigible au socle dès à présent. v Compétence exigible au socle ultérieurement. v Compétence non exigible au socle. v Compétence sans objet. v 6 Sixième V V V V 6N Nombres entiers et décimaux

Plus en détail

EXAMENS INTERNES D ADMISSION

EXAMENS INTERNES D ADMISSION MATURITÉ SUISSE EXAMENS INTERNES D ADMISSION Éd. 2016 École EPSU Genève www.epsu.ch Genève E P U S Section «Maturité fédérale» éd. novembre 2016 Examens internes d'admission MATIÈRES EXAMINÉES Récapitulatif

Plus en détail

Progression CE2 : Mathématiques

Progression CE2 : Mathématiques Palier 2 du Socle commun (fin du CM2) : Les principaux éléments de mathématiques et la culture scientifique et technologique Nombres et calcul Écrire, nommer, comparer et utiliser les nombres entiers,

Plus en détail

L essentiel des notions

L essentiel des notions L essentiel des notions Sésamath Quatrième L essentiel des notions http://www.sesamath.net/ Association Sésamath http://manuel.sesamath.net/ Adaptation réalisée par Marie-Laure Besson Table des matières

Plus en détail

Ranger des nombres en ordre croissant ou décroissant. Encadrer des nombres jusqu au million

Ranger des nombres en ordre croissant ou décroissant. Encadrer des nombres jusqu au million Programmation Mathématiques CE2 Année 2008-2009 En gras les compétences à atteindre : 2 ème palier pour la maîtrise du socle commun : compétences attendues à la fin du CM2 Connaissance des nombres entiers

Plus en détail

Résultat d apprentissage général Développer le sens du nombre.

Résultat d apprentissage général Développer le sens du nombre. Domaine : Le nombre Développer le sens du nombre. 7.N.1. 7.N.2. Déterminer et préciser pourquoi un nombre est divisible par 2, 3, 4, 5, 6, 8, 9 ou 10, et expliquer pourquoi un nombre ne peut pas être divisé

Plus en détail